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Abstract: This review explores the critical role of powder quality in metal 3D printing and the
importance of effective powder recycling strategies. It covers various metal 3D printing technologies,
in particular Selective Laser Melting, Electron Beam Melting, Direct Energy Deposition, and Binder
Jetting, and analyzes the impact of powder characteristics on the final part properties. This review
highlights key challenges associated with powder recycling, including maintaining consistent particle
size and shape, managing contamination, and mitigating degradation effects from repeated use, such
as wear, fragmentation, and oxidation. Furthermore, it explores various recycling techniques, such
as sieving, blending, plasma spheroidization, and powder conditioning, emphasizing their role in
restoring powder quality and enabling reuse.

Keywords: metal 3D printing; powder recycling; additive manufacturing; sustainability; powder
degradation; L-PBF; EB-PBF; binder jetting; DED

1. Introduction

Metal 3D printing, also commonly referred to as additive manufacturing (AM), en-
compasses various technologies that build parts layer-by-layer, based on a CAD-3D model,
using metallic powders. The origins of 3D printing can be traced back to the 1980s with
the development of stereolithography (SLA), which used UV lasers to cure photopolymer
resins [1]. The technology quickly evolved, and in the 1990s, the first patents for metal
additive manufacturing were filed [2], leading to the development of techniques such as
selective laser sintering (SLS) [3].

Today, metal 3D printing is used in a wide range of industries, including aerospace [4],
automotive [5], medical [6], and tooling [7], offering unprecedented design freedom and
manufacturing flexibility.

These technologies can be broadly categorized into two main groups: those that use a
bonding agent to bind the powder and those that melt the material directly using a heat
source. Each category faces unique industrial challenges and has distinct advantages and
applications (Figure 1).

Binder Jetting [8] involves spreading a thin layer of metal powder onto a build plat-
form, followed by the deposition of a liquid binding agent using an inkjet print head. The
binder selectively binds the powder particles together to form a solid layer. This process is
repeated layer-by-layer until the entire part is built. Post-processing steps such as curing,
debinding, and sintering are required to remove the binder and densify the part.

Binder Jetting is particularly suitable for producing complex geometries, metal proto-
types, and small-to-medium batch production. Commonly used materials include stainless
steel [9,10], titanium [11], and other alloys [12–15]. Despite its advantages, Binder Jetting
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faces industrial challenges such as the need for extensive post-processing to achieve final
mechanical properties and managing and recycling unused binder and powder.
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L-PBF (b), L-DMD (c), and Binder Jetting (d).

Selective Laser Melting (SLM or L-PBF, Laser Powder Bed Fusion) [16] utilizes a high-
powered laser to selectively melt and fuse metal powder particles together. A thin layer of
powder is spread over the build platform, and the laser traces the cross-sectional geometry
of the part, melting the powder. The platform then lowers, and a new layer of powder is
spread, repeating the process layer-by-layer. L-PBF is capable of producing fully dense,
high-strength metal parts, but it requires support structures to counteract warping due to
thermal stresses.

Initially, due to technological limitations in laser power, this process was referred to as
selective laser sintering (SLS) [17]. Unlike L-PBF, SLS could only achieve sintering, where
the metal powder particles are fused together but not fully melted. However, advancements
in laser technology have enabled SLM to achieve complete melting of the metal powder,
resulting in stronger and more homogeneous parts [18]. Despite the dominance of L-PBF
in industries requiring fully dense metal parts, SLS still survives in applications where part
density and mechanical properties are not critical, such as in prototyping [19].

L-PBF is widely used in aerospace [20], medical implants [21], automotive compo-
nents [22], and tooling [23]. Commonly used materials include aluminum alloys [24],
titanium [25], stainless steel [26], magnesium [27], nickel [28] and cobalt–chrome [29]. The
primary industrial challenges for L-PBF include high thermal gradients that can cause
residual stresses and distortions, as well as the need for sophisticated powder handling
and recycling to maintain powder quality.

Electron Beam Melting (EBM or EB-PBF, Electron Beam Powder Bed Fusion) [30] uses
an electron beam to melt metal powder in a vacuum environment, reducing oxidation
and contamination. A layer of powder is spread, and the electron beam selectively melts
the powder. EB-PBF offers higher build rates compared to L-PBF due to the electron
beam’s high energy density, but it requires vacuum conditions, which limit the size of the
build chamber.

EB-PBF is commonly used in aerospace [31] and medical implants [32], particularly or-
thopedic implants [33]. Materials such as titanium and its alloys [34] and cobalt–chrome [35]
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are frequently used. Industrial challenges for EB-PBF include the complexity and cost
associated with vacuum requirements and managing powder in a vacuum environment.

Direct Energy Deposition (DED) [36] uses focused thermal energy (laser, electron
beam, or plasma arc) to fuse metal powder or wire feedstock as it is deposited. The material
is directly fed into the heat source, where it is melted and deposited onto the substrate or
previously built layers. DED is also suitable for repairing existing components and adding
material to existing parts, and it can produce large parts with complex geometries.

DED is utilized in aerospace [37], defense [38], and repair applications [39], with
materials such as titanium [40], stainless steel [41], Inconel [42], and other high-performance
alloys [36]. The industrial challenges for DED include maintaining consistent powder flow
and quality, managing residual stresses, and achieving fine feature resolution.

All technologies require effective strategies for powder management [43], including
recycling and maintaining powder quality standards over time. Direct melting technologies
(L-PBF, EB-PBF, and DED) face challenges with residual stresses, necessitating robust
thermal management and support strategies. Additionally, Binder Jetting requires extensive
post-processing to achieve desired properties and must deal with the issue of residual
binder in recycled powders, which can compromise the quality of new builds and requires
thorough cleaning and reprocessing [15].

The quality of metal powder used in 3D printing plays a critical role in determining
the final properties of printed parts. High-quality powder ensures optimal flowability,
which in turn increases the quality of the 3D printing process and the mechanical properties
of the final product. Several factors influence powder quality, including particle size and
shape, density, roughness, chemical composition, and the presence of impurities [44,45].
Understanding and controlling these factors is essential for achieving consistent and reliable
results in metal additive manufacturing.

Uniform particle size distribution is vital for achieving a smooth and consistent powder
layer during the 3D printing process [46,47]. In technologies such as Selective Laser Melting
and Electron Beam Melting, keeping a consistent layer thickness is crucial to obtain an
even melting and solidification of each layer [48]. Powders with a narrow particle size
distribution tend to flow better, which improves the packing density and reduces the
likelihood of defects such as porosity and incomplete fusion.

Inconsistent particle size can lead to variations in packing density, affecting thermal
conductivity and laser absorption during the melting process. This can result in defects such
as balling, where un-melted powder forms spherical particles, or lack of fusion between
layers. Ensuring a consistent particle size distribution helps in maintaining the integrity of
the printed part and achieving desired mechanical properties [49–51].

The shape of the powder particles significantly impacts the flowability and packing
density of the powder bed [52]. Spherical particles are generally preferred in metal 3D print-
ing due to their superior flowability and packing characteristics compared to irregularly
shaped particles. Spherical particles reduce friction and allow for a more uniform powder
layer, which is essential for high-quality builds [53,54]. The method used to produce the
powder affects its shape. Gas atomization, a common method for producing metal powders,
tends to produce highly spherical particles, while other methods like water atomization
may give more irregular results.

The chemical composition of the powder must be carefully controlled to ensure that
it meets the specifications required for the intended application. Impurities or variations
in the alloy composition can affect the mechanical properties, corrosion resistance, and
overall performance of the printed parts [55]. For example, the presence of oxygen or other
contaminants can lead to the formation of oxides, which can weaken the material [56,57].
Maintaining a consistent chemical composition across different batches of powder is essen-
tial for achieving repeatable results.

Powder contamination can occur during production, handling, or recycling pro-
cesses [43,58]. Common contaminants include moisture, oils, metal residues from the
distribution system, and other foreign particles, which can adversely affect the flowability,
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melting behavior, and mechanical properties. Ensuring a clean production environment
and using appropriate storage and handling procedures are crucial for maintaining powder
purity, in particular considering that, because of their high surface-area-to-volume ratio,
particles are more reactive and can easily absorb high amounts of humidity [59].

Contaminants can lead to defects in the printed parts, such as inclusions or voids, which
can compromise the mechanical properties and structural integrity of the parts [60,61]. For
critical applications, such as aerospace and medical implants, maintaining a high powder
purity is essential to meet stringent performance and safety standards.

Recent studies have emphasized the importance of monitoring changes in powder
characteristics during recycling. Techniques such as scanning electron microscopy (SEM),
X-ray diffraction (XRD), and particle size analysis are used to assess changes in particle
morphology, size distribution, and phase composition [62]. These analyses help in un-
derstanding degradation mechanisms and ensuring that recycled powders maintain their
performance characteristics.

Research has shown that repeated recycling can lead to changes in powder properties,
such as increased particle size and altered shape due to agglomeration and oxidation.
For instance, titanium alloys [63–66] and nickel-based superalloys [67–69] are prone to
oxidation, which can affect their flowability and mechanical properties. Studies have
investigated the effects of these changes on the final part quality, highlighting the need for
strict quality control measures.

Sieving is commonly used to remove oversized particles and contaminants from
recycled powder [70]. Blending recycled powder with virgin powder is another technique
to restore the desired properties. Recent advances have focused on optimizing these
processes to maintain a consistent quality of recycled powder. For example, dynamic
sieving methods [71] have been developed to improve efficiency and accuracy in separating
usable powder from debris.

Plasma spheroidization [72] is an advanced technique that reshapes irregular particles
into spherical ones using thermal plasma. This process improves the flowability and
packing density of recycled powders, making them suitable for reuse in 3D printing.
Research has demonstrated that plasma-spheroidized powders can achieve a comparable
performance to virgin powders, thus extending their usable life.

Studies have investigated the mechanical properties of parts printed with recycled
powders, focusing on tensile strength, hardness, and fatigue resistance. Results indicate
that, with proper recycling and quality control, parts produced from recycled powders
can achieve mechanical properties comparable to those made from virgin powders [62].
However, the extent of property retention depends on the material and the number of
recycling cycles [62].

Research has shown that adjusting process parameters, such as laser power, scanning
speed, and layer thickness, can mitigate the effects of powder degradation [73]. Optimizing
these parameters for recycled powders helps in achieving consistent part quality and
performance. For example, increasing the laser power can compensate for the reduced
absorption efficiency of oxidized powders.

Recycling powders significantly reduces the material costs associated with metal 3D
printing. By extending the usable life of powders, manufacturers can lower their production
costs and improve the economic viability of additive manufacturing [73]. Research has
quantified these cost savings, demonstrating that effective recycling can lead to substantial
reductions in overall production expenses [74].

Recycling metal powders contributes to sustainability by reducing waste and minimiz-
ing the environmental impact of metal extraction and processing. Studies have highlighted
the environmental benefits of powder recycling, including reduced energy consumption
and lower carbon emissions [75]. These findings support the adoption of recycling practices
in industrial applications to promote greener manufacturing processes.

In conducting this review, we gathered and analyzed a wide range of recent studies and
publications on the topic of powder recycling in metal 3D printing. Our approach involved
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an extensive literature search using databases such as Google Scholar, PubMed, and IEEE
Xplore to identify peer-reviewed articles, conference papers, and industry reports published
within the last ten years. We focused on research that addressed the key aspects of powder
quality, recycling techniques, and their impact on mechanical properties and sustainability.

By synthesizing findings from various sources, including experimental studies, theo-
retical analyses, and case studies, we aimed to provide a comprehensive overview of the
current state of knowledge in this field. Additionally, we consulted expert reviews and con-
ducted meta-analyses to identify emerging trends and gaps in the literature, ensuring that
our review not only highlights recent advances but also points to future research directions.

2. Overview of Metal 3D Printing
2.1. Metal Powders Used in 3D Printing

The most commonly used metals and alloys in 3D printing include titanium alloys,
stainless steels, aluminum alloys, nickel-based superalloys, and cobalt–chrome alloys. In
particular, the economic convenience of the use of metal powders in 3D printing is the
ability to use, with minimal adaptations, a wide range of high-cost materials to obtain
complex shapes that would be impossible to produce by conventional manufacturing
methods [76–80]. The primary 3D printing methods for metals are Electron Beam Melting,
Directed Energy Deposition, Selective Laser Melting, and Binder Jetting. Each of these
methods utilizes metal powders with specific characteristics tailored to the process require-
ments in order to obtain the optimum performances in terms of the mechanical properties
or degradation resistance of material.

Titanium alloys, particularly Ti-6Al-4V [32,81], are favored for their high strength-to-
weight ratio, corrosion resistance, and biocompatibility. These properties make them ideal
for aerospace, automotive, and biomedical applications. Other titanium alloys used in 3D
printing include Ti-6Al-2Sn-4Zr-2Mo [82] and Ti-5Al-2.5Sn [83]. Additionally, commercially
pure grade 2 [34] titanium is also used, especially in applications requiring excellent
corrosion resistance and moderate strength.

Stainless steels, such as 316L [84] and 17-4PH [85], offer excellent corrosion resistance,
mechanical properties, and cost-effectiveness. They are widely used in the manufacturing
of tools, medical devices, and structural components. Other commonly used stainless steels
include 304L [86], 15-5PH [87], and 410 [88].

Aluminum alloys, such as AlSi10Mg [89], are valued for their light weight, good thermal
conductivity, and mechanical properties. They are commonly used in the aerospace and
automotive industries. Other popular aluminum alloys in 3D printing include AlMg1SiCu [90],
AlSi12 [91], and AlSi7Mg [92].

Nickel-based superalloys like Inconel 718 [93] and Inconel 625 [94] are known for
their high-temperature strength and resistance to oxidation and corrosion. These alloys
are essential in the aerospace, power generation, and chemical processing industries.
Additional nickel-based superalloys used in 3D printing include Hastelloy X [95], Ni-Cu
alloys [96], and Rene 41 [97].

Cobalt–chrome alloys, such as CoCrMo [98], exhibit excellent wear and corrosion re-
sistance and are used extensively in dental and orthopedic implants, as well as in aerospace
components. Other cobalt–chrome alloys used include CoCrW [99] and CoCrNiMo [100].

Copper alloys [101,102] are widely used, mainly for their excellent physical properties
also at high temperatures. There are several fields where they are used, including as
components of steel-making plants, components of nuclear plants, and so on. In the 3D
printing field, there are many Cu-based alloys that are specifically designed in order to be
produced by laser processes by conditioning their reflectance [103,104].

A list of metal alloys that have found application in 3D printing is presented in Table 1.
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Table 1. List of the most common alloys used in 3D printing, with relevant literature references.

Base Metal Alloy Ref. Technique

Titanium

Ti-6Al-4V

[105–108] L-PBF

[109–112] EB-PBF

[37,113–115] DED

[116–119] BJ

Ti-6Al-2Sn-4Zr-2Mo
[120–123] L-PBF

[122,124–126] EB-PBF

Ti-6Al-2Sn-4Zr-6Mo [82,127–129] L-PBF

Ti-5Al-2.5Sn [130–133] L-PBF

Ti-5Al-2Sn-2Zr-4Mo-4Cr [134] L-PBF

Ti-xCu [135] L-PBF

Ti-xCu-yFe [136] L-PBF

Ti-8.5Cu [137] L-PBF

Ti-xMo

[138–140] L-PBF

[141,142] EB-PBF

[143–145] DED

Ti-3Al-8V-6Cr-4Mo-4Zr
[146] L-PBF

[147] DED

Ti-5Al-5Mo-5V-3Cr-1Zr [148–150] L-PBF

Ti-5Al-5V-5Mo-3Cr [148] L-PBF

Ti-6Al-7Nb [151–154] L-PBF

Ti-15Mo-3Nb-3Al-0.2Si [155–157] L-PBF

Ti-5Al-2.5Sn [130,131,133,158] L-PBF

Ti-36Nb-2Ta-3Zr-0.35O [159] EB-PBF

Ti-35Nb-7Zr-5Ta [160] EB-PBF

Ti-4Al-5Co-0.25Si [161] DED

CP

[162–165] L-PBF

[166–168] EB-PBF

[169,170] DED

[11,171,172] BJ

Steel

316

[173–175] L-PBF

[176,177] EB-PBF

[178] DED

316L

[26,179–181] L-PBF

[179,182] EB-PBF

[183–186] DED

[187–190] BJ

303 [191–194] DED

17-4PH

[85,195–197] L-PBF

[198,199] DED

[200–202] BJ
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Table 1. Cont.

Base Metal Alloy Ref. Technique

Steel

304

[203,204] L-PBF

[205] EB-PBF

[202,206,207] DED

304L
[86,208–210] L-PBF

[211] EB-PBF

15-5PH [87,212–214] L-PBF

[215–217] DED

410 [88] L-PBF

310S [218] L-PBF

321
[219] L-PBF

[220,221] EB-PBF

420
[222–225] L-PBF

[226] DED

430 [227] L-PBF

4140 [228,229] L-PBF

2205 [230] L-PBF

2507 [231] L-PBF

904L [232] L-PBF

Aluminum

AlSi10Mg

[89,233–235] L-PBF

[236–238] DED

[12] BJ

AlMg1SiCu [90] L-PBF

AlSi12
[91,239–241] L-PBF

[242] DED

AlSi7Mg
[92] L-PBF

[243] BJ

AlSi10Mg [244] DED

2024 [245,246] L-PBF

2011 [247] L-PBF

2219 [248] L-PBF

3003 [249] L-PBF

3104 [250,251] DED

4020 [252] L-PBF

4047 [253] L-PBF

5005 [254] L-PBF

5052 [254] L-PBF

5083 [252] L-PBF

5183 [255] L-PBF

5087 [256,257] L-PBF

5754
[256] L-PBF

[258] DED
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Table 1. Cont.

Base Metal Alloy Ref. Technique

Aluminum

6061

[259–262] L-PBF

[263] DED

[264] BJ

6063 [265–267] L-PBF

6082 [268] L-PBF

7075
[269–272] L-PBF

[273] DED

7050
[253,274] L-PBF

[275] DED

Nickel

Monel 400
[96,276] L-PBF

[277] DED

Monel K-500
[278] L-PBF

[279] DED

Inconel 600
[280] L-PBF

[281,282] DED

Inconel 625

[94,283,284] L-PBF

[285] EB-PBF

[42,281,286,287] DED

[288–290] BJ

Inconel 718

[93,291–293] L-PBF

[294–296] EB-PBF

[42,297,298] DED

[299,300] BJ

Inconel 825 [301] L-PBF

Hastelloy C-22
[302] L-PBF

[303,304] DED

Invar 36

[305–308] L-PBF

[309] EB-PBF

[310–312] BJ

Nitinol

[313–316] L-PBF

[317–319] EB-PBF

[320–322] DED

Waspaloy
[323–326] L-PBF

[327] DED

Cobalt

CoCrMo

[328–331] L-PBF

[332–335] EB-PBF

[336] DED

[337,338] BJ

CoCrW [99,339–341] L-PBF

CoCrNiMo
[100] L-PBF

[342] DED
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Table 1. Cont.

Base Metal Alloy Ref. Technique

Cobalt

Stellite 6

[343] L-PBF

[343,344] DED

[345,346] BJ

Stellite 21
[347] L-PBF

[348] DED

Stellite 12 [349] L-PBF

Haynes 188 [350–352] L-PBF

Haynes 230 [353,354] L-PBF

Haynes 233 [355] L-PBF

Haynes 282
[356–358] L-PBF

[359,360] EB-PBF

Mar-M509
[361–363] L-PBF

[364] EB-PBF

Copper

CP

[365–367] L-PBF

[368–370] EB-PBF

[371–373] BJ

Cu-xCr-yZr

[374–377] L-PBF

[378,379] EB-PBF

[380–382] DED

Cu-xCr-yZn [383,384] L-PBF

Cu-xCr
[385–387] L-PBF

[388] EB-PBF

Cu-xCr-yNb
[389–392] L-PBF

[393] DED

Cu-xSn

[394–396] L-PBF

[397] DED

[398] BJ

Cu-xNi-ySn [399–401] L-PBF

The quality and performance of metal 3D printing are highly dependent on the
properties of the metal powders used (Figure 2). These properties include morphological
characteristics such as particle shape, size, distribution, and roughness, as well as chemical
composition and other physical properties. Most requirements are universal, meaning
that they apply to all 3D printing techniques. In particular, the following properties
are considered:

Flowability [70]: good flowability is essential for achieving smooth powder spread-
ing and layer consistency, which are critical for the quality and precision of the printed
components. Flowability depends on the powder morphological characteristics, such
as shape, texture, size, and distribution, on the chemical composition, in particular con-
cerning the surface oxides, and is also influenced by environmental conditions such as
moisture content.

Shape [402]: spherical particles are generally preferred across all 3D printing tech-
niques due to their high flowability and packing density, which contribute to consistent
layer formation and uniform melting.
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Particle size and distribution [403]: requirements about particle size and distribution
tend to vary depending on the technique used. For EB-PBF, powders usually have a particle
size range of 45–110 µm. A narrow size distribution ensures uniform layer deposition and
efficient melting. DED is more forgiving, with a typical particle size range of 50–150 µm,
followed by EB-PBF (45–110 µm), then Binder Jetting (20–100 µm), and finally L-PBF
(15–45 µm). Apart from DED, which has higher deposition rates but lower resolution
compared to the other techniques, the typical powder size range is strictly correlated with
the usual layer thickness during printing.

Density [47]: powder density reflects the quality of the powder and the presence of
internal voids can usually negatively affect the flowability of the powder due to powder
fragmentation during coating and recoating in the powder bed fusion process. Another
important parameter to consider is that the powders should have a certain degree of
compaction. The packing density indicates how the powders can fill a volume with a
low number of voids. This property then reflects the amount of defect associated with
the printed component. In fact, the powders, within their PSD, present certain coarse
particles that mainly fill the volume and certain fine particles to fill the space between the
other particles.

Chemical composition [404]: the chemical composition of powder is crucial to obtain
a printed material with certain precise requirements in terms of chemical composition that
then have an influence on the 3D-printed part. The chemical composition of the printed
component may vary during the printing process due to the evaporation of some elements.

Other physical properties [405]: the physical properties of the powders are crucial for
the correct formation of the melt pool according to the chosen process parameters. In fact,
melting in the 3D printing process is strongly controlled by the heat transfer process from
the energy imparted by the energy source (laser or electron beam). The presence of trace
elements in powders or of thin films on the surface can reduce the heat transfer process and
thus modify the solidification mechanism of the molten metal. Another important property
is related to the optical properties of the powders, which influence the energy adsorption
of the printed material. Laser-based 3D printing processes of copper alloys, for example,
are complicated by the material’s high reflectivity [103].
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2.2. Powder Production Methods

As we previously discussed, the use of high-quality metallic powders is fundamental
to the success of metal 3D printing. Various methods are employed to produce powders
with specific characteristics, and they prevalently fall within three main groups (Figure 3):
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Mechanical methods [406]: ball milling is a mechanical process that involves the
grinding of metal powders in a rotating cylindrical chamber with hardened steel or tungsten
carbide balls. This method is particularly useful for producing fine and uniform powders
from brittle materials. Ball milling is cost-effective, allows for the production of very fine
powders, and can be used for a wide range of metals and alloys. The powders produced
by ball milling typically have an irregular shape. The mechanical forces involved in
the grinding process cause the particles to fracture in a random manner, leading to a
non-spherical, angular morphology. This irregular shape can affect the flowability of the
powder, making it less ideal for certain 3D printing applications that require a smooth
and consistent powder flow [407]. It is also a time-consuming process, and the powder
produced can be contaminated by the milling media and the chamber [408].

Atomization methods [404]: atomization is one of the most common methods for
producing high-quality metal powders. It involves the disintegration of molten metal
into fine droplets, which solidify into powder particles. There are three main types of
atomization methods, gas [409], water [410], and plasma [411]. Gas atomization uses a
high-pressure gas stream to break up molten metal into fine droplets, resulting in spherical
particles with high flowability and packing density, ideal for 3D printing applications.
Water atomization uses high-pressure water jets instead of gas to disintegrate molten metal.
The particles produced by water atomization are generally irregular and can have a rough
surface texture, which may affect flowability and packing density. It is more cost-effective
than gas atomization, but it can introduce impurities and lead to the formation of oxides.
Plasma atomization uses a plasma torch both to melt metal wire and to disintegrate it into
fine droplets. The particles produced by plasma atomization are highly spherical and have
excellent purity and consistency, but the technique is more expensive due to the higher
energy requirements.

An advanced and interesting process for the production of metal powders is the
rotating plasma electrode technique [412–414]. The process consists of a rotating sacrificial
electrode installed in a vacuum chamber. The heat source is provided by a counter electrode,
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usually made of tungsten, which generates a plasma under controlled conditions that
is responsible for melting the electrode. The rotation causes the molten particles to be
centrifugally expelled, producing small drops of liquid metal which solidify and fall into
the collector. This process is a valid method used to produce metal alloys that are reactive
to gases. The number of internal defects is usually low compared to conventional processes.

Chemical methods: chemical methods are a group of time-consuming techniques that
involve the reduction or decomposition of metal compounds to produce fine powders.
These methods can produce highly pure powders with controlled particle sizes and shapes.
In chemical reduction [415], metal oxides are mixed with a reducing agent and heated in a
controlled environment, where the oxide is reduced to metal powder. The morphology of
the powders produced can vary but generally includes a mix of irregular and semi-spherical
particles, depending on the reduction conditions. Electrolytic deposition [416] involves
the reduction of metal ions from a solution on a cathode to form a powder. This process
typically produces dendritic or spongy particles that may require further processing to
achieve a desired shape and size. Other chemical methods involve the precipitation of
metal from a solution [417], often followed by thermal decomposition. They can produce
fine powders with varied shapes, ranging from spherical to irregular, depending on the
precipitation conditions.

Each process has its advantages and disadvantages. Mechanical methods like ball
milling are suitable for brittle materials but produce irregularly shaped powders. Atom-
ization methods (gas, water, and plasma) are favored for producing high-quality spher-
ical powders, though they vary in cost and particle morphology. Chemical methods
provide high-purity powders with controlled characteristics, making them suitable for
specific applications.

3. Powder Degradation Mechanisms

The powders used in the 3D printing process can degrade due to the interaction of the
powders with the printing environment and in particular with the energy source (laser and
electron beam), the molten metal, the chemical compound in the printing chamber, and the
contact with mechanical components present in the printing chamber (re-coater) [73,418]
(Figure 4). Degradation mainly occurs due to thermal effects, chemical effects, and/or
mechanical effects. Collectively, these degradation processes can alter the above properties
and therefore the performance of the powder when reused for other printing cycles. By
detailing the source of degradation, a careful analysis of the printing process should be
carried out, particularly for powder bed fusion processes [419].
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Some mechanisms of powder degradation are common across all the different 3D
printing techniques, particularly those involving mechanical damages such as wear, frag-
mentation, and deformation. However, there are specific mechanisms that are unique
to certain techniques or require particular conditions. For instance, processes such as
dealloying, sintering, and oxidation necessitate an intense source of heat, which is absent
in the printing phase of Binder Jetting.

Within beam-based techniques, Electron Beam Melting operates in a more controlled
atmosphere, which significantly reduces the risk of oxidation compared to other methods.
The various techniques also differ in their susceptibility to contamination. Binder Jetting
is more prone to contamination due to binder residuals on the powder, while the EB-PBF
controlled atmosphere also reduces the contamination risks. Directed Energy Deposition
(DED) techniques face variable contamination risks depending on the location and size of
the equipment, particularly if used for on-site builds, which can increase the likelihood
of contamination.

The review of powder degradation mechanisms is mainly based on the alloys listed in
Table 1.

The first source of powder degradation is the interaction of the powder with the
molten pool [420–423]. In fact, the pool can be a source of molten metal projection due to
the flow of molten metal and the resulting spread of molten droplets to the surrounding
part. This metal projection can produce the following: metal jets, droplet spatter, and
powder spatter. In the case of droplet spatter, molten metal droplets are spread from the
molten pool to form a powder-like solidified material that rarely resembles the original
powder in shape, dimension, or chemical composition. More or less the same observation
is made for metal jets, but in this case the molten metal is usually overheated with respect
to the previous droplets. In the case of powder spatter, the molten metal drops usually fall
on the surrounding powder, causing morphological changes in the particulate.

Another important source of degradation is related to the movement of powders
during the printing process; in this case, the particles can be moved from the original
process site due to fluodynamic interaction with the molten pool or with the printing
environment. In this case, the affected powders can interact with the molten bath, heating
particles surrounding the molten pool, or with the energy source. In both cases, the powder
can be altered and thus degraded from its original properties.

An overview of the eight main powder degradation mechanisms is presented in
Figure 5.
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3.1. Thermal Effects

Thermal degradation mechanisms in metal 3D printing are primarily associated with
the extreme temperatures involved in the printing process, including pre-heating, heating
during melting and solidification, and subsequent thermal cycling during the build and
post-processing stages; this is not to forget the powder/beam interaction.

By analyzing the effect of thermal degradation due to the interaction of the energy
beam with powders (Figure 4), one can see that the effects are mainly related to the presence
of molten metal drops that undergo a very fast solidification when expelled from the energy
source [424,425]. In this case, there are multiple phenomena affecting powder composition
and size/geometry. Indeed, a molten metal drop can be directly ejected from the molten
pool and in this case there is an independent solidification that can produce, as a function of
the overheating temperature reached by the metal, either a new crystal or a phase change.
In stainless steels, for example, when powders are overheated the microstructure can
transform from austenite to ferrite [426]. Usually, the phase transformation occurs when
there is a strong beam interaction with the molten metal drop. Other effects due to the
melting process can be related to slag projection, which can produce a new single-oxide
powder [427].

Another important thermal degradation mechanism is related to the presence of low-
melting-point elements that can evaporate/sublimate [428]. In some cases, such as with
Ti alloys or aluminum alloys, low-melting-point elements can vaporize during the pow-
der/beam interaction, producing element depletion in the printed component [429]. Part
of the produced vapor re-condenses when the elements are driven out of the energy source
and are cooled. The re-condensed particles usually present a non-conformal morphology
(not-spherical shape) and a chemical composition not in agreement with the chemical
composition of the not-affected powders.

Another significant thermal degradation mechanism is powder oxidation, wherein
exposure to elevated temperatures in environments with certain partial pressures of oxygen
(even when small) can lead to the formation of oxide layers on the surface of metal pow-
ders [430,431]. These oxide layers can negatively impact powder flowability, heat transfer,
and the mechanical properties of printed parts. In this case, some materials are more prone
to O adsorption, for example Ti alloys, than other materials (e.g., Ni-based alloys). The
amount of O adsorption depends on many factors, for example powder age/reuse cycles,
material chemical affinity, and atmosphere control in the printing chamber. The effect of
gaseous element adsorption is to reduce the impact on both the physical properties of the
powders as well as the solidification behavior of the molten metal. As a consequence, the
modification of the chemical composition of the powders can lead to a change in powder
behavior during the printing process or during the solidification of the molten pool, which
then has an influence on the microstructure of the printed material. The chemical composi-
tion change, and in particular the adsorption of gaseous elements, usually has an impact
on both the inclusion content of the printed material and also on the defect amount of the
printed material (pores). It is also possible that a splat of metal oxides (slags) can coat the
surrounding powders.

An important thermal effect is related to the fact that the powders can interact
with the molten metal by producing a heat-affected zone (HAZ) on the surrounding
powders [432,433]. These effects can produce a partial melting or a melting at a low tem-
perature of the powders, usually producing elongated powders in a non-spherical shape.
These particles usually have an effect on the flowability and also on the apparent density of
the powders. If the powder is not molten but heated at temperatures below the melting
temperature of the metal, some microstructural changes in the powder can occur.

Partial sintering can also be considered a thermal degradation mechanism in metal 3D
printing [434]. Partial sintering occurs when metal powders are subjected to temperatures
below their melting points but high enough to induce partial bonding and consolidation
of powder particles. This phenomenon can occur during the preheating and initial stages
of the printing process, where the temperature of the powder bed is elevated to facilitate
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subsequent fusion and solidification, or simply in the regions surrounding the molten metal,
where the temperature progressively decreases with the distance. While controlled partial
sintering can be actually used to improve powder flowability, packing density, and layer
adhesion, excessive or uncontrolled partial sintering can lead to issues such as poor powder
flowability, increased porosity, reduced surface roughness, and dimensional inaccuracies
in printed parts [434–436]. Therefore, it is essential to carefully control and optimize the
thermal conditions to minimize the negative effects of partial sintering and ensure the
quality and integrity of printed parts. An indirect thermal-effect-related phenomena is the
formation of particles coated with metal spatters that can produce an external overlayer of
metal which can modify the geometry and the microstructure of the powder.

3.2. Mechanical Effects

Mechanical degradation mechanisms in metal 3D printing encompass a broad range of
physical forces and stresses experienced by metal powders throughout the printing process.
These mechanisms include powder handling, spreading, compaction, and fusion, as well as
frictional interactions between the powder and various components of the printing system.

One common mechanical degradation mechanism is powder attrition, wherein re-
peated handling and mechanical agitation during powder storage, transportation, and
processing can cause abrasion and fragmentation of powder particles [437,438]. This can
lead to changes in particle size distribution, morphology, and surface roughness, affecting
powder flowability and packing density. Additionally, frictional forces between the powder
and components such as powder distribution systems, re-coaters, and metal blades can
further contribute to powder degradation by causing wear and erosion of both the powder
particles and the machine components themselves. These frictional interactions can result
in the generation of fine particles, powder contamination, and increased levels of airborne
debris, all of which can impact the quality and consistency of printed parts.

Furthermore, mechanical degradation can occur during the printing process itself,
particularly in techniques involving powder bed fusion, where powders are subjected
to mechanical compaction, layer-by-layer deposition, and energy inputs from lasers or
electron beams [439–441]. The mechanical forces exerted on the powder bed during these
processes can induce powder densification, deformation, and consolidation, affecting the
microstructure and properties of printed parts. Moreover, inadequate powder handling
practices, such as improper powder storage conditions or excessive vibrations during
printing, can exacerbate mechanical degradation mechanisms, leading to defects and in-
consistencies in printed parts. Another important parameter that can influence mechanical
degradation is related to the presence of internal voids/porosities that enhance the powder
degradation by means of mechanical failure of the powder. In addition, the microstructural
alteration of the powders due to heat transfer can decrease the mechanical properties of the
powder particles and thus the mechanical resistance of the powder.

3.3. Chemical Effects

Chemical degradation mechanisms in metal 3D printing are interactions between
metal powders and various chemical agents present in the printing environment. These
mechanisms include reactions with reactive gases, moisture, contaminants, low-melting-
point element evaporation/sublimation, and the binder used in certain printing processes.

One chemical degradation mechanism in metal 3D printing is powder contamina-
tion [58,70,442–444], wherein metal powders can become contaminated by airborne parti-
cles, residual processing materials, or surface contaminants introduced during handling
and storage. Contaminants such as oils, greases, dust, and other airborne pollutants can
adhere to powder surfaces, leading to defects in printed parts and affecting their properties.

Another important chemical phenomenon that can occur, as previously discussed
under the “thermal effects” sub-chapter, is the sublimation of low-melting-point elements
during the 3D printing process, which also results in alterations in the chemical com-
position [428]. In particular, evaporation [445–448] can deplete the powders of alloying
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elements that change the properties of the printed component, if the powders are used to
produce a component. Usually, the evaporated elements precipitate in the powder bed due
to the possible condensation when the volatile elements are cooled in the cold areas of the
printing chambers. Ti, Zn, Mg, and Al alloys are most sensitive to this phenomenon.

Another significant consideration for powder recycling in metal 3D printing involves
the removal of residual binder from the printed parts. In Binder Jetting processes, where
metal powders are selectively bonded together using a liquid binder, small amounts of
residual binder may remain within the printed parts after the printing process is com-
plete [449]. This residual binder can interfere with subsequent printing runs and affect the
properties of recycled powders.

To address this, special attention must be given to the removal of residual binder
during the powder recycling process [450]. Various techniques, such as solvent extraction,
thermal treatments, and chemical baths, can be employed to effectively remove the binder
from the printed parts. Solvent extraction involves immersing the printed parts in a solvent
that dissolves the binder, leaving behind clean metal powders. Thermal treatments, such
as sintering or pyrolysis, can also be used to burn off the binder at elevated temperatures,
leaving behind pure metal powders. Additionally, chemical baths containing specific
reagents can be used to chemically dissolve the binder without affecting the metal powders.

3.4. Impact on Powder Properties

All types of degradation processes, such as contamination, thermal decomposition,
and partial sintering, can lead to significant changes in the properties of metal powders
used in 3D printing.

The most important powder technological properties, such as flowability, packing
density [49,50], and energy adsorption, are a function of the powder size distribution,
the morphology of the powders, and the presence of contaminants. The powder size
distribution has the greatest influence on packing density [451]. Indeed, recycled powders
usually have, for materials that have not experienced element sublimation, a broader
distribution that moves towards coarser particles [73] (Figure 6). In this case, the packing
density is usually reduced and, as a result, the thermal energy is transferred to the powders
via fewer contact points during the printing process.
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On the other hand, in materials with a high propensity for alloy depletion, the distri-
bution becomes broader and the average particle size can also be reduced at a high number
of re-using cycles [73]. In this case, the powders during the printing process adsorb high
amounts of energy. These effects are also related to the powder morphology; indeed, a
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not-spherical powder grain has an influence on the PSD and thus on the aforementioned
properties.

In addition, the flowability is reduced due to the fact that the not-spherical powders
do not flow well during the re-coater action [452,453]. The effect of the powder impurities,
instead, is to alter the physical properties of the powders, in particular by altering the heat
transfer properties or the melting point of the powder itself. By increasing the impurity
amount, which usually is observed during the recycling cycle increase, a decrease in thermal
conductivity and an increase in the melting point is observed. In particular, the oxides
that are present on the external surface reduce the heat conductivity of the powders, while
the internal impurities usually change the physical properties of the molten pool and thus
the solidified microstructures. These property changes can then have an influence on the
printed component as described in the next paragraph. Generally speaking, the property
that is mainly influenced by the decay of the powders due to reuse is flowability.

4. Effect of Recycled Powders on 3D-Printed Components

As discussed in the previous paragraph, reused powders have different properties
compared to the virgin powder due to the interaction of these powders with the energy
beam and the surrounding environment. In particular, it has been discussed how the reused
powder influences the packing density, flowability, and physical properties, which in turn
affects the outcome of the printing process itself.

A simplified schematic of the seven main categories of printing defects that can be
caused by recycled powders is presented in Figure 7.
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Figure 7. Seven categories of defects that can be observed on 3D-printed components and can
sometimes be caused by the use of recycled powders (circled ones): distortions, roughening, cracks,
inclusions, delamination, staining, and porosities. The circled images correspond to the effects most
observed due to powder recycling.

The presence of defects in the powders can result in internal defects, surface roughness,
microstructure, mechanical properties, and degradation (corrosion) resistance. Usually,
the strategy of using reused powders is to continuously screen the powders after each
printing job until the powders are finished, or to add a quantity of used powders to new
powders. Details of the powder reuse strategy will be discussed in a separate paragraph.
The overview of the impact of powder reuse on 3D printed components is based on the
most common metal alloys used in additive manufacturing processes, which are listed in
Table 1.
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In terms of internal defects, many authors have observed an increase in void density
and dimension in printed components produced with recycled powders [62,454]. This
has been observed by CT scan measurements and also by light microscopy observations.
In particular, the effect of using recycled powders is to increase the number and size
of discontinuities. The morphology is also changed to more elongated voids, similar to
the absence of fusion discontinuities. The increase in the number of elongated voids is
probably related to the reduced flowability of the powders, which increases the tendency
of the material to produce a lack of fusion, while the increase in the number of voids in
general could be attributed to the variation in packing density compared to virgin powders.
Regarding the chemical composition of the printed material with the reused powders, an
increase in the oxygen content in the printed part has been observed for materials sensitive
to O adsorption. This usually leads to the formation of non-metallic inclusions [62], usually
of nanometric size, or to O enrichment in the metal matrix [455]. The surface texture is also
affected by the use of recycled powders. In fact, a reduction in surface quality has been
observed and this is usually attributed to the presence of non-spherical powders, impurities
in the powders, and reduced flowability. All printed surfaces are affected by a reduction
in surface quality [443,456]. By detailing the discussion of the most common alloys used
for the 3D printing process, a general increase in defect amount and size is observed in
austenitic stainless steel [457] and Ti alloys. On the other hand, the inclusion content is
strongly influenced by the O content of the powders and usually the dimension of these
particles is in the sub-nanometric range. It seems that these particles are responsible for the
mechanical property increase due to the fact that they act as precipitates. A general increase
in both O and inclusion content has been observed in all the most used alloys systems (Ni,
Ti, stainless steel, and Al).

Regarding the effect of recycled powders on microstructure, many studies have been
carried out on the effect of using both pure recycled powders and recycled powders mixed
with virgin powders [443,457–459]. In the latter case, no microstructural differences have
been observed when using virgin or virgin/blended recycled powders [460]. However,
some differences have been observed in components printed with recycled powders. In this
case, the microstructure is refined and the content of some secondary phases is observed. In
particular, the grain refinement can be attributed to both the presence of a higher amount
of oxides and a change in the melting/cooling properties of the molten metal. This was
observed in Ni [461], Ti, and stainless steels [462]. The refinement was detected through
EBSD analysis and the elongated columnar grains are usually thinner in components
produced with recycled powders. In Ti alloys, on the other hand, a decrease in the beta
phase was observed, probably due to the increase in the O content, which is an alpha
stabilizer phase [459,463]. This element probably inhibited the formation of the beta phase.
Some studies on stainless steels have also shown that the presence of powders with an
undesirable phase (delta ferrite phase) promotes the formation of these phases in the
printed material [62]. To avoid this, the authors suggested magnetic separation of delta
ferrite powders from the batch.

Obviously, the effect of powder reuse has an impact on the mechanical properties, as
3D-printed parts with reused powders show a higher number of defects, sometimes mi-
crostructural changes and altered chemistry [458]. In terms of hardness tests, no significant
differences were observed between components printed with reused powders and those
printed with recycled powders [62]. The differences are all within the experimental error
for all the most common alloys systems. It is likely that the hardness is strongly linked to
the tensile strength of material, which is slightly affected by re-using the powders. In this
case, the measurement method seems not to be sensitive for detecting the small variations
in the printed material. Indeed, tensile properties are slightly affected by the reuse process.
In general, an increase in tensile strength (TS) is observed, accompanied by a decrease in
ductility, especially in materials that tend to adsorb trace elements (O) from the printing
environment. This behavior was observed in Ti and Al [464,465] alloys. On the other hand,
Ni [461] and stainless steel did not show any appreciable variation of TS and YS (Yield
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Strength). A general decrease in ductility has been observed in all the most common metal
systems and this is related to both an increase in inclusion content and increase in porosity
size and distribution.

On the other hand, the fatigue properties are affected by the use of recycled pow-
ders [466,467]. It has been observed that the fatigue limit usually decreases as a function of
the number of recycling cycles. This is due to the fact that the components printed with
reused powders have a higher number of internal defects, which are also coarser with
respect to the components printed with virgin powders. Some studies have been carried out
by analyzing the statistical distribution of failures for samples tested at the same stress level.
The results showed that the specimens produced with reused powders had failures that
were anticipated with respect to the specimens produced with virgin powders. A different
behavior was observed in 17-4 PH steel [468], where the fatigue resistance increased as a
function of reuse cycles and this was related to the reduction in agglomerates in powders.

Although the effect of reused powders on the corrosion properties of printed alloys has
not been deeply investigated, some studies performed on Al alloys [459] have evidenced
that the specimens made with reused powders have a higher activity compared to the same
specimens made with new powders. This effect is related to the lower internal quality of
the material produced by 3D printing processes.

A qualitative summary of the effect of recycled powder use on the microstructural
and mechanical properties of 3D-printed parts is shown in Figure 8.
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5. Powder Reuse Strategies

Powder reuse strategies are some methods set up to optimize the reuse of powders
in order to obtain a 3D part with an acceptable quality by wasting the least amount of
powder [73]. Each strategy has its own advantages and disadvantages depending on how
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the method is set up. For industrial production, one of the most important parameters
is the traceability of the powder batch, also considering that the strategy should be as
simple as possible and at the same time have the minimum waste of powder. The most
used strategies in both industry and academia are as follows: the single-batch method, the
collective aging method and the replenishment method.

Researchers often recycle powders when a batch becomes depleted (insufficient for
another component) in the single-batch method [469]. This approach is valued for its
simplicity (requiring only continuous post-printing sieving) and high traceability. However,
despite ongoing process improvements, it still generates significant powder waste [470].

More complex recycling processes, like the “collective ageing method”, can reduce
the amount of wasted powder [471,472]. This method consists of aging many different
batches separately, and then mixing them with powders of the same ageing time. This
method is more suitable for high-productivity plants, but traceability is sacrificed. Another
important disadvantage is the need to manage many batches and large quantities of stored
powder [473,474].

The replenishment method can be considered a hybrid process [73,405,469]. After
each printing process, the powders are first replenished with new powders up to a certain
number of printing cycles. After these cycles, the replenished powders are a mixture of
virgin powders and reused powders with low working cycles (lower than the original
powders). The main disadvantage of this process is its complexity, as the powders have to
be managed in terms of continuous replenishment with both reused and virgin powders,
and it requires accurate management of the reused powders that are then used to replenish
the print batch. Traceability is lost after the first print batch, similar to the replenishment
method. A major advantage of this strategy is the significant reduction in powder waste.

The above strategies are some of the most common ones found in industrial and
academic fields, where 3D printing is constantly evolving as far as recycling strategies
are concerned.

6. Advances in Powder Recycling Techniques

As powder recycling has become an essential aspect of metal 3D printing, enabling the
reuse of excess or spent powders and reducing material waste and production costs, various
recycling techniques have been developed. These recycling methods range from simple me-
chanical approaches to more advanced technologies like plasma and laser post-treatments.

6.1. Mechanical Recycling Methods

Mechanical recycling methods are the simple and cost-effective way to eliminate large
particles and contaminants. There are two main mechanical powder recycling methods
available:

Sieving [475,476], which involves passing used metal powders through a mesh screen
to separate particles of different sizes. It is the most common method used in additive
manufacturing, often combined with other techniques to further improve the outcome.

Centrifugal separation [477], which uses centrifugal force to separate powders based
on their density, but is less effective in removing fine contaminants. Despite being the
industrial standard in many production fields, centrifugal separators are not usually applied
in current 3D printing systems, as they are more effective on larger volumes.

Mechanical recycling methods can damage the particles because of wear and me-
chanical stress, resulting in changes in morphology and contaminations from the sieving
equipment.

6.2. Thermal Recycling Methods

Thermal recycling processes are more focused on the chemical composition of the
powders, in particular trapped gases and impurities. There are two main thermal recycling
methods that are found industrial applications:
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Vacuum degassing [478,479]: this involves heating the used powder in a vacuum
to remove absorbed gases and contaminants, but is energy-intensive and can alter the
properties of the powders.

Re-sintering [480,481]: this involves heating the used powder to fuse small particles
together, removing contaminants and improving powder properties. This technology is
rarely used in additive manufacturing, and is still in its infancy for metal powder recycling.

Conventional remelting can also be considered a thermal recycling method [469]. In
this case, the end-of-life powders are used as scrap for further melting. It is important to
point out that the end-of-life powders usually do not fulfil the requirements in terms of
chemical composition due to both the presence of impurities above the acceptability level
and the lack of elements in their chemical composition. To solve this quality problem, an
addition of fresh metal with appropriate composition is added and, to reduce the gas in
metal issues, a vacuum process is performed.

6.3. Chemical Recycling Methods

Acid etching [482,483] can be utilized to improve the rheological properties, decrease
the laser reflectance, and reduce the oxide layer on metallic powders, in particular for metals
like aluminum or copper. This technology can be used either on virgin or recycled powders.

Electrochemical etching, like acid etching, can improve the surface properties of
metallic powders, in particular for materials that are resistant to conventional acid treat-
ments [484].

6.4. Emerging Technologies and Future Perspectives

Additive manufacturing has been an environmentally friendly process since its incep-
tion [485]. In fact, its peculiarity of producing components by adding material instead of
subtracting material has considerably revolutionized the approach in the industrial field
by increasing the sustainability of the production process. However, it has to be taken
into account that this process also generates small amounts of waste, mainly consisting of
end-of-life powders, i.e., powders that do not meet the quality requirements to be used. As
previously indicated in this work, powder reuse strategies should be better implemented
to reduce the complexity of powder management and automation; in high-productivity
plants, this can be a solution to simplify the management issues and thus reduce the human
factor. In process and powder management, care should also be taken in powder handling
to avoid contamination, which can reduce powder quality and thus the reuse life of the
powder. Re-use strategies should also be optimized to increase powder re-use life.

Scrapped powders can be conditioned during the production process to avoid re-
melting. In this case, a huge energy saving can be expected and the life of the powders
can be extended by reducing the amount of scrapped powders. This strategy can also be
applied before the end of the life of the powders, with the main aim of prolonging the time
until they are scrapped. The emerging technologies may be suitable for this purpose in the
near future [485].

Plasma cleaning [486] involves using a high-temperature ionized gas (plasma) to
remove contaminants like moisture and trapped gases from the powder particles, or to
etch surface oxide layers. Apart from cleaning, plasma can also be used for powder
spheroidization.

Plasma spheroidization [72,487] is a relatively novel technique that utilizes thermal
plasma to reshape irregular powder particles into near-perfect spheres. This significantly
improves the flowability and packing density of recycled powders, making them more
suitable for reuse in 3D printing processes. Research has shown that plasma-spheroidized
powders can achieve comparable performance to virgin powders, extending their usable
life and minimizing waste.
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7. Conclusions

Powder recycling offers a technological solution for reducing costs and environmental
impact in metal 3D printing technologies. However, achieving high-quality parts from
recycled powders presents significant challenges. Recycled powders undergo modifications
in their chemical composition, morphology, microstructure, and size distribution compared
to virgin powders. These changes can negatively impact the flowability and density of the
powder, which in turn affect the surface quality and mechanical properties of the printed
parts. A decrease in surface quality and an increase in internal defects are commonly
observed, particularly affecting ductility and dynamic mechanical properties.

Despite these limitations, several strategies hold promise for improving the quality
of parts printed from recycled powders. Pre-treatment techniques like plasma or laser
cleaning can remove contaminants and improve powder morphology, leading to better
printability. Optimizing the 3D printing process parameters for recycled powders can also
compensate for some of the potential flowability or density issues, but blending controlled
amounts of virgin powder with recycled powder is so far more effective in improving the
overall quality of the feedstock.

Traceability is also a crucial issue for ensuring consistent quality and managing po-
tential safety concerns associated with recycled powders. A robust system should be
implemented to track the origin, processing history, and properties of the powder through-
out its life cycle. Furthermore, minimizing powder waste during the printing process is
essential to maximize the efficiency and sustainability of powder recycling in 3D printing.

Looking ahead, further research is needed to fully unlock the potential of metal powder
recycling. Advanced powder characterization techniques can help predict the printability
and quality of recycled powders, allowing for tailored pre-treatment strategies for differ-
ent metal powders and contaminants. Exploring novel powder blending strategies can
optimize the properties of the feedstock. Finally, developing closed-loop powder recycling
systems that minimize waste generation would significantly enhance the sustainability of
this approach.

Metal powder recycling has the potential to become a reliable and environmentally
friendly method for producing high-quality metal parts via 3D printing, once these chal-
lenges are finally solved.
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