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Abstract

The string number of self-maps arose in the context of algebraic entropy and it can be viewed as
a kind of combinatorial entropy function. Later on its values for endomorphisms of abelian groups
were calculated in full generality. We study its global version for abelian groups, providing several
examples involving also Hopfian abelian groups. Moreover, we characterize the class of all abelian
groups with string number zero in many cases and discuss its stability properties.

1 Introduction

The strings and the string number of a self-map of a set were introduced in [2], in order to compute
the algebraic entropy of particular group endomorphisms (see Section 1.1 for the definition of
algebraic entropy). Then, motivated by open questions in [2] and results in [13], in [8] the string
number of endomorphisms of abelian groups was studied and described in full generality. In this
paper we study the “global version” of the string number for abelian groups.

We now recall the definition of strings (from [2]) and of particular kinds of strings (from [8])
recast in the context of abelian groups:

Definition 1.1. Let G be an abelian group and φ : G → G an endomorphism. A sequence
S = {xn}n∈N ⊆ G is

(a) a pseudostring of φ if φ(xn) = xn−1 for every n ∈ N+;

(b) a string of φ if S is a pseudostring and its elements are pairwise distinct;

(c) a singular string of φ if S is a string such that φj(x0) = φk(x0) for some j 6= k in N;

(d) a null string of φ if S is a string such that x0 6= 0 and φk(x0) = 0 for some k ∈ N+.

In [2] a function was defined to measure the number of strings, and analogous functions were
introduced in [8] for non-singular strings and null strings. We now recall the definition of these
functions, that in general we call string numbers.

Definition 1.2. Let G be an abelian group and φ : G→ G an endomorphism. Then:

(b′) s(φ) = sup {|F| : F is a family of pairwise disjoint strings of φ} is the string number of φ;

(c′) ns(φ) = sup {|F| : F is a family of pairwise disjoint non-singular strings of φ} is the non-sin-
gular string number of φ;

(d′) s0(φ) = sup {|F| : F is a family of pairwise disjoint null strings of φ} is the null string num-
ber of φ.

When the suprema in this definition are infinite, we set them equal to the symbol ∞. In the
main theorems of [8] it is proved that actually

the string numbers of endomorphisms of abelian groups have values in {0,∞},

1



and so we distinguish their values only between zero and infinity.
Note that the same surprising dichotomy for the values was proved in [7] for the adjoint algebraic

entropy (see Section 1.1 for the definition of adjoint algebraic entropy).

In analogy to what is done for the algebraic entropy in [9] and for the adjoint algebraic entropy
in [7] and in [15] (see Section 1.1), it is possible to introduce the following “global notions” of string
numbers of abelian groups, as noted in [8, Definition 1.6].

Definition 1.3. Let G be an abelian group.

(b′′) The string number of G is s(G) = sup{s(φ) : φ ∈ End(G)}.
(c′′) The non-singular string number of G is ns(G) = sup{ns(φ) : φ ∈ End(G)}.
(d′′) The null string number of G is s0(G) = sup{s0(φ) : φ ∈ End(G)}.

These functions take values in {0,∞}. This follows immediately from the dichotomy of the
values of the string numbers of endomorphisms of abelian groups, so again we distinguish the
values of the string numbers of abelian groups only between zero and infinity.

We are interested in studying the abelian groups with one of the string numbers zero, and so
we introduce the following classes:

S = {G abelian group : s(G) = 0}, Sns = {G abelian group : ns(G) = 0} and

S0 = {G abelian group : s0(G) = 0}.

It is clear that S ⊆ Sns ∩S0, and we see in Section 2 that actually S = Sns ∩S0. In this paper
we study the following problem given in [8, Problem 1.7].

Problem 1.4. Characterize the classes S, Sns and S0.

The counterpart of this problem for the algebraic entropy was studied in [9], and for the adjoint
algebraic entropy in [15] and [19].

In Section 2 we give many examples in which we calculate the values of the string numbers;
we collect these examples in Table 1.2 below. Moreover, we find first basic properties of the string
numbers. In particular, Proposition 2.10 and its Corollary 2.11 solve completely Problem 1.4 for
finitely generated abelian groups and for free abelian groups respectively.

Section 3 is dedicated to Problem 1.4 in the case of torsion abelian groups. Theorem 3.4
characterizes completely S∩T and S0 ∩T, where T denotes the class of all torsion abelian groups.
Indeed, S ∩ T = S0 ∩ T, and these two classes coincide with the class of all torsion abelian groups
with all finite p-components.

With respect to Problem 1.4 for the non-singular string number, Corollary 3.5 shows that for a
torsion abelian group G the condition

all the p-ranks of G are finite (1.1)

is a sufficient condition for G to belong to Sns. But this is not a necessary condition, as Example
6.5 shows. So the following problem remains open.

Problem 1.5. Characterize the class Sns ∩ T.

Nevertheless, we give some reductions and partial results, restricting this problem. For example,
in Theorem 3.7 we see that, if G belongs to Sns∩T, then G has size less or equal than the cardinality
of continuum c. Moreover, in the last part of Section 3, we underline the difficulty of Problem 1.5;
indeed, we see that this problem is related to the classification of abelian groups with zero algebraic
entropy, that was shown to be difficult in [9].

Section 4 is dedicated to the torsion-free case of Problem 1.4. In particular, Proposition 4.3
shows that pωG = 0 for every prime p is a necessary condition for a torsion-free abelian group G
to belong to S. Moreover, this condition turns out to be also sufficient in case G is endorigid (see
Theorem 4.4). Following [10], we say that an abelian group G is endorigid if End(G) = Z; note
that, since the ring Z does not contain idempotents, endorigid implies indecomposable.

On the other hand, Theorem 4.7 shows that the problem of finding a complete classification of
torsion-free abelian groups in S and in Sns is a deep one, since for every infinite cardinal λ it is
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possible to find both an indecomposable torsion-free abelian group G of torsion-free rank λ with
s(G) = ns(G) = 0, and an indecomposable torsion-free abelian group H of torsion-free rank λ with
s(H) = ns(H) =∞.

In Section 5 we consider the closure properties of the classes S, Sns and S0. In particular we
discuss in detail the closure of these classes under taking subgroups, quotients, direct summands,
extensions, direct sums and direct products. We show with various examples that the unique
closure property possessed by the classes S, Sns and S0, among the ones listed above, is that
under taking direct summands. However, we prove that with additional hypotheses we can obtain
closure properties in some particular cases.

A group is Hopfian if each of its surjective endomorphisms is an automorphism. Equivalently,
an Hopfian group is not isomorphic to any of its proper quotients. Easy examples of Hopfian groups
are finite groups, finitely generated groups, torsion-free abelian groups of finite torsion-free rank
and endorigid abelian groups. We discuss the connections between the string numbers and the
Hopfian property in Section 6, giving various examples. In particular, we show that S0 (and so
also S) is contained in the class of all Hopfian abelian groups, while Sns is not contained in that
class. Moreover, Example 6.5 exhibits a Hopfian abelian group not belonging to S0, and this is a
negative answer to [8, Question 3.13].

As we said above, the classes S, Sns and S0 are not closed under taking subgroups. So
we introduce three monotone functions generated by the three usual string numbers, namely, the
hereditary string numbers. Indeed, if i(−) is any function defined on abelian groups with values in
R≥0∪{∞} (e.g., i(−) is one among s(−), ns(−), s0(−)), then it is possible to define its “hereditary
modification” setting, for every abelian group G,

ĩ(G) = sup{i(H) : H ≤ G}.

Clearly, ĩ(G) ≥ i(G), and ĩ(−) is monotone under taking subgroups. In general, we call any property
of abelian groups preserved under taking subgroups, a hereditary property.

We introduce the following classes also for the hereditary string numbers:

S̃ = {G abelian group : s̃(G) = 0}, S̃ns = {G abelian group : ñs(G) = 0}, and

S̃0 = {G abelian group : s̃0(G) = 0}.

By the definition it follows that S̃ ⊆ S, S̃ns ⊆ Sns and S̃0 ⊆ S0. Furthermore, we see that
S̃ = S̃ns ∩ S̃0.

In Section 7 we study the hereditary string numbers and consider the counterpart of Problem 1.4
for these smaller classes. We solve first the torsion and the torsion-free case to come to a complete
solution of the general problem in Theorem 7.6.

In particular, in the torsion case we find that S̃∩T = S∩T = S̃0 ∩T = S0 ∩T. Moreover, for
torsion abelian groups G the condition (1.1), which is sufficient but not necessary in order to have

ns(G) = 0, is instead equivalent to ñs(G) = 0; in other words, S̃ns ∩ T coincides with the class of
all torsion abelian groups with all finite p-ranks. In the torsion-free case, denoting by F the class of
all torsion-free abelian groups, S̃0 ∩ F is precisely the class of all torsion-free abelian groups with
finite torsion-free rank; moreover, S̃ ∩ F = S̃ns ∩ F, and this class coincides with the class of all
torsion-free abelian groups of torsion-free rank ≤ 1 and with no infinity in their type. These partial
results are used to prove Theorem 7.6, which describes completely the classes S̃, S̃ns and S̃0.

Finally, we find another characterization for the groups in S̃0 in terms of the Hopfian property.
Indeed, we say that a group is hereditarily Hopfian if each of its subgroups is Hopfian. It turns out
that an abelian group G is hereditarily Hopfian if and only if s̃0(G) = 0, and this occurs precisely
when all the p-components and the torsion-free rank of G are finite (see Corollary 7.8). This result
can be viewed also as a characterization of hereditary Hopfian abelian groups, which are studied
also in [16].

1.1 String numbers and algebraic entropies

We start this section giving the definition of algebraic entropy as suggested in [1], later studied in
[20] and recently deeply investigated in [9]. Let G be an abelian group and F a finite subgroup of G;
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for an endomorphism φ : G→ G and a positive integer n, let Tn(φ, F ) = F +φ(F ) + . . .+φn−1(F )
be the n-th φ-trajectory of F and T (φ, F ) =

∑
n∈N φ

n(F ) the φ-trajectory of F . The algebraic
entropy of φ with respect to F is

H(φ, F ) = lim
n→∞

log |Tn(φ, F )|
n

,

and the algebraic entropy of φ is

ent(φ) = sup{H(φ, F ) : F is a finite subgroup of G}.

The algebraic entropy of G is

ent(G) = sup{ent(φ) : φ ∈ End(G)}.

The adjoint algebraic entropy was defined in [7] substituting in the definition of the algebraic
entropy the family of all finite subgroups with the family of all finite-index subgroups. We give the
precise definition: if N is a finite-index subgroup of an abelian group G, φ : G → G an endomor-
phism and n a positive integer, the n-th φ-cotrajectory of N is Cn(φ,N) = G

N∩φ−1(N)∩...∩φ−n+1(N) .

The adjoint algebraic entropy of φ with respect to N is

H?(φ,N) = lim
n→∞

log |Cn(φ,N)|
n

,

and the adjoint algebraic entropy of φ is

ent?(φ) = sup{H?(φ,N) : N ≤ G, G/N finite}.

The adjoint algebraic entropy of G is

ent?(G) = sup{ent?(φ) : φ ∈ End(G)}.

Even if the algebraic entropy of endomorphisms of abelian groups takes all possible values in
{log n : n ∈ N+}∪ {∞}, in [9] it is proved that an abelian group G can have algebraic entropy only
0 or ∞. On the other hand, for the adjoint algebraic entropy, this dichotomy for the values holds
already at the level of endomorphisms (see [7]).

We now give the definition of the three classical Bernoulli shifts. Let K be an abelian group,
and for a cardinal (or a set) λ, we denote by K(λ) the direct sum of λ copies of K.

(a) The two-sided Bernoulli shift βK of the group K(Z) is defined by

βK((xn)n∈Z) = (xn−1)n∈Z, for every (xn)n∈Z ∈ K(Z).

(b) The right Bernoulli shift βK and the left Bernoulli shift Kβ of the group K(N) are defined,
for every (xn)n∈N ∈ K(N), respectively by

βK(x0, x1, x2, . . .) = (0, x0, x2, . . .) and Kβ(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

The left Bernoulli shift and the two-sided Bernoulli shift are relevant examples for both ergodic
theory and topological dynamics. The right Bernoulli shift is fundamental for the theory of algebraic
entropy (e.g., one of the properties giving uniqueness of the algebraic entropy in T is based on it
— see [9]). Furthermore, for any abelian group G and any endomorphism φ : G → G, ent(φ) > 0
if and only if for some prime p there exists a subgroup H of G, contained in the p-socle of G, on
which φ acts as the right Bernoulli shift (see [9]). The Bernoulli shifts were fundamental also in
proving the dichotomy of the values of the adjoint algebraic entropy (see [7] and [13]).

As noted in [8], the string numbers of the Bernoulli shifts are quite different from the algebraic
entropy of the Bernoulli shifts; the values of the string numbers of the Bernoulli shifts are calculated
in [8, Example 3.26]. For the values of the algebraic entropy we refer to [9], and for the values of
the adjoint algebraic entropy to [7]. We collect this information in the following table, where K is
a non-zero abelian group and we adopt the usual convention that log |K| =∞ if K is infinite.
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s(−) ns(−) s0(−) ent(−) ent?(−)
βK 0 0 0 log |K| ∞
Kβ ∞ 0 ∞ 0 ∞
βK ∞ ∞ 0 log |K| ∞

Table 1.1: Bernoulli shifts

In the context of the string numbers, the Bernoulli shifts are useful since, whenever we have an
infinite direct sum of copies of an abelian group K, the two sided Bernoulli shift βK is an example of
an endomorphism with non-singular strings, whereas the left Bernoulli shift Kβ admits null strings,
as shown in Table 1.1. This gives the values of the last line of Table 1.2.

In the following table we compare the values of the string numbers, the algebraic entropy and
the adjoint algebraic entropy of particular abelian groups. Here p is a prime, K is a non-zero abelian
group, and Bp denotes the standard basic subgroup, that is, Bp =

⊕
n∈N+

Z(pn). The values of the
string numbers are calculated in Section 2, while for the values of the algebraic entropy and of the
adjoint algebraic entropy we refer to [9] and [7] respectively.

s(−) ns(−) s0(−) ent(−) ent?(−)
Z 0 0 0 0 0
Z2 ∞ ∞ 0 0 0
Q ∞ ∞ 0 0 0
Jp ∞ ∞ 0 0 0

Z(p∞) ∞ 0 ∞ 0 0
Q/Z ∞ 0 ∞ 0 0
Bp ∞ ∞ ∞ ∞ ∞
K(N) ∞ ∞ ∞ ∞ ∞

Table 1.2: String numbers and entropies

The next are properties typical of the entropy functions, that hold also for the string numbers.

Fact 1.6. (a) (Conjugation under isomorphism) [8, Lemma 2.8] Let G and H be two abelian
groups, and ξ : G→ G an isomorphism. Let φ : G→ G and ψ : H → H be conjugated under
the action of ξ, i.e. φ = ξ−1ψξ. Then s(φ) = s(ψ), ns(φ) = ns(ψ) and s0(φ) = s0(ψ).

(b) (Logarithmic law) [8, Corollary 4.6] Let G be an abelian group and φ ∈ End(G). Then
s(φk) = k · s(φ), ns(φk) = k · ns(φ) and s0(φk) = k · s0(φ) for every k ∈ N+.

(c) (Monotonicity under taking invariant subgroups) [8, Lemma 2.9] Let G be an abelian group,
φ : G → G an endomorphism and H a φ-invariant subgroup of G. Then s(φ) ≥ s(φ �H),
ns(φ) ≥ ns(φ �H) and s0(φ) ≥ s0(φ �H).

(d) (Monotonicity under taking quotients) [8, Theorem 4.9] Let G be an abelian group, φ : G→ G
an endomorphism, H a φ-invariant subgroup of G and φ : G/H → G/H the endomorphism
induced by φ. Then s(φ) ≥ s(φ) and ns(φ) ≥ ns(φ). The null string number does not possess
monotonicity under taking induced endomorphisms on quotients (see [8, Example 3.24]).

(e) (Additivity on direct sums) [8, Lemma 2.11] Let G be an abelian group, φ : G → G an
endomorphism and H1, H2 φ-invariant subgroups of G such that G = H1⊕H2. Let φ1 = φ �H1

and φ2 = φ �H2
. Then:

(i) s(φ) = 0 if and only if s(φ1) = s(φ2) = 0;

(ii) ns(φ) = 0 if and only if ns(φ1) = ns(φ2) = 0;

(iii) s0(φ) = 0 if and only if s0(φ1) = s0(φ2) = 0.

Notation and terminology

We denote by Z, N, N+, Q and R respectively the set of integers, the set of natural numbers, the set
of positive integers, the set of rationals and the set of reals. For m ∈ N+, we use Z(m) for the finite
cyclic group of order m. For a prime p the symbol Jp is used for the group of p-adic integers and
Z(p∞) for the Prüfer group. Moreover, the symbol c stands for the cardinality of the continuum.
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Let G be an abelian group. For a set I we denote by GI the direct product
∏
i∈I G and by

G(I) the direct sum
⊕

i∈I G. For x = (xi)i∈I ∈ GI the support of x is supp(x) = {i ∈ I : xi 6= 0}.
The subgroup of torsion elements of G is t(G), while for a prime p we denote by tp(G) the p-
component of G. Moreover, D(G) denotes the divisible hull of G and d(G) the maximum divisible
subgroup of G. We denote by r0(G) the torsion-free rank of G and, for a prime p, rp(G) denotes
the p-rank of G, that is, dimFp(G[p]), where G[p] is the p-socle of G. More in general, for k ∈ N+,
G[k] = {x ∈ G : kx = 0}. Moreover, End(G) is the ring of all endomorphisms of G. For φ ∈ End(G),
we say that a subgroup H of G is φ-invariant if φ(H) ⊆ H. For k ∈ Z we denote by µk : G → G
the multiplication by k, that is, µk(x) = k · x for every x ∈ G.

For undefined terms see [11].
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2 First results and examples

In this section we calculate the string numbers of many examples of abelian groups and state first
results that have interest on their own and that will be applied in the following sections.

For an endomorphism φ of an abelian group G, s(φ) = ns(φ) + s0(φ) (see [8, Equation 1.1]);
this formula gives immediately its counterpart for the string numbers of G, that is,

s(G) = ns(G) + s0(G); (2.1)

this is equivalent to S = Sns ∩S0.

Since a string is an infinite set, s(F ) = 0 for every finite abelian group F . So a first observation
about the class S is that it contains all finite abelian groups.

The next examples follow respectively from [8, Examples 3.16, 3.17, 3.18] and from the values
of the string numbers of the Bernoulli shifts collected in Table 1.1.

Example 2.1. (a) s(Z) = 0.

(b) s(Z2) = ns(Z2) =∞.

(c) s(Q) = ns(Q) =∞ and s0(Q) = 0.

(d) If G is a non-trivial abelian group, then s(G(N)) = ns(G(N)) = s0(G(N)) =∞.

Given an abelian group G and an endomorphism φ of G, let Fφ be the family of all the subgroups
H ofG such that φ(H) = H and consider the partial order by inclusion on Fφ. Let scφ =

∑
H∈Fφ H.

Since it is not difficult to prove that scφ is an element of Fφ, scφ is a maximum for the poset (Fφ,⊆).
In particular, scφ is a φ-invariant subgroup of G such that the endomorphism induced by φ on scφ
is surjective. Furthermore, scφ contains all the subgroups of G with these properties. We call scφ
the surjective core of φ (see [8] for an alternative description).

Consider now a pseudostring S of φ. Then T (φ, 〈S〉) =
∑
n∈N φ

n〈S〉 is an element of Fφ.
This shows that every pseudo-string of φ is contained in scφ. In particular we obtain the following
lemma, that permits to consider surjective endomorphisms in the computation of the string numbers
of endomorphisms of abelian groups.

Lemma 2.2. Let G be an abelian group and φ ∈ End(G). Then s(φ) = s(φ �scφ), ns(φ) =
ns(φ �scφ) and s0(φ) = s0(φ �scφ).

Let G be an abelian group and φ ∈ End(G). Recall that an element x ∈ G is a periodic point
of φ if there exists n ∈ N+ such that φn(x) = x; we denote by Per(φ) the set of all periodic points
of φ. Moreover, an element x ∈ G is a quasi-periodic point of φ if there exist n > m in N such that
φn(x) = φm(x); we denote by QPer(φ) the set of all quasi-periodic points of φ.

The next lemma, whose proof is a straightforward application of the definitions, gives equivalent
conditions for a string to be singular.

6



Lemma 2.3. Let G be an abelian group, φ ∈ End(G) and S = {xn}n∈N a string of φ. The following
conditions are equivalent:

(a) S is singular;

(b) x0 is quasi-periodic (i.e., {φn(x0) : n ∈ N} is finite);

(c) xn is quasi-periodic for every n ∈ N.

It is now possible to prove the following result, which characterizes the abelian groups endo-
morphisms with one of the string numbers zero in terms of their surjective core.

Proposition 2.4. Let G be an abelian group and φ ∈ End(G). Then:

(a) s(φ) = 0 if and only if Per(φ �scφ) = scφ;

(b) ns(φ) = 0 if and only if QPer(φ �scφ) = scφ;

(c) s0(φ) = 0 if and only if kerφ �scφ= kerφ ∩ scφ = 0.

Proof. By Lemma 2.2 we can suppose without loss of generality φ to be surjective, that is, scφ = G.
For a fixed (but arbitrary) x0 ∈ G \ {0}, by the surjectivity of φ, there exists a pseudostring
S0 = {xn}n∈N of φ.

(a) Assume that G = Per(φ). If S = {yn}n∈N is an arbitrary pseudostring of φ, then yn is
periodic for every n ∈ N, so O = {φk(y0) : k ∈ N} is finite and yn ∈ O for all n ∈ N. This
shows that S ⊆ O is finite and so it cannot be a string. Hence, s(φ) = 0. To prove the converse
implication, suppose that G 6= Per(φ) and let x0 ∈ G \ Per(φ). We show that S0 is a string and so
s(φ) = ∞. In fact, if xn = xm for some n ≥ m ∈ N, then φn−m(x0) = φm(xn) = φm(xm) = x0.
Since x0 is not periodic, this implies m = n. Hence the elements of S0 are pairwise distinct and so
S is a string.

(b) Suppose that G = QPer(φ). If S is an arbitrary string of φ, then S has to be singular by
Lemma 2.3, and this proves ns(φ) = 0. To prove the converse implication, assume thatG 6= QPer(φ)
and let x0 ∈ G \QPer(φ). In particular x0 ∈ G \Per(φ) and it suffices to proceed as in (a) to show
that S0 is a string. By Lemma 2.3, S0 is non-singular, and hence ns(φ) =∞.

(c) Assume φ to be injective. If S = {yn}n∈N is an arbitrary string of φ, then φn(y0) 6= 0 for all
n ∈ N. So S cannot be a null string, and this yields s0(φ) = 0. To prove the converse implication,
suppose that kerφ 6= 0 and let x0 ∈ kerφ \ {0}. Clearly, x0 is not periodic and so it suffices to
proceed as in (a) to show that S0 is a string. Finally, S0 is a null string since φ(x0) = 0, hence
s0(φ) =∞.

Proposition 2.4(c) implies that s0(G) = 0 if φ is injective for every non-zero φ ∈ End(G). In
particular, s0(Jp) = 0.

Another way to use Proposition 2.4(c) to find groups belonging to S0 was suggested us by
the referee. Indeed, it is possible to represent a suitable ring A, without zero-divisors, as the
endomorphism ring of an abelian group G in such a way that all the endomorphisms of G are
injective. In the following example we give an idea of how this can be done.

Example 2.5. Let A be a unitary and associative ring without zero-divisors. Since realization
theorems are considerably easier when A is countable, we distinguish between the countable and
uncountable case.

(a) If (A,+) is a countable, reduced and torsion-free abelian group, we can apply Corner’s re-
alization theorem (see [5, Theorem A]) to find an abelian group G (countable, reduced and
torsion-free) such that End(G) ∼= A. Furthermore, since A has no zero-divisors, by [3, Lemma
1] all φ ∈ End(G) are injective.

(b) In the non-countable case, the classical results of [5] can be substituted by some realization
theorem based on Shelah’s Black Box (see for example [6] or [14, Section 12]). In particular,
if (A,+) is a cotorsion-free abelian group (i.e., (A,+) does not contain any copy of Q, Z(p),
or Jp for every prime p), then there exist cotorsion-free abelian groups G of arbitrarily large
order such that End(G) ∼= A (just take A = Z \ {0} in [6, Theorem (6.3)]). Finally, using
arguments similar to those in the proof of [17, Theorem 2.11], one can show that for such G
all φ ∈ End(G) are injective.

The following property of the string numbers follows directly from Fact 1.6(e).
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Lemma 2.6. If G = G1 ⊕G2 for some subgroups G1, G2 of G, then:

(a) s(G) = 0 implies s(G1) = s(G2) = 0;

(b) ns(G) = 0 implies ns(G1) = ns(G2) = 0;

(c) s0(G) = 0 implies s0(G1) = s0(G2) = 0.

The implications in items (a) and (b) of this lemma cannot be reversed, as s(Z) = ns(Z) = 0,
but s(Z2) = ns(Z2) = ∞ by Example 2.1(a,b). It is less easy to see that the converse of item (c)
does not hold true; Example 6.8 will give a counterexample. However, using Proposition 2.4, we
can prove a partial converse of Lemma 2.6 in Lemma 2.8, but we need first to study the behavior
of the surjective core on direct sums and products.

Lemma 2.7. Let G be an abelian group, φ ∈ End(G) and let Hα be a φ-invariant subgroup of G
for every α belonging to a set of indices A.

(a) If G =
⊕

α∈AHα, then scφ =
⊕

α∈A scφ �Hα .

(b) If G =
∏
α∈AHα, then scφ =

∏
α∈A scφ �Hα .

Proof. (a) Let K be a subgroup of G. Suppose that φ(K) = K and let Kα = K ∩Hα, for every
α ∈ A. Since φ acts componentwise, φ �Hα (Kα) = Kα, for every α ∈ A. This shows that
K ⊆

⊕
α∈AKα ⊆

⊕
α∈A scφ �Hα , and in particular scφ ⊆

⊕
α∈A scφ �Hα .

On the other hand, let Kα ⊆ Hα be subgroups of Hα such that φ �Hα (Kα) = Kα for every α ∈
A. Then also φ(

⊕
α∈AKα) =

⊕
α∈AKα, as φ acts componentwise. This shows that

⊕
α∈AKα ⊆

scφ, and in particular scφ ⊇
⊕

α∈A scφ �Hα .

(b) Proceed analogously to (a).

Lemma 2.8. Let G be an abelian group such that G =
⊕

α∈AHα, where A is a set of indices and
the Hα are fully invariant subgroups of G for all α ∈ A. Then:

(a) s(G) = 0 if and only if s(Hα) = 0 for every α ∈ A;

(b) ns(G) = 0 if and only if ns(Hα) = 0 for every α ∈ A;

(c) s0(G) = 0 if and only if s0(Hα) = 0 for every α ∈ A.

Proof. The “only if” part of (a), (b) and (c) is a particular case of Lemma 2.6. We now prove the
“if” part of (a); the “if” part of (b) and (c) can be proved similarly. Suppose that s(Hα) = 0 for
every α ∈ A. Let φ ∈ End(G); we have to show that s(φ) = 0. By our hypotheses, each Hα is a
fully invariant subgroup of G and so φα = φ �Hα is an endomorphism of Hα for every α ∈ A. Let
x = (xα)α∈A ∈ G =

⊕
α∈AHα with x ∈ scφ. Then xα ∈ scφα for every α ∈ A, by Lemma 2.7. By

Proposition 2.4(a), since s(Hα) = 0, we get xα ∈ Per(φα) for every α ∈ A. Therefore, x ∈ Per(φ)
and this yields scφ = Per(φ �scφ). Hence, Proposition 2.4(a) implies s(φ) = 0.

We prove now that bounded abelian p-groups with one of the string numbers zero have to be
finite:

Lemma 2.9. If G is an infinite bounded abelian p-group for some prime p, then s(G) = ns(G) =
s0(G) =∞.

Proof. Since G contains as a direct summand a subgroup isomorphic to Z(pk)(N) for some k ∈ N+,
apply Example 2.1(d) and Lemma 2.6 to conclude that s(G) = ns(G) = s0(G) =∞.

The following result solves Problem 1.4 for finitely generated abelian groups.

Proposition 2.10. Let G be a finitely generated abelian group. Then:

(a) s(G) = ns(G);

(b) s(G) = 0 if and only if r0(G) ≤ 1;

(c) s0(G) = 0.
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Proof. (a,b) The case r0(G) = 0 is trivial, since G is finite.
Assume that r0(G) = 1. We show that s(G) = ns(G) = 0. In fact, let φ ∈ End(G); we have to

prove that s(φ) = 0. Let S = {xn}n∈N be a pseudostring of φ. Since G ∼= Z ⊕ F for some finite
subgroup F of G, we can write in a unique way xn = zn + fn with zn ∈ Z and fn ∈ F . Moreover
there exists k ∈ N+ such that kF = 0. Since S is a pseudostring of φ, we have that kS = {kzn}n∈N
is a pseudostring of φ �kG: kG → kG; note that kG ∼= Z is a fully invariant subgroup of G. If
kS were infinite then, kS would contain a string of φ �kG in view of [8, Lemma 2.10]; therefore,
s(kG) = ∞ and this contradicts Example 2.1(a), as kG ∼= Z. Hence kS is finite and consequently
{zn}n∈N is finite as well. Since S is contained in {zn}n∈N ⊕ F , it follows that S is finite, hence S
is not a string.

Suppose that r0(G) > 1. Then G has Z2 as direct summand and so s(G) = ns(G) =∞ thanks
to Example 2.1(b) and Lemma 2.6(a,b).

(c) Let φ ∈ End(G). Since every subgroup of G is finitely generated, by Lemma 2.2 we can
assume without loss of generality that φ is surjective. Then φ is also injective and so s0(φ) = 0 by
Proposition 2.4(c).

As a corollary of Proposition 2.10 we obtain the following characterization of free abelian groups
with string numbers zero.

Corollary 2.11. Let G be a free abelian group. Then:

(a) s(G) = ns(G);

(b) s(G) = 0 if and only if r0(G) ≤ 1;

(c) s0(G) = 0 if and only if r0(G) is finite.

Proof. (a,b) If r0(G) ≥ 1, thenG has Z2 as a direct summand. By Example 2.1(b) ns(Z2) = s(Z2) =
∞ and so Lemma 2.6(a,b) gives ns(G) = s(G) = ∞. If r0(G) ≤ 1, G = Z and ns(G) = s(G) = 0
by Example 2.1(a).

(c) If r0(G) is finite, then G is finitely generated and so Proposition 2.10 gives s0(G) = 0. If
r0(G) is infinite, then Z(N) is a direct summand of G. Hence s0(G) = ∞ by Example 2.1(d) and
Lemma 2.6(c).

The next proposition gives a sufficient condition for an abelian group G to have non-singular
string number zero.

Proposition 2.12. Let G be an abelian group such that G =
⋃
n∈NGn, where Gn is a finite fully

invariant subgroup of G for every n ∈ N. Then ns(G) = 0.

Proof. Let φ ∈ End(G) and let S = {xn}n∈N be a string of φ. We show that S is singular. Indeed,
there exists n ∈ N such that x0 ∈ Gn. Since Gn is finite and fully invariant, {φn(x0) : n ∈ N} is
finite as well, as it is contained in Gn, and so S is singular by a pigeon-hole argument.

The converse implication of this proposition does not hold true; indeed, we shall see that the
abelian group G given in Example 6.5 is not countable, yet ns(G) = 0, while every abelian group
G satisfying the hypotheses of Proposition 2.12 is necessarily torsion and countable.

As a consequence of Proposition 2.12 we obtain the following example.

Example 2.13. For every prime p and every n ∈ N+, we have that:

(a) s0((Z(p∞))n) = s((Z(p∞))n) =∞ by [8, Example 3.19] and Lemma 2.6(a,c), and ns(Z(p∞)n) =
0 by Proposition 2.12;

(b) s0((Q/Z)n) = s((Q/Z)n) = ∞ by (a) and Lemma 2.6(a,c), and ns((Q/Z)n) = 0 by Proposi-
tion 2.12.

The next lemma will be covered by Theorem 4.2, which characterizes the divisible abelian groups
with string numbers zero. We state it here because it will be useful in what follows.

Lemma 2.14. Let D be a non-trivial divisible abelian group.

(a) If D is torsion, then s0(D) =∞.

(b) If D is torsion-free, then ns(D) =∞.
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In particular, s(D) =∞.

Proof. (a) Since D has Z(p∞) as a direct summand for some prime p, and s0(Z(p∞)) = ∞ by
Example 2.13(a), Lemma 2.6(c) yields s0(D) =∞.

(b) Now D has Q as a direct summand and ns(Q) =∞ by Example 2.1(c); hence Lemma 2.6(b)
gives ns(D) =∞.

Since D ∼= t(D)⊕D/t(D), and at least one of t(D) and D/t(D) is non-trivial, we can conclude
that s(D) =∞ by (a), (b) and Lemma 2.6(a).

As a clear consequence of Lemmas 2.14 and 2.6, we have that an abelian group G is reduced if
one of the following conditions holds:

(a) s(G) = 0;

(b) G is torsion and s0(G) = 0;

(c) G is torsion-free and ns(G) = 0.

3 Torsion abelian groups with no strings

In this section we consider Problem 1.4 for torsion abelian groups. In particular, Theorem 3.4 shall
solve it for the string number and the null string number, characterizing all torsion abelian groups
in S and in S0. Moreover, we will provide sufficient and necessary conditions for a torsion abelian
group to belong to Sns.

The next lemma is a clear consequence of Lemma 2.8. In fact, every torsion abelian group G
is the direct sum of its p-components tp(G), that are fully invariant in G. We state it explicitly as
it shows that working with the string numbers of torsion abelian groups it is possible to reduce to
the case of abelian p-groups.

Corollary 3.1. Let G be a torsion abelian group. Then:

(a) s(G) = 0 if and only if s(tp(G)) = 0 for every prime p;

(b) ns(G) = 0 if and only if ns(tp(G)) = 0 for every prime p;

(c) s0(G) = 0 if and only if s0(tp(G)) = 0 for every prime p.

The following lemma characterizes the divisible torsion abelian groups in S, Sns and S0.

Lemma 3.2. Let p be a prime and let D be a divisible abelian p-group. Then:

(a) s(D) = 0 if and only if s0(D) = 0 if and only if D = 0;

(b) ns(D) = 0 if and only if rp(D) is finite.

Proof. (a) Follows from Lemma 2.14.

(b) Since D ∼= Z(p∞)(αp) for some cardinal αp, if rp(D) = αp is infinite, then ns(D) = ∞ by
Example 2.1(d) and Lemma 2.6(b). If rp(D) is finite, then ns(D) = 0 by Example 2.13(a).

The following lemma shows that, in order to calculate one of the string numbers of an abelian
p-group G, we can always suppose G to be either divisible or reduced.

Lemma 3.3. Let p be a prime and G an abelian p-group. We can write G = d(G)⊕R where d(G)
is the maximum divisible subgroup of G and R ∼= G/t(G) is reduced. Then:

(a) s(G) = s(d(G)) + s(R);

(b) ns(G) = ns(d(G)) + ns(R);

(c) s0(G) = s0(d(G)) + s0(R).

Proof. (a) Follows from (b) and (c) using (2.1).

(b) By Lemma 2.6(b) we have that ns(G) ≥ ns(d(G)) +ns(R), therefore we need to prove only
that ns(d(G)) = ns(R) = 0 implies ns(G) = 0. So suppose that ns(d(G)) = ns(R) = 0. By Lemma
3.2 the p-rank of d(G) has to be finite. Consider an endomorphisms φ : G → G and suppose,
looking for a contradiction, that S = {xn}n∈N is a non-singular string of φ. For every n ∈ N, we
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can write uniquely xn = dn + cn with dn ∈ d(G) and cn ∈ R. Furthermore, since d(G) is fully

invariant in G, we can represent φ as a matrix
(
φd φrd
0 φr

)
: d(G) ⊕ R → d(G) ⊕ R. We verify that

ns(φr) =∞, and this will provide the contradiction we are looking for.
Let S′ = {cn}n∈N. It is clear that S′ is a pseudostring of φr and so c0 ∈ scφr. Consider now

the trajectory T (φ, 〈x0〉), that is an infinite set by our assumption that S is non-singular. On the
other hand, let k be the order of x0, then

T (φ, 〈x0〉) ⊆ d(G)[k]⊕ T (φr, 〈c0〉).

Finally notice that d(G)[k] is finite by our assumption on the p-rank of d(G), and so T (φr, 〈c0〉)
has to be infinite. This is equivalent to say that c0 ∈ scφr \ QPer(φr). We can now conclude by
Lemma 2.4(b).

(c) Follows from Lemma 2.6(c) and Lemma 2.14.

Since the string numbers of torsion divisible abelian groups are computed in Lemma 3.2, we have
that Corollary 3.1 and Lemma 3.3 give the possibility to consider only reduced abelian p-groups in
the computation of the string numbers of torsion abelian groups.

We recall that an abelian p-group G is separable if pωG = 0. Consider now, for a prime p, two
separable abelian p-groups G and H. A homomorphism φ : G→ H is small if

∀k ∈ N, ∃n ∈ N, such that (e(x) ≥ n)⇒ (e(φ(x)) ≤ e(x)− k) ∀x ∈ G;

where e(−) denotes the exponent of an element. In other words, φ is small if for every k ∈ N, there
exists n ∈ N such that φ((pnG)[pk]) = 0. We will use the properties of small endomorphisms in the
proof of the next theorem, which solves completely Problem 1.4 for the string number and the null
string number in the case of torsion abelian groups, in view of the previous reduction to reduced
abelian p-groups.

Theorem 3.4. Let p be a prime and let G be a reduced abelian p-group. Then the following
conditions are equivalent:

(a) s(G) = 0;

(b) s0(G) = 0;

(c) G is finite.

In particular, s(G) = s0(G).

Proof. (a)⇒(b) Is trivial.

(b)⇒(c) Assume that G is infinite. Hence G is unbounded by Lemma 2.9. Let B be a basic
subgroup of G; B must then be unbounded as well. Then there exist two subgroups B′ and C of
B such that B = B′ ⊕ C, where B′ =

⊕
n∈N Z(pkn) with 0 < k0 < k1 < . . . < kn < . . . in N.

Denote by en = (0, . . . , 0, 1Z(pkn ), 0, . . .) the n-th standard generator of B′, for all n ∈ N. Define
the endomorphism φB′ of B′ on the generators, by letting

e1 7→ 0, em! 7→ e(m−1)! for every m ≥ 2, en 7→ 0 if n /∈ {k! : k ≥ 2}.

Then φB′ is a small endomorphism of B′ and it can be extended to a small endomorphism φB of B
simply by letting φB(C) = 0. Since B is pure in G and φB is small, we can find an endomorphism
φ of G extending φB (see [18, Theorem 4.4]). Now it is clear that {en!}n∈N+

is a null-string of φ
and so s0(φ) =∞. Therefore, s0(G) =∞.

(c)⇒(a) is clear.

If a reduced abelian p-group G is finite, then obviously ns(G) = 0. Together with Lemma 3.2(b)
and the reduction to reduced abelian p-groups provided by Corollary 3.1(b) and Lemma 3.3(b),
this trivial observation gives the next corollary showing a sufficient condition for a torsion abelian
group to be in Sns. Example 6.5 will show that this condition is not necessary.

Corollary 3.5. Let G be a torsion abelian group. If rp(G) is finite for every prime p, then
ns(G) = 0.
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The problem of the characterization of the torsion abelian groups G with ns(G) = 0 is open, as
stated by Problem 1.5. Nevertheless, we have some reductions, as the following

Lemma 3.6. Let p be a prime and let G be a reduced abelian p-group. If ns(G) = 0, then the finite
Ulm-Kaplansky invariants of G are finite.

Proof. Assume that some of the finite Ulm-Kaplansky invariants αn of G is infinite. Then G has
a direct summand of the form H = Z(pn)(N). Since ns(H) =∞ by Example 2.1(d), Lemma 2.6(b)
gives ns(G) =∞.

Thanks to this lemma it is possible to see that “large” torsion abelian group are not in Sns:

Theorem 3.7. Let G be a torsion abelian group. If ns(G) = 0, then |G| ≤ c.

Proof. We can assume without loss of generality that G is a p-group, that is, G = tp(G), for some
prime p. Indeed, ns(tp(G)) = 0 for every prime p by Corollary 3.1(b) and |tp(G)| ≤ c for every prime
p implies |G| ≤ c. Now the hypothesis ns(G) = 0 implies that the maximum divisible subgroup
d(G) of G has ns(d(G)) = 0 as well, in view of Lemma 2.6(b). By Theorem 3.4 rp(d(G)) is finite,
so in particular |d(G)| = ℵ0. Thus we can assume that G is reduced. By Lemma 3.6, the finite
Ulm-Kaplansky invariants αn of G are finite. Now [11, Theorem 34.3] gives |G| ≤ c.

Let G be a torsion abelian group, φ ∈ End(G) and let S be a non-singular string of φ. Clearly
the φ-trajectory T (φ, 〈x〉) is infinite for every x ∈ S, and so ent(φ) > 0 by [9, Proposition 2.4]. In
particular,

ent(G) = 0 =⇒ ns(G) = 0. (3.1)

Looking at the implication in (3.1), the following natural question was suggested by the referee
and remains open.

Problem 3.8. Does there exist an abelian p-group G with ns(G) = 0 but ent(G) =∞?

Equation (3.1) is equivalent to say that the class of torsion abelian groups with algebraic entropy
zero is contained in Sns ∩ T. So the results from [9, Section 5] on torsion abelian groups with
algebraic entropy zero hold also for torsion abelian groups with non-singular string number zero.
In particular we have the following theorem, which is the counterpart of [9, Theorem 5.18], based
on a Corner’s realization theorem from [5].

Theorem 3.9. Given an ordinal λ < ω2, there exists a family of 22
ω

abelian p-groups of length λ
and with non-singular string number zero.

We discuss now the case when the non-singular string number is infine, starting from the fol-
lowing example.

Example 3.10. For a prime p, the standard p-basic subgroup Bp =
⊕

n∈N+
Z(pn) has ns(Bp) =∞.

To show this, we construct an endomorphism φ of Bp admitting a non-singular string. Let
en = (0, . . . , 0, 1Z(pn), 0, . . .) be the n-th standard generator of Bp, for every n ∈ N+. Define φ on
the generators of Bp letting, for every n ∈ N+,

e2(n+1) 7→ e2n, e2 7→ e1, e2n−1 7→ p2 · e2n+1.

Then clearly S = {e2n}n∈N+
is a non-singular string of φ.

This example can be generalized to any abelian group of the form
⊕

n∈N Z(pn), where N is an

infinite subset of N, and so also to abelian groups of the form
⊕

n∈N+
Z(pn)(αn), where αn > 0 for

infinitely many αn, thanks to Lemma 2.6(b).

An abelian p-group is said to be torsion-complete if it is the torsion part of the p-adic comple-
tion of a direct sum of cyclic abelian p-groups. Torsion-complete abelian p-groups are necessarily
separable. Even if an abelian p-group G has an unbounded p-basic subgroup Bp, it is not always
possible to extend the endomorphism of Bp given in Example 3.10 to the whole group G. But, if
G is torsion-complete, then every endomorphism of Bp extends to G (see [11, Section 68]), and so
Example 3.10 permits to prove the following

Theorem 3.11. Let p be a prime, and let G be an unbounded torsion-complete abelian p-group.
Then s0(G) = ns(G) = s(G) =∞.
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Proof. By Theorem 3.4, s0(G) = s(G) = ∞. Since G is separable, in particular G is reduced.
Then G contains an unbounded p-basic subgroup Bp. Moreover, ns(Bp) =∞ by Example 3.10 and
each endomorphism of Bp extends to an endomorphism of G, since G is torsion-complete. Hence
ns(G) =∞.

In [9, Section 4] torsion abelian groups with infinite algebraic entropy are produced. To exhibit
these groups the authors show that they have a direct summand which is an infinite direct sum of
cyclic p-groups. So the same groups have also infinite string numbers in view of Example 2.1(d)
and Lemma 2.6. In particular, the following is the counterpart of [9, Theorem 4.5].

Theorem 3.12. The reduced abelian p-groups which are either totally projective or pω+1-projective
have infinite string numbers.

4 The torsion-free case

In this section we study Problem 1.4 in the case of torsion-free abelian groups, starting from the
following

Lemma 4.1. Let G be a torsion-free abelian group of finite rank. Then s0(G) = 0.

Proof. Let φ ∈ End(G). Since every subgroup of G is torsion-free and of finite rank, by Lemma
2.2 we can assume without loss of generality that φ is surjective. Then φ is injective and hence
s0(φ) = 0 by Proposition 2.4(c).

The following theorem characterizes completely the divisible abelian groups in S, Sns and S0.

Theorem 4.2. Let D be a divisible abelian group. Then:

(a) s(D) = 0 if and only if D = 0;

(b) ns(D) = 0 if and only if D = t(D) and rp(D) is finite for every prime p;

(c) s0(D) = 0 if and only if t(D) = 0 and r0(D) is finite.

Proof. Since D is divisible, D ∼= t(D)⊕D/t(D).

(a) Follows from the last statement of Lemma 2.14.

(b) If ns(D) = 0, then D = t(D) by Lemma 2.14(b), ns(tp(D)) = 0 for every prime p by
Corollary 3.1(b), and rp(D) finite for every prime p by Lemma 3.2. If D = t(D) and rp(D) is finite
for every prime p, then ns(D) = 0 by Corollary 3.1(b) and Lemma 3.2.

(c) If s0(D) = 0, then t(D) = 0 by Lemma 2.14(a). If r0(D) is infinite, then D contains Q(N) as
a direct summand; since s0(Q(N)) =∞ by Example 2.1(d), hence s0(D) =∞ by Lemma 2.6(c). If
t(D) = 0 and r0(D) = n is finite, D ∼= Qn and s0(D) = 0 by Lemma 4.1.

The next proposition gives a necessary condition for a torsion-free abelian group to belong to
Sns.

Proposition 4.3. Let G be a torsion-free abelian group. If ns(G) = 0, then pωG = 0 for every
prime p.

Proof. Assume that pωG 6= 0 for some prime p. Since pωG = scµp, it follows from [8, Lemma 3.23
and Corollary 3.21(b)] that ns(µp) =∞, hence ns(G) =∞.

This proposition implies in particular that s(Jp) = ns(Jp) =∞.

The converse of Proposition 4.3 is clearly false in general. In fact, it suffices to take G = Z2,
which is a torsion-free abelian group with pωG = 0 for every prime p, but ns(G) =∞ by Example
2.1(b). However, the converse implication of Proposition 4.3 holds for endorigid torsion-free abelian
groups:

Theorem 4.4. If G is an endorigid torsion-free abelian group, then s0(G) = 0. In particular,
s(G) = ns(G), and the following conditions are equivalent:

(a) s(G) = 0;

(b) pωG = 0 for all primes p.

13



Proof. Since G is torsion-free, the non-zero endomorphisms of G are injective. Hence s0(G) = 0 by
Proposition 2.4(c), and s(G) = ns(G) by (2.1).

(a)⇒(b) Is given by Proposition 4.3.

(b)⇒(a) Let φ ∈ End(G) = Z. Then φ = µk for some k ∈ Z and scφ ⊆ pωG if p is a prime
dividing k. Since pωG = 0 by hypothesis, scφ = 0 as well. Hence s(φ) = 0 by Lemma 2.2.

As a consequence of Proposition 4.3 and Theorem 4.4 we obtain a complete characterization of
the torsion-free abelian groups of torsion-free rank 1 in S.

Corollary 4.5. Let G be a torsion-free abelian group of rank 1, then s(G) = 0 if and only if no
infinity appears in the type of G.

Proof. Suppose that s(G) = 0. By Proposition 4.3, pωG = 0 for every prime p; this implies that
no infinity appears in the type of G. On the other hand, since G is isomorphic to a subgroup of Q,

End(G) is isomorphic to the subring of Q generated by
{

1, 1p : p prime, pG = G
}

(see [11, Section

106, Example 4]). This shows that, if there is no infinity in the type of G, then End(G) ∼= Z and
Theorem 4.4 applies to conclude s(G) = 0.

Using Corollary 4.5 we can explicitly construct an example of a decomposable torsion-free
abelian group G such that s(G) = 0:

Example 4.6. Let A and B be two non trivial subgroups of Q whose types are respectively
(a1, . . . , an, . . . ) and (b1, . . . , bn, . . . ) where a2n = b2n+1 = 1 and a2n+1 = b2n = 0 for every n ∈ N+.
Then s(A) = s(B) = 0 in view of Corollary 4.5, and both A and B are fully invariant subgroups of
A⊕B. Now Lemma 2.8(a) yields s(A⊕B) = 0.

The following theorem shows that the torsion-free abelian groups are difficult to classify from
the point of view of the string numbers. To prove it we use strong results from [14] and [12].

Theorem 4.7. For every infinite cardinal λ, there exist indecomposable torsion-free abelian groups
G of rank λ with ns(G) = s(G) =∞ and there exist indecomposable torsion-free abelian groups H
of rank λ with s(H) = 0.

Proof. Let λ be an infinite cardinal. By [14, Corollary 14.5.3] there exists an endorigid torsion-free
abelian group G with r0(G) = λ, and such that pωG 6= 0 for some prime p. By Theorem 4.4,
ns(G) = s(G) = ∞. By [12, Corollary 5.4] there exists an endorigid torsion-free abelian group H
with r0(H) = λ, and such that pωH = 0 for every prime p. By Theorem 4.4, s(H) = 0.

5 Closure properties for S, Sns, and S0

In this section we consider some closure properties of the classes S, Sns and S0, namely, closure
under taking subgroups, quotients, summands, direct sums, extensions and direct products.

By Theorem 3.4, if T denotes the class of all torsion abelian groups,

S ∩ T = S0 ∩ T = {G torsion : tp(G) finite, for every prime p}.

Since the property of having finite p-components is stable under taking subgroups, quotients, finite
direct sums and extensions, the class S∩T is closed under taking subgroups, quotients, finite direct
sums and extensions.

Contrarily to the torsion case, the classes S, Sns and S0 satify these properties only in very
particular cases. Indeed, part (a) of the next example shows that the classes S, Sns and S0 are
not closed under taking subgroups. Moreover, item (b) shows that Sns ∩ T is not closed under
taking subgroups, contrarily to S ∩ T.

Example 5.1. (a) Let G be an endorigid torsion-free abelian group with r0(G) ≥ ℵ0, such that
pωG = 0 for every prime p (as noted in the proof of Theorem 4.7, such a G exists). Then
s(G) = ns(G) = s0(G) = 0 in view of Theorem 4.4, while G contains a subgroup H isomorphic
to Z(N), which has s(H) = ns(H) = s0(H) =∞ by Example 2.1(d).
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(b) By Theorem 3.9 there exists an abelian p-group G such that ns(G) = 0, and with an infinite
p-basic subgroup B, which has ns(B) =∞ by Example 3.10.

By Fact 1.6(c) we derive immediately that, given an abelian group G and a fully invariant
subgroup H of G, then s(G) ≥ s(H), ns(G) ≥ ns(H) and s0(G) ≥ s0(H). Equivalently, S, Sns

and S0 are closed under taking fully invariant subgroups.

Part (a) of the next example shows that the classes S and S0 are not closed under taking
quotients. Moreover, part (b) shows that Sns ∩ T (and so also Sns) is not closed under taking
quotients, contrarily to S ∩ T.

Example 5.2. (a) Consider the group G of Example 5.1(a). Since r0(G) ≥ ℵ0, we can find an
embedding Z(Q) ↪→ G. Moreover, the canonical surjection Z(Q) → Q can be extended to a
surjection G → Q, as Q is divisible. Now choose a prime p; since Z(p∞) is a quotient of Q,
we can easily construct an epimorphism G → Z(p∞), whose kernel K is fully invariant in G
(in fact, as G is endorigid, every subgroup of G is fully invariant in G). Finally, notice that
s(G) = 0 by Theorem 4.4 and s0(Z(p∞)) =∞ by Example 2.13.

(b) Consider the group of Example 5.1(b), that is an abelian p-group G with a basic subgroup B
such that ns(G) = 0 and ns(B) =∞. By a celebrated theorem of Szele (see for example [11,
36.1]), B is a quotient of G.

Lemma 2.6 implies that S, Sns and S0 are closed under taking direct summands. We consider
now the stability of these classes for direct sums. As observed after Lemma 2.6, S, Sns and S0

are not closed under taking finite direct sums (and so they are not closed also under extensions).
On the other hand, we saw in Lemma 2.8 that, given an abelian group G that is the direct sum of
a family of fully invariant subgroups belonging to S (respectively, Sns, S0), then G belongs to S
(respectively, Sns, S0) as well. In Theorem 5.3 we give a partial converse to this fact when G is
torsion-free. Namely we show that, in order to have G ∈ S (respectively, Sns), the hypothesis of
being fully invariant is necessary for the summands of G.

Theorem 5.3. Let A be a set, Hα a torsion-free abelian group for every α ∈ A, and G =
⊕

α∈AHα.
Then

(a) s(G) = 0 if and only if Hα is fully invariant in G for every α in A and s(Hα) = 0 for every
α ∈ A;

(b) ns(G) = 0 if and only if Hα is fully invariant in G for every α in A and ns(Hα) = 0 for
every α ∈ A.

Proof. (a) If Hα is fully invariant in G and s(Hα) = 0 for every α ∈ A, then s(G) = 0 by Lemma
2.8. It remains to prove the converse implication. If s(G) = 0, then s(Hα) = 0 for all α ∈ A by
Lemma 2.6(a). Assume that Hα is not fully invariant for some α ∈ A. Then there exist β 6= α in A
and a non-zero homomorphism ψ : Hα → Hβ . Since ψ is non-zero, there exists x ∈ Hα \ {0} such
that ψ(x) 6= 0. Then S = {(−nψ(x), x)}n∈N is a pseudostring of the endomorphism Ψ of Hα ⊕Hβ

given by the matrix

(
1 ψ
0 1

)
. Since Hα ⊕Hβ is torsion-free, it follows that S is a (non-singular)

string of Ψ. Consequently, s(Hα ⊕Hβ) =∞ and hence s(G) =∞ by Lemma 2.6(a).

(b) Proceed analogously to (a).

We now consider the class S0. It presents a different behaviour to that of S and Sns described
by Theorem 5.3; indeed, the implication given by Lemma 2.8 holds also for s0(−), while the abelian
group G = Z⊕ Z belongs to S0, even if Z⊕ 0 and 0⊕ Z are not fully invariant subgroups of G.

Moreover, the following inequality holds:

Lemma 5.4. Let G be an abelian group and H a fully invariant subgroup of G. Then

s0(G) ≤ s0(H) + s0(G/H).

Equality holds if H is a direct summand of G.
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Proof. We have to prove that, if s0(G) = ∞, then at least one between s0(H) and s0(G/H) is
infinite. Suppose that there exists φ ∈ End(G) such that s0(φ) = ∞. By Proposition 2.4(c),
kerφ �scφ 6= 0. Let K = kerφ �scφ= kerφ ∩ scφ. If K ⊆ H, since kerφ ∩ H = kerφ �H and
scφ ∩ H = scφ �H and kerφ �H ∩scφ �H⊆ K, it follows that K = kerφ �H ∩scφ �H . By
Proposition 2.4(c) s0(φ �H) = ∞ and so s0(H) = ∞. If K 6⊆ H, consider the endomorphism
φ : G/H → G/H induced by φ and the canonical projection π : G→ G/H. Since π(kerφ) ⊆ kerφ
and π(scφ) ⊆ scφ, π(K) ⊆ kerφ ∩ scφ. As K 6⊆ H, π(K) 6= 0, so kerφ ∩ scφ 6= 0 and hence
s0(φ) =∞ by Proposition 2.4(c). Consequently, s0(G/H) =∞.

The last statement follows from the inequality and from Lemma 2.6(c).

The inequality in Lemma 5.4 can be strict as the following example shows.

Example 5.5. Consider the abelian group G constructed in Example 5.1(a), which has s0(G) = 0.
It is shown in Example 5.2(a) that s0(G/pG) =∞, as G has infinite torsion-free rank. Since pG is
a fully invariant subgroup of G, this provides an example of how the inequality of Lemma 5.4 can
be strict.

Even if we have seen that S0 is not closed under taking extensions (as S and Sns), we have
the following consequence of Lemma 5.4.

Corollary 5.6. Let G be an abelian group and H a fully invariant subgroup of G. If s0(H) = 0
and s0(G/H) = 0, then s0(G) = 0.

At this stage it should be clear that none of the classes S, Sns and S0 is closed under taking
direct products. We want now to study the case of an abelian group G that is the direct product
of fully invariant subgroups. We will see that (as for the direct sums) the behavior of S0 is quite
different from that of S and Sns. Let us start with the following

Example 5.7. Let G =
∏
p Z(p). Each Z(p) is fully invariant in G and s(Z(p)) = 0 as Z(p) is

finite. Nevertheless, s(G) = ns(G) =∞.
Indeed, for every prime p, let zp ∈ Z be, modulo p, a generator of the cyclic multiplicative group

Z(p)∗ of all non-trivial elements of Z(p). Consider the endomorphism

φp : Z(p)→ Z(p), φp(x) = zp · x;

it is easily seen that φp is an automorphism of order p − 1. Now consider on G the diagonal
endomorphism φ = (φp)p of the φp. Then φ is an automorphism of G, such that QPer(φ) 6= G,
since the orbit of the element (1Z(p))p under the action of φ is infinite. By Proposition 2.4 we
conclude that ns(φ) =∞, and so ns(G) =∞.

As announced above, we show now that we cannot find an analog of Example 5.7 for the class
S0.

Lemma 5.8. Let G be an abelian group such that G =
∏
α∈AHα, where A is a set and Hα is a

fully invariant subgroup of G for every α ∈ A. Then s0(G) = 0 if and only if s0(Hα) = 0 for every
α ∈ A.

Proof. If s0(G) = 0, then s(Hα) = 0 for every α ∈ A by Lemma 2.6(c). To prove the converse
implication, suppose that s0(Hα) = 0 for every α ∈ A and consider φ ∈ End(G). We have to verify
that s0(φ) = 0. Denote by φα the restriction of φ to Hα, with α ∈ A. Since φ acts componentwise,
each φα is an endomorphism of Hα. By Lemma 2.7, we have that scφ =

∏
α∈A scφα. Since, by

hypothesis, s0(φα) = 0, we obtain that ker(φα) ∩ scφα = 0 for all α ∈ A by Proposition 2.4(c).
It follows that scφ ∩ ker(φ) =

∏
α∈A(scφα ∩ kerφα) = 0, and so s0(φ) = 0 again by Proposition

2.4(c).

6 Strings and Hopficity

In this section we study the relations between the three string numbers and the Hopfian property.
In [9] it is noted that a consequence of [9, Proposition 2.9] is that an abelian group G with zero
algebraic entropy is necessarily co-Hopfian (i.e., every monomorphism G→ G is an automorphism
of G). It is also asked about a connection between zero algebraic entropy and the Hopfian property.
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Moreover, in [15] it is proved that the reduced torsion-free abelian groups with zero adjoint algebraic
entropy are Hopfian.

First of all, Theorem 6.1 shows that Hopficity is a necessary property for an abelian group to
have null string number zero. In other words, S0 is contained in the class of all Hopfian abelian
groups.

Theorem 6.1. Every abelian group G with s0(G) = 0 is Hopfian.

Proof. Let φ ∈ End(G) and suppose that φ is surjective. If φ is non-injective, then s0(φ) = ∞ by
Proposition 2.4(c). This shows that φ has to be injective and so G is Hopfian.

Since S ⊆ S0, we have the following immediate consequence of Theorem 6.1.

Corollary 6.2. Every abelian group G with s(G) = 0 is Hopfian.

It is not true that an abelian group G in Sns is necessarily Hopfian. Indeed, Z(p∞) is a torsion
abelian group with ns(Z(p∞)) = 0 and it is non-Hopfian. On the other hand Z(p∞) is a divisible
abelian p-group, so the following problem is open:

Problem 6.3. Find a reduced abelian p-group G with ns(G) = 0 and such that G is non-Hopfian.

Also for torsion-free abelian groups the same problem is open:

Problem 6.4. Find a torsion-free abelian group G with ns(G) = 0 and such that G is non-Hopfian.

All our examples of torsion-free abelian groups in Sns either have finite torsion-free rank or are
endorigid. In both cases the abelian groups in question are Hopfian. Furthermore, the non-Hopfian
torsion-free abelian groups G that we consider are either infinite direct sums of some torsion-free
abelian group or have pωG 6= 0 for some prime p. In both cases ns(G) =∞.

The next example shows that the converse implication of Theorem 6.1 does not hold true,
namely Hopficity is a necessary but not sufficient condition for an abelian group to have null string
number zero. In particular, this answers negatively [8, Question 3.13]. Moreover, this example
shows that the converse implication of Corollary 3.5 does not hold true as well.

Example 6.5. For a prime p, there exists an abelian p-group G such that:

(a) G is Hopfian;

(b) |G| = c (this implies that rp(G) is infinite);

(c) s0(G) =∞;

(d) ns(G) = 0.

The construction of an abelian p-group G satisfying (a) and (b) is given in [18, Theorem 16.4]. To
see that G satisfies (c), since rp(G) is infinite by (b), it is enough to apply Theorem 3.4. Moreover,
as observed after [9, Corollary 5.3], ent(G) = 0 and so ns(G) = 0 as well in view of (3.1).

The following problem remains open.

Problem 6.6. Find a Hopfian torsion abelian group G such that ns(G) =∞.

The torsion-free version of this problem is easily solved by Z2, which is an Hopfian abelian
group not in Sns by Example 2.1(b). It is less easy to find examples of Hopfian torsion-free abelian
groups not in S0. We now provide such an example, which is a modification of a group constructed
in [3, Example 2].

Example 6.7. We give the construction of a torsion-free Hopfian abelian group G with s0(G) =∞.
Let V be a Q-vector space whose base is {ak, bk}k∈Z and let p, qk (k ∈ Z) be distinct primes.

Define

G =
⊕
k∈Z

〈
p−∞ak, q

−∞
k bk,

1

p
(ak + bk)

〉
,

where p−∞x stands for the set {p−nx}n∈N. By the proof of [3, Example 2], G is Hopfian. To show
that s0(G) =∞, consider the assignments

ak 7→ ak+1 (if k < 0), ak 7→ 0 (if k ≥ 0), bk 7→ 0 (for every k ∈ Z);

it is easy to prove that they induce a group homomorphism ψ : G → G. Now it is clear that
{ak}k<0 is a null string of ψ.
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The next example (due to Corner) shows that there exists an abelian group G such that s0(G) =
0 and s0(G ⊕ G) = ∞; as we already mentioned, this proves that S0 is not closed under taking
finite direct sums and extensions.

Example 6.8. The group G constructed in [3, Example 3] has the property that any non-zero
endomorphism of G is injective. In particular G is Hopfian and s0(G) = 0 by Proposition 2.4(c).
Furthermore G⊕G is not Hopfian; hence s0(G⊕G) =∞ by Theorem 6.1.

7 Hereditary string numbers

In this section we consider the problem of characterizing the classes S̃, S̃ns and S̃0. Theorem 7.6
will completely solve it. We consider separately the torsion and the torsion-free case, which will
lead to the proof of the general theorem.

In view of (2.1),
s̃(G) = ñs(G) + s̃0(G); (7.1)

this is equivalent to S̃ = S̃ns ∩ S̃0. Furthermore, by definition, each of three classes S̃, S̃ns and
S̃0 is closed under taking subgroups.

Lemma 7.1. Let G be an abelian group.

(a) If either s̃(G) = 0, or ñs(G) = 0, or s̃0(G) = 0, then rp(G) is finite for every prime p and
r0(G) is finite.

(b) If either s̃(G) = 0, or ñs(G) = 0, then r0(G) ≤ 1.

Proof. (a) If rp(G) is infinite for some prime p, then G contains a subgroup isomorphic to Z(p)(N).
Since s(Z(p)(N)) = ns(Z(p)(N)) = s0(Z(p)(N)) = ∞ by Example 2.1(d), it follows that s̃(G) =
ñs(G) = s̃0(G) = ∞. If r0(G) is infinite, then G contains a subgroup isomorphic to Z(N). Since
s(Z(N)) = ns(Z(N)) = s0(Z(N)) =∞ by Example 2.1(d), it follows that s̃(G) = ñs(G) = s̃0(G) =∞.

(b) If r0(G) > 1, then G contains a subgroup isomorphic to Z2. Since s(Z2) = ns(Z2) =∞ by
Example 2.1(b), it follows that s̃(G) = ñs(G) =∞.

The next lemma describes completely the torsion abelian groups in S̃ = S̃0. In particular, it
adds equivalent conditions to Theorem 3.4.

Lemma 7.2. Let G be a torsion abelian group. Then the following conditions are equivalent:

(a) s̃(G) = 0 (⇔ s̃0(G) = 0);

(b) s(G) = 0 (⇔ s0(G) = 0);

(c) tp(G) is finite for every prime p.

In particular, s̃(G) = s̃0(G).

Proof. The equivalences follow directly from Theorem 3.4, noting that the property in (c) is hered-
itary.

The condition of Corollary 3.5, which is sufficient but not necessary in order to have ns(G) = 0
for a torsion abelian group G, turns out to be equivalent to ñs(G) = 0:

Lemma 7.3. Let G be a torsion abelian group. Then ñs(G) = 0 if and only if rp(G) is finite for
every prime p.

Proof. If ñs(G) = 0, then rp(G) is finite for every prime p by Lemma 7.1(a). Suppose that rp(G)
is finite for every prime p. Then rp(H) is finite for every prime p and every subgroup H of G. By
Corollary 3.5, ns(H) = 0 for every H, and hence ñs(G) = 0.

For a torsion abelian group G, in view of Lemma 7.2, the condition s̃0(G) becomes equivalent to
s̃(G) = 0. So in this case ñs(G) = 0 is weaker than s̃0(G) = 0, as its value on Z(p∞) shows; indeed,

Z(p∞) is an infinite abelian p-group of finite p-rank. In other words S̃ns ∩ T ) S̃ ∩ T = S̃0 ∩ T.

Lemmas 7.2 and 7.3 characterize completely the torsion abelian groups respectively in S̃ = S̃0

and in S̃ns. We now pass to consider the torsion-free case.

18



Lemma 7.4. Let G be a torsion-free abelian group. Then:

(a) s̃0(G) = 0 if and only if r0(G) is finite;

(b) s̃(G) = ñs(G);

(c) s̃(G) = 0 if and only if r0(G) ≤ 1 and no infinity appears in the type of G.

Proof. (a) If s̃0(G) = 0, then r0(G) is finite by Lemma 7.1(a). If r0(G) is finite, then r0(H) is
finite for every subgroup H of G. So Lemma 4.1 gives s0(H) = 0 for every H. This proves that
s̃0(G) = 0.

(b) If r0(G) is infinite, then G contains a subgroup isomorphic to Z(N), which has ns(Z(N)) =
s(Z(N)) = ∞ by Example 2.1(d), so s̃(G) = ñs(G) = ∞ as well. If r0(G) is finite, then s̃0(G) = 0
thanks to part (a). By (7.1) we have s̃(G) = ñs(G).

(c) If r0(G) > 1, then G contains an isomorphic copy of Z2 and s(Z2) = ∞ by Example 2.1(b);
hence s̃(G) = ∞. Now Corollary 4.5 concludes the proof, since if A,B are of rank 1, then A ≤ B
if and only if t(A) ≤ t(B).

Let F denote the class of all the torsion-free abelian groups. In view of Lemma 7.4, for G in
F the condition ñs(G) = 0 is equivalent to s̃(G) = 0. So in this case s̃0(G) = 0 is weaker than
ñs(G) = 0, as its value on Z2 shows; indeed, Z2 has finite torsion-free rank but strictly grater that

1. In other words S̃0 ∩ F ) S̃ ∩ F = S̃ns ∩ F.

Lemmas 7.2 and 7.3 characterize completely the classes S̃∩T, S̃ns∩T and S̃0∩T, while Lemma
7.4 characterizes completely the classes S̃∩F, S̃ns∩F and S̃0∩F. Since every abelian group is the
extension of a torsion and a torsion-free abelian group, the last step for the complete characterization
of S̃, S̃ns and S̃0 is to study whether these classes are closed under taking extensions.

In this direction we start proving the following inequalities for the hereditary string numbers
with respect to the torsion part. Note that Corollary 7.7 of Theorem 7.6 will show that actually
equality holds (and that Lemma 7.5 is applied in the proof of Theorem 7.6).

Lemma 7.5. Let G be an abelian group. Then:

(a) s̃(G) ≤ s̃(t(G)) + s̃(G/t(G));

(b) ñs(G) ≤ ñs(t(G)) + ñs(G/t(G));

(c) s̃0(G) ≤ s̃0(t(G)) + s̃0(G/t(G)).

Proof. (a) It will follow by (b)-(c) and the equality s̃(G) = ñs(G) + s̃0(G).

(b) It suffices to prove that ñs(G) = 0, if ñs(t(G)) = 0 and ñs(G/t(G)) = 0. So assume that
ñs(t(G)) = 0 and ñs(G/t(G)) = 0. In view of Lemma 7.3, ñs(t(G)) = 0 means that all the p-ranks
of t(G) are finite. Let H be an arbitrary subgroup of G; we have to prove that ns(H) = 0. Since
t(H) ⊆ t(G), it follows that rp(H) is finite for every prime p. Moreover, ns(H/t(H)) = 0, as
H/t(H) ∼= (H + t(G))/t(G) ≤ G/t(G).

Let φ ∈ End(H). By Lemma 2.2 we can suppose without loss of generality that φ is surjective,
that is, H = scφ. Assume that S = {xn}n∈N is a string of φ in H. Since ns(H/t(H)) = 0, in
particular ns(φ) = 0, where φ : H/t(H) → H/t(H) is the endomorphism induced by φ and φ is
surjective as φ is surjective. By Proposition 2.4(b) the element x0 + t(H) is a quasi-periodic point
of φ. This means that there exist j ∈ N and k ∈ N+ such that φj+k(x0) − φj(x0) = t ∈ t(H).
We can suppose without loss of generality that j = 0. Consider now the trajectory T = T (φ, 〈t〉)
and let m ∈ N be the order of t; then T ⊆ t(H)[m]. Since all the p-ranks of t(H) are finite, the
fully invariant subgroup t(H)[m] is finite; therefore T is finite as well. The set {φsk(x0) : s ∈ N}
is contained in x0 + T , which is finite. Consequently, x0 is a quasi-periodic point of φ and so S is
singular by Lemma 2.3. Therefore, we have proved that every string of φ is singular. Consequently,
ns(φ) = 0. Since φ was chosen arbitrarily, this argument shows that ns(H) = 0. Hence, as H is an
arbitrary subgroup of G, we can conclude that ñs(G) = 0.

(c) It suffices to show that, if s̃0(G) =∞, then at least one between s̃0(t(G)) and s̃0(G/t(G)) is
infinite. So assume that s̃0(G) = ∞. Then there exists a subgroup K of G such that s0(K) = ∞.
Since K ∩ t(G) = t(K) is fully invariant in K, Lemma 5.4 aplies to give s0(K) ≤ s0(K ∩ t(G)) +
s0(K/K ∩ t(G)). If s0(K) = ∞, then s̃0(K) = ∞. If s0(K/K ∩ t(G)) = ∞, since K/K ∩ t(G) ∼=
K + t(G)/t(G), s0(K + t(G)/t(G)) =∞ as well, and so s̃0(G/t(G)) =∞.
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We are now ready to prove the main theorem of this section:

Theorem 7.6. Let G be an abelian group. Then:

(a) s̃(G) = 0 if and only if tp(G) is finite for every prime p and G/t(G) is a torsion-free group of
torsion-free rank 1 such that no infinity appears in its type;

(b) ñs(G) = 0 if and only if rp(G) is finite for every prime p and G/t(G) is a torsion-free group
of torsion-free rank 1 such that no infinity appears in its type;

(c) s̃0(G) = 0 if and only if tp(G) is finite for every prime p and r0(G) is finite.

Proof. (a) Follows from (b) and (c) using (7.1).

(b) Let ñs(G) = 0; then Lemma 7.1 implies that rp(G) is finite for every prime p and r0(G/t(G)) ≤
1. We want to show that pω(G/t(G)) = 0 for every prime p. So fix an arbitrary prime p and suppose,
looking for a contradiction, that pω(G/t(G)) 6= 0.

Since the p-rank of G is finite, then G = tp(G) ⊕ C for some subgroup C of G. Furthermore,
C/t(C) ∼= G/t(G) and tp(C) = 0. Consider the endomorphism

µp : C → C, x 7→ px.

We find a non-singular string of µp.
Consider the endomorphism induced by µp on C/t(C), that is,

µp : C/t(C)→ C/t(C), x+ t(C) 7→ px+ t(C).

Since pω(C/t(C)) 6= 0, µp admits a non-singular string S = {xn+t(C)}n∈N by [8, Corollary 3.21(b)].
This implies pnxn − x0 ∈ t(C) for every n ∈ N. Let

tn = pnxn − x0 ∈ t(C), for every n ∈ N.

By construction tp(C) = 0, so t(C) is p-divisible and then there exist s1, . . . , sn, . . . ∈ t(C) such
that pnsn = tn for all n ∈ N. Set yn = xn − sn for every n ∈ N; these are torsion-free elements
such that pnyn = x0 for every n ∈ N.

We verify that S = {yn}n∈N is a non-singular string of µp. First we see that S is a pseudostring
of µp. Indeed, by the definition of the yn, we have

pn(pyn+1 − yn) = pn+1yn+1 − pnyn = y0 − y0 = 0,

and so pyn+1 − yn ∈ tp(C) = 0; therefore, pyn+1 = yn for every n ∈ N, which proves that S is a
pseudostring of µp.

That S is a non-singular string follows from the fact that S is a non-singular string, since
xn + t(C) = yn + t(C) for every n ∈ N (i.e., S = {yn + t(C)}n∈N). This implies that ñs(C) = ∞,
and so ñs(G) =∞, that is the contradiction we are looking for.

To prove the converse implication, suppose that rp(G) is finite for every prime p and that G/t(G)
has torsion-free rank 1 and no infinity appears in its type. Then ñs(t(G)) = 0 and ñs(G/t(G)) = 0
respectively by Lemma 7.3 and by Lemma 7.4. Now we can conclude by Lemma 7.5(b) that
ñs(G) = 0.

(c) If s̃0(G) = 0, then tp(G) is finite for every prime p by Lemma 7.2, and r0(G/t(G)) is finite
by Lemma 7.1(a).

To prove the converse implication, suppose that tp(G) is finite for every prime p and that
r0(G/t(G)) is finite. Then s̃0(t(G)) = 0 and s̃0(G/t(G)) = 0 respectively by Lemma 7.2 and by
Lemma 7.4. Now we can conclude that s̃0(G) = 0 by Lemma 7.5(c).

As a first corollary of this theorem, we have that the inequalities in Lemma 7.5 are equalities:

Corollary 7.7. Let G be an abelian group. Then:

(a) s̃(G) = s̃(t(G)) + s̃(G/t(G));

(b) ñs(G) = ñs(t(G)) + ñs(G/t(G));

(c) s̃0(G) = s̃0(t(G)) + s̃0(G/t(G)).
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In the next corollary we show that hereditarily Hopfian abelian groups are precisely the groups
in S̃0. So, from Theorem 7.6(c), we get the following structure theorem for hereditarily Hopfian
abelian groups.

Corollary 7.8. Let G be an abelian group. Then the following conditions are equivalent:

(a) s̃0(G) = 0;

(b) tp(G) is finite for every prime p and r0(G) is finite;

(c) G is hereditarily Hopfian.

Proof. (a)⇔(b) is Theorem 7.6(c).

(a)⇒(c) Suppose s̃0(G) = 0. So s0(H) = 0 for every subgroup H of G. Therefore G is
hereditarily Hopfian by Theorem 6.1.

(c)⇒(a) On the other hand, if G is hereditarily Hopfian, let H be a subgroup of G and φ ∈
End(H). Since φ �scφ: scφ → scφ is surjective, and scφ is Hopfian, φ �scφ is injective. By
Proposition 2.4(c), s0(φ) = 0. This proves that s0(H) = 0 and so that s̃0(G) = 0.

We end this section adding to Table 1.2 the values of the hereditarily string numbers of the
examples considered there:

s(−) ns(−) s0(−) s̃(−) ñs(−) s̃0(−)
Z 0 0 0 0 0 0
Z2 ∞ ∞ 0 ∞ ∞ 0
Q ∞ ∞ 0 ∞ ∞ 0
Jp ∞ ∞ 0 ∞ ∞ ∞

Z(p∞) ∞ 0 ∞ ∞ 0 ∞
Q/Z ∞ 0 ∞ ∞ 0 ∞
Bp ∞ ∞ ∞ ∞ ∞ ∞
K(N) ∞ ∞ ∞ ∞ ∞ ∞

Table 7.1: String numbers and hereditary string numbers
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