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ALGEBRAIC ENTROPY OF SHIFT ENDOMORPHISMS ON ABELIAN GROUPS

MARYAM AKHAVIN, FATEMAH AYATOLLAH ZADEH SHIRAZI, DIKRAN DIKRANJAN,
ANNA GIORDANO BRUNO, AND AREZOO HOSSEINI

Dedicated to Prof. A. Chademan, with best wishes for him

ABSTRACT. For every finite-to-one map A : I' — I" and for every abelian group K, the generalized shift
o of the direct sum P K is the endomorphism defined by (x;)ier — (@x(;))ier [3]. In this paper
we analyze and compute the algebraic entropy of a generalized shift, which turns out to depend on the
cardinality of K, but mainly on the function \. We give many examples showing that the generalized
shifts provide a very useful universal tool for producing counter-examples.

We denote by Z, P, and N respectively the set of integers, the set of primes, and the set of natural
numbers; moreover No = NU {0}. For a set I', Pn(I') denotes the family of all finite subsets of I'. For
a set A and an abelian group G we denote by G* the direct product [I;ca Gi, and by G™ the direct
sum P, Gi, where all G; = G. For a set X, n € N, and a function f: X — X let Per(f) be the set
of all periodic points and Per,,(f) the set of all periodic points of order at most n of f in X.

1. INTRODUCTION

The measure entropy was introduced by Kolmogorov and Sinai in ergodic theory in the mid fifties
of the last century. Some ten years later Adler, Konheim, and McAndrew [1] introduced the notion of
topological entropy hiop(1") of a continuous self-map 7' : X — X of a compact topological space X. A
prominent example in both cases is provided by the Bernoulli shifts. Since these shifts are the core of
this paper, we introduce them here in full detail.

Example 1.1. Let K be a non-trivial finite group with neutral element eg.
(a) The two-sided Bernoulli shift 35 of the group K7 is defined by

Byl .. wo,x1,29,...) = (..., 1,20,71,...), (i.ee; Br((@n)nez) = (Tn_1)nez, for (zn)nez € KZ).

(b) The right Bernoulli shift By (respectively, left Bernoulli shift r[3) of the group K™ is defined
by

Br (21,22, 23,...) = (ex,T1,%2,...), (respectively, gpf(zo,z1,x2,...) = (21,22,23,...).

The standard product measure of the compact group K% (respectively, K0) coincides with its Haar
measure and BK (respectively, x/f) is a measure-preserving continuous automorphism (respectively,
endomorphism) with topological entropy log | K| coinciding with the measure entropy. This explains
their relevance to both ergodic theory and topological dynamics.

The right Bernoulli shift Sx of KMo is less relevant in this respect for two reasons: it is not measure-
preserving (so not relevant for ergodic theory) and its topological entropy is 0.

A possible definition of algebraic entropy for endomorphisms of abelian groups was briefly mentioned
in [1]. Later on, in 1975 in [6] Weiss defined the algebraic entropy as follows: let G be an abelian
group and F' be a finite subgroup of G; for an endomorphism ¢ : G — G and n € N, let T,,(¢, F) :=
F+ ¢(F)+...+ ¢" 1(F) be the n-trajectory of F with respect to ¢. The algebraic entropy of ¢ with

respect to F' is

H( F) = Tim 08T@ P

n——+oo n

and the algebraic entropy of ¢ : G — G is
ent(¢) = sup{H (¢, F') : F' is a finite subgroup of G}.

1991 Mathematics Subject Classification. 37A35, 20K01, 20K10, 20K30.
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Since the definition is based on finite subgroups F', and in particular F' is contained in the torsion
part t(G) of G, the algebraic entropy depends only on the restriction of ¢ on #(G), that is ent(¢) =
ent(¢ [¢()). The basic properties of the algebraic entropy can be found in [4, 6]. The most relevant of
them, known also as Addition Theorem, can be found in §2 (Theorem 2.3), which collects all relevant
properties of the algebraic entropy used in this paper.

As far as the algebraic entropy is concerned, the right Bernoulli shift restricted to the direct sum
K®o) turned out to be more relevant (while the restriction of the left Bernoulli shift x3 [ has
algebraic entropy 0, see Example 4.10). More precisely, for a non-trivial finite abelian group K the
restriction Bk [gme has entropy log|K| [4, Example 1.9] and one can show that every function f
defined on all endomorphisms of torsion abelian groups with values in the extended non-negative reals
and satisfying f(8z) [Z(p)<N0)) = log |p|, the Addition Theorem and a few other natural properties
(namely, Lemmas 2.1, 2.2 and Remark 2.4 (b)) must necessarily coincide with the algebraic entropy
ent(—) [4, Theorem 6.1].

With the aim of computing the entropy of other endomorphisms of abelian groups, in this paper we
consider a modification of the generalized shifts, introduced in [3].

Definition 1.2. [3] For a non-empty set ', an arbitrary map A : ' = T" and an abelian group K the
generalized shift oy : KI' — KV is defined by (z;)ier — (wx(3))ier for every (z;)ier € KT,

When there is no possibility of confusion we write o instead of oy k. In case |K| > 1, the subgroup
KT of KU is oy k-invariant if and only if \ has finite fibers (see Lemma 4.3), and it is possible to
consider the restriction U;‘iK = o)k |gm of oy K to K@, Again, when there is no possibility of
confusion we write O’;‘\BK simply as UiB, o) K Or just oy.

There is a close relation between the Bernoulli shifts and the generalized shifts. For example, the
left Bernoulli shift and the two-sided Bernoulli shift are generalized shifts (see Examples 4.10 and 4.15
(d) respectively), while the right Bernoulli shift Sk [, cannot be obtained as a generalized shift 0?
from any function A : Ng — Ny. Nevertheless, it can be “approximated” quite well by the generalized
shift 0$ of KMo) induced by the map ¢ : Ng — Ny defined by (i) = i — 1 for every i > 0 and ¢(0) = 0.
Indeed, both USE and Bk [gmo leave invariant the finite-index subgroup H = K™ and 03? (= Bk lu
(in particular, they have the same entropy log |K|).

In this paper we compute the entropy of an arbitrary generalized shift 0‘;‘\9 KM — KO More
precisely, we show that ent(cr?), depends only on combinatorial properties of the map A and the
cardinality of K. To prove this we analyze the structure of the map A and, more specifically, its
(iterated) counter-images (since, in some sense, the iterations of A and the iterations of o) “go in opposite
directions”). Roughly speaking we decompose the generalized shift J? in “independent elementary
shifts” (as the generalized shift a$ considered above), which have the same algebraic entropy as the
right Bernoulli shift Sk [xme), and the number sy of these independent elementary shifts, multiplied
by log | K|, gives precisely ent(c) (see Theorem 4.14).

Convention. From now on we assume that I' is a non-empty set, A : I' — I' is an arbitrary map, and
K is a non-trivial finite abelian group. We denote by Gr the group KT and for a subset A of ', we
identify K(4) with the subgroup {z € Gr : supp(z) C A} of Gr, and we denote K(4) by G 4. In case
A = () we assume that Gy = {0}. We denote the generalized shift based on Gr and A : ' — T simply
by o, writing it in some cases o g, when we need to specify the group.

2. BACKGROUND ON ALGEBRAIC ENTROPY

We start collecting basic results on algebraic entropy, mainly from [4, 6].

Lemma 2.1. [6, Proposition 1.2] Let G, H be abelian groups and ¢ : G — G, n: H — H endomor-
phisms. If there exists an isomorphism € : G — H such that ¢ = £~1n€, then ent(¢) = ent(n).

Lemma 2.2. [6, Proposition 1.3] Let G be an abelian group and ¢ : G — G an endomorphism. Then
ent(¢F) = kent(¢) for every non-negative integer k. If ¢ is an automorphism, then ent(¢*) = |k|ent(e)
for every k € Z.

The following is one of the main results on algebraic entropy.
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Theorem 2.3 (Addition Theorem). [4, Theorem 3.1] Let G' be a torsion abelian group, ¢ : G — G an
endomorphism and H a ¢-invariant subgroup of G. If ¢ : G/H — G/H is the endomorphism induced

on the quotient by ¢, then ent(¢p) = ent(¢ [g) + ent(o).

Remark 2.4. Let G be an abelian group and ¢ : G — G an endomorphism.

(a) A particular case of the above theorem was proved in [6, Proposition 1.4]: ifn € N, G = @, G;
and G; is a ¢-invariant subgroup of G for i = 1,...,n, then ent(¢) = >, ent(¢ |g,).

(b) If the group G is a direct limit of ¢-invariant subgroups {G; : ¢ € I}, then ent(¢) = sup,c;ent(¢l¢,)
[4, Proposition 1.6].

(c) Using (b), one can extend (a) to arbitrary direct sums G = @, ; G;.

Lemma 2.5. [4] Let G be an abelian group and ¢ : G — G an endomorphism.

(a) If X is a set of generators of G and for every x € X there exists d, € N such that ¢% (x) = 0,
then ent(¢) = 0.
(b) If ¢ is periodic, then ent(¢) = 0.

3. STRINGS AND AN EFFECTIVE EQUIVALENCE RELATION

Now we introduce a notion that will play a prominent role in the computation of the algebraic entropy
of the generalized shifts.

Definition 3.1. (a) A string of A (in T') is an infinite sequence of pairwise distinct elements S =
{m¢}_ten, such that A(m;) = my4q for every —t € N.
(b) Let sy :=sup{|F| : F is a family of pairwise disjoint strings of A}, and
(c) TF =0, A™(D).

A string S = {m:}_ten, of A in T is said to be acyclic if \"(mg) € S for every n € N. The next
claim is easy to prove.

Claim 3.2. Fach string S of A in T contains an acyclic string S’ of \.

The importance of I'" consists in the fact that it contains all strings of A as well as all periodic points
of X\. Obviously, I'" = I' if and only if X is surjective. In general, the restriction A [p+: '™ — I'" need
not be surjective (but this holds true if A has finite fibers).

Consider the following equivalence relation: iRyj in I' if and only if there exist m,n € Ny such
that A\"(i) = N™(j). Let ayy := |[{i/Rx € T'/Ry : i/R contains at least one string of A\}|. Obviously,
Q) § S)-

Example 3.3. Suppose that A is injective.

(a) The relation Ry in this particular case becomes: Ry = {(i,7) € ' xT': Im € Z : i = \"(j)}.
(b) The relation R has three types of equivalence classes:

(by) finite equivalence classes,

(bs) infinite equivalence classes contained in I'" (i.e., containing a string of \), of the form

{0 NTH6), 0, A (0), A2 (4), ... ).

(bs) infinite equivalence classes non-contained in I't (i.e., non-containing a string of A), of the
form {i, A(i), A\2(4), ...} with i € T\ A\(T).
(¢) Then «y is the number of the infinite equivalence classes in (bs). Consequently ay = sy.

Example 3.4. Let I' = Ny. For every n € N let ¢, : I' = I' be defined by

0 ifm=0,1,...,n,
pn(m) =

m — 1 otherwise.
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The diagram for ¢,, with n > 1 is the following:

In this case s, =a,, =land (') =T+t =T\ {1,...,n—1}.
For every n € N, let ¢, : I' = T" be defined by

0 ifm=0,1,...,n,
"/’n(m)_{

(k—1n+i ifm=kn+iwith0<i<nandkeN.

The diagram for 1, is the following:

LT ]

2n+1 2n + 2 3n—1 3n
v | v |
n—+1 n -+ 2 2n —1 2n

v | | |
\0/
@)

For this function sy, =n, ay, =1 and I'" =T. Note that 1 = ¢1.
Let I' =Ny x Ng and Mg : I' = I be defined by

(0,0) ifm=k=0,
Xo(m, k) =< (m—1,0) if k=0and m €N,
(m,k—1) ifmeNyandkeN.

The diagram for \¢ is the following:

oo l
0,2)  (1,2) (2,2) ... (m,2)

| | | |
01 (11 (21 . (m1)

| | | |
(0,0) < (1,0) == (2,0) =<— ... =— (m,0) =— ...
)

In this case sy, = w, ay, =1 and 't =T.
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4. THE ENTROPY OF THE GENERALIZED SHIFT

Remark 4.1. Let 1 : I' — T be a function. If H is a subgroup of an abelian group L, then HT is
a 0, -invariant subgroup of LY. Moreover, o, 1 [gr= o, n : H* — H'. Analogously, if LM is a
Uf?L—invariant subgroup of L', then H™ is a JIEEL—invariant subgroup of L), and afiL [gm= oi‘iH :

O 5 g,

Claim 4.2. Let x € Gr and F = supp(x). Then for every m € N:
(a) supp(oy'(z)) = A7"(F);
(b) oX(GF) < Gr-m(r);
(¢) T(on, GF) < Grua-1(F)u...un-m+1(F) -

Proof. (a) If y = ox(x), then y; = x\;) # 0 if and only if A(i) € F, that is, i € A™'(F), and so
supp(y) = A"!(F). Proceeding by induction it is possible to prove that supp(c{*(z)) = A~™(F) for
every m € N.

(b) Follows from (a).

(C) By (b) Tm(O')\,GF) < Gp+ G)\—l(p) +...+ G)\777L+1(F) and Gp + G)\—I(F) +...+ G)\f'rn#»l(F) -
GRux-1(F)u...UN—m+1(F)- O

The next lemma shows the relevance of our following assumption on A of having finite fibers.

Lemma 4.3. The following conditions are equivalent:
(a) A\71(i) is finite for eachi € T;
(b) oxx(Gr) C Gr;
(¢) oxn (L)) C LM for every non-trivial abelian group L.

Proof. (b)=(a) Let i € T and = € Gy \ {0}. By Claim 4.2(a) supp(ox(x)) = A7'(i) and by the
assumption o (z) € Gr, hence A~1(4) is finite.
A similar argument shows that (a)=-(c) and (c)=(b) is obvious. O

Convention. From now on we suppose that A has finite fibers, that is, A=1(i) is finite for every i € I.

Proposition 4.4. Let L be an abelian group with at least two elements and let p,v : T' — T be functions
with finite fibers. For o,,0, : L' — L' and 0,09 : L™ — M

m o __

" =ogyum and (o)™ = oim for every m € N).

(a) 0,00, =00y and o 00y = o, (hence o
e following conditions are equivalent:
b) [3] The followi diti iwalent
1 is injective (respectively, surjective);
bi) p is injecti tively, surjecti
(b2) o, is surjective (respectively, injective);
(bs) alef is surjective (respectively, injective).
(¢) In particular, the following conditions are equivalent:
(c1) w is bijective;
ca) o, 18 an automorphism o ;
w t hi L’
(c3) o is an automorphism of LI,
€3]

In this case, (0,)"" = 0,1 and (0)7" = o

Note that the equivalences (by)<(bs) and (c1)<(c2) hold without any assumption on the fibers of
wand v.

Corollary 4.5. For every m € N, ker o}' = G\ m(1)-

Proof. Tt suffices to prove that keroy = Gp\zr) and then apply Proposition 4.4(a). If 2 € keroy,
equivalently supp(oy(z)) = 0. By Claim 4.2(a) supp(ox(z)) = A~ 1(supp(z)). Then supp(ox(z)) =
A~ L(supp(x)) = 0 if and only if supp(x) N A(T') = (. This is the same as supp(z) C '\ A\(T), that is,
x e GF\)\(F)~ O

The next lemma gives a characterization (in terms of \) of the oy-invariance of the subgroups G 4
of GF.
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Lemma 4.6. If A C T, then Ga is ox-invariant if and only if \"1(A) C A. If A is also A-invariant,
then o\ [ga= Oxpa-

Proof. The condition o)(G4) C G4 is equivalent to o) (G;) C G4 for every i € A, that is, \™*(i) C A
for every i € A, which is equivalent to A™}(A) C A. Assume now that A=!(A) UX(A) C A. Then it is
possible to consider both oy [¢, and oy;,. It is clear that they coincide on G 4. O

Lemma 4.6 shows that in case A™1(A) C A for A C T, it is possible to consider oy [g,: G4 — Ga.
Remark 4.7. We see here that we can assume that for the relation R there exists only one equivalence
class in T (so coinciding with the whole T').

Indeed, if i/R) is a generic equivalence class, then i/Ry D A(i/R)) UA"1(i/R)). By Lemma 4.6

(41) OX ri/?RA: O')\ri/iﬁ)\'
Let now R be a set of representing elements of 3ty in I'. Then Gr = @,z Gi/»,. By Remark 2.4(c)
and (4.1)
ent(oy) Zent ox [Gijm, ) = Zent((f)\rimk),
i€ER i€ER
and so we can assume that R is a singleton.

The next result gives the very useful formula (4.2), which is applied in the proof of the main theorem.
Remark 4.8. Let I' = IV UT” be a partition of I'. Then A~!(I'") C I if and only if \(I'") C T
Suppose that these equivalent conditions hold. By Lemma 4.6 G/ is oy-invariant.

(a) Let po : Gr = G @ Gr» — Grv and 7 : Gr — Gr/Gr be the canonical projections.
Denote by & : Gr/Gr» — Gr~ the (unique) isomorphism such that ps = £ o 7. Finally, let
o : Gr/Gr — Gr/Grs be the homomorphism induced by ox. Then o = £~ 1oy.,, & To
better explain the situation, this means that the following diagram commutes:

F//

IXIpr

Pz GF” GF//
\ < A
Gr/Gr Gr/Gr
By Lemma 2.1 ent(ox) = ent(oa},., )-
(b) By (a) and Theorem 2.3

(4.2) ent(oy) = ent(on [q, ) +ent(or;., ).
Therefore,

(4.3) ent(oy) > ent(oy [q,.,) and ent(oy) > ent(ox},.,)-

The next corollary shows that ent(sy) can be computed from its restriction to 't C T
Corollary 4.9. (a) ent(ox) = ent(on;., )-
(b) In particular, for each k € N, ent(oy) = ent(ox, ka)
(c) If there exists a non-empty finite subset F' of T such that T' = |, cy, A" (F), then T = Per(}\)
and consequently ent(oy) = 0.

Proof. (a) Since A\(I'") C T't, by (4.2) in Remark 4.8(b) ent(cy) = ent(oy [Gp e )+ ent(on, ). We
prove that ent(oy [GF\H) = 0. Let x € Gp\r+. Then supp(xz) C T\ I'*. For every i € supp( ) there
exists (i) € N such that i ¢ \*@)(T), and so A~ (i) = 0. Let h(z) = max{h(i) : i € supp(z)}. By
Claim 4.2(a) supp(a)\( )( )) = A~"®) (supp(z)), which is empty, and so Uf\'(m) () = 0. By Lemma 2.5(a)
ent(oy [GF\F+) =0.

(b) Follows from (a) since ent(oy) > ent(oy; ) > ent(oy;, ), where (4.3) in Remark 4.8(b) is

Ak ()
applied twice.

(c) Clearly I't D Per()\). Let ¢ € I't. For every n € N there exists i, € [ such that \"(i,,) = i.
Moreover, for n € N there exist m,, € N and j,,, € F such that A" (j,,, ) = in and so A" (f,,, ) = .
Since F' is finite, there exists j € F' such that for a strictly increasing sequence (nj)ren in N one has
Jm,, = for all k € N. Then \"**"n (j) =i for all k € N. Choose k € N such that ny > ny + my,,

then ng + my, > ny +m,, as well. Therefore, i = A" F™n1 () = N+ (5) yields i € Per(\). O
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Example 4.10. Let A : Ny — Ny be defined by A(n) =n+1. Then oy : KW®o) —y gMNo) coincides with
the left Bernoulli shift x3 of K®0)  Since N{ = 0 (in the notation of Corollary 4.9), we deduce from
Corollary 4.9(c) that ent(oy) = 0.

Another application of Corollary 4.9 is the following example, in which I' is a compact metric space.

Example 4.11. Let (T, d) be a compact metric space and A : T' — T be a contraction (i.e., d(\(x), A(y)) <
d(z,y) for every pair of distinct points z,y of I') such that for each i € ', A™1(i) is finite. Then
ent(oy) = 0.

Indeed, using a standard compactness argument one proves that A(I'") = T't £ (). Moreover,
IT*| = 1 since otherwise there exist z,y € I'" such that d(z,y) = diamI'". By A(I'") = I't there
exist #/,y’ € Tt with A(z') = z and A\(y') = y. So diamT'" = d(z,y) = d(\ ('), \(¥')) < d(z',y'), a
contradiction. Therefore, |[['"| = 1, so Corollary 4.9(a) applies.

4.1. The main theorem. For a set X, in what follows we use the following notation:
XJ = |X| in case | X]| is finite,
. +oo in case | X| is infinite.

Definition 4.12. Two strings S and S’ of A in the set T' are said to be strongly disjoint if S and A™(S”)
are disjoint for every n € Ny and S’ and A"*(S) are disjoint for every n € Ny.

By the definition of string we immediately have the following result.
Claim 4.13. If sy = n € Ny is finite, then I' contains n strings of A that are pairwise strongly disjoint.

The next is our main theorem, which calculates the entropy of a generalized shift oy : Gr — G,
proving that it depends only on the function A : I' — I" and on the cardinality of K.

Theorem 4.14. Let T be a set, A : ' — ' a function such that \=1(i) is finite for every i € T', and
consider oy : Gr — Gr, where Gr = KU and K is a non-trivial finite abelian group. Then

ent(oy) = |sa|" log|K].

Proof. By Corollary 4.9(a) and Remark 4.7 we can assume without loss of generality that I' = T'" and
that there exists only one equivalence class for ).

Suppose that sy = n for some n € Ny. If n > 0, there exist n pairwise strongly disjoint acyclic

strings of A
Sy = {mtl}—teNoa oy Sno= My e,

in I by Claims 3.2 and 4.13.

Let U =0 if n=0and ¥ := S; U...US, otherwise. Then A\=}(¥) C ¥, since I' = ', and so Gy
is ox-invariant by Lemma 4.6. Let v := X [p\g. By (4.2) in Remark 4.8(b)

ent(oy) = ent(oy [g,) + ent(o,).

For F = {A(mg), ..., A(m{)}, T\ ¥ = U, ey, ¥"(F), since the strings are acyclic. By Corollary 4.9(c)
ent(o,) = 0 and so
(4.4) ent(oy) = ent(oy gy )-

Now W is disjoint union of S,...,S, and so Gy = Gg, ® ... ® Gg,. Moreover, A~!(S;) C S; since
I' =T*, and so by Lemma 4.6 G5, is o-invariant for each j € {1,...,n}. By Remark 2.4(b)

(4.5) ent(oy [Gy) = ent(oy [gg,) + ... +ent(ox [ag, )
For every j € {1,...,n}, since o FGSJ- is precisely the right Bernoulli shift Sx FGSJ_: Gs; — Gs;,
(4.6) ent(oy [st) = log |K]|.

By (4.4), (4.5) and (4.6) ent(oy) = nlog|K| = sy log|K].
Assume now that |sy|* = +oo. Then sy > n for every n € N. Fix n € N. There exist n pairwise
disjoint strings of A
Sy = {mtl}—teNm ey Sp =Myt teng
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in I'. Define

A =S U (mY) :s€NY, L A, =S, U{N(md):s€Nyand A=A U...UA,.
Note that A(A) C A, so that we can consider the map A [4: A — A. By (4.3) in Remark 4.8(b)
(4.7) ent(oy) > ent(orp, )-

Since sx;, = n, by the finite case of the proof of the theorem applied to the map A [a, ent(ox,) =
nlog|K|. By (4.7) ent(oy) > nlog|K]|, and this holds true for every n € N, so that ent(oy) = +o0 =
(51" log | . 0

We see now a first application of our main theorem.

Example 4.15. (a) In general ent(oy) > |ay|* log |K|. Indeed, by the definitions sy > «) and so
apply Theorem 4.14.

(b) The inequality in (a) can be strict: consider the functions of Example 3.4. In all three cases
there exists just one equivalence class and so one equivalent class containing at least one infinite
string of A\. Then a,, = oy, = ay, = 1, but ent(o,,) = log|K|, ent(oy,) = nlog |K| and
ent(oy,) = +oo.

(¢) If A: T — T is injective, the inequality in (a) becomes an equality, since in this case a = sj:
by Theorem 4.14 and Example 3.3 ent(oy) = |ax|*log |K| = |sa|* log | K|.

(d) For A : Z — Z defined by A(n) = n — 1 for every n € Z, the generalized shift o coincides
with the two-sided shift B [k of K@ Since ay = sy = 1, one obtains from Theorem 4.14

ent(By @) = ent(oy) = log |K|.

5. APPLICATIONS OF THE MAIN THEOREM

We give now other consequences of Theorem 4.14. The first one is an application of Theorem 4.14
together with Remark 4.8(b). It shows that, even if the restriction of o to an invariant subgroup is
not necessarily a generalized shift, its entropy obeys the same formula as the generalized shift does.

Corollary 5.1. Let A C T be such that \™'(A) C A. Then [sx[*log |K| = ent(ox [G,)+|sx10 ] log | K].
Proof. By (4.2) in Remark 4.8(b) and Theorem 4.14 [s)[* log | K| = ent(0) = ent(ox [g,)+ent(or, ) =
ent(ox [g,) + ‘SMF\A|*10g|K|' U

Remark 5.2. If A C T is such that A™}(A) C A, and S is a string of A with SN A # (), then S\ A is
finite and we can assume without loss of generality that S C A. Hence we can think that either S C A
or S C T\ A. This shows that:

(a) Sajpy, is the number of all strings of A which miss A, and

(b) in case sy is finite, sy — SApya 18 the number of all strings of A contained in A.

Corollary 5.3. (a) Let A C T be such that A\=1(A) C A. If {ent(oy),ent(on [g,)} N {0, +o0} =0,
then ent(oy [g,)/ent(oy) is rational. Moreover, if 0 < r < 1 is a rational number such that
r(ent(oy)/log |K|) € Z, then there exists A CT', such that ent(ox [g,)/ent(ox) = 1.

(b) Let L be another finite abelian group and assume that both K and L have at least two elements.
Then log |Llent(ox k) = log | K|ent(ox,L,).

Proof. (a) By Theorem 4.14, Corollary 5.1 and our assumption {ent(oy),ent(ox [g,)} N {0, +oo} =0,
sy is finite and ent(oy [, )/ent(or) = (sx — S)\F\A)/S)\ is a rational number.

By hypothesis there exists m € N such that rsy = m. Let Si,...,Ss, be the strongly disjoint strings
in T that realize s, (this is possible by Claim 4.13 since s) is finite by hypothesis). Since r < 1, it
follows that m < sy. So it is possible to consider 7' := S; U... U Sy, and define A := |J, o, A7"(T).
Then A~}(A) € A. By Remark 5.2 sy — SAIpa = M, since {57, ..., Sy} is a family of pairwise disjoint
strings in A of the maximal possible cardinality. By Corollary 5.1 ent(oy [¢,) = mlog|K|. Then
ent(oy [g,)/ent(ox) = m/sy =r.

b) Is a simple application of Theorem 4.14. O
( ple app
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Corollary 5.4. For M a torsion infinite abelian group and oy : M) — M@,

ent (o) 0 if sx =0,
o =
A +oo if sy > 0.

Proof. In view of Remark 4.1 and Theorem 4.14, it is easy to see that

ent(oy) = sup{ent(ox [gm) : H is a finite subgroup of M}
= sup{ent(ox g) : H is a finite subgroup of M}
= sup{|sa|*log |H| : H is a finite subgroup of M}.

If sy =0, ent(oy) = 0. If s > 0, then ent(oy) converges to +oo with log |H|. O

Example 5.5. (a) Let I' be a monoid.

(a1) For each s € T consider Ay, ps : I' — T defined by As(¢) = st and ps(t) = ts for every t € T
The element s is invertible if and only if Ay and p, are bijective. By Example 4.15, the
endomorphisms oy, and o,  of Gr have the following properties.

(i) If s is of finite order n € N, then (A;)™ = Agn = idr (i.e., As is periodic) and similarly
(ps)" = psn = idr (i.e., ps is periodic). By Proposition 4.4(a) o} = oxn = ox,, =
idgy and o) = opn = 0,5, = idg.. Hence ent(oy,) = ent(c,.) = 0 by Lemma
2.5(b).

(ii) Suppose that s is invertible. If s has infinite order, then A; and ps are injective and
by Example 4.15 their entropy is positive. So, ent(cy,) = ent(o,,) = 0 if and only if
s is of finite order.

(ag) For each invertible s € T' consider p, : I' — T defined by u4(t) = sts~! for every t € I'. By
Example 4.15, the endomorphism o,,, of Gr has ent(s,,) > 0 if and only if there exists
t € I such that {s" :n e N}N{v eIl :vt=tv} =0.

(b) Suppose now that T' is an abelian group and A : ' — I" a group homomorphism such that ker A
is finite (i.e., A has finite fibers).

(by) I T = Z, there exists n € Z such that A(z) = nx for every x € Z. If n # +1, then there
exists no string of A\ and so ent(cy) = 0 by Theorem 4.14. If m = +1, then \? = idr and
so by Proposition 4.4(a) 03 = o)z = 044 = idg,. and by Lemma 2.5(b) ent(cy) = 0.

(bz2) Suppose that A € Aut(I"). Then the orbits of A are exactly the equivalence classes of the
relation ) (see Example 3.3). Therefore, if A has infinitely many infinite orbits, a is
infinite and by Example 3.3 and Theorem 4.14 ent(c)) = +o0.

(bs) Consider I' = Z x Z and A € Aut(T") defined by A(z,y) = (x + y,y) for every (x,y) € T.
For every n € N the orbits of (0,n), that is,

(0,n)/Rx={...,(—2n,n),(—n,n), (0,n), (n,n), (2n,n),...},
are infinitely many and pairwise disjoint. Then ent(o)) = +o00 by (bz).
The next example is dedicated to the composition of generalized shifts. Let us mention that from
the formulas ent(o%) = kent(o,) (see Lemma 2.2) and o = o, (see Proposition 4.4), and Theorem

4.14 we obtain the useful non-obvious formula sy» = ksj.

Example 5.6. Let I' = Ny and let p; : I' = T" be defined by

2k if m = p?**! with p € P and k € N,
pi1(m) =< p?k+1if m = p?* with p € P and k € N,
m otherwise.
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Hence pf = idp and by Proposition 4.4(a) o7 = 0,2 = gy = idgy. Then ent(oy,04,) = 0 and since
o, is periodic, ent(o,,) = 0 by Lemma 2.5(b). The diagram for p is the following:

22k+1 32k+1 52k+1 o 2k+1

[N
\]
—
[\)
ot
3
w

©
]
a

S

Let po : I' = T be defined by

p**=1 if m=p* withpePand k € N,
pa(m) =< p if m = p?*~! with p € P and k € N,

m otherwise (i.e., m is not a prime power).

Analogously, p5 = idr and by Proposition 4.4(a) 0, = 0,2 = 0iay = idg,. Then ent(0,,0,,) = 0 and

sice 0, is periodic, so ent(o,,) = 0 by Lemma 2.5(b). The diagram for us is the following:

22k 32k 52k L p2k
REEREED )
22k—1 32k—1 52k—1 . p2k—1

3

OJ@@
.

o

C-
C

(=2}

B
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The diagram for p; o g : I' = T is the following;:

22k 32k 52k p2k
22k—2 32k—2 52k—2 p2k—2

(V]

4 9 25 P
SR !
0 1 P 3 5 6 .. P
oo v v 00 v O
8 27 125 p°
v v v v
2231 321%1 521Jc/1 o pzil
: : : !
22k+1 32k+1 52k+1 o p2k:+1
v v v v
In this case Sujops = Quiops = W (50 Sy, op,|* = +00) and by Theorem 4.14 ent(o,,0u,) = +00.

Similarly one can see that also S,,0u, = @, op, = w and so that ent(o,,0,,) = +00.
By Proposition 4.4(a) 0, 04, = 0y, © 0,,; hence o, 00, is an example of an endomorphism of
infinite entropy with both o,, and o,, of entropy 0. The same is 0, © 0, .

Let g1 : I' = T be defined by ¢1(0) = 1 and g1(m) = m for every m € N. Then s,, = 0 and so
ent(o,,) = 0 by Theorem 4.14.

The diagram for g1 o 1 : I' = T" is the following:

For this function $,,04, = 1, and so by Theorem 4.14 ent(c,,0,, ) = log |K]|.
By Proposition 4.4(a) 0p,0p, = 0p, © 0y, ; consequently ent(o,, o 0,,) = ent(o,,) = log|K]|, while
ent(o,,) = 0.
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Theorem 5.7. If A\:T — T, u: Y — Y are such that for each (i,j) € I' x T, A71(i) and p=1(j) are
finite, then for the endomorphism oxx, : Grxr — Grxy we have:

ent(oy) = ent(o,) =0, (a0)
ent(oax,) = 0 if ¢ ent(o,) = |Per(n)| =0 and ent(oy) >0, (a1) (a)
ent(oy) = |Per(A\)| =0 and ent(o,) > 0. (ag)
Moreover,
+o0 if ent(ox) > 0 and ent(o,) > 0, (bo)
ent(oaxy) = 4 |Per(p)[*ent(oy) if ent(o,) =0, [Per(n)] >0 and ent(oy) >0, (by) (b)

|Per(A)|*ent(o,,) if ent(oy) =0, |Per(A)| > 0 and ent(o,) > 0. (b2)

Proof. If ent(oxx,) > 0, then by Theorem 4.14, there exists a string {(my, n¢)}—ren, of A x p (for each
—t € No, (myy1, ne41) = (A(my), u(ny))), therefore at least one of the sequences {m;} _ien, or {n¢}—ten,
is a string, which shows that either ent(cy) > 0 or ent(c,) > 0, in view of Theorem 4.14. This proves
(a0).

Assume that ent(o,) = 0 and ent(oy) > 0. We prove that ent(oxx,) = 0 if [Per(u)| = 0. To this
end, suppose that ent(oax,) > 0. By Theorem 4.14 sxx, > 0, so let {(m¢,n¢)}—ten, be a string of
A x . Since ent(o,) =0, s, = 0 by Theorem 4.14, and so {m;}_¢cn, has to be a string of A and ng is
a periodic point of p. In particular |Per(x)| > 0. This proves (az).

Reverting the roles of A and p one can prove (ag).

Now let ent(cy) > 0 and ent(o,,) > 0. By Theorem 4.14 there exist strings {m:} _+en, and {n:}_ten,
respectively of A and p. For each —I € Ny, let z; := (mg,n;). Then {(ms,ny4+)}—ten, is a string of
A x p for every | € N, and these strings are pairwise disjoint. This means that [syx,|* = +oo and by
Theorem 4.14 ent(oyx,) = +oo. This proves (bg).

Assume that ent(o,) = 0, |Per(u)| > 0 and ent(oy) > 0. We prove that
(5.1) ent(oaxy) < |Per(u)|*ent(oy).

If ent(oax,) = 0 the inequality in (5.1) is trivially satisfied. So we can assume that ent(oax,) > 0.
By Theorem 4.14 sy, > 0. Let {(m¢,n:)}_ten, be a string of X x p. Since s, = 0 by Theorem
4.14, {m+}_ten, has to be a string of A and each n; is a periodic point of u. If {(m¢,ne)}—ten, and
{(m},n})}—ten, are disjoint strings of A x pu, then either {m;}_ien, and {m;}_ten, are disjoint strings
of A or ny and ny, are distinct periodic points of p. This proves that sy, < |[Per(u)|sx. In particular
(5.1) holds by Theorem 4.14.

We show now that under the same hypotheses, also the converse implication holds true, that is, we
prove that

(5.2) ent(oaxy) > |Per(u)|*ent(oy).

If {mi}_ten, is a string of A\, and j € Per(u) with {j = jo,j1,J2,..,Js} the finite orbit of j (i.e.,
w(jx) = jres1 for every k € {0,...,5s — 1} and u(js) = j), then {(my, ji.,, )} —ten, is a string of A x p
(where, for a € Z, b € N, [a], denotes the remainder class of a modulo b). In case 4,j are distinct
elements of Per(u), the strings {(my, ji,,,)} —ten, and {(m¢, iy, )} —ten, (Where {i =g, i1,42,...,0r}
is the finite orbit of i, i.e., u(ix) = ix41 for every k € {0,...,r —1} and u(i,) = i) are pairwise disjoint.
This proves that syx, > |Per(u)|sy, and by Theorem 4.14 (5.2) holds.

By (5.1) and (5.2) ent(oax,) = |Per(u)[*ent(oy). This concludes the proof of (by).

Reverting the roles of A and u one can prove (by). (|

In the notations of this theorem, the following example shows that in the case where ent(c,) = 0 and
ent(oy) = log| K|, it is possible that ent(ox,,) is positive and also infinite, depending on the cardinality
of Per(u).
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Example 5.8. Let t € N, T, = {1,...,t} and 6, = (123...t) € Sr,. Let A = Ny x I';. Then
w1 X 60 : A — A and its diagram is the following:

(m,1) (m,2) J/ (m,t —1) (m,t)
| | | | |
(m—1,2) (m—1,3) (m—1,t) (m—1,1)
| | | / {

- -
- -
%:%.
-~ -~
-~ -~

(m—t—1,2) (m—1t—1,3) (m—t—1,¢) (m—t—1,1)
’ ’ | | |
(2, ti— 1) (Jt) Y (2, tl— 3) (2, tl— 2)
i i | |
(1,8) (1,1) (1,6 —2) (1,6 —1)
i i | |
0,1) ——(0,2) 0,6 —1) ——= (0,

Let 0 = (12) € Sy and let A = N x Ny. The diagram for 6 x ¢1 : A — A is the following:

(1,2) (2,2) (3,2) (n,2)
oo l
(2,1) (1,1) (3,1) (n,1)
oo l
(1,0) — (2,0) (3,0) (n,0)

O O O O

Then by Theorem 4.14 ent(oy, xo,) = tlog|K| and ent(o,, xg) = +00, while ent(o,,, ) = log|K| and
ent(op) = ent(oy,) = 0, since |Per(6;)| = ¢, |Per(0)|* = +o0.

The next is an application of Theorem 5.7 and Corollary 5.3. Indeed considering the product of two
finite abelian groups K x L instead of only one finite abelian group K (as in Theorem 5.7) is not a more
general situation, since Theorem 4.14, but also Corollary 5.3, shows that the entropy of a generalized
shift depends mainly on its string number sj.

Corollary 5.9. Let K and L be finite non-trivial abelian groups and let A : T' = T and p : T — T
be such that for each (i,j) € T x Y, A\=1(i) and p='(j) are finite. Then for oxx, : (K x L)"*T) —
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(K x L)T*T) we have:

ent(oy)

r(u)| =0 and ent(oy) >0, (az) (a)

ent(o,) =0, (ao)
ent(oax,) = 0if ¢ ent(o,) = |Pe
|Pe

ent(oy) = |Per(A\)| =0 and ent(o,) > 0. (ag)
Moreover,
+o0 if ent(oy) > 0 and ent(o,) > 0, (bo)
ent(oax,) = 4 B R Per(u)[*ent(0y)  if ent(e,) =0, [Per(n)| > 0 and ent(0x) >0, (b1) (b)
et X E Per(A)[*ent(e,,) if ent(a) = 0, [Per(A)| > 0 and ent(d,,) > 0. (bs)
Proof. By Corollary 5.3 ent(oaxu,xxr) = %Went(@\xlu(). Now apply Theorem 5.7. O

In the next example we associate to a given map A a natural extension map A such that ent(cy) is
either infinite or 0, depending on whether ent(cy) is positive or 0.

Example 5.10. Define A : Py, (I') = Psin (L) by A(A) = {A (%) : ¢ € A} = A(A) for every A € Py (T).
(Since I" embeds into Py (I') in a natural way via the singletons, A can be considered as an extension
of X.) For each A € Pyi,(T), A='(A) is a finite subset of Pp;, (). Consider op : Gp,, ) = Gp,,.(1)-

Then:
0 if ent =0
ent(oy) = 1 ent(ox) ’
+oo if ent(oy) > 0.

If ent(op) > 0, by Theorem 4.14 there exists at least one string {A;}_;en, of A in Py, (I'). In particular
there exists a string {m:}_ten, of A in I': indeed, there exists —t € Ny such that not all elements of A;
are periodic for \. Suppose without loss of generality that ¢ = 0 and let mg € Ag \ Per(A). Then there
exists an infinite sequence {m;}_;en, of elements of I" such that m; € A; and A(m;) = my4q for every
—t € N. The elements m; have to be distinct because myg is not periodic. So {m;}_en, is a string of
A and by Theorem 4.14 ent(oy) > 0. This proves that if ent(oy) = 0 then ent(oy) = 0.

If ent(oy) > 0, by Theorem 4.14 there exists a string {m:}_ten, of A in I'. For each [ € Ny,
Sy = {{my,my_1,...,my_1}}_ten, is a string of A in Py, (I') and obviously S1, ..., S, ... are pairwise
disjoint strings of A in Py;,(I"). So Theorem 4.14 leads us to the desired result, that is ent(os) = +o0.

6. FINAL REMARKS AND OPEN PROBLEMS

We consider here the generalized shift oy on K' and, in case \ has finite fibers, its restriction O’;‘? on

K™, Theorem 4.14 calculates precisely the value of the entropy of 069 KT 5 KT The necebbary
property on A to have finite fibers helps us in finding the explicit formula for the entropy of O')\ In the
general case of oy : KT — KT we leave open the following problem.

Problem 6.1. Calculate the entropy of oy : K* — KY. Is ent(oy) = ent(cy) in case \ has finite
fibers?

Note that ent(oy) > ent(oy) in the latter case, since then K(I) is oy-invariant in K.

Problem 6.2. (a) Is it possible to have ent(o) = 0, but ent(cy) > 07
(b) Is it possible to have 0 < ent(oy) < +00?

Moreover, Theorem 4.14 concerns only a single abelian group K. If {K; : i € T'} is a family of abelian
groups and p; : Ky — K; is a homomorphism for every i € I, define & : [[,cpr Ki — [];cp Ki by
ox(z) = (pi(xa@)))ier for every o = (z;)ier € ]_LEF K;. It is possible to consider also o restricted to
the direct sum, that is, 75 : @, Ki = @,er K

Problem 6.3. Suppose that for every i € I' K; is a finite abelian group.

(a) Calculate the entropy of ox : [[;ep Ki = [;er K.
(b) Calculate the entropy of 65 : @, cr Ki — @zer
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A particular case of this problem is when for each i € I' K)(;) < Kj, that is, p; 1 Ky — K is an
injective homomorphism. So one can consider first the problem in this case.

Let K be a finite field and R = K{z]. For r € R, let m, : R — R be defined by m,.(s) = rs for every
s € R. Tt is easy to see that for the natural isomorphism j : K[z] — K®™0) the conjugated isomorphism
jomgoj~! coincides with the right Bernoulli shift S5 of K®o) (and consequently, jom,n 0! = B%).

Therefore, the endomorphism m,. is (conjugated to) a linear combination of powers of the Bernoulli
shift Sg.

Problem 6.4. Calculate the entropy of m, : Klz] — Klz]. What about the ring K[z1,...,2,] of
polynomials in more variables?

This problem can be generalized for graded rings. (Let us recall that a graded ring is a ring R with
a family {R; : i € Ng} of subgroups of (R, +) such that R = @;-, R; and R;R; C R;4; for all 4,j € N
[2, Chapter 10].) For r € R, let m, : R — R be defined by m,(s) = rs for every s € R.

Problem 6.5. Compute the entropy ent(m,.) in case R is a graded ring, r € R and m, : R — R.

Problem 6.5 can be extended also to graded R-modules M and the endomorphism m,. of M defined
by the multiplication, in M, by a fixed element r € R as above.

We conclude with a problem suggested by Example 5.5(b).

Problem 6.6. Let I' be an abelian group and A : I' — T' an endomorphism.
(a) Is it true that sy > 0 implies sy infinite?
(b) Describe in which cases sy = 0 and in which cases sy is infinite.
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