In this study the active vibration control of a structure modelled as a single degree of freedom system and excited by a white noise force is considered. The control system consists of an inertial actuator driven with a signal proportional to the velocity of the structure under control measured by an ideal collocated sensor. The optimisation of the physical and control parameters of the control system such as the internal damping of the actuator, its natural frequency and the feedback gain of the controller are considered such that either the kinetic energy of the host structure is minimised or the power dissipated by the control system is maximised. This type of control system is only conditionally stable therefore a stability condition has to be satisfied by the optimisation process. The paper shows that the two optimisation criteria are equivalent.

Optimisation of a velocity feedback controller to Minimise Kinetic Energy and Maximise Power Dissipation

GARDONIO, Paolo;
2014-01-01

Abstract

In this study the active vibration control of a structure modelled as a single degree of freedom system and excited by a white noise force is considered. The control system consists of an inertial actuator driven with a signal proportional to the velocity of the structure under control measured by an ideal collocated sensor. The optimisation of the physical and control parameters of the control system such as the internal damping of the actuator, its natural frequency and the feedback gain of the controller are considered such that either the kinetic energy of the host structure is minimised or the power dissipated by the control system is maximised. This type of control system is only conditionally stable therefore a stability condition has to be satisfied by the optimisation process. The paper shows that the two optimisation criteria are equivalent.
File in questo prodotto:
File Dimensione Formato  
JSV_1-s2.0-S0022460X14003228-main.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 489.64 kB
Formato Adobe PDF
489.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1037373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact