The aims of our experiment were to evaluate the uptake and translocation of cerium and titaniumoxide nanoparticles and to verify their effects on the growth cycle of barley (Hordeum vulgare L.). Barley plants were grown to physiological maturity in soil enriched with either 0, 500 or 1000 mg kg1 cerium oxide nanoparticles (nCeO2) or titanium oxide nanoparticles (nTiO2) and their combination. The growth cycle of nCeO2 and nTiO2 treated plants was about 10 days longer than the controls. In nCeO2 treated plants the number of tillers, leaf area and the number of spikes per plant were reduced respectively by 35.5%, 28.3% and 30% (p ¤ 0.05). nTiO2 stimulated plant growth and compensated for the adverse effects of nCeO2. Concentrations of Ce and Ti in aboveground plant fractions were minute. The fate of nanomaterials within the plant tissues was different. Crystalline nTiO2 aggregates were detected within the leaf tissues of barley, whereas nCeO2 was not present in the form of nanoclusters.

Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles

MARCHIOL, Luca
Primo
;
MATTIELLO, Alessandro;POSCIC, Filip;FELLET, Guido;ZAVALLONI, Costanza;MUSETTI, Rita
Ultimo
2016-01-01

Abstract

The aims of our experiment were to evaluate the uptake and translocation of cerium and titaniumoxide nanoparticles and to verify their effects on the growth cycle of barley (Hordeum vulgare L.). Barley plants were grown to physiological maturity in soil enriched with either 0, 500 or 1000 mg kg1 cerium oxide nanoparticles (nCeO2) or titanium oxide nanoparticles (nTiO2) and their combination. The growth cycle of nCeO2 and nTiO2 treated plants was about 10 days longer than the controls. In nCeO2 treated plants the number of tillers, leaf area and the number of spikes per plant were reduced respectively by 35.5%, 28.3% and 30% (p ¤ 0.05). nTiO2 stimulated plant growth and compensated for the adverse effects of nCeO2. Concentrations of Ce and Ti in aboveground plant fractions were minute. The fate of nanomaterials within the plant tissues was different. Crystalline nTiO2 aggregates were detected within the leaf tissues of barley, whereas nCeO2 was not present in the form of nanoclusters.
File in questo prodotto:
File Dimensione Formato  
2016_IJERPH_Marchiol et al.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1078230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 45
social impact