Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thinbody (DG-UTB), a triple-gate FinFET, and a gate-allaround nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of LG=15 nm and 10.4nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for LG=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50-60%.

Performance Projection of III-V Ultra-Thin-Body, FinFET, and Nanowire MOSFETs for two Next-Generation Technology Nodes

CARUSO, Enrico;Lizzit, D.;PALESTRI, Pierpaolo;ESSENI, David;SELMI, Luca;
2017-01-01

Abstract

Using state-of-the-art simulation tools ranging from semi-classical Monte-Carlo to full-quantum atomistic approaches, the competitiveness of III-V compounds for next-generation high-performance logic switches is confirmed. A planar double-gate ultra-thinbody (DG-UTB), a triple-gate FinFET, and a gate-allaround nanowire (NW) transistor have been designed according to the ITRS specifications for two technology nodes with physical gate lengths of LG=15 nm and 10.4nm. A thorough performance comparison of digital and analog figures of merit at these nodes reveals that for LG=15 nm, the performance of planar and 3-D architectures is comparable. At LG=10.4 nm, the III-V NW promises the highest performance, especially when lowering the supply voltage from 0.59 V to 0.50 V. It also significantly outperforms its strained silicon counterpart. Finally, the effects of series resistance combined with interface traps, surface roughness, alloy scattering, and electron-phonon interactions have been found to deteriorate the III-V ballistic ON-current by 50-60%.
2017
978-1-5090-3902-9
File in questo prodotto:
File Dimensione Formato  
07838515.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 370.62 kB
Formato Adobe PDF
370.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1101288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact