A methodology to plan the trajectories of robots that move in an n-dimensional Euclidean space, have to reach a target avoiding obstacles and are constrained to move in a region of the space is described. It is shown that if the positions of the obstacles are known then a Hamiltonian function can be constructed and used to define a collision-free trajectory. It is also shown that the method can be extended to the case in which the target or the obstacles (or both) move. Results of simulations for a pair of planar robots and a three degrees-of-freedom manipulator are finally reported.

Hamiltonian path planning in constrained workspace

CASAGRANDE, Daniele;
2017-01-01

Abstract

A methodology to plan the trajectories of robots that move in an n-dimensional Euclidean space, have to reach a target avoiding obstacles and are constrained to move in a region of the space is described. It is shown that if the positions of the obstacles are known then a Hamiltonian function can be constructed and used to define a collision-free trajectory. It is also shown that the method can be extended to the case in which the target or the obstacles (or both) move. Results of simulations for a pair of planar robots and a three degrees-of-freedom manipulator are finally reported.
File in questo prodotto:
File Dimensione Formato  
Cas_Fen_Pel_EJC_2017.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1105253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact