The study presented in this paper aims to evaluate the performance degradation of Polybenzimidazole (PBI) based High Temperature PEM (HTPEM) fuel cells subjected to different ageing tests, according to a methodology already used by the authors. Three HTPEM Membrane Electrode Assemblies (MEAs) were characterized before and after different aging tests and performance compared. The three MEAs have been named MEA C, MEA D and MEA E. MEA C was subjected to 100,000 triangular sweep cycles between Open Circuit Voltage (OCV) and 0.5 A/cm2 with 2 s of permanence at OCV at each cycle. MEA D and MEA E were subjected to 440 h of operation at constant load of 0.22 A/cm2. In order to assess the cell performance, polarization curves, Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) were recorded during the ageing tests. Degradation rates have been obtained for MEA C (44 μV/h), for MEA D (30 μV/h) and for MEA E (29 μV/h). ECSA (Electrochemical Surface Area) has been calculated for the three MEAs showing a reduction of approximately 50% for MEA C and of approximately 30% for MEA D and MEA E. Polarization curves during aging tests confirm that load cycling is more detrimental. A comparison with data obtained by the authors in a previous research seems to confirm the repeatability of the test protocol used.

Effect of accelerated ageing tests on PBI HTPEM fuel cells performance degradation

BOARO, Marta
2017-01-01

Abstract

The study presented in this paper aims to evaluate the performance degradation of Polybenzimidazole (PBI) based High Temperature PEM (HTPEM) fuel cells subjected to different ageing tests, according to a methodology already used by the authors. Three HTPEM Membrane Electrode Assemblies (MEAs) were characterized before and after different aging tests and performance compared. The three MEAs have been named MEA C, MEA D and MEA E. MEA C was subjected to 100,000 triangular sweep cycles between Open Circuit Voltage (OCV) and 0.5 A/cm2 with 2 s of permanence at OCV at each cycle. MEA D and MEA E were subjected to 440 h of operation at constant load of 0.22 A/cm2. In order to assess the cell performance, polarization curves, Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) were recorded during the ageing tests. Degradation rates have been obtained for MEA C (44 μV/h), for MEA D (30 μV/h) and for MEA E (29 μV/h). ECSA (Electrochemical Surface Area) has been calculated for the three MEAs showing a reduction of approximately 50% for MEA C and of approximately 30% for MEA D and MEA E. Polarization curves during aging tests confirm that load cycling is more detrimental. A comparison with data obtained by the authors in a previous research seems to confirm the repeatability of the test protocol used.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1108484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact