The use of a GFRP (Glass Fiber Reinforced Polymers) mesh, embedded as a reinforcement in a mortar coating on both wall sides, proved to be effective and reliable in increasing the masonry wall resistance and the plastic deformation capacity. In this study, a NL finite element model, developed to predict the in-plane behaviour of masonry walls strengthened by means of this technique, is refined and used in an extensive parametric study. Numerical results were compared with diagonal compression test data on URM and RM cobblestone masonry samples, showing good agreement. The masonry panel and the mortar coating were modelled as isotropic homogeneous materials with a smeared crack approach, whereas the GFRP reinforcement was modelled as a mesh of truss elements. Properties assigned to materials were derived from experimental tests. The parametric study performed before on some involved mechanical properties, considering a standard range of variation, is now extended to other parameters. Moreover, the combined variation of different properties is considered. The actual contribute of each component (masonry, GFRP mesh, mortar) on some macroscopic parameters (strength and ductility of the specimen) is evaluated. The parametric analysis highlights the important role of the GFRP mesh not only on the peak load increment but also on the post-peak behavior and, in particularly, on the ductility increment of the reinforced masonry panel. These results can address the optimization of the intervention technique and the deliverable of operative guidelines for practitioners.

Numerical evaluation of mechanical parameters role in GFRP strengthened cobblestone masonry walls

Gubana, Alessandra;
2017-01-01

Abstract

The use of a GFRP (Glass Fiber Reinforced Polymers) mesh, embedded as a reinforcement in a mortar coating on both wall sides, proved to be effective and reliable in increasing the masonry wall resistance and the plastic deformation capacity. In this study, a NL finite element model, developed to predict the in-plane behaviour of masonry walls strengthened by means of this technique, is refined and used in an extensive parametric study. Numerical results were compared with diagonal compression test data on URM and RM cobblestone masonry samples, showing good agreement. The masonry panel and the mortar coating were modelled as isotropic homogeneous materials with a smeared crack approach, whereas the GFRP reinforcement was modelled as a mesh of truss elements. Properties assigned to materials were derived from experimental tests. The parametric study performed before on some involved mechanical properties, considering a standard range of variation, is now extended to other parameters. Moreover, the combined variation of different properties is considered. The actual contribute of each component (masonry, GFRP mesh, mortar) on some macroscopic parameters (strength and ductility of the specimen) is evaluated. The parametric analysis highlights the important role of the GFRP mesh not only on the peak load increment but also on the post-peak behavior and, in particularly, on the ductility increment of the reinforced masonry panel. These results can address the optimization of the intervention technique and the deliverable of operative guidelines for practitioners.
2017
9783035711646
File in questo prodotto:
File Dimensione Formato  
KEM.747.504.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1120769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact