This paper is concerned with the compactness of metrics of the disk with prescribed Gaussian and geodesic curvatures. We consider a blowing-up sequence of metrics and give a precise description of its asymptotic behavior. In particular, the metrics blow-up at a unique point on the boundary and we are able to give necessary conditions on its location. It turns out that such conditions depend locally on the Gaussian curvatures but they depend on the geodesic curvatures in a nonlocal way. This is a novelty with respect to the classical Nirenberg problem where the blow-up conditions are local, and this new aspect is driven by the boundary condition.
Blow-up analysis of conformal metrics of the disk with prescribed gaussian and geodesic curvatures
Aleks Jevnikar;
2022-01-01
Abstract
This paper is concerned with the compactness of metrics of the disk with prescribed Gaussian and geodesic curvatures. We consider a blowing-up sequence of metrics and give a precise description of its asymptotic behavior. In particular, the metrics blow-up at a unique point on the boundary and we are able to give necessary conditions on its location. It turns out that such conditions depend locally on the Gaussian curvatures but they depend on the geodesic curvatures in a nonlocal way. This is a novelty with respect to the classical Nirenberg problem where the blow-up conditions are local, and this new aspect is driven by the boundary condition.File | Dimensione | Formato | |
---|---|---|---|
JLMR-v2.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.