Insulin resistance and hyperinsulinemia have recently been identified as independent determinants of several risk factors for cardiovascular disease. The generation of reactive oxygen species (ROS) may play an important role as a final common mediator by which glucose and insulin resistance might contribute to development of cardiovascular disease and hypertension. The aim of the present study was to evaluate changes on mRNA expression of antioxidant enzymes [catalase, Cu-Zn superoxide dismutase (Cu-ZnSOD), MnSOD], blood pressure and metabolic parameters in insulin resistance that follow feeding normotensive Wistar rats a high-fructose-enriched diet. In our investigation 26 normal male Wistar rats were fed a high-fructose diet for 2 weeks (no.=14) or normal chow to serve as a control group (no.=12). In vivo insulin resistance was verified in a subgroup of control and fructose-fed rats by the euglycemic hyperinsulinemic clamp technique at 2 different insulin infusion rates, 29 (submaximal stimulation) and 290 (maximal stimulation) pmol/kg/min respectively. The glucose infusion rate (GIR) was not significantly different in the two groups during the submaximal infusion of insulin (1.4 +/- 0.8 mmol/kg/min in fructose-fed rats vs 1.6 +/- 0.7 mmol/kg/min in control rats, NS) while in fructose-fed rats it was significantly lower (-29.8%) than in control rats during maximal infusion of insulin (2.6 +/- 0.3 mmol/kg/min vs 3.7 +/- 0.3 mmol/kg/min, p<0.05). Fructose feeding markedly reduced the expression of catalase mRNA and Cu-ZnSOD mRNA in the liver, catalase mRNA in the heart (p<0.05). A tendency of fructose feeding to reduce the expression of antioxidant enzymes in skeletal muscle and adipose tissue was also observed (NS). Fructose feeding also increased plasma uric acid (119.9 +/- 30.4 vs 42.1 +/- 10 pmol/l, p<0.05) and systemic blood pressure (128 +/- 4 vs 109 +/- 5 mmHg, p<0.05) respect to control animals. No significant changes were observed in plasma levels of glycemia and tryglycerides. Our study suggests that in non-hyperglycemic, fructose-fed insulin-resistant rats the expression of catalase is inhibited in liver and heart. This condition might lead to higher susceptibility to oxidative stress in insulin resistance. However, an adaptive cellular response to maintain the effectiveness of intracellular signaling pathways mediated by insulin-activated hydrogen peroxide generating systems may also be hypothesized.

High-fructose diet decreases catalase mRNA levels in rat tissues.

CAVARAPE, Alessandro;DAMANTE, Giuseppe;CERIELLO, Antonio
2001-01-01

Abstract

Insulin resistance and hyperinsulinemia have recently been identified as independent determinants of several risk factors for cardiovascular disease. The generation of reactive oxygen species (ROS) may play an important role as a final common mediator by which glucose and insulin resistance might contribute to development of cardiovascular disease and hypertension. The aim of the present study was to evaluate changes on mRNA expression of antioxidant enzymes [catalase, Cu-Zn superoxide dismutase (Cu-ZnSOD), MnSOD], blood pressure and metabolic parameters in insulin resistance that follow feeding normotensive Wistar rats a high-fructose-enriched diet. In our investigation 26 normal male Wistar rats were fed a high-fructose diet for 2 weeks (no.=14) or normal chow to serve as a control group (no.=12). In vivo insulin resistance was verified in a subgroup of control and fructose-fed rats by the euglycemic hyperinsulinemic clamp technique at 2 different insulin infusion rates, 29 (submaximal stimulation) and 290 (maximal stimulation) pmol/kg/min respectively. The glucose infusion rate (GIR) was not significantly different in the two groups during the submaximal infusion of insulin (1.4 +/- 0.8 mmol/kg/min in fructose-fed rats vs 1.6 +/- 0.7 mmol/kg/min in control rats, NS) while in fructose-fed rats it was significantly lower (-29.8%) than in control rats during maximal infusion of insulin (2.6 +/- 0.3 mmol/kg/min vs 3.7 +/- 0.3 mmol/kg/min, p<0.05). Fructose feeding markedly reduced the expression of catalase mRNA and Cu-ZnSOD mRNA in the liver, catalase mRNA in the heart (p<0.05). A tendency of fructose feeding to reduce the expression of antioxidant enzymes in skeletal muscle and adipose tissue was also observed (NS). Fructose feeding also increased plasma uric acid (119.9 +/- 30.4 vs 42.1 +/- 10 pmol/l, p<0.05) and systemic blood pressure (128 +/- 4 vs 109 +/- 5 mmHg, p<0.05) respect to control animals. No significant changes were observed in plasma levels of glycemia and tryglycerides. Our study suggests that in non-hyperglycemic, fructose-fed insulin-resistant rats the expression of catalase is inhibited in liver and heart. This condition might lead to higher susceptibility to oxidative stress in insulin resistance. However, an adaptive cellular response to maintain the effectiveness of intracellular signaling pathways mediated by insulin-activated hydrogen peroxide generating systems may also be hypothesized.
File in questo prodotto:
File Dimensione Formato  
Cavarape J Endocr Invest 2001.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 170.97 kB
Formato Adobe PDF
170.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/716063
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 51
social impact