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Abstract

Background and Aims: Metabolic dysfunction–associated steatotic liver

disease (MASLD) is a global epidemic and is the most rapidly rising cause of

HCC. Clonal hematopoiesis of indeterminate potential (CHIP) contributes to

neoplastic and cardiometabolic disorders and is considered a harbinger of
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tissue inflammation. CHIP was recently associated with increased risk of

liver disease. The aim of this study was to examine whether CHIP is

associated with HCC development in patients with SLD.

Approach and Results: We considered individuals with MASLD-HCC

(n=208) and controls with (n = 414) and without (n = 259) advanced fibrosis

who underwent whole exome sequencing. CHIP was diagnosed when ≥ 2

variant callers identified a known myeloid mutation with variant allele

frequency ≥ 2%. CHIP was observed in 116 participants (13.1%), most fre-

quently in DNMT3A, TET2, TP53, and ASXL1, and correlated with age

(p<0.0001) and advanced liver fibrosis (p=0.001). Higher aspartate ami-

notransferase levels predicted non-DNMT3A-CHIP, in particular with variant

allele frequency ≥ 10% (OR: 1.14, 1.03 −1.28 and OR: 1.30, 1.12 −1.49,

respectively, p< 0.05). After adjustment for sex, diabetes, and a polygenic

risk, a score of inherited MASLD predisposition CHIP was associated with

cirrhosis (2.00, 1.30 −3.15, p= 0.02), and with HCC even after further

adjustment for cirrhosis (OR: 1.81, 1.11 −2.00, 1.30 −3.15, p=0.002).

Despite the strong collinearity among aging and development of CHIP and

HCC, non-DNTM3A-CHIP, and TET2 lesions remained associated with HCC

after full correction for clinical/genetics covariates and age (OR: 2.45, 1.35

−4.53; OR: 4.8, 1.60 -17.0, p= 0.02).

Conclusions: We observed an independent association between CHIP, par-

ticularly related to non-DNTM3A and TET2 genetic lesions and MASLD-HCC.

INTRODUCTION

Steatotic liver disease (SLD), most often associated with
insulin resistance (nonalcoholic or now redefined meta-
bolic dysfunction-associated steatotic liver disease,
NAFLD/MASLD), is now the leading cause of liver
disease worldwide.[1] MASLD encompasses a range of
disease severity, from simple steatosis to steatohepatitis,
which can lead to liver fibrosis and HCC.[2] Advanced
fibrosis is the main predisposing condition for the
development of HCC and decompensated cirrhosis,
which are the main liver-related events.[3] HCC is the
fifth most common cancer and third most common cause
of cancer-related death globally. While progress has
been made in treating viral hepatitis, the increasing
prevalence of obesity and diabetes is driving a surge in
HCC incidence, with MASLD being the most rapidly
increasing cause of HCC, particularly in women.[4,5]

Insulin resistance and type 2 diabetes are major factors
in the development of advanced fibrosis and HCC.[6]

MASLD is a highly heritable condition, with common and
rare genetic risk variants predisposing hepatocellular fat
accumulation and lipotoxicity increasing the risk of
steatohepatitis, fibrogenesis, and HCC,[7,8] acting in
synergy with insulin resistance.[8,9] Inflammation

triggered by lipotoxicity, as well as altered intestinal flora,
and gut permeability, play a key role in MASLD
progression.[10,11] The development of acquired genetic
mutations, selected by a lipotoxic environment, can also
contribute to the evolution of hepatic parenchymal
damage and multistage carcinogenesis.[12]

Clonal hematopoiesis of indeterminate potential
(CHIP) is defined as the presence of somatic mutations
in hematopoietic stem cells with a variant allele
frequency (VAF) ≥ 2% located in genes affected in
hematologic malignancies. CHIP prevalence increases
with age and is associated with an increased risk of
hematologic cancers, cardiovascular, and other aging-
related disorders.[14] Recently, CHIP has also been
linked to increased susceptibility to SLD and severe
liver disease.[13] The association of CHIP with liver
inflammation and fibrosis was independent of steatosis
but related to acquired mutations in some CHIP-related
genes (especially TET2) in myeloid cells homing to the
liver.[13] However, it is not yet known whether CHIP can
facilitate the progression of liver disease to HCC
independently of liver fibrosis.

The aim of this study was therefore to examine
whether CHIP is associated with HCC independently of
cirrhosis and other major clinical determinants in a
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cross-sectional case-control multicenter cohort of
patients with MASLD and controls.

METHODS

Study cohorts

The EPIDEMIC-NAFLD (now MASLD) (“Exome
sequencing for the identification of genetic mutations
promoting HCC development in NAFLD”) is a cross-
sectional multicenter case-control study cohort aimed at
the identification of genetic variants predisposing to the
development of HCC in individuals with MASLD. It
enrolled European patients with MASLD-HCC (n=208)
and 2 groups of controls: patients with MASLD and
advanced fibrosis without HCC (n=414), individuals with
MASLD without advanced fibrosis (n=107) as well as
locally and ethnically matched healthy individuals
(n=152). The diagnosis of NAFLD was based on the
demonstration of fatty liver by imaging at the time of study
inclusion or a previous positive clinical history in patients
with advanced disease,[15] daily alcohol intake <30/20
g/d in males/females, and absence of concurrent liver
diseases and other hepatotoxic factors (including chronic
viral or autoimmune hepatitis; genetic liver diseases,
including hereditary hemochromatosis, Wilson disease,
alpha-1-antitrypsin deficiency, and use of steatogenic/
hepatotoxic drugs). All patients fulfilled the metabolic
criteria for MASLD. Advanced liver fibrosis and HCC
were diagnosed according to the European Association
for the Study of the Liver (EASL) criteria.[16,17] Age, sex,
presence of type 2 diabetes (T2D), advanced liver
fibrosis, AST, and ALT levels at the time of study
enrollment were available in all patients. In addition, the
main common germline risk variants for HCC in MASLD
and a polygenic risk score (PRS) summarizing their
effect were available for all.[18] Part of this cohort has
been described contributing to the identification of new
genetic risk loci for HCC.[8,19]

Blood samples to evaluate the presence of CHIP
were collected at the time of study inclusion.

The study protocol conformed to the ethical guide-
lines of the 1975 Declaration of Helsinki and Istanbul.
The EPIDEMIC and SERENA study were approved
by the Ethical Committee of the Fondazione IRCCS
Ca’ Granda Ospedale Maggiore Policlinico Milan and
participating centers (EPIDEMIC-TERT study Ethical
approval n. 1882_2013; Perspective-SERENA multi-
center Study approval n. 485_2017, Fondazione IRCCS
Ca’ Granda Ethical Committee). Informed consent was
obtained from each participant. The fatty liver inhibition
of progression study was approved by the Newcastle
Hepatopancreatobiliary Research Tissue Bank (REC
reference: 10/H0906/41), with patient samples and data
shared from the Newcastle Academic Health Partners
Bioresource.

The clinical features of the study cohorts are
presented in Table 1.

All research was conducted in conducted in accord-
ance with both the Declarations of Helsinki and Istanbul.
Written informed consent was obtained from study
participants.

Next-generation sequencing and CHIP
analysis

DNA sequencing was performed as described.[8] Briefly,
DNA libraries were enriched for exome sequencing by
the SureSelect Human All Exon v5/7 kits (Agilent,
Cernusco sul Naviglio, Milan, Italy). Sequencing was
subsequently performed on the HiSeq 4000/Next-
Seq2000 platforms (Illumina). Raw reads quality control
was performed using FastQC software (Brabaham
bioinformatics, Cambridge, UK). Reads mapping on the
human GRCh37 genome was performed using the MEM
algorithm of Burrows Wheeler Aligner version 0.7.10.[20]

Reads with low-quality alignments and duplicate reads
were filtered out using Samtools to generate high-quality
bam files.[21] Mapping quality control was performed
using Picard-tools (http://broadinstitute.github.io/picard)
and Bedtools.[22] Sequencing mean depth was ×73, and
no samples exhibit a mean depth lower than ×50.

Somatic mutations were identified, accepting a
minimum variant coverage of 20, a minimum alternative
allele count of 3, and a VAF between 0.02 and 0.46 in
concordance with established variant filtering algo-
rithms; the only exception was the JAK2 V617F
mutation, for which no VAF limitation was set.[23,24]

Variants with a population mean allelic frequency higher
than 1 in 1000 were treated as polymorphisms. Variants
were then curated to include only variants known to be
somatic and associated with either malignancy or CHIP
with the use of a semi-automatic pipeline.[24,25,26] Genes
evaluated for CHIP attribution included: NADK, GNB1,
CBL, KMT2D, RHEBL1, PPM1D, JMJD6, MFSD11,
DNMT3A, SF3B1, ASXL1, NOL4L, GNAS, RUNX1,
AF015262.1, RPL34P3, U2AF1, TET2, CUX1, SH2B2,
BCOR, BCORL1, MCAM, TP53, METTL23, SRSF2,
NPM1P46, LINC01426, EZH2P1, ELF4, ATP1B2,
ZNF316, ANAPC1, JAK2. Three variant callers were
employed for variant identification: Mutect, Vardict, and
Freebayes.[27–29] Only variants recognized by at least 2
variant callers were then considered for further analysis.

Study design

The principal study’s aim was to assess the impact of
CHIP and CHIP not driven by DNMT3A variants on the
main outcome, that is, the risk of developing HCC in the
cross-sectional EPIDEMIC cohort. The choice of
selecting non-DNMT3A is based on recent evidence

818 | HEPATOLOGY

D
ow

nloaded from
 http://journals.lw

w
.com

/hep by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

n
Y

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/18/2024

http://broadinstitute.github.io/picard


suggesting that only selected DNMT3A mutations
confer an inflammatory phenotype.[27] We considered
unadjusted analyses, adjusted for main confounders
available in the cohort (sex, presence of T2D and
advanced fibrosis, genetic predisposition due to car-
riage of common germline mutations as summarized by
PRS-5 [Polygenic Risk Score 5]) excluding age (in the
hypothesis that CHIP may be involved in mediating the
effect of age on HCC risk), and with further adjustment
by age. As secondary aims to investigate the possible
mechanism underlying the epidemiological association,
we tested the impact of CHIP on liver damage: AST and
ALT, correlating with inflammation and fibrosis and liver
fat, respectively, and the presence of advanced fibrosis,
and whether CHIP defined by VAF≥ 10% was more
robustly associated with the study outcomes.

Finally, to explore whether genetic lesions in the most
frequently mutated genes may specifically be associated
with HCC, we also tested the impact of mutations at
specific genes defining CHIP on the main outcome.

Statistical analysis

For descriptive statistics, categorical variables are shown
as number and proportion, while continuous variables are
shown as mean and SD or median and IQR, as
appropriate. The association of CHIP with AST and ALT

levels was assessed by multivariable generalized linear
models, whereas the association with cirrhosis and HCC
throughmultivariable logistic regressionmodels. As one of
the main aims of the study was to examine the impact of
CHIP on HCC, we included as covariates in multivariable
models, sex, presence of T2D, and advanced fibrosis and
PRS-5. Analyses were then further adjusted for age.

Statistical analysis was carried out using the JMP 16.0
Pro Statistical Analysis Software (SAS Institute, Cary,
NC), and R statistical analysis software version 4.1
(http://www.R-project.org). p-values <0.05 (two tailed)
were considered significant. p-values were corrected
with a false discovery rate approach, where appropriate
Supplemental Materials, http://links.lww.com/HEP/I480.

RESULTS

Study cohort

The cross-sectional NAFLD-EPIDEMIC study cohort
comprised 881 individuals: 208 patients had MASLD-
HCC, 414 MASLD and advanced liver fibrosis without
HCC, and 259 controls without advanced fibrosis
(Table 1).

There was a progressive increase in age (p<0.001),
AST levels (p<0.001), and prevalence of cirrhosis
(p< 0.001) from nonadvanced fibrosis to advanced

TABLE 1 Clinical features of the 881 individuals included in the NAFLD-EPIDEMIC (MASLD) cross-sectional study cohort

No HCC

HCC Advanced fibrosis No advanced fibrosis
n 208 414 259 pa

Age, y 70.0 (64.5, 76.0) 63.0 (56.0, 69.0) 51.0 (41.7, 60.2) <0.001

Sex, male 166 (79.8) 226 (54.6) 164 (63.3) <0.001

T2D, yes 111 (53.4) 150 (36.4) 4 (1.5) <0.001

BMI, kg/m2 29.1 (26.1, 33.0) 29.8 (26.9, 34.0) 23.9 (22.0, 25.61) <0.001

AST, IU/L 44.50 (33.0, 58.3) 37.0 (27.0, 49.0) 22.0 (19.0, 29.0) <0.001

ALT, IU/L 37.0 (27.0, 52.0) 38.0 (28.0, 55.0) 19.0 (15.0, 27.0) <0.001

Cirrhosis, yes 148 (82.7) 176 (66.9) 0 <0.001

PNPLA3, p.148M/M 58 (28.0) 135 (32.7) 13 (12.0) <0.001

PRS-5, score 0.44 (0.22-0.66) 0.40 (0.25, 0.60) 0.33 (0.13-0.49) 0.007

CHIP, yes 51 (24.5) 54 (13.0) 11 (4.2) <0.001

CHIP w VAF≥10% 14 (6.7) 20 (4.8) 2 (0.8) ns

DNMT3A, yes 16 (7.7) 32 (7.7) 3 (1.2) 0.1

TET2, yes 14 (6.7) 4 (1.0) 2 (0.8) 0.001

TP53, yes 8 (3.8) 5 (1.2) 2 (0.8) 0.06

ASXL1, yes 6 (2.9) 4 (1.0) 0 ns

JAK2, yes 1 (0.5) 0 2 (0.7) ns

Note: Data are shown as N (%), or median (IQR), when appropriate.
ap-values were calculated among pairs through Kruskal-Wallis test for continuous variables (non-normality assumed) and Fisher test for categorical variables and
corrected for multiple testing through false discovery rate. ns: not statistically significant (p> 0.05).
Abbreviations: CHIP, clonal hematopoiesis of indeterminate potential; LSM, liver stiffness measurement by Fibroscan (available in 28% of cases); MASLD, metabolic
dysfunction–associated steatotic liver disease; PRS-5, Polygenic Risk Score 5; T2D, type 2 diabetes.
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fibrosis and HCC. Patients with advanced fibrosis and
HCC had higher body mass index (p<0.001), preva-
lence of T2D (p<0.001), ALT levels (p< 0.001), and
prevalence of PNPLA3 p.I148M variant homozygosity
(p<0.001), and higher PRS-5 score (p=0.007) than
those without advanced fibrosis. Males were over-
represented in all 3 cohort subgroups (63.3%, 54.6%,
and 79.8%, respectively).

Prevalence of CHIP

CHIP-defining genetic lesions were identified in 116
out of 881 participants (13.1%). CHIP was found in 51
(24.5%) of patients with HCC, and among those
without HCC in 54 (13.0%) of those with advanced
fibrosis, and 11 (4.2%) of those without advanced
fibrosis (Table 1; p< 0.001). As expected, the
prevalence of CHIP was age-dependent (OR 2.02
per year, 95% CI 1.05–3.87; p< 0.0001) and
increased consistently across diagnosis groups, with
the spike in CHIP incidence being observed after the
age of 60 (Figure 1).

The oncoplot showing the frequency of specific
CHIP-defining genetic lesions is shown in Figure 2.
Across the cohort, 116 (13.1%) patients showed at
least one CHIP-defining mutation. Forty-three (37%)
carried at least an additional CHIP lesion. The most
frequently mutated gene was DNMT3A, followed by
TET2, TP53, and ASXL1 (Table 1). The spectrum of
mutations was as expected, with 7.8% (4/51) of
DNMT3A mutations occurring at codon R882, 40%
(8/20) of TET2 mutations being truncating, and 90%
(9/10) of ASXL1 mutations were in exon 13, whereas
JAK2 lesions included the V617F lesion only.
Overall, the median VAF was 5.6% (range min-max
2%–86%), with 31% (36/116) of patients showing at
least 1 variant with VAF ≥ 10%. CHIP with an allele
burden ≥ 10% was observed predominantly in the
advanced fibrosis (20/36) and in the HCC groups (14/
36). TET2 and TP53 variants were enriched in
patients with HCC (p< 0.001, 0.022, respectively),
while prevalence of DNMT3A was not significantly
different between the advanced fibrosis and the HCC
group. The JAK2 V617F mutation appeared in 3
patients, one with HCC carrying a lesion with a high
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F IGURE 1 Clonal hematopoiesis of indeterminate potential (CHIP) prevalence as a function of age (p<0.0001). A steep expected increase is
seen after 60 years of age and appears to be consistent across patient groups. The cumulative prevalence of clonal hematopoiesis of
indeterminate potential in the overall study cohort settled around 13.1%. Cumulative prevalence of DNMT3A and TET2 mutations showing
divergent age dependency in the HCC cohort with TET2 plateauing after 75 years of age.
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VAF (> 80%) and in 2 cases of patients with
nonfibrotic liver disease with a VAF of 33 and 7%,
respectively.

Impact of CHIP on disease severity

We first sought to assess the impact of CHIP on liver
disease severity by analyzing the association of
mutations with biomarkers of liver damage. Although
at univariate analysis in the overall cohort no signifi-
cant association was found between AST or ALT
levels and the presence of CHIP (p> 0.05), after
correcting for the main clinical confounders, namely,
age, sex, T2D, and body mass index, and CHIP cases
with VAF≥ 10% were associated with higher ALT (OR:
1.1, CI: 95% 1.002–1.2) and AST levels (OR: 1.1, CI:
95% 1.01–1.2) (Figure 3A). Regardless of allele
frequency, CHIP, in the absence of DNMT3A
mutations, was associated with higher AST levels
(OR: 1.1, CI: 95% 1.02–1.2) but not with ALT,
suggesting a sequenced relation with liver enzyme
elevation.

Even higher levels of both AST and ALT were
observed in patients with CHIP defined by mutations
other than DNMT3A and VAF≥ 10% when corrected for
the aforementioned variables (OR: 1.20, CI: 95%
1.10–1.30 and OR: 1.21, CI: 95% 1.10–1.35, respec-
tively, Figure 3).

The association of CHIP with the risk of cirrhosis is
presented in Table 2. At univariate logistic regression
analysis, CHIP was associated with cirrhosis (OR:
2.64, 95% CI: 1.73–4.13, p< 0.001). At multivariate
analysis, the association of CHIP with cirrhosis
remained independent of sex, T2D, and inherited
genetic predisposition to SLD as captured by the
PRS-5 (OR: 1.70, 95% CI: 1.10–2.73, p= 0.02). The
impact of CHIP appeared more consistent in men (OR:
1.85, 95% CI: 1.06–3.37, p= 0.035) than in women
(OR: 1.41, 95% CI: 0.66–3.27, p= 0.38). However, the
association between CHIP and cirrhosis was attenu-
ated and lost statistical significance after correction for
age (OR: 1.26, 95% CI: 0.78–2.10, p= 0.35). Neither
CHIP with VAF≥ 10% nor specific genetic lesions was
associated with cirrhosis independently of age (not
shown).

Impact of CHIP on HCC risk

The impact of CHIP on the risk of HCC is presented in
Table 3. Logistic regression highlighted a significant
association between CHIP and HCC (OR: 3.04, 95% CI:
2.01–4.55, p< 0.001). Remarkably, the association
remained significant after correction for sex, T2D, and
PRS-5 (OR: 2.21, 95% CI: 1.42–3.41, p< 0.001), and
even after further correction for the presence of cirrhosis
(OR: 2.01, 95% CI: 1.30–3.15, p=0.002), suggesting it
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is independent of the stage of liver disease. In this
model, the association of CHIP with HCC was
significant in men (OR 2.81, 95% CI: 1.65–4.83,
p<0.001), but not in women (OR: 0.71, 95% CI:
0.23–1.83, p=0.5).

Despite a relevant proportion of patients with HCC
were found to carry CHIP, the association of HCC and
CHIP was not statistically significant when correcting for
age (p>0.05), due to the older median age in patients
with HCC. However, CHIP associated with HCC even in
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F IGURE 3 Violin plot displaying AST and ALT levels (log10 [IU/L]), as biomarkers of liver fat and AST of liver inflammation, respectively,
between samples with detectable clonal hematopoiesis (CHIP; in the absence of DNMT3A mutations), CHIP with an allele fraction ≥10%, and
nonmutated samples. Additional stratification according to cirrhotic status is shown. Statistically significant differences are marked by an asterisk
(p< 0.05, at generalized linear models adjusted for type 2 diabetes, body mass index, age, and sex. Abbreviations: CHIP, clonal hematopoiesis of
indeterminate potential; VAF, variant allele frequency.

TABLE 2 Independent determinants of cirrhosis (n= 474) in 881 individuals in the NAFLD-EPIDEMIC (MASLD) study cohort

Unadjusted Model 1 Model 2
OR, 95% CI p OR, 95% CI p OR, 95% CI p

Age, y 1.10, 1.08–1.11 <0.0001 — — 1.06, 1.04–1.08 <0.0001

Sex, M 1.03, 0.78–1.35 0.81 0.92, 0.66–1.28 0.63 1.00, 0.71–1.42 0.96

T2D, yes 3.71, 2.71–5.15 <0.0001 1.98, 1.41 –2.80 < 0.0001 1.45, 1.01–2.10 <0.041

PRS-5, unit 4.2, 2.25–8.00 <0.001 4.27, 2.25–8.24 <0.001 3.75, 1.90–7.54 0.0001

CHIP, yes 2.64, 1.72–4.14 <0.001 1.70, 1.07–2.73 0.02 1.26, 0.77–2.10 0.35

Note: At logistic regression analysis adjusted for the covariates reported in the models. Unadjusted; model 1: adjusted for sex, T2D, polygenic risk score of fatty liver
disease; model 2: further adjusted for age at enrollment.
Abbreviations: CHIP, clonal hematopoiesis of indeterminate potential; PRS-5, Polygenic Risk Score 5; T2D, type 2 diabetes.

822 | HEPATOLOGY

D
ow

nloaded from
 http://journals.lw

w
.com

/hep by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

n
Y

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/18/2024



the context of age correction when DNMT3A lesions
were excluded from the analysis (OR: 2.45, CI: 95%
1.34–4.53, p= 0.02).

Finally, we examined the impact of specific CHIP
genetic lesions on the risk of HCC. We highlighted an
association between TET2 and TP53mutations with HCC
(Table 4). Strikingly, 70% of TET2 mutations were
observed in HCC cases. On the contrary, DNMT3A-
driven CHIP, despite being the most represented event,
was equally distributed with respect to HCC prevalence.
The association between HCC and TET2 remained
statistically significant at multivariable logistic regression
when correcting for covariates including age, sex, T2D,
presence of cirrhosis, and PRS-5 score (OR: 4.8, 95% CI:
1.6–17.0, p = 0.02; Table 4 and Figure 4). Notably, 25% of
TET2mutated HCC cases hadVAF≥ 10%with a trend for
higher AST levels with respect to the low allelic burden
counterpart (median AST 84 vs. 40 IU/l), reinforcing the
concept that a higher fraction of CHIP circulating myeloid
elements associates with a higher inflammatory burden.

DISCUSSION

Here, we report the prevalence of CHIP in a
multicenter cross-sectional cohort of patients with
severe MASLD and controls without advanced liver
fibrosis and describe the association of CHIP with
liver damage and HCC development, with the latter
being the main study focus. Indeed, recent evidence
suggests that the occurrence of somatic mutations in
the liver and hematopoietic cells accompany and
contribute to the progression of MASLD to steatohe-
patitis and fibrosis.[12,13] Importantly, clonal mutations
defining CHIP, and particularly TET2 mutations,
have been shown to promote liver disease progression
by inducing a proinflammatory phenotype in myeloid
cells homing to the liver.[13] However, despite inflam-
mation being involved in hepatic carcinogenesis, no
data were yet available on the impact of CHIP on
HCC onset.

First, we observed that 13% of the cohort population
showed one or more genetic mutations defining CHIP,
this being in line with the expected proportion of
affected genes and types of mutations,[30] with a
prevalence distribution sharply rising at the age of 60
across all study groups.

Second, patients who are CHIP-bearing, especially
those with a higher clonal burden (≥10%), showed
levels of AST higher than age and comorbidity-matched
peers. The contribution of larger CHIP clones on liver
inflammatory markers has been described in larger
cohorts.[13] Whether this finding is the result of higher
circulating CHIP clone fraction contributing more con-
sistently to organ inflammation is not currently known. In
the present cohort, elevated AST and less strict ALT
levels correlated with CHIP, especially when DNMT3A-T
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driven cases were not considered. This observation is in
line with evidence that DNMT3A mutations had a lower
impact on the risk of progressive MASLD than those in
TET2 and ASXL1[13] and might subtend a different
inflammatory potential of circulating CHIP clones
according to their driving genetic lesion. In addition,
the inflammatory potential of DNMT3Amutations seems
to be lesion specific. In our case, only one patient
carried the R882H variant, that has been associated
with the higher inflammatory burden by recent
studies.[31] Hence, we do not exclude a priori a role for
DNMT3A in liver pathology, but if a role is present, it
could be mutation specific. Evaluation of DNMT3A
mutations in larger cohorts is required to define their
role in liver disease. Individuals positive for CHIP were
at almost 2-fold higher risk of being affected by cirrhosis
independently of the main clinical covariates, such as
sex and presence of T2D, and genetic predisposition
toward progressive SLD. However, due to the strong
link between CHIP and aging, the association was lost
after correcting for age at enrollment. Therefore, we
could not conclude whether CHIP may partially mediate

the effect of aging on progressive liver disease or was
an epiphenomenon.

The main study finding, however, was the evidence of
an association between CHIP and the occurrence of
HCC in the NAFLD-EPIDEMIC cohort. Importantly, as a
whole, CHIP was associated with a 2-fold increase in the
risk of HCC when corrected for other contributing factors,
including the presence of cirrhosis. Notably, CHIP was
able to discriminate between patients who developed
HCC and those who did not better than the genetic
predisposition intended as inheritance of common risk
variants predisposing to severe SLD, which are associ-
ated with progression to cirrhosis. However, the associ-
ation between CHIP and HCC was not independent of
age when considering DNMT3A lesions, but it did so
when DNMT3A lesions were excluded. This finding could
be explained by the strong collinearity between devel-
opment of CHIP and HCC with increasing age, but also
by amutation-specific effect, with mostDNMT3A variants
described in our series being neutral.

Notably, a strikingly clear signal has emerged, a
specific enrichment of TET2 and TP53 lesions in HCC

TABLE 4 Impact of genetic lesions at specific genes defining CHIP on the risk of hepatocellular carcinoma (HCC, n=179) in 530 individuals in
the NAFLD-EPIDEMIC study cohort

Model 1 Model 2
OR, 95% CI p OR, 95% CI p

CHIP 3.04, 2.01–4.60 <0.001 1.41, 0.86–2.31 0.24

CHIP without DNMT3A 4.47, 2.72–7.42 <0.001 2.45, 1.35–4.53 0.02

DNM3TA 1.51, 0.80–2.76 0.18 0.60, 0.27–1.22 0.24

TET2 8.02, 3.17–22.90 0.002 4.8, 1.60–17.0 0.02

TP53 3.81, 1.35–11.00 0.045 1.93, 0.50–7.92 0.37

ASXL1 5.00, 1.41–19.60 0.015 2.00, 0.45–10.30 0.37

Note: At logistic regression analysis adjusted for the covariates reported in the models. Unadjusted; model 1: adjusted for CHIP-defining genetic lesions; model 2:
further adjusted for age at enrollment, sex, T2D, cirrhosis and PRS-5 score. A false discovery rate approach was employed to account for multiple testing.
Abbreviations: CHIP, clonal hematopoiesis of indeterminate potential; PRS-5, Polygenic Risk Score 5; T2D, type 2 diabetes.
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F IGURE 4 Forest plot displaying the association between HCC, CHIP, and CHIP subgroups multivariable at analysis, including type 2
diabetes, age at study enroll, cirrhosis, sex, and PRS-5 score as covariates. Absolute counts of patients with concomitant HCC and CHIP and
HCC without CHIP are shown in the first 2 columns. OR and their 95% CI associating CHIP subtypes to HCC are shown in the third column. Rows
represent different CHIP subtypes. Abbreviations: CHIP, clonal hematopoiesis of indeterminate potential; PRS-5, polygenic risk score of fatty liver
disease.
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samples. The association of TET2 genetic lesions (and of
non-DNMT3A-CHIP overall) with HCC remained signifi-
cant even after adjusting for all covariates, including
clinical and genetic factors as well as age at enrollment.
The risk of developing HCC was found to be approx-
imately 4.8 times higher in individuals with TET2-CHIP.
This observation supports a diverse contribution to
inflammation and organ damage from circulating myeloid
cells bearing different CHIP lesions. Indeed, it has been
suggested that different CHIP clones engage selected
immune phenotypes, with DNMT3A-driven clonal hema-
topoiesis being associated with increased interferon
activity and TET2-driven hematopoiesis with an NLRP3-
dependent IL-1B production and elevated IL-6 and IL-8
levels. Supporting these findings, wild-type TET2 gene
seems required for suppression of IL-6 production.[31–33]

While IL-6 activity has been reported to be higher also in
DNMT3A-driven CHIP, this is the case for R882H
mutations only, further corroborating our hypothesis.[31]

Overall, these data suggest that specific genetic
lesions defining CHIP, and definitively those in TET2,
may play a causal role in hepatic carcinogenesis by
inducing liver inflammation and be at least partly
involved in mediating the impact of aging on the risk
of HCC development.

Current limitations include the lack of an independent
validation cohort, inclusive of different ethnicities, with a
prospective approach to assess the impact of CHIP
incidence on HCC risk. The contribution of CHIP to HCC
may be confounded by the strong age dependency of
CHIP, with age being a determinant of HCC risk as well.
In our study, non-DNMT3A-CHIP was associated with
HCC even after adjusting for age in a multivariate model.
However, only larger prospective cohort studies are likely
to determine whether the impact of CHIP to HCC risk is
substantial enough to become a clinically useful param-
eter. Not the least, there is a need for mechanistic
demonstration of the impact of specific CHIP-defining
genetic lesions on hepatic carcinogenesis.

In conclusion, in this cross-sectional multicenter case-
control cohort of European patients with MASLD, we
observed a high prevalence of CHIP, which was
associated with more severe liver damage and a 2-fold
higher risk of HCC. HCC association with CHIP was
independent of clinical and genetic cofactors, and of age
when considering non-DNMT3A lesions. In addition, when
analyzing the specific drivers, a significant 4-fold impact of
TET2-driven CHIP on HCCwas observed, independent of
age. However, given the relatively small size of our cohort
and its retrospective nature, additional studies will be
crucial in validating our findings. External validation with a
prospective cohort is required to fully establish CHIP as a
risk factor for liver disease progression and untangle the
interaction between aging and clonal hematopoiesis.
Furthermore, experimental and in vivo studies are needed
to determine a pathogenic contribution of tumor infiltrating
leukocytes in the inflammatory milieu of HCC.
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