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Abstract

Thanks to the rise of Internet of Things (IoT) and wearable electronics, smart sensors and low-power
edge systems are becoming increasingly prevalent in our daily lives. In particular, the pursuit of
more interactive and intelligent systems pushed research and industry toward the integration of non-
conventional algorithms into electronic appliances. Consequently, Artificial Intelligence (AI) and
deep learning, have been proposed as a solution to a multitude of algorithmic-difficult problems,
such as facial and speech recognition, sentiment analysis, text synthesis, autonomous driving, etc.
However, edge devices, due to their limited dimensions and serious energy constraints, present
some limitations for the elaboration of deep neural networks. Hence, a popular strategy is to
send the raw information acquired by the low-power devices to the cloud and wait for a processed
response, instead of performing the computation locally. However, this approach increases the
computational overhead of cloud servers, it leads to a quite long response latency and, moreover,
it fails when the internet connection is not available. An alternative solution consists in moving
computational capabilities directly to the edge through a distributed computing network, which can
locally process data directly on its nodes. For edge computing, however, the energy budget required
by Deep Neural Networks (DNNs) running on conventional elaboration systems is problematic.
Therefore, because a large fraction of the energy is dissipated by moving data back and forth from
the memory, significant efforts are being devoted to overcome the so-called von-Neumann bottleneck.
In such a context, neuromorphic computing has been developed to improve AI energy requirements
by exploiting biologically-inspired neural networks. This new AI branch exploits Very Large Scale
Integration (VLSI) analog circuits to implement Spiking Neural Networks (SNNs) in hardware, thus
closely mimicking the biological power reduction strategies. This thesis aims to investigate and
model neuromorphic solutions for more energy-efficient AI applications.

In particular, we observed in deep SNNs that the average spike rate tends to increase with the
number of layers, leading to a decreased energy efficiency during both the learning and the inference
phases. In order to contrast this behavior, measures must be taken to control the spike rate without
inducing a large number of silent neurons, which do not emit spikes and do not contribute to the
training process. Therefore, we present a 2-phase training strategy for deep feed-forward SNNs:
our approach modifies the loss functions and introduces two phases of training to reduce the spike
rate and address the silent neuron issue. Moreover, we also examined the most important circuital
implementations of SNNs and neuromorphic platforms to understand the challenges and the current
state of the art of this topic.

Then, this thesis delves into the design techniques for ferroelectric-based memristors and their
applications in neuromorphic devices, specifically focusing on Ferroelectric Tunnel Junctions (FTJs) as
promising devices for implementing synaptic-like capabilities. In particular, we merged a model for
the polarization dynamics in Metal-Ferroelectric-Insulator-Metal (MFIM) structures, with a novel
charge-trapping model, in order to investigate the relationship between ferroelectric polarization
and charge trapping in the dielectric stack. Our simulation results, calibrated against experiments,
present evidence that the partial compensation of the ferroelectric polarization due to trapped
charges strongly influences the operation of Hf0.5Zr0.5O2 (HZO) based FTJs .

The red thread linking the activities on the training of SNNs to those on FTJs based devices is
the improvement of the energy efficiency in neuromorphic systems.
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Chapter 1

Introduction

1.1 Artificial Intelligence

What’s the history of artificial intelligence?

Figure 1.1: "History of AI" - Example of image automatically generated by a Text-to-Image AI.

The history of AI can be traced back to the 1950s, when researchers first began exploring the
idea of creating machines that could perform tasks that typically required human intelligence.
This field of research has gone through several phases, each marked by different approaches,
techniques and technologies, and here is a summary of the main stages:

1. Early AI (1940s-1970s): The early years of AI research focused on developing simple
rule-based systems, also known as "expert systems", which could perform specific tasks
such as diagnosing medical conditions or playing chess. These systems were based on
the idea of encoding human expertise into a set of rules that the computer could follow
[1, 2].

2. Symbolic AI (1970s-1980s): Researchers began to explore the use of symbolic repre-
sentations and logic-based reasoning to create AI systems. This approach relied on
representing knowledge in a formal symbolic language and using logical inference to
deduce new knowledge [3, 4].

1



1.1. Artificial Intelligence

3. Connectionist AI (1980s-1990s): Connectionist AI, also known as neural networks,
focused on developing systems that could learn from examples. This approach was in-
spired by the structure and function of the human brain and aimed to create computer
systems that could "learn" from data in a way that was similar to how the brain learns
[5, 6].

4. Machine Learning (1990s- present): Machine learning is a subset of AI that focuses
on developing algorithms and models that can learn from data. This approach has
become increasingly popular in recent years, with the advent of large datasets, powerful
computing resources and the development of deep learning techniques [7–10].

5. Current AI (2010s- present): The recent years of AI research have seen a continued
focus on machine learning, particularly deep learning, which has been used to achieve
breakthroughs in a wide range of applications, including image and speech recognition,
natural language processing, and decision making. Additionally, there is a growing in-
terest in the field of neuromorphic computing, which is inspired by the structure and
function of the human brain and aims to create highly efficient, low-power computing
systems [11–15] .

What’s deep learning and artificial neural networks?

Deep learning is a subset of machine learning that is based on Artificial Neural Networks
(ANNs). An ANN is a mathematical model that is inspired by the structure and function of
the human brain and is designed to "learn" from data.

An ANN is composed of layers of interconnected "neurons", which are simple processing
units that receive input, process it, and produce an output. These layers are interconnected,
allowing information to flow through the network, and the connections between the neurons
can be adjusted during training to improve the network’s performance.

Deep learning refers to the use of multiple layers in an ANN, also known as DNN.
Each layer in a DNN is designed to extract increasingly complex features from the input
data, allowing the network to learn more abstract representations of the data [11, 16–20].
This allows DNNs to perform tasks that are difficult or impossible for traditional machine
learning algorithms, such as image and speech recognition, natural language processing, and
decision making [14, 19, 21].

Deep learning models are trained using a large dataset and a process called backpropaga-
tion, where the model adjust the weights of the connections between the neurons to minimize
the error between the output and the desired outcome.

Deep learning has been responsible for many recent breakthroughs in AI, particularly in
the areas of computer vision, natural language processing and speech recognition. It’s widely
used in many applications such as self-driving cars, image and speech recognition, and natural
language processing (NLP). [22–24]

Riccardo Fontanini 2



1.1. Artificial Intelligence

Figure 1.2: Layer depth
comparison between a VGG19
DNN (on the left) and a deep
residual network (on the right)
in [16].

What is the actual limit of AI and how it could
evolve?

The limits of AI are constantly being pushed as the field advances
and new breakthroughs are made. However, there are still many
challenges and limitations that need to be overcome in order for
AI to reach its full potential.

1. General Intelligence: One of the main goals of AI is to create
general intelligence, which is the ability to perform a wide
range of cognitive tasks that are currently only possible for
humans. However, this is a very difficult task, and current
AI systems are still limited in their abilities and are not yet
able to perform all of the tasks that humans can.

2. Human-like understanding: Another goal of AI is to create
systems that can understand the world in a way that is sim-
ilar to how humans do. For example, understanding natural
language, recognizing objects and scenes, and making deci-
sions based on incomplete or uncertain information. How-
ever, current AI systems still lack the ability to understand
the world in the same way as humans.

3. Unstructured data: Most of the current AI systems are de-
signed to work with structured data, such as images and text
that have been labeled and organized in a specific way. How-
ever, most of the data in the world is unstructured and dif-
ficult to process, making it hard for AI to extract useful in-
formation from it.

4. Human-AI interaction: Another challenge is to create AI
systems that can interact with humans in a natural and in-
tuitive way, for example through natural language, gestures,
and facial expressions.

5. Explainability: One of the main challenges is to make AI
systems explainable, meaning that they can justify their de-
cisions and predictions to humans in a way that humans can
understand.

6. Safety and Ethics: Another challenge is to ensure that AI
systems are safe and operate ethically. This includes pre-
venting them from causing harm to humans, making sure
they respect privacy, and ensuring that they are fair and un-
biased.

Riccardo Fontanini 3



1.1. Artificial Intelligence

Despite these challenges, AI is expected to continue to evolve and make progress in these
areas. Advances in areas such as deep learning, natural language processing, and computer
vision, as well as the development of specialized hardware such as neuromorphic chips, are
expected to drive further progress in the field.

What do you know about neuromorphic computing?

Neuromorphic computing is a form of computing that is inspired by the structure and function
of the human brain. It is based on the idea of creating computer systems that can mimic
the way the brain processes information, rather than relying on traditional Von Neuman
architecture [25, 26].

A neuromorphic system is composed of many simple processing elements, called "neu-
rons", that are connected to each other by "synapses". These elements work together to
process information in a way that is similar to the way neurons and synapses in the brain
process information.

Neuromorphic computing systems are designed to be highly energy-efficient, and to be
able to perform complex computations in real-time, even with limited resources. Currently,
researchers are developing neuromorphic chips, which are specialized hardware that can be
used to build neuromorphic computing systems. These chips typically consist of thousands or
even millions of simple processing elements, and are designed to be highly energy-efficient.
They can be used to develop advanced AI applications such as object recognition, speech
recognition, and anomaly detection.

Neuromorphic computing is still a relatively new field, and much research is still ongoing
to improve the performance and capabilities of these systems. It is expected that as the tech-
nology matures, it will be used to create powerful new AI systems that can perform tasks that
are currently beyond the capabilities of traditional computers.

The previous paragraphs were not written by the author nor by any human being, but by an AI
instead. In particular, we exploited a natural language processing architecture called ChatGPT 1 to
answer a few questions simply reported in the text its replies. In particular, this AI defines itself
as:

"I am ChatGPT, a large language model developed by OpenAI. I am trained to understand
and generate human-like text and I am able to assist users by providing helpful and accurate
information. I can answer questions, generate text, and complete text prompts, among other
things. My knowledge cutoff is 2021 and I am constantly learning and updating my knowledge
base to provide better assistance. I am here to help you with any information or question you
may have, feel free to ask me anything."

Who is writing found the result of this little experiment very impressive. We didn’t modify

1ChatGPT is developed by OpenAI and it can be interrogated at https://chat.openai.com/

Riccardo Fontanini 4



1.1. Artificial Intelligence

anything of the answers generated by the AI: we just copied and pasted the output of the neural
model in this section. We also verified the assertions made by ChatGPT adding some references and
figures to also improve the readability of this introductive part. The aim of this experiment was to
introduce the baseline concepts of deep learning and also to give an idea of the level of complexity
AI reached nowadays. Moreover, we interrogated ChatGPT with another question:

How much energy is needed to train an artificial neural network?

The energy consumption of training a neural network can be significant, as it requires large
amounts of computational resources and energy. The exact amount of energy consumed
during training depends on several factors, including:

1. The size of the model: Larger models require more computational resources to train,
which in turn consumes more energy.

2. The complexity of the model: More complex models, such as deep neural networks,
require more computational resources to train than simpler models.

3. The size of the training dataset: The larger the training dataset, the more data needs
to be processed, which in turn consumes more energy.

4. The hardware used to train the model: The energy consumption of training a neural
network can vary depending on the type of hardware used, such as CPU, GPU or TPU.

5. The Training algorithm: The energy consumption of training a neural network can
vary depending on the algorithm used to train the model, for example, Backpropagation
algorithm is used to train deep learning models and it is computationally intensive [27].

It has been estimated that the energy consumption of training a large deep learning model
can be equivalent to the energy consumption of several households for a year. However, re-
searchers and companies are working on reducing the energy consumption of training AI
models by developing more energy-efficient hardware and training algorithms. For example,
using neuromorphic computing or Approximate computing are some of the methods that have
been proposed to reduce the energy consumption of training AI models.

In fact, in this Ph.D. project we aimed to pursue new strategies for power reduction in AI appli-
cations and, because neuromorphic computing is centered on energy saving to emulate the efficiency
of biological systems, we focused our efforts on two different abstraction levels: by considering the
SNNs concept, we first proposed a 2-phase learning procedure to reduce power consumption induced
by an overexcited neural activity. Then we focused on the synaptic level by modeling and designing
Back end of Line (BEOL) compatible FTJs suitable for the area and power reduction in AI and,
in particular, neuromorphic platforms.
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1.2 Energy constraints for Edge AI applications

Every day, we are surrounded by smart sensors and intelligent systems, in fact, with the rise of IoT
and wearable electronics, our daily lives are pervaded by low-power electronic appliances. These
are able to understand our habits and our needs in order to improve our lifestyles as stand-alone
devices or as part of our smartphones, home automation systems, last-generation cars, healthcare
appliances, video surveillance, etc. In general, the last CISCO Annual Internet Report [28] informs
us that, every year, various new devices with increased capabilities and intelligence are introduced
and adopted in the market. By 2023, Machine-to-machine (M2M) connections will be half of the
total devices and connections. All these devices produce a huge amount of data that, in general, is
not stored locally due to the memory constraint of IoT platforms, but it is collected in enormous
reservoirs in the cloud. Just at that point, the data is elaborated and the result is sent back to
the target device. Such an off-chip communication limits the power efficiency of the edge devices
and, in addition, increases the computational overhead of the cloud servers. A possible solution
is to move the computational capability to the edge, by creating a distributed computing network
that is able to locally process data directly on each node of the network. However, the general-
purpose architecture of edge computing machines does not take into consideration the nature of
the processed data. This may result in inefficiency in terms of power, area, and latency [29]. In
fact, standard von-Neumann architectures implement a physical separation between memory and
processing unit, consequently generating a waste of power during the information exchange between
these two entities. Therefore, to solve the von-Neumann bottleneck, a change in computational
paradigm appears to be the best approach to deal with such a challenging landscape [25, 26]. This
deviation in point of view does not consider only the computational platform, but it should take
into account the whole stack of technology and, more specifically, novel algorithms, storage units
and electronic implementations. Moreover, this new approach in computation is called to solve
new class of problems that in many cases present fuzzy inputs and unknown results, such as habit
clusterization, gesture and facial recognition, self-driving, threats estimation and prediction and
many others [30–35]. Hence, taking inspiration from mammals’ brain biology, data scientists are
now able to replicate astonishingly well some human abilities by using conventional computational
platforms and ANNs.

ANNs have reported great success in application domains that are difficult to be tackled with
an algorithmic approach, such as text and speech recognition, classification and segmentation of
images, and robotic control [11, 36–38]. The inter-neural communication in ANNs occurs through
continuous activation values produced by non-linear but differentiable functions, and the training
of the networks targets the minimization of a loss function that is also differentiable. Consequently,
the back-propagation approach is a gradient-based optimization of the computational graph that
is both well-established and very effective in deep learning systems. With these training method-
ologies, AI applications exploit ANNs and deep learning networks to generalize a specific problem
and solve fuzzy tasks. However, training a DNN uses massive amounts of data and computing
resources, which in turn requires an amount of energy that is not sustainable in terms of global
electricity requirements and carbon footprint. For example, it has been estimated that training a
recent state-of-the-art AI neural network, such as GPT-3 [36], would take more than 27 years worth
of processing time on a single standard computer, and that computation would generate over 35000
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kg of CO2 emissions in total, which is more than the average carbon dioxide emission produced
by an American human adult activity in two years [39]. This huge amount of energy is extremely
larger compared to the one used by our brain2. In fact, biological neural networks, due to their high
parallelism and recurrency, show an unequaled energy efficiency compared to ANNs. As mentioned
in the previous paragraph, to reduce this gap, a branch of AI called Neuromorphic Computing tries
to merge our knowledge of biological neural networks with CMOS technology in order to create
a novel computational paradigm and overcome the drawbacks of von-Neumann architecture with
bio-inspired silicon circuits [41]. The term neuromorphic was originally coined by Carver Mead,
to describe VLSI systems containing electronic circuits that mimic neuro-biological architectures
present in the nervous system [42]. Nonetheless, nowadays the original concept morphed to include
different technological aspects, such as digital or full-software implementations developed to simu-
late complicated networks of spiking neurons, as well as memristive-based storage applications to
implement energy-efficient artificial synapses.

In particular, now a neuromorphic computing solution can be thought as a combination of two
different abstraction levels:

• SNNs is a type of ANN that is based on the principles of biological neural networks. SNNs
are different from traditional ANN in that they model the behavior of biological neurons more
closely and process data in the time domain. In SNNs, each neuron is modeled as a simple
processing unit that generates an electrical spike (or pulse) when it receives a specific set of
inputs from other neurons. These spikes are used to transmit information between neurons
representing also the input and output patterns of the network.

• Neuromorphic computing platforms are electronic implementations of SNNs which are inspired
by the structure and function of the human brain and are designed to process information in
a way that is similar to how biological neurons process information. Neuromorphic computing
platforms can be implemented using various technologies such as digital circuits, memristors,
and optical devices. These technologies allow the development of low-power computing sys-
tems, that can be used for a wide range of applications such as image and speech recognition,
control systems, wearable device management and many others.

These two parts of neuromorphic computing are intrinsically different from an implementation
point of view. In particular, the first one is more related to informatics, data science and biology,
while the second one is a mixture of electronics, physics and material science. Despite their differ-
ences, these two entities must cooperate to produce an efficient and reliable system in order to obtain
smaller, more durable and energy autonomous intelligent devices. The applications related to the
neuromorphic field, at least for now, are limited to small systems compared to large ANNs employed
in the previously mentioned natural language processing or image/video classification or regression
tasks. In particular, neuromorphic applications have the potential to stay relatively close to the
source of data. This is paramount in those applications where the energy is supplied by a battery
or a volatile source, like wearable healthcare devices implementing different kinds of physiological
analysis [43], such as:

• Electrocardiography (ECG) measures the electrical activity generated by the cardiac tissue.
Neuromorphic systems are able to analyze the heart rate and the oscillatory cardiovascular

2It has been observed that the maximum amount of power used by our brain is around 20 W [40]
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pressure signals acquired directly on the skin, to prevent or reduce the risk of cardiovascular
diseases [44, 45].

• Electroencephalography (EEG) is a non-invasive monitoring of the brain activity through the
skull. It is useful to prevent mental disorders issues, improve driving safety and evaluate
emotions [46–48];

• Electromyography (EMG) is a technique to acquire and elaborate the electrical activity gen-
erated by skeletal muscles. It is used to detect body motion and micro-mobility. This topic,
in particular, is linked with robotics and medical prosthesis applications, but also in language
recognition and detecting of neuromuscular disorders [49–52];

• Bioimpedance spectroscopy (BIS) is a sensing technique to analyze the spectral impedance of
the skin or certain parts of animal and human tissues, like a muscle. With this technique, we
can analyze mechanical and chemical properties of the tissue under test. But we can estimate
also some overall health indicators like the concentration of water or fat in our bodies. It can
also be helpful in the early detection of diseases, such as lymphedema, organ ischemia, and
cancer [53, 54].

Additional applications for neuromorphic computing are speech recognition, vision and object recog-
nition, sound classfication, robotics, drone tracking, navigation and obstacle avoidance and many
others [55–62].

For the abovementioned reasons, in this thesis, we have dealt with energy consumption of neu-
romorphic systems from two different perspectives. On the one hand, we have tried to obtain the
best point of work of a SNN in terms of the number of spikes and accuracy. Then we have focused
on the reduction of the von-Neumann bottleneck by modeling and designing ferroelectric tunnel
junction memristors.
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1.3 Structure and purpose of this work

The main goal of this thesis is to present, investigate and model solutions for a more energy-efficient
AI hardware. From this perspective, we focused on neuromorphic computing as a promising branch
of AI, which gathers the knowledge of multiple disciplines (e.g. neurobiology, nanoelectronics and
applied material science). In order to better describe biological neural signals compared to conven-
tional ANNs, and overcome the von-Neumann computational paradigm by reaching the outstanding
computational capability and energy efficiency of our human brain. However, as this topic collects
different subjects, it is impossible to overview the entire discipline by looking at just one topic.

This thesis begins with chapter 2, where we introduce the SNNs concept as a promising biolog-
ically plausible alternative to ANNs . Therefore, we considered novel methodologies to improve the
power efficiency of SNNs. In particular, we propose a 2-phase learning procedure to optimize the
number of spikes emitted and, at the same time, enhance the accuracy of the network by overcoming
the silent neuron issue.

After that, chapter 3 overviews the most important circuital implementations of SNNs and
neuromorphic platforms, to expose state-of-the-art and some challenges of these physical AI imple-
mentations. Hence, we observe that a key concept for the progressive reduction of the von-Neumann
bottleneck and, consequently, the energy waste in physical neuromorphic circuits, is to pack mem-
ristive memories in the BEOL by exploiting large cross-bar arrays.

Therefore, we lowered the abstraction level in chapter 4 to develop new design techniques for
ferroelectric-based memristors and applications. In particular, we focused on FTJs as a promis-
ing device concept to implement synaptic-like capabilities in neuromorphic devices. Therefore, in
Sec. 4.3 we report the in–house electrostatic model for MFIM structures developed in [63]. On top
of that, in Sec. 4.3.6, we present a novel interfacial charge trapping model, that we exploited to
understand the delicate interplay between ferroelectric polarization and charge trapping inside the
structure.

After an extensive calibration again experiments, the numerical model of Sec. 4.3 is exploited for
an insightful study of the design of FTJs as synaptic devices for neuromorphic networks in Sec. 5.1.
Our analysis explains and addresses the tradeoff between the reading efficiency and the effects of
the depolarization field during the retention phase.

To shed light on the role of charge trapping at the ferroelectric-dielectric interface, we report
firstly a brief introduction to charge trapping in Sec. 5.2 exploiting quasi-static simulation starting
from the results obtained in Sec. 5.1. We then improved our understanding on that topic in Sec. 5.3
by matching experiments with theoretical analysis of dynamic polarization switching and charge
trapping in MFIM structures.

Last but not least, in Sec. 5.4 we present a clear evidence that the polarization compensation due
to charge trapping strongly influences the ON/OFF ratio of FTJs. Furthermore, we identify and
explain compensation conditions that enable an optimal operation for multi–level synaptic devices.
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Chapter 2

Spiking Neural Networks

2.1 Introduction to SNNs

In the biological realm, the nervous tissue is one of the main components of animal bodies. It is
composed of neurons, microscopic cells that are able to communicate with each other by voltage
impulses. Neurons are able to propagate signals in a really efficient manner: they integrate charge
in the cellular membrane and, when a threshold is reached, they emit a voltage spike followed
by a reset at the initial condition. Nervous cells are connected to one another through synapses,
forming the nervous tissue. A synapse is an interconnection between neurons that can modulate
the amplitude of the propagated voltage spikes.

This mechanism is only partially modeled in ANNs, in fact, these kinds of artificial constructs are
not able to integrate over time the ionic current coming from the synapses into a membrane potential
and, consequently, they lose the time dependence of their activation function. Moreover, biological
neural networks are intrinsically event-driven systems, while ANNs do not have this feature. This
leads to a limitation of the energy efficiency of ANNs compared to their counterpart and, moreover,
ANNs cannot take advantage of bio-inspired learning methodologies typically employed in the animal
world.

Differently from ANNs, SNNs are networks of artificial spiking neurons. These artifacts are
entities whose emission of spikes is ruled by dynamic equations, which model the behavior of the
membrane potential of biological nervous cells. Similarly to biological neurons, artificial neurons
emit spikes when the membrane potential reaches a threshold. Therefore, networks of spiking
neurons, linked together through synapses, are able to mimic much better than ANNs the dynamics
of biological nervous tissues and of our brain. Due to these features, SNNs are defined as the third
generation of artificial neural networks [64], which behave as an event-driven computational system,
where asynchronous spikes are used for communication among neurons. SNNs can solve the same
classes of problems addressed by ANNs, but they can mimic much better than ANNs the behavior
of the brain and, hopefully, emulate also the outstanding energy efficiency of the computation in
biological systems. The energy efficiency of SNNs stems from the sparsity of events in time and from
the asynchronous and local nature of the computation, which makes those networks very promising
for energy-constrained, edge computing applications, such as IoT, autonomous vehicles, as well as
wearable and implantable devices [43]. Another advantage of this form of information processing is
the possibility of not only encoding spatial information like traditional ANNs do, but also adding
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2.1. Introduction to SNNs

Figure 2.1: Trade-off between biological plausibility and computational overhead of multiple models pre-
sented in the literature by [65].

temporal information in the form of the precise timing of spikes. Although the aforementioned
goals of SNNs represent a solid baseline to study and deepen this topic, developing SNNs is also
an opportunity to understand the dynamics behind the human brain, and in particular, the still
debated learning mechanisms ruling our thoughts.

In this perspective, simulations of SNNs represent a constitutive building block of computational
neuroscience. Therefore, the whole computation and the applied learning methods should take into
account the time dependence of neural state variables.

2.1.1 Neural models

Neuromorphic neural models mimic the membrane potential of biological neurons accordingly with
constitutive differential equations. In literature there exist many models of spiking neurons with
different degrees of biological accuracy and computational overhead. A more quantitative repre-
sentation of the aforementioned trade-off is illustrated in Fig. 2.1, while, below, we introduce three
relevant models in the neuroscience landscape.

The LIF model

The Leaky Integrate and Fire model (LIF) is the simplest and most widely used model in com-
putational neuroscience. Due to its simplicity, it does not closely match the behavior of biological
neurons, but it is largely used in those neuromorphic applications which focus mainly on energy
consumption instead of biological plausibility. It was first proposed by Lapicque in 1907 to replicate
the neuron membrane potential of biological neurons in terms of an electric circuit consisting of a
resistor and capacitor in parallel, representing the leakage and the membrane capacitance, respec-
tively [66]. In this model the membrane capacitor is charged until it reaches a certain threshold, at
which time it discharges, producing an action potential (spike). After that, the membrane potential
is reset.

The constitutive equation ruling the behavior of this model is:

τm
dV

dt
= −V +RI (2.1)
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Figure 2.2: (a) Example of LIF membrane potential waveform for the step input synaptic current displayed
in (b).

where V is the neural membrane potential, I the input synaptic current, τm is the membrane
potential time constant and R is the neural input current resistivity. The Leaky Integrate and
Fire (LIF) model is a simple but powerful model that captures the essential behavior of biological
neurons. An example of LIF membrane potential waveform, in presence of a constant input synaptic
current, is displayed in Fig. 2.2.

A variant of the LIF model is the Exponential Integrate-and-Fire (EIF) model [67]. It incorpo-
rates an exponential current in the dynamics of the membrane potential. The EIF model is more
complex than the LIF model and can capture more realistic behavior of biological neurons.

In particular, the EIF model consists of a set of differential equations describing the time evo-
lution of the neuron’s membrane potential (V). The equation is given by:


C
dV

dt
= −gL (V − EL) + gL∆T exp

(
V − θ

∆T

)
− gC (V − EC)− gI (V − EI)− w + I

τw
dw

dt
= a (V − EL)− w

(2.2)

where V is the membrane potential, EL is the resting potential of the neuron, gL is the leak
conductance, ∆t is the slope factor, θ is the threshold potential, and I is the input current. Moreover,
EI , EC , gI and gC are the potentials and conductances that models the in-vivo excitatory and
inhibitory synaptic activity. τw is the time constant of the adaptation current w and a represents
the level of subthreshold adaptation. At each firing time, the variable w is increased by an amount
b, which accounts for spike-triggered adaptation, while the membrane potential is reset to EL as
reported by: {

V → EL

w → w + b
(2.3)
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The membrane potential starts at the resting potential and then changes with time based on the
input current and the exponential current term in the equation. The exponential current term
captures the non-linear behavior of the membrane potential and allows the model to capture more
realistic dynamics of the membrane potential.

The EIF model also includes a reset mechanism that allows the membrane potential to be reset
to a certain value when it reaches the firing threshold. This reset is similar to the LIF model.

The EIF model is a more sophisticated model than the LIF model, it allows the modeling of
neurons with different intrinsic dynamics, and it can capture more realistic behavior of biological
neurons such as sub-threshold dynamics and spike frequency adaptation. The EIF model has been
widely used in computational neuroscience and in the development of spiking neural networks and
neuromorphic computing platforms.

The Hudgkin-Huxley model

The Hodgkin-Huxley model is a mathematical model of the electrical behavior of neurons that
was first proposed by Alan L. Hodgkin and Andrew F. Huxley in 1952 [68]. The model is based
on experimental data from the squid giant axon, a type of nerve cell that is large enough to be
easily studied using electrical measurements. The model is widely considered as a foundation of
neurocomputation, and it is one of the most famous and widely used models in neuroscience.

The model describes the behavior of a neuron by simulating the flow of ions across the cell mem-
brane, which generates an electrical current, and the resulting changes in the membrane potential.
The model consists of 25 parameters and 4 dynamical variables that describe the time evolution
of the membrane potential, the concentrations of various ions inside and outside the cell, and the
gating variables of the ion channels.

The Hodgkin-Huxley model rules the neural membrane potential by simulating the movement of
ions through three types of ion channels: the sodium (Na+) channels, the potassium (K+) channels,
and the leak channels. The sodium channels open when the membrane potential is depolarized,
allowing Na+ ions to flow into the cell, which causes a further depolarization of the membrane
potential. The potassium channels open when the membrane potential is hyperpolarized, allowing
K+ ions to flow out of the cell, which causes a further hyperpolarization of the membrane potential.
The leak channels are always open, allowing ions to flow in and out of the cell, which maintains the
resting potential of the membrane. The model also includes a concept of "gating variables" that
can change with time, which describe the opening and closing of ion channels.

The Hodgkin-Huxley model can reproduce various types of electrical activity such as action
potentials, which are the electrical signals that transmit information along the nerve fibers, and
subthreshold oscillations, which are the small changes in the membrane potential that occur before
a spike.

However, such a model suffers from some limitations:

• it is frequently difficult to understand the nature of the neuronal dynamics observed in this
model;

• it contains so many parameters that it is difficult to make a meaningful exploration;

• it cannot be calculated analytically, but only using the results of numerical simulations, which
are subject to time discretization errors.
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The Izhikevich model

To understand the dynamics behind our brain and the human nervous system we need to find a
trade-off between computational efficiency and biological precision. The LIF model is the most
efficient model in terms of computational overhead, but it neglects lots of neural internal dynamic
behaviors, which make the LIF model biologically plausible only to a limited extent. In contrast, a
model which mimics more closely the correct biophysics of nervous cells, like the Hudgkin-Huxley,
contains many equations that make the use of such a model computationally prohibitive in large
artificial networks.

In 2003 E. Izhikevich proposed a neural model that can reproduce the firing patterns of neurons
recorded from the rat’s motor cortex [69]. As it contains two differential equations to describe the
biological membrane potential, it is suitable for large-scale simulations.

In particular, the model is described by the following system of equations:
dV

dt
= 0.04V2 + 5V + 140−U+ I

dU

dt
= a (bV −U)

(2.4)

where V is the membrane potential of the neuron and U is the membrane recovery variable
that describes the activation of potassium and inactivation of sodium ionic currents: U acts as a
negative feedback to V, stabilizing its behavior.

When the membrane potential V exceeds the threshold value of 30 mV, the neuron fires and
then resets at resting potential. In general, the resting potential is approximately 60-70 mV and
depends only on the b parameter.

After the firing event, the state variables have a transition as ruled by:{
V = c

U = U+ d
(2.5)

By acting on the parameters a, b, c and d we can change the dynamic behavior of the model.
And in particular, as reported in [69]:

• a describes the time scale of the recovery variable U;

• b describes the sensitivity of U to the subthreshold fluctuations of V;

• c describes the after-spike reset value of V caused by the fast high-threshold potassium con-
ductances;

• d describes the after-spike reset of U caused by slow high threshold sodium and potassium
conductances.

By properly choosing a, b, c and d, we achieve different behaviors when a continuous current is
injected into the neuron, such as:

• Regular Spiking (RS) - It is the most common neural behavior in the cortical tissue. The
neurons fire a few spikes with short interspike period and then the period increases;
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• Intrinsically bursting (IB) The neuron fire a stereotypical burst of spikes followed by a repet-
itive single spike;

• Chattering (CH) - The neuron can fire stereotypical bursts of closely spaced spikes;

• Resonator (RZ) - The neuronal membrane potential resonates at a specific frequency defined
by the parameters model before firing.

The four behaviors described above are depicted in Fig. 2.3. Many other different waveforms of the
membrane potential can be achieved by adapting the aforementioned parameters.

V 
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Figure 2.3: Example of membrane potential (V) and membrane recovery variable (U) of Izhikevic model
for a different set of parameters. (RS) Regular spiking with a=0.02, b=0.2, c=-65 and d=8; (IB) Intrinsically
bursting with a=0.02, b=0.2, c=-55 and d=4; (CH) chattering with a=0.02, b=0.2, c=-50 and d=2; (RZ)
Resonator with a=0.1, b=0.26, c=-65 and 2. In these examples, the input synaptic current I is always
constant.

2.1.2 Learning rules

Differently from the conventional ANNs approach, where the backpropagation algorithm plays a
central role, in neuromorphic computing several learning methodologies have been studied in order
to overcome the gap between synthetic and biologic neural networks. In fact, backpropagation
and stochastic gradient descent showed astonishing results in combination with ANNs. However, it
cannot be directly applied to SNNs due to the non-derivability issue of spikes, which are frequently
modeled as Dirac delta distributions. Due to this, initially, SNN-based applications were performed
by manually setting network weights [70, 71]. Although this approach is able to solve simple
behavioral tasks, it is only feasible for lightweight networks with few connections or simple network
architectures without hidden layers [72].
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This lack of a standardized learning methodology pushed researchers to pursue a feasible alter-
native. In literature we can find offline and online learning algorithms. Offline learning methods
calculate the adjustment of synaptic weights according to the entire output spike trains after the
elaboration of the network, while online learning methods update the weights during the neural fir-
ing events. Offline learning algorithms are suitable for static data processing, while online learning
algorithms are very convenient in real-time applications [73]. Moreover, the locality of the learn-
ing method should be considered: locality means that the learning rules are determined only by
the pre-synaptic and post-synaptic activities of neurons, and the synaptic weight itself. Hence, to
be defined as local, the quantity that modifies the weight of a synapse must be available locally
[74]. Moreover, the applicability of the methods to different spiking neuron models should be taken
into account. Some learning algorithms rely explicitly only on the spike times and do not refer to
the particular properties of the spiking neuron models, hence they are expected to work correctly
independently of the spiking neuron model used.

For unsupervised tasks, the literature mainly focuses on the exploitation of the synaptic plasticity
property of biological neural networks combined with an adaptation of Hebbian learning called
Spike Time Dependent Plasticity (STDP) [75]. STDP is one of the most used unsupervised,
local, and biologically plausible, learning algorithms in neuromorphic computing and computational
neuroscience [76, 77]. According to STDP, a synaptic weight is potentiated if a pre-synaptic spike
comes before a post-synaptic spike, whereas it is conversely depressed each time the pre-synaptic
neuron fires after the postsynaptic one. In order to apply the synaptic plasticity to different use
cases, multiple versions of STDP have been proposed in literature. For example, a supervised version
of STDP called, rewarded STDP, has been proposed to solve classification problems [72]. Moreover,
STDP has been used as a learning algorithm in collaboration with Homeostatic plasticity to solve
classification tasks [78]. However, biologically plausible learning rules for unsupervised learning are
still to be fully explored and nowadays there is no ample consensus on a sort of standard learning
rule for SNNs, as it is instead the case for backpropagation in ANNs .

For supervised learning, instead, the first proposed SNNs compatible learning algorithm is Spike-
Prop [79]. SpikeProp estimates the gradient similarly as backpropagation does for ANNs. However,
it presents some limitations: this algorithm is limited to a network of neurons emitting just a single
spike and, in addition, non-firing neurons prevent the calculation of the gradient. About this last
point, Sec. 2.2.5 considers a similar issue: non-firing neurons produce a flat region of the loss which
precludes the variation of the afferent parameters. In our work, this problem has been tackled
by pursuing an approximated minimum of the cross-entropy loss reducing the spiking time of the
output neurons with an augmented loss function. Moreover, in [80] Spikeprop has been extended
to a loss dependent on an arbitrary number of output spikes, whereas [81] addressed the case of
recurrent networks.

An example of interoperability between SNNs and ANNs is the ANNs -to-SNNs weights con-
version: in this method, an ANN is trained with classical deep learning methodologies, then the
weights of the network are converted thanks to a non-linear transformation [82].

Another algorithm, called random synaptic feedback, has been proposed in [83]. This is a back-
propagation algorithm that sends the error calculated with the loss function through a feedback
network with random fixed weights.

Different approaches have been developed by computing exact gradients using methods from the
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optimal control theory. In particular, the sensitivity analysis has been applied to a recurrent network
of LIF neurons that aims to exhibit a given oscillatory behavior [84]. Algorithms for recurrent SNNs
have been derived by leveraging adjoint equations and accounting for the hybrid dynamic of neurons
[85], as well as in [86], where the threshold for neuron firing has been replaced by a gate function
that smoothens the transitions and facilitates the implementation of the adjoint methods. Another
important step ahead in the biological learning understanding is E-prop [87], a biologically inspired
algorithm to train recurrent spiking neural networks. It exploits eligibility traces of neural activity
to adapt the weights of the network. Moreover, [88] proposes to exploit surrogate approximated
functions to calculate surrogate gradients in a backpropagated SNN environment to overcome the
non-derivability of the spiking instant.

Finally, Event-Prop is instead an adaptation of the backpropagation algorithm for SNNs, that
calculates the precise gradient of the loss function by solving the lack of derivability of the spike
events by leveraging on adjoint equations [89]. In Event-Prop, thanks to the relatively simple
formulation of the LIF model, exact gradient computation has been derived for these kinds of
neurons. On top of this, we developed in Sec. 2.2 a two-phase method to enhance accuracy of deep
SNNs and also keep the spiking rate of the network under control. Moreover, since it has been
theoretically proven that spiking networks have a Turing-equivalent computing power even for very
basic mechanisms of spike generation [90], the use of LIF neurons should not be perceived as an
actual limitation, even if more biophysically accurate neuron models have been proposed, such as
the Hodgkin and Huxley or the Izhikevich models. In particular, we mathematically demonstrated,
in Appendix B, that the Izhikevich model is suitable for the application with Event-Prop.
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2.2 Reducing the Spike Rate in Deep Spiking Neural Networks

For a 2-layers feedforward network consisting of leaky integrate-and-fire neurons and having a loss
function that depends on the times of the spikes, exact gradients have been computed in [89]. This
was accomplished by using adjoint functions, which are evaluated and recorded only at the time
instants corresponding to spikes. In particular, the discontinuities on the adjoint equations enforced
by spikes are computed going backward in time in topological order. This approach leverages the
sparseness of spikes to obtain a computation of the gradient that is effective in terms of both
computation energy and memory requirements.

None of the aforementioned approaches in Sec. 2.1, however, implies any target for the possible
spikes generated after the classification has been completed. Such spikes can occur when neurons
are over-excited from a large number of afferents, which is statistically more probable when the
network becomes deeper. While an excess of spikes is innocuous for the network operation, it is
clearly detrimental for the energy consumption and, moreover, it is also biologically implausible
because the refractory mechanism can effectively limit the spike rate in biological neurons. In this
latter respect, we here argue that a refractory period appears indispensable in recurrent SNNs to
prevent an unlimited spike rate [91], but this also implies an energy cost, because the refractoriness
is obtained with a dissipative configuration in most circuital implementations [13, 92]. In a feed-
forward network, instead, the excess of spikes can also be avoided by a judicious choice of the
synaptic weights, which makes the implementation of the refractory period not strictly necessary
and thus saves the corresponding energy cost.

In deep SNNs, however, a mere gradient descend approach has limitations even when the exact
gradient can be calculated. In fact, the average spike rate tends to accelerate for an increasing
number of layers, which deteriorates the energy efficiency of both the learning and the inference
phase. In this respect, if measures are introduced in order to control the spike rate, one should
carefully avoid to induce a large number of silent neurons, namely neurons that do not emit spikes.
Such neurons, in fact, do not not practically contribute to the loss function, so that a gradient
descent strategy is no longer effective to optimize their input weights. This hazard is similar to the
“vanishing” gradient issue that in ANNs precludes the convergence toward the actual minimum of
the loss function.

The targets of this section are in fact deep LIF feed-forward networks, and we will present a
training strategy that can optimize the network performance. Moreover, we propose a modification
of the loss function presented in [89], in order to reduce the spike rate and, at the same time,
overcome the silent neuron issue. The last paragraph of this section raises the problem of device-to-
device parameters mismatch and quantifies the drop in accuracy related to circuital non-idealities
in neuromorphic implementations.
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Figure 2.4: Example of general topology of the networks exploited in this work and typical neural wave-
forms. (a) Example of neural internal variables: V and I denote the membrane potential and the post-
synaptic current, while λV and λI are the adjoint variables associated to V and I, respectively. (b) Example
of output spiking activity and specific notation: every spike instant is denoted with tb,p(a), while the time
gap between each spike and the first emitted is ∆tp,a,b where b is the sample of the minibatch, a is the neural
index and p is the spike index emitted by the neuron a.

Riccardo Fontanini 19



2.2. Reducing the Spike Rate in Deep Spiking Neural Networks

2.2.1 Models

Spiking Neurons and Gradients

The constitutive equations of the LIF neurons are:
τm

∂V

∂t
= −V +RmI

τs
∂I

∂t
= −I

(2.6)

where V and I are the neural membrane potential and the input synaptic current respectively. τm

and τs are the time constants governing the dynamics of the membrane potential and the synaptic
current respectively, while Rm is the membrane resistance. The state variables V and I of each
neuron are initialized to zero: V (t = 0) = 0

I (t = 0) = 0
(2.7)

The times of spikes are implicitly defined by:

(
V−)

n(k)
= Θ (2.8)

where the vector V and I gather all the membrane potentials and currents of the network, and Θ is
the constant threshold potential. The notation (V±)n(k) denotes, throughout this chapter, the nth

component of the membrane potential vector V an instant before (−), or after (+), the emission
of the kth spike. When the membrane potential of a neuron reaches the threshold, such a neuron
emits a spike and resets to the rest potential ((V+)n(k) = 0 V), though the current does not change
((I−)n(k) = (I+)n(k)) since a node does not act on itself. However, the kth spike produces a jump on
the current of the receiving neuron given by the synaptic weight (I+)m = (I−)n(k) +Wm,n, where
Wm,n links the n-th spiking neuron to the m-th neuron.

To train the network we compute the exact gradient, leveraging adjoint variables and back-
propagation [89], to perform a mini-batch stochastic gradient-descent. The equations of adjoint
variables can be derived from Eq. 2.6 and are:

τm
∂λV

∂t
= λV

τs
∂λI

∂t
= λI −Rm λV

(2.9)


(
λV

−)
n(k)

=
1

Rm (I−)n(k) − θ

[(
λV

+
)
n(k)

Rm

(
I−
)
n(k)

+
∂L(tk)
∂tk

+

Nn∑
m̸=n

(
Rm

(
λV

+
)
m
−
(
λI

+
)
m

)
Wm,n

]
(
λI

−)
n(k)

=
(
λI

+
)
n(k)

(2.10)

The adjoint variables have discontinuities (ruled by Eq. 2.10) in correspondence of spikes and
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are evaluated backward in time, starting from the initial condition:λV (t = T ) = 0

λI (t = T ) = 0
(2.11)

An example of the neural state functions and the adjoint functions is represented in Fig 2.4(a).
All the loss functions considered in this work only depend on the spike times; we do not take

into account losses that depend directly on the membrane potential, since they are not consistent
with an event-driven computation. Hence, the gradient of the loss function can be written as:

∂L
∂Wi,j

=

Nspk∑
k=1

d L(tk)
dtk

dtk
dWi,j

(2.12)

where Nspk is the number of spikes generated by the network.
By applying the implicit function theorem to Eq. 2.8 and exploiting the adjoint variables, the

gradient of the loss becomes:

∂L
∂Wi,j

= −τs
∑

k∈{spikes from j}

(λI)i (tk) (2.13)

Hence, to calculate the gradient of L, we only need to sample λI when a spike happens. More-
over, since the state functions and their adjoints can be expressed in closed form between two
discontinuities, all the evaluations can be performed with an event-driven computation.

Loss Functions

We consider deep feed-forward networks for classification tasks. The network receives input spikes,
related to input data through an application-specific encoding, and propagates spikes up to the
output neurons in the last layer. The output node that emits the first spike indicates the predicted
class.

The first loss function taken into account is:

LW = CE + αCS (2.14)

where CE (cross-entropy) and CS (classification spike) are defined as:
CE = − 1

Nb

∑Nb
b=1 log

(
exp(−tb,1(l)/τ0)∑NO

a=1 exp(−tb,1(a)/τ0)

)

CS = 1
Nb

∑Nb
b=1

[
exp

(
−tb,1(l)

τ1

)
− 1
] (2.15)

with Nb and NO being the number of samples of the batch and output neurons, respectively.
τ0, τ1 are normalization constants, and α is a hyper-parameter. tb,1(l) is the time of the first spike
emitted by the output neuron l corresponding to the correct classification, and tb,1(a) is, instead,
the time of the first spike of the generic output neuron a.

CE is the actual target of the minimization, since it is directly related to the average classification
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error because it is a measure of how much the real distribution of the dataset differs from the
distribution estimated by the network [93]. Since CE depends only on the difference among times
of the first output spikes, we can add terms to the loss function to drive the minimization towards
points with convenient characteristics. Here CS aims to minimize the delay between the input and
the output spikes and, as a by-product, to reduce the probability that neurons remain silent.

For shallow networks LW provides good results [89], albeit for deep networks a good level of
accuracy is obtained at the cost of a large spiking rate, as discussed in Section 2.2.1. Trying to
reduce the spiking rate by decreasing the hyper-parameter α leads to a relevant reduction of the
accuracy, since many neurons become silent.

Therefore, to improve the control on the spike rate, we defined a second loss function by adding
a term that, for each neuron, reduces the excess of spikes without penalizing the first one:

L = CE + αCS + ηSP (2.16)

SP (spike penalty) is defined as:

SP =
1

Nb

Nb∑
b=1

Nn∑
a=1

P (a,b)∑
p=2

1

∆tp,a,b
(2.17)

Nn is the number of neurons of the network, P (a, b) is the total number of spikes emitted by the
neuron a during the inference of sample b, and η is another hyper-parameter. ∆tp,a,b = tb,p(a)−tb,1(a)
denotes the time difference between each spike produced by the neuron a during the inference of the
sample b (tb,p(a)) and the first one (tb,1(a)) (for the sake of clarity, Fig. 2.4(b) provides a representation
of the spiking notation). If a given neuron emits only a single spike, its contribution to SP is null,
thus the spike penalty tends to enlarge the delay between the first emitted spike and the following
ones for each neuron of the network.

With the loss function L, the network can reach the same CE performance obtained with LW

also reducing the average spiking rate. As an example, Fig. 2.5(a) shows two different trajectories in
the ⟨tT ⟩-⟨tNT ⟩ plane followed by LW and L during a training for the benchmark Yin-Yang (discussed
in section 2.2.4). ⟨tT ⟩ is the average time of the first spike generated by the neuron corresponding to
the correct class (the target neuron), ⟨tNT ⟩ is the average time of the first spike of the other output
neurons (the not target nodes), and the oblique lines are the isolines of CE. This preliminary
analysis shows that, using LW , large values of α are required to reach a good accuracy (i.e., small
values of CE). Such a choice, however, leads to an excess of spikes at the end of training, as shown
in Fig. 2.5(b). For L, on the contrary, a large α can provide good results, in terms of CE, and
keep the spike rate under control. However, the choice of such a hyper-parameter is critical: a too
small α can reduce the average spike rate below 1, hence switching off some neuron and decreasing
the final accuracy. Silent neurons, in fact, impact the minimization process because they do not
contribute to the gradient of the loss (Eq. 2.13).

Finding suitable values for α and η is not trivial, because they strongly depend on the starting
point of the minimization and on the network topology. Therefore, a strategy to reach a convenient
starting point is required. For such a purpose, we introduce a third loss function, LA:

LA = CE + αAS + ηSP (2.18)
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Figure 2.5: Yin-Yang - Comparison between LW and L for two different values of α. (a) compares the
average first spike arrival time for the target neuron ⟨tT ⟩ with the first spike time arrival of the others ⟨tNT ⟩
during training, while the solid oblique lines depict different cross-entropy levels. (b) shows the average
number of spikes per neuron of the whole network, ⟨NS⟩, during training. The shaded area shows the
variability of ⟨NS⟩ for multiple initializations. In these simulations η is set to 0.35 ms.
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representation of the algorithm. The simulator is based on Pytorch with a CUDA-implemented extension
for the calculation of the neural signals and the adjoint functions.

where AS (additional spikes) is an augmentation term, defined as:

AS =
1

NONb

Nb∑
b=1

NO∑
a=1

[
exp

(−tb,1(a)
τ1

)
− 1

]
(2.19)

that focuses on the first spike event of all output neurons. Notice that this term encloses CS

(except for a constant factor), thus LA contains the same terms as L plus the extra addends related
to other spikes. An important consideration, however, is that every minimum of L is also a minimum
of CE (and the same is true for LW ), but this does not hold for LA because of the augmentation
term. Nevertheless, a minimum of LA is close enough to a minimum of CE to be considered a valid
starting point for a successive minimization and, moreover, it can be reached without incurring in
the switch-off issue, as empirically assessed.

Therefore, we adopt a two-phase strategy for learning: in the first phase the training aims at
the minimization of LA, in order to reach a good point to start the second phase that, minimizing
L, targets a minimum of the cross-entropy.

2.2.2 SNN simulator

We simulated the networks using the PyTorch [94] framework. The simulator is implemented in
Python, to interact with PyTorch, and in CUDA/C++, to accelerate the computation by exploiting
parallel and fully even-driven CUDA Kernels that run on Nvidia GPU. To combine the computa-
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Table 2.1: Model’s parameters: the values listed in this table correspond to a purely mathematical model
and they can be scaled in order to fit a physical system.

Description Symbol Value

Membrane time constant τm 20 ms
Synaptic time constant τs 5 ms
Membrane resistance Rm 1 Ω
Threshold Θ 1 V
Min input time spike tmin 0 ms
Max input time spike tmax 20 ms
Simulation time T 30 ms
Adam parameter β1 0.9
Adam parameter β2 0.999
Adam parameter ϵ 1× 10−8

Learning rate decay factor - 0.95
Learning rate decay step - 1 epoch
CE normalization constant τ0 0.5 ms
CS, AS normalization constant τ1 6.4 ms

Yin-Yang 1st phase Learning rate - 5× 10−3

Yin-Yang 2nd phase Learning rate - 2× 10−4

Yin-Yang batch size Nb 32
MNIST Learning rate (both phases) - 2× 10−3

MNIST batch size Nb 20

tional power of C++/CUDA and the versatility of Python we exploited PyBind 1. PyBind is a
library that exposes C++ types in Python and vice versa, mainly to create Python bindings of
existing C++ or CUDA code. Fig. 2.6(a) shows the architecture of the simulator, with the Python
modules in charge of loading the dataset and orchestrating the simulation. The CUDA code com-
putes the spike times (finding the roots of Eq. 2.8) and updates the adjoint variables for each
discontinuity.

As schematically described in Fig. 2.6(a), the simulator is based on a Python front-end interface
linked with the CUDA kernels. The Python code manages the interactions with the PyTorch
framework that is in charge of interacting with datasets, performing data conversion and tensor
manipulation. An SNN simulation consists of two phases: the forward pass and backward pass.
The first one calculates the membrane potential (V ) and the post-synaptic currents (I) for each
neuron of the network to determine each spiking time. After that, the backward pass evaluates
the adjoint variables at each spike event, calculates the loss gradient and updates the weights by
exploiting Adam [95] as optimizer with a constant learning rate decay. The neural spiking activity
is elaborated layer by layer, sequentially, from the first to the last layer for the forward propagation,
and, in a reverse way for the backward computation. The CUDA platform exploits an Nvidia GPU
environment to speed up the calculations. The simulator is based on two main kernels (function
executed directly on GPU): the forward CUDA kernel is characterized by a Newton-Raphson cycle
executed for each neuron of any layer of the network (see Alg. 1). The goal of this method is
to calculate, with an arbitrary precision δ, the spike instants of each neuron of the network by
exploiting the analytical solution of Eq. 2.6. As described by Alg. 1, by finding the roots of Eq.

1https://github.com/pybind/pybind11
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2.8, it is possible to jump between each pre-synaptic spiking event without exploiting continuous
step-driven integration of differential equations. This improves the quality of the numerical results
in terms of numerical precision, memory consumption, and computing time. The backward kernel
is responsible for the adjoint functions calculation: starting from the previously saved neural input
synaptic current and spike time, the backward algorithm computes, backward in time, the value of
the adjoint functions at each spike event.

Algorithm 1 Forward CUDA Kernel

I−0 ← 0
V −
0 ← 0

for each input spike do
t0 ← input spiking time
tnext ← next input spiking time
I+0 ← I−0 + βWm,n ▷ Current discontinuity
t← t0
∆← 1.0
while True do

while ∆ ≥ δ do ▷ Newton-Raphson loop

V ← e−
t−t0
τm

(
V +
0 +

I+0 τs
τs−τm

(
e

(t−t0)(τs−τm)
τsτm − 1.0

))
f ← V − θ

fp← 1/τm

(
−V + I+0 exp

(
− t−t0

τs

))
if fp ≤ 0 then

break
end if
∆← −f/fp
t← t+∆

end while
I−0 ← I+0 exp

(
− t−t0

τs

)
if fp > 0 && tnext > t then ▷ Found a spike

I+0 ← I−0
V +
0 ← 0

t0 ← t
Save (I+0 , t)

else ▷ Spike not found
V +
0 ← fV

(
V +
0 , I+0 , tnext

)
break

end if
end while

end for

The final computation of the gradient and the update of synaptic weights is performed by the
PyTorch framework through its implementation of the Adam optimizer [95]. The whole flow of the
computation is represented in Fig. 2.6(b).

The networks hyper-parameters are listed in Table 2.1, with values in the upper portion common
to all the simulated networks.
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Figure 2.7: Sketch of the datasets conversion and example of neural signals. (a) Representation of the
Yin-Yang Dataset and the linear transformation of spatial coordinates into spiking time events. (b) Example
of conversion of a MNIST image: the pixel color intensity is translated into a spike timing with a linear
transformation.

2.2.3 Benchmarks

Yin-Yang

The first benchmark taken into account is the Yin-Yang dataset [96, 97] composed of points in a
2D space. Each point lies in a region, defined by non-linear boundaries, which is the target of the
classification (there are three regions). A point is translated to spikes by means of a linear space-time
conversion within a fixed range [tmin, tmax] of its coordinates (x, y) and their duals (1−x, 1−y). The
dual spikes are added to keep the average spike times of the inputs constant for the whole dataset.
Moreover, an input spike at fixed time t = tmin is added as a bias for a total of 5 inputs for the
classifying SNN . Fig. 2.7(a) shows the structure of the dataset and an example of the space-time
conversion.

This benchmark is small enough, still not trivial, to allow the fast preliminary evaluations of the
learning strategies that we discussed above. To achieve fair and meaningful comparisons, we use
a network with almost the same number of synapses as the network used in [89], but deeper and,
thus, with fewer neurons: for this benchmark we employ a 5-40-25-13-3 feed-forward network with
synaptic weights initialized with a uniform distribution in the range reported in Table 2.2.

MNIST

The second benchmark considered is the MNIST dataset [98]. MNIST is composed of images (28x28
pixel large, gray-scale) that depict the hand-written digits to be recognized by the network. The
training set contains 60000 images, while the images in the test set are 10000. Each pixel of the
input image is translated to an input spike: the spiking time is a linear mapping of the pixel intensity
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Table 2.2: Ranges of weights initialization

Layer # Neurons Minimum Maximum

Yin-Yang
1 40 1.0 3.0
2 25 0.2 1.0
3 13 0.0 1.0
4 3 0.0 1.0

MNIST
1 280 -0.1 0.3
2 160 -0.5 0.15
3 70 -0.2 0.6
4 10 -0.4 0.8

to the range [tmin, tmax] as show in Fig. 2.7(b). Since the majority of pixel has the background color
and the input data are large enough (784 pixels), there is no need to add dual inputs or a bias.

For this benchmark we use a 784-280-160-70-10 network, that requires more than 2·105 synapses.
The number of synapses is large enough, compared to the number of images in the training set, to
avoid overfitting. Therefore, we augmented the training set by introducing random shifts (horizontal
and vertical, up to 10%) and random rotations (up to 20◦) of the images. Even for this benchmark,
the synaptic weights are initialized with a uniform distribution: the ranges are reported in Table 2.2.

The starting weight ranges of both benchmarks are tuned to initially ignite all neurons of the
network and produce a sparse enough spiking activity to prevent an over-excitation of the output
layer’s neurons. The learning rate for the Yin-Yang analysis has been changed between the first
and the second phase of training to better follow the distribution of the average weights of the
network. Conversely, the MNIST preliminary exploration reported in the next paragraph reveals a
good behavior of the training process even by keeping the same learning rate for both phases.

2.2.4 Experimental Results

Yin-Yang Simulation Results

The first evaluation is the behavior of the 4-layer network, applied to the Yin-Yang benchmark,
with the reference loss LW and by varying the hyper-parameter α. Fig. 2.8 reports (a) the accuracy
and the mean arrival time of the first classification spike, and (b) the average number of spikes per
neuron (⟨NS⟩), reported separately for each layer. Data are related to one inference performed by
a trained network. For low values of α (the dashed area) the accuracy is quite poor, since at least
one layer (in particular the output layer 4) has ⟨NS⟩ < 1. This implies that some neurons are silent
hence, at some point, the gradient descent lost the control to change the weights of synapses affering
to such neurons. Larger values of α provide better accuracy and, as a by-product, a faster response,
but with the penalty of an excess of spikes. As stated above, too many spikes are harmful in terms
of energy efficiency and should be thus avoided. The ideal condition is no more than a single spike
per neuron per inference.

As an example of the behavior of the network during the training, we report two cases in Fig. 2.9
for 100 epochs. The first case (dashed lines: α = 5 · 10−3, large enough to provide a good accuracy)
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Figure 2.8: Yin-Yang - Exploration of the parameter α for loss LW . (a) Comparison between the accuracy
of the network (solid line) and the mean first spike arrival at the output layer (dashed line). (b) Dependency
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from the same realization of weights and exploiting the LW loss function.
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cases. As a comparison, it is also shown the output spiking rate of Fig. 2.8(b) (dotted line).

shows how the spiking rate, albeit reduced while the training is in progress, saturates at a value
that is near to 2. The second case (solid lines: α = 0) shows that the accuracy improves only for
the first few epochs; when the spike rate becomes too small, too many nodes become quiescent, and
the network accuracy drops to uselessness.

This first exploration shows that, even for a simple benchmark, keeping the spike rate under
control while training a deep network is challenging, if not impossible, and it is the driving motivation
for the changes in the loss function proposed in this chapter.

As mentioned above, the loss functions L and LA introduce a new hyper-parameter (η). Fig. 2.10
shows the impact of α on the average number of spikes of the output layer, for some values of η and at
the end of a 100 epochs training, while Fig. 2.11 shows the accuracy for the same configurations. In
both plots, dashed lines are for L and continuous lines are for LA. Fig. 2.10 points out how the excess
of spikes can be totally eliminated by using L as loss function, hence remarking the effectiveness of
the added penalty term. The accuracy, however, is negatively impacted (Fig. 2.11) and, to reach
acceptable values, large values of the hyper-parameter α are required, with the resulting increase
of the number of spikes. Furthermore, the minimization of L is very dependent on the starting
point and in general it is not very reliable because, in many cases, some neurons become quiescent,
hence adversely affecting the optimization. This is the reason for the non-monotonic behavior of
the accuracy for L shown in Fig. 2.11.

Conversely, minimization with LA, keeps all neurons active, because of the AS term, and pro-
vides an appreciable accuracy (but for the smallest values of α). This indicates that the minimization
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Figure 2.11: Yin-Yang - Median accuracy after 100 epochs of training. This plot shows the impact of α
and η on the network’s training by exploiting two different loss functions: L and LA.

does not suffer from the switch-off condition, as confirmed by the number of spikes of the output
layer, hence the minimum of LA is approached without halting in some plateaux. However, as
discussed in Section 2.2.1, LA cannot provide the actual minimum of the cross-entropy for the very
nature of AS, hence a better accuracy may be achievable. The purpose of LA, in fact, is allowing
a surrogate minimization of L while forcing the nodes to stay active. Then, using the result of the
minimization through LA as the starting point of a second minimization, that uses L, we can avoid
the aforementioned instability (because the initial point is quite close to the final minimum) and
reach the real minimum of CE.

Fig. 2.12 shows an example of 2-phase training, where the first phase (100 epochs, plot on the
left) is performed minimizing LA, while in the second phase (60 epochs, plot on the right) the target
of the minimization is L. In the left plot, we also show the behavior of a training that only uses
L and that successfully achieves a valid minimum; here it should be noticed that this is a selected
lucky case, chosen among many unsuccessful tests, while all the training minimizations performed
with LA converge to a minimum. In the right plot, we can observe the improvement of the second
phase, that brings the actual minimum of CE (dotted line), when L is used while LA cannot provide
any further improvement (continuous line).

The overall results of the 2-phase training, in terms of accuracy and average number of spikes
(for the whole network and for the output layer only), are depicted in Fig. 2.13 and are compared
with the same results for trainings that use only L or LA. We can notice that the resulting accuracy
of the 2-phase training is consistently the best (except for the lowest values of α), while the spike
rate is kept under control. A lower spike rate is only found for the training that uses only L, but
this is due to the switching off of some neurons that in turn precludes a good accuracy.

Table 2.3 reports the accuracy, the cross-entropy, and the average number of spikes per neuron
and per inference that are obtained in the best case for the three loss functions adopted and for the
2-phase strategy. We also reported the values of the hyper-parameters that lead to such best cases.
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Figure 2.12: Yin-Yang - (a) Comparison between the total loss and the CE component of L and LA during
training and for α = 0.004 and η = 0.4 ms. (b) CE component trends during the 2nd phase of training for
L and LA, started from the final result achieved for LA in (a). The 2nd phase was performed with the same
losses and parameters except for the learning rate, set to 2 × 10−4. The final accuracy in the 2nd training
phase improves, for the L case, from ∼ 98.4% to ∼ 98.7%.

Table 2.3: Best results in terms of accuracy for Yin-Yang

Training Accuracy Cross-Entropy ⟨NS⟩ α× 103 η [ms]

LW 98.30% 0.078 1.68 - -
L 99.05% 0.074 1.52 4.0 0.2
LA 98.90% 0.087 1.49 4.0 0.2
2-phase 99.00% 0.053 1.44 4.0 0.3

Riccardo Fontanini 32



2.2. Reducing the Spike Rate in Deep Spiking Neural Networks

95

96

97

98

M
ed

ia
n 

Ac
cu

ra
cy

 [%
]

a)

1.00

1.25

1.50

1.75

N
S

b)

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050
 [-]

0.75

1.00

1.25

1.50

N
S

 (o
ut

pu
t l

ay
er

)

c)

LW
L
LA
1st phase LA + 2nd phase L 

Figure 2.13: Yin-Yang - Summary of the training methodologies. (a) shows the median accuracy of the
network, (b) shows the average number of spikes per neuron of the whole network, while (c) shows the
average number of spikes emitted by the output layer. These results were obtained with η = 0.3 ms and
averaged over 10 seeds per point.
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Figure 2.14: MNIST - General behavior of accuracy and cross-entropy during training. In particular, it
can be observed the saturation of the two curves after 60 training epochs, without any anomaly on the test
set, symptom of a parameter over-fitting.

The best results are obtained for L and for the 2-phase strategy, as expected, with a slightly better
performance in terms of spike rate for the 2-phase learning. However, it must be considered that
for the 2-phase learning the results in the table are easily obtained (all the trainings have converged
to a good minimum of the cross-entropy), while for L only a small fraction of the tests has not
incurred in the switch-off issue.

MNIST Simulation Results

For the MNIST benchmark a larger network, compared to the Yin-Yang benchmark, is needed to
obtain a sufficient accuracy. In this respect, while the scope of this work is not a record breaking
performance on the MNIST dataset, we still believe that any accuracy below 97% is not meaningful
enough to be considered. Therefore, we adopted a 4-layer network with significant larger hidden
neurons, as already mentioned in Section 2.2.1. Training such a network with the LW or the L loss
functions exacerbates the issues already discussed for the Yin-Yang benchmark, up to the point
that the training becomes impossible. Since from the first epochs of learning, when a small value of
α is used, the switch off involves so many neurons that the whole last layer becomes inactive. For
larger values of α the behavior changes abruptly, with a sharp increment of the number of spikes
emitted by the network resulting in a neural over-excitation. In both cases, the training cannot be
completed with success: finding a value of αs that lies exactly between those two region of behavior
is not feasible, even because the resulting behavior is strongly impacted by the initial condition too.

Using LA as loss function, however, allows a smooth training for a large range of α values. We
verified that with several simulations whose behavior is exemplified in Fig. 2.14 where data about
a training are shown over time. Such a plot reports the accuracy and the CE computed on the
training set and on the test set for the first 60 epochs (α = 0.003 and η = 3ms are used). Both
accuracy and CE behave as expected, with a smooth saturation towards the minimum of the loss
function.
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Figure 2.15: Preliminary analyses on MNIST: behavior of the cross-entropy during the initial 150 training
epochs for multiple learning rates.
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Figure 2.16: Preliminary analyses on MNIST: behavior of the cross-entropy in the second phase of training
starting from the same initial condition (1st phase with LA and lr = 0.001). The initial increment of the CE
is due to the CE minimum discontinuity from LA to L.
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Table 2.4: Best results in terms of accuracy for MNIST

Training Accuracy Cross-Entropy ⟨NS⟩ α× 103 η [ms]

LA 97.63% 0.081 0.82 3.0 3.0
2-phase 98.42% 0.059 0.45 3.0 3.0

Since LA cannot provide the true minimum of the cross-entropy, the 2-phase learning has been
used to perform the actual training of the network. In Fig. 2.15, the CE over time is shown for
the first phase and for some learning rate up to epoch 150. Furthermore, Fig. 2.16 illustrates the
CE behavior during the second phase, for the same values of the learning rate. We can notice how
the CE, that has saturated in the first phase, can be further reduced when L is adopted as the loss
function. Moreover, the nice decrement of CE in that second phase is also an indication that the
neuronal switch-off has been avoided and that the training can improve during the second phase.
This behavior is consistent for all the values of the learning rate we adopted. Therefore, to speed
up the training in our further exploration, we choose to keep the same value (lr = 2 · 10−3) for both
phases.

Fig. 2.17 shows the accuracy and the cross-entropy reached by the network at the end of the
training for some values of the hyper-parameters α and η. Such a plot also shows the results for a
network trained using LA only. Plots show how the 2-phase learning can always converge to good
results in terms of accuracy and cross-entropy, consistently better than the results obtained by LA

alone. We also recall that neither the L nor the LW alone can be used to train this network because
they do not reach proper convergence during the training.

Fig. 2.18 shows the average number of spikes per neuron that are required to perform a single
inference. In the plot on the right, the average is computed over all the nodes, while in the plot on
the left it is reported separately for each layer (for a single value of α). In both cases, the 2-phase
learning keeps the spike rate well below the rate that is reached using LA only, showing its efficacy
on both the metrics, namely accuracy and spike rate.

Even for MNIST, we report, in Table 2.4, the accuracy, the cross-entropy, and the average
number of spikes per neuron and per inference that are obtained in the best case for the usable
learning strategies. Again, the 2-phase strategy reaches superior results, in terms of accuracy and
CE, while keeping the spike rate under control.

Finally, we also considered different topologies of the network, to ensure that the effectiveness
of the 2-phase learning is not restricted to a single case. We trained three other networks, after
choosing the α and η that provided the best results, and compared the accuracy of the 2-phase
learning against the one obtained using LA only. It turned out that the proposed strategy is
consistently effective in reaching good a accuracy for all the cases that we have explored.

2.2.5 Neuron to neuron variability on MNIST benchmark

The statistical distribution of the parameters in real neuromorphic devices due to the device-to-
device variation should be considered before the design of neuromorphic chips to quantify the
robustness of these networks in terms of accuracy and CE. However, nowadays it does not exist
a standardization of neuromorphic circuits and relative implementations: this lack of standards
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Figure 2.18: MNIST - Comparison between (a) the overall average number of spikes produced by the
network and (b) the single layer components for the α = 0.003 case. (a) shows an average number of spikes
produced by the whole network much below the threshold value of 1 spike per neuron due to the strong
dependence on the average behavior of the first (280 neurons) and the second layers (160 neurons). The
network switch-off is prevented by the excitation of the last layer (layer 3, plot (b)) which doesn’t affect too
much the results of (a).
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Figure 2.19: MNIST - Final accuracy after the first and the second phase of training for multiple topologies
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results obtained for the reference network are highlighted in red. In this figure, the hyper-parameters are
fixed for all networks, and in particular α = 0.003 and η = 3 ms.
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prevents a direct comparison of neuromorphic models exploiting, for example, a circuit-level Monte
Carlo analysis. On the other hand, an approximated estimation of the behavior of the circuit can
be made by increasing the considered abstraction layer from the circuit level to the behavioral one.
Therefore, this paragraph introduces the impact of noise on neuromorphic implementations as a
study of a deviation of the neural parameters from their nominal values and it tries to quantify the
behavior of the MNIST classifier network with a different degree of uncertainty. This, as a general
analysis, is not strictly linked to a circuit implementation, but it gathers all the uncertainties of a
circuit on deviations of the membrane potential constant (τm), and the synaptic device constant
(τs). Until now, all the reported results neglect the presence of device variability, however, the
following analysis shows the dependence of some results reported in Fig. 2.13 when noise is injected
during the inference or the training process, as an abstraction of electronic circuit uncertainties.

The analysis presented in this section considers two different methodologies: the first one is
meant to mimic real offline training followed by an online inference, while the second study is made
by injecting noise before the training process and then testing the network with the same observation
of neural parameters.

Therefore, in the first case, by exploiting the trained network for the MNIST dataset whose
results are reported in Tab. 2.4, a Gaussian noise is injected just before the inference of the MNIST
test set. The inference results are gathered in Fig. 2.20 and, in particular, those results are calculated
by selecting the most accurate set of weights among 10 seeds of fully trained SNN without any
parameters’ variability; then the resulting network is tested on the full test set by injecting a null-
mean Gaussian distributed noise with a relative standard deviation στm and στs on τm and τs

respectively. This, is for multiple values of α and η. As it can be observed in Fig. 2.20(a) and (b),
the accuracy decreases as much noise on the model’s parameters is injected, while, Figs. 2.20(c)
and (d) also show a more prominent impact of the noise on τm compared to the one injected on
τs. In fact, a substantial deviation of the membrane potential time constant from the nominal
τm value impacts not only the mean final accuracy of the system but also increases its standard
deviation producing an unpredictable network. In addition, Fig. 2.20 also shows a slight dependence
of the η hyperparameter on the accuracy, while α seems not to produce a noteworthy trend for the
tested values. In summary, the results reported in Fig. 2.20 show a strong degradation of the
system accuracy in presence of noise, especially on the neural parameter τm. This is due to a
strong decoupling of the network’s hyperparameters before and after the noise injection: in the
adopted scheme, it does not exist any network’s parameters adaptation methodology to overcome
the hyperparameter mismatch. In this perspective, on the other hand, the second study aims
to quantify the network’s accuracy loss when the training process takes into account the specific
statistical realization between training and inference.

To simplify the whole picture, this second analysis spans over multiple values of στm and στs ,
but takes into account just one set of hyperparameters (α = 0.003 and η = 3 ms). Interestingly,
by injecting noise into the training process and then testing the obtained network with the same
observation for the model parameters τm and τs, the accuracy results of Fig. 2.21 tend to match the
one reported in Fig. 2.17 with just an average drop of the accuracy of 0.3% in the στm = 0.2 case.
Moreover, the deviation on the synaptic time constant does not produce any relevant difference
during training. These results prove the great adaptability of the training process in case of device-
to-device constant mismatches, however, training the network with a single observation does not
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Figure 2.20: MNIST - Mean accuracy after the 2nd phase of training (solid lines), and relative standard
deviation (dashed lines), in presence of constants mismatch between each neuron of the network for multiple
values of η and α. στm and στs represent the standard deviation of the Gaussian noise applied on the neural
constants τm and τs respectively. These results are obtained by averaging 10 realizations of noisy parameters
on the nominal networks. The results reported in this figure reduce to the one shown in Fig. 2.17 when στm

and στs are both equal to 0. This plot has been obtained with α = 0.003 and η = 3 ms.
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Figure 2.21: MNIST - 1st and 2nd phase of training accuracy results of an SNN classifier with statistically
distributed parameters. It can be observed that the system, even in presence of not nominal neurons and
synapses time constants, converges towards the accuracy results presented in Fig. 2.17 if tested with the
same realization of the training. In particular, this plot has been obtained with α = 0.003 and η = 3 ms.

solve the problem raised when the weights are applied to a system with a different statistical
observation of the time constants. In fact, by testing the networks of Fig. 2.21 with a different
parameters realization, the accuracy of the system converges towards the results showed in Fig. 2.20.
Even though this critical scenario represents a hindrance to the offline-training-online-inference
mechanism, it could be mitigated by exploiting a localized learning methodology, like STDP [76],
directly implemented on the neuromorphic chip. Online learning methodologies, governed by local
learning mechanisms, may sew up the tear between the offline-trained network and the localized
one, by adjusting the weights or the local hyperparameters of the network in order to obtain a
reliable and accurate system.

Riccardo Fontanini 41



Chapter 3

Overview of neuromorphic hardware
implementations

In the previous section, we introduced SNNs and novel learning methodologies to improve the
accuracy and energy efficiency of these networks in a classification task. In this chapter, we will
briefly review the state of the art in neuromorphic hardware implementations to understand and
evaluate ways to further reduce energy consumption. The field of the hardware implementations of
neuromorphic systems has widely enlarged in recent years, consequently, our review will be limited
to the aspects most tightly linked to the scope of this thesis.

3.1 Devices and Circuits for neuromorphic applications

Neural models and learning methodologies are the fundamental building blocks of SNNs and neu-
romorphic engineering: by combining different neural models with bio-inspired learning algorithms,
researchers and engineers all over the world have designed and developed many neuromorphic net-
works and platforms [99–101]. Nonetheless, by looking at the state of the art of modern neuroscience
and chip design, we see that nowadays we can build CMOS circuits that replicate the operation of
biological neural networks [102, 103]. However, the manufacturing technology is still lagging behind
biology in terms of transistor area and wiring resources. In particular, we are still far from the
density of three-dimensional biological systems and their self-assembling capabilities. In general
terms, the features of artificial neural systems are quite different from their biological counterparts.
For example, we can design very fast circuits compared to biological timescales. While biology
operates at kilohertz scales, our CMOS circuits operate at gigahertz. We can design reliable circuits
that operate deterministically with high precision, while in the brain the individual synapses and
neurons are neither very precise nor very reliable, and the successful operation of the system largely
benefits from a massive redundancy. Moreover, the highly parallel and event-based computation
of SNNs does not fit too well conventional computers due to the aforementioned limitations of the
general-purpose von-Neumann architectures [26, 43]. Hence, the computational platforms must be
re-thought in order to improve energy efficiency and maximize parallelization [104].

In this perspective, two different schools of thought have been raised over the years: the first one
focuses on simulating neural networks in a full-digital ad-hoc platform, while the second one aims
to integrate the whole neuromorphic cores, including analogical neural dynamics, into VLSI mixed-
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signal chips [105]. The full-digital simulating platforms have a high potential for solving machine-
learning tasks, but they do not emulate directly the dynamics of real neural systems. Conversely,
the mixed-signal platforms embed an analog core that can reproduce quite closely the biological
signals with very promising energy efficiency.

Figure 3.1: Die and logic subdivision of Kraken neuromorphic SoC [62]

Digital neuromorphic processors show a more mature development: the SpiNNaker system, for
example, is a multi-core computer designed with the goal of simulating very large numbers of neu-
rons in real-time [106]. The SpiNNaker machine is a stack of 600 printed circuit boards each carrying
48 SpiNNaker processors, which supports the simulation of hundreds of millions of neurons. The
key innovation in the SpiNNaker architecture is the communications infrastructure, which is opti-
mized to carry very large numbers of very small packets. Differently from the SpiNNaker project,
the TrueNorth architecture proposed by IBM in 2014 is a fully-digital neuromorphic system that
integrates on the same chip 4096 cores, each comprising pure digital asynchronous circuits able to
simulate 256 neurons with 256 × 256 synaptic connections [107]. Moreover, the last-born is Intel
Loihi [108]. The Loihi platform is a 60-mm2 chip fabricated in Intel’s 14-nm process. This platform
integrates 128 neural cores, three embedded x86 processor cores, and off-chip communication inter-
faces that hierarchically extend the mesh in four planar directions to other chips. A synchronous
network-on-chip transports all communication between cores in the form of packetized messages.
Loihi, a fully digital architecture, approximates the continuous-time dynamics using a fixed-size
discrete time-step model. In this model, all neurons need to maintain a consistent understanding of
time so that their distributed dynamics can evolve in a well-defined, synchronized manner. A dif-
ferent approach was followed to design the System-On-Chip (SoC) called Kraken [62]. The Kraken
SoC (see Fig. 3.1) is built around a 32bit fabric controller RISC-V core, it hosts 1 MB of SRAM
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memory, many standard peripherals to interact with the external world and it enables highly sparse
event-driven sub-µJ/inf SNNs inference on a dedicated neuromorphic energy-proportional acceler-
ator. In particular, it elaborates spiking convolutional neural networks with 4bit 3x3 kernels and
8bit LIF neuron states. It also implements a "Completely Unrolled Ternary Inference Engine" ac-
celerator designed to maximize energy efficiency by minimizing data movement during inference. It
is able to run complex visual tasks like object detection, tracking, drone navigation and obstacle
avoidance, at high speed and robustness, under tight payload and power constraints.

On the other hand, an intriguing example of VLSI integration of analog-digital interoperability
is included in Dynap-SEL [103], where analog neuromorphic cores are responsible for the integration
and generation of spikes, while the digital part distributes the events and links different neural layers
throughout the circuit in a scalable and efficient manner. Dynap-SEL was fabricated with a 28 nm
Fully Depleted Silicon on Insulator (FDSOI) process. The core in the Dynap-SEL device comprises
64 analog neurons. Each neuron has 128 mixed-signal plastic synapses, 64 mixed-signal non-plastic
synapses and 4 linear synapse circuits. Up to 16 different chips can be easily combined and merged
together to form a 4 × 4 chip core. Moreover, its neural circuits and the spiking distribution protocol
were introduced in [109]. In particular, the MOSFET transistors of these low-power circuits are
operated in the subthreshold regime, so that the main mechanism of carrier transport is diffusion,
as it is for ions flowing through channels across neuron membranes. Thanks to the subthreshold
operation, transistor currents can be lowered down to a range between femto to nano Amperes.
Consequently, circuits have biologically realistic time constants, ranging from tens to hundreds of
milliseconds, with reasonable capacitance values from a silicon integration standpoint. Moreover, a
digital event-based distribution representation and signal communication protocol, called Address-
Event Representation (AER), has been included to improve flexibility and energy consumption[103].

In this representation, a digital word address is assigned to neurons and transmitted as soon
they produce an event using asynchronous digital circuits. Information is therefore encoded in
both spiking time and neural address. Unlike classical digital logic circuits, VLSI implementations
of SNNs are typically characterized by very large fan-in and fan-out numbers, due to the huge
number of neurons composing the network (e.g., we have observed in chapter 2, SNNs composed
by layers of hundreds of neurons and connected by thousands of synapses). It is consequently
important to design neuromorphic computing platforms that can be configurable to support different
network topologies, neurons and synapses. In this respect, AER routing plays a crucial role in
internal communication schemes improving the scalability of neuromorphic systems. Indeed, some
of the main bottlenecks in the construction of large-scale re-configurable neuromorphic computing
platforms are the bandwidth, latency, and memory requirements for routing address-events among
neurons [103].

Another recent implementation of a hybrid spiking generation and communication scheme, is
BrainScaleS-2 [110]. The BrainScaleS-2 core consists, in fact, of a full-custom analog core combining
a synaptic crossbar, neuron circuits, analog parameter storage, two digital plasticity processors,
and the event routing network responsible for spike communication. Authors, indeed, refer to
the training-tuning-inference process of the BrainScaleS-2 neuromorphic circuit as an "in-the-loop"
operation. This operation principle uses the “hybrid plasticity” scheme proposed in [111], combining
analog measurements with digital calculations. This increases the flexibility, while keeping the

Riccardo Fontanini 44



3.1. Devices and Circuits for neuromorphic applications

Figure 3.2: Schematic that implements the adaptive exponential Integrate-and-Fire (I&F) neural model in
[104].

advantages of an accelerated physical model, like simultaneously observing all correlations between
pre-and postsynaptic signals. In fact, as proposed by Friedmann et al. in [111], it is possible to
improve the flexibility of neuromorphic platforms while keeping the high energy efficiency associated
with neuromorphic implementations, by combining a general-purpose processor with full-custom
analog elements. In this way, backpropagated learning methodologies, such as the one exploited in
chapter 2 of the present manuscript, can be actively used to train physical neuromorphic circuits. In
particular, as stated in [89], the precise gradient of the loss function in deep SNNs can be obtained
by simply sampling the value of the neural input current at each spiking event. The flexibility of
this methodology makes it possible a batch mode operation. In this mode, experiment instances are
queued and sequentially executed on the system, without any data dependency among the different
instances.

Another important step ahead into integration of neuromorphic methodologies into VLSI cir-
cuits was proposed in [104], where an adaptive exponential I&F neuron was successfully integrated
into a neuromorphic chip called ROLLS, developed in standard 180 nm CMOS. The neural model is
an adaptation of the LIF that can exhibit a wide range of neural behaviors, such as spike-frequency
adaptation properties, refractory period mechanism and adjustable spiking threshold mechanism
[112]. The functionalities implemented in the neural circuit schematic shown in Fig. 3.2 include a
neural leak conductance, a backtracked spike-frequency adapter working together with a positive
feedback block in order to model the biological neural Sodium activation and inactivation chan-
nels during the spike production, and finally a block which models the effect of the Potassium
conductance, namely resets the neuron and implements a refractory period mechanism.

Moreover, some of the aforementioned learning algorithms have been integrated together with
electronic neurons in physical mixed-signal SNNs . For example, a spiking neuron combined with
synapses having STDP capabilities has been recently validated experimentally [113]. In that work,
Polidori and co-workers show an implementation of a fully analog LIF spiking neuron compatible
with a standard CMOS process combined with an online learning method with long-term memory
elements. The synaptic weights are stored as a charge in the floating gate of a standard MOS
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transistor, where the charge is modified using only the Fowler-Nordheim tunneling mechanism.
These mixed-signal analog-digital implementations of neuromorphic circuits generally exploit

low-power transistors to reduce energy consumption by emulating biological time scales [114, 115].
Moreover, the energy–per–spike is a useful figure of merit to evaluate these VLSI implementations
and it highlights the high efficiency of these circuital implementations: in fact, many works report
an energy consumption close to 10 fJ per spike [113, 114, 116, 117], that comes close to the estimated
energy consumption of biological neurons [116].

Adapting the temporal properties of such circuits to the temporal dynamics of the signals being
processed can save the area needed to store data and the state of the processing elements, because
circuits operate in real-time directly on the signals being acquired by a sensor [43]. Moreover, by
combining the adaptive analog signal processing strategies of these neuromorphic circuits with dig-
ital event-based asynchronous communication schemes, it is possible to build large-scale multi-core
neuromorphic processors that combine the best of both worlds (analog and digital) for low-power
signal processing, computation, and communication [114]. Although these analog implementations
are able to mimic quite well the features of biological neurons in terms of functionalities and energy
efficiency, they are still a subject of research.

Both these two SNNs computational paradigms, mixed-analog-digital or fully digital, are ex-
tremely parallel and limit the information exchange outside the elaboration chips to save energy.
These two concepts are fundamental in neuromorphic computing and many VLSI implementations
exploit cross-bar arrays to shrink the memory-related area and boost their energy-efficient charac-
teristics. As discussed in more detail in the next section, cross-bar arrays are memory architectures
that consist of crossed metal lines joint together by memory elements. These large memory arrays
link the neural circuits inside the chip, therefore, the information encoded into spikes travels from
one neuron to another without leaving the chip in which they have been generated. The informa-
tion is consequently confined in a single neuromorphic platform largely reducing the aforementioned
von-Neumann bottleneck.

3.2 From synapses to memristor device concepts

In spite of different designs and technologies adopted, both the approaches presented in the pre-
vious section (fully digital or mixed signal implementations) shares two fundamental aspects of
neuromorphic computing to reduce energy consumption: the asynchronous spike sparsity and the
locality. The first principle aims to improve energy efficiency by leveraging two different assets:
sparsity in time and space. As previously stated in Sec. 2.2, the spike sparsity in time is directly
linked to the neural emission frequency. In particular, in order to minimize the energy consump-
tion of a neuromorphic device. On the other hand, the distributed elaboration of a Neuromorphic
circuit is strictly linked to the locality principle prescribing that, differently from the Von-Neuman
machine, the information should be elaborated as close as possible to the emission point. Therefore,
the information enclosed in a single spike or a set of spikes should not be moved back and forth
from the main memory of the system in order to be processed. In fact, in order to overcome the
memory bottleneck of conventional computing machines [25], the Neuromorphic concept aims to
move information inside only the chip itself. This can be done by exploiting cross-bar arrays (see
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Figure 3.3: (a) Schematic illustration and (b) top-view optical microscope image of the 3D double-layer
RRAM array reported in [120].

Fig. 3.3(a)), which link every pre-synaptic neuron to each post-synaptic neuron of a fully connected
neural network [118, 119]. These cross-bar arrays are basically implemented with a bunch of cross
interconnections where two lines are linked together with a memory element called ’synapse’ (from
the biological nomenclature). Each synapse represents a weight of the neural network. Regardless
of the technology adopted into the neural design (fully analog or mixed analog-digital), a cross-bar
connects two or multi neurons by keeping the information inside the same chip.

Generally, the rows of crossbar arrays are driven by spikes and integration takes place at each
column [120]. In such implementations, e.g. the one illustrated in Fig. 3.3, the synaptic weight func-
tion is adjusted by using the number, the amplitude or the duration of potentiating and depressing
pulses. By doing so, biologically plausible mechanisms, such as STDP, can be directly applied to
potentiate or depress the synaptic weight thus enabling online training mechanisms. This is also
beneficial in reducing read power and mitigating sneak path problems [74].

On the other hand, the circuital implementation of cross-bar arrays proposed in [74] differs
from the previous one in that it employs the cross-interconnection as a vector-matrix multiplier.
In particular, this alternative circuit modulates the neural pre-synaptic spiking trace with the
memristor weight matrix. Using this strategy, a single trace supports both inference and learning,
improving noise immunity and also device-to-device variation. Figure 3.4 depicts the details of
the learning circuits in a crossbar-like architecture. This circuit is compatible with the use of the
aforementioned AER as the communication scheme for mixed-signal neuromorphic circuits [103,
121].

In particular, in this circuit, a Differential Pair Integrator generates a continuous current starting
from the neural spiking activity. Then this current is translated into a voltage thanks current-voltage
converter block. After that, a buffer stage decouples the input stage from the synaptic sub-circuit
which sees a differential voltage between the input and the pinned voltage of the output stage.
Consequently, the read current observed by the output stage is proportional to the sum of resistive
values of the memristors in that specific column.

In both implementations of the previously exposed cross-bar arrays, an important role is played
by the memristor. The concept of memristor (contraction of memory resistor) was firstly introduced
in [122] and then extended in [123] in response to the axiomatic need for completeness of relationship
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Figure 3.4: Circuit of Vector-Matrix cross-bar multiplier array reported in [74].

between the four fundamentals circuit variables (current i, voltage v, charge q and flux-linkage
ϕ). In particular, two of them are covered by the definition of charge (q =

∫
idt) and flux-linkage

(ϕ =
∫
vdt), while other three relations are given by the definition of resistance (v = Ri), capacitance

(dq = Cdv) and inductance (dϕ = Ldi). Therefore, L. Chua in [122] postulated the existence of the
’memristor’ as the fourth missing two-terminal circuit element characterized by a ϕ-q relationship.
In particular, a charge-controlled memristor shows a proportionality between voltage and current
(v = M(q)i) defined by:

M(q) ≜
dϕ(q)

dq
.

For the sake of clarity, the above-mentioned definition can be seen as the relationship of a common
resistor whose resistance R = f(w, q, t) presents memory effects and changes its value against an
internal state variable w, which can be described as a first-order dynamic equation [123]:

dw

dt
= f(w, q, t)

Among all proprieties listed in the work of L. Chua, the pinched hysteretic v − i curve depicts
the general behavior of these devices: fig. 3.5 shows the numerical results of a simulated memristor
attached to a periodic voltage input. As it can be observed, the pinched curve implies a null current
through the device at an applied voltage of 0V. Moreover, by increasing the input signal frequency,
the hysteretic curve tends to shrink, reaching the linear characteristic of a simple resistor at the limit
of infinite frequency. This general behavior has been observed in several structures and different
physical effects can be involved in this peculiar resistance modulation [124–127].

Even if the ability to perform computing at the site where data is stored – also called in-
memory computing – was first proposed in 1960 by [128] in the digital domain, nowadays memristive
devices, by exploiting different physical phenomena (e.g. spin, phase transition, ferroelectricity,
or ionic transport), have been proposed and developed as key concepts to reach unprecedented
targets for energy efficiency in edge computing as synaptic devices and non-volatile memories.
Moreover, a modern neural network presents hundreds of thousands of weights and, consequently,
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Figure 3.5: Simulated pinched I-V curve of a memristor reported in [123]. By increasing the frequency of
the voltage generator, the memristor shows a more linear relationship, similar to a simple resistor.

the energy associated with reading and programming these devices should be very small, as their
area occupation. To fulfill these requirements, synaptic devices should be organized into large
arrays possibly exploiting the BEOL integration of the chip, thus saving silicon area. Thanks to the
BEOL integration, the intermediate computing unit elements (representing the weights in a neural
network) can be stored locally as the conductance of a single, non-volatile memristor. In order to
be attractive as synaptic elements of a neuromorphic system, a memristive technology should offer:

• Multiple resistance states, which are the basic quantized states of the memristor;

• Limited device-to-device and cycle-to-cycle variations. Even if biological neural networks show
finite stochastic variability in the synaptic behavior, in electronic implementations large vari-
ability in the memristor characteristic may produce instabilities in the neuromorphic circuit
and, consequently, a degradation of the performance;

• Linearity in the I-V relationship. This is necessary to make direct use of Ohm’s law to compute,
whereby electric pulses with different amplitudes can be conveniently used as a multiplication
factor. This point could be mitigated by interrogating the conductance states of synapses
with pulses of a fixed amplitude but different widths (or equivalently with different numbers
of pulses), and measuring the output charge as the multiplication result;

• Linearity and symmetry in weight updating. This means that the synaptic weight can be
increased or reduced in an approximately linear proportion to the number of input pulses;

• BEOL compatibility, due to the aforementioned great advantages offered by a BEOL imple-
mentation.

All these points should be taken into account during the design of a memristor-based neuromorphic
circuit. However, a proper memristor design can not be carried out at device level only, it should
be put in a broader context accounting also for higher abstraction layers. In this perspective, we
leveraged the work in previous sections in order to put the operation and design of FTJs memristors
in a better and more pragmatic perspective.
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3.3 BEoL compatible memristors

Figure 3.6: Sketch of memristive devices for neuromorphic computing. a) Filamentary RRAM device; b)
Phase change memory device; c) FTJ device.

Memristors are two-terminal devices able to reversibly and gradually change their conductance.
Material scientists, physicists and electronic engineers investigated many working principles and
device concepts for memristors, and we here report a few examples::

• Filamentary Resistive Switching Devices - are a type of resistive random access memory
(ReRAM) that utilizes a filamentary mechanism for resistive switching. They are characterized
by their ability to switch between high and low resistance states through the formation and
rupture of a conducting filament within the device. The filament is typically composed of
metal ions or oxygen vacancies, and is formed through the application of an electrical current.
The resistance of the filament can be modulated by adjusting the current, allowing the device
to be used for data storage. In particular, the conductive filament can be anionic (the filament
is composed of oxygen vacancies deriving from a reduction reaction) or cationic (the filament is
composed of metal ions that migrate from one of the electrodes into the oxide layer) [129, 130].

• Phase Change Memories - are based on chalcogenide alloys that can change their state
between a crystalline and an amorphous state showing low and high resistivity, respectively.
The phase transition is thermally induced. To achieve an amorphous state, the alloy has to
be heated above its melting point and then rapidly cooled down. Crystallization is instead
achieved by heating the material above its crystallization temperature for a long enough time,
so as to allow the atoms in the chalcogenide to rearrange in an ordered crystalline lattice.
Phase change memories offer high endurance, fast write speeds, and low power consumption
compared to other non-volatile memory technologies, such as flash memory. They are also
scalable and can be integrated with other devices in a 3D structure [131]. However, PCMs
also have some limitations such as low endurance and poor performance at high temperatures.
Moreover, depending on the chalcogenide material, melting temperatures up to 600 °C have
to be reached. As a consequence, relatively high currents have to be used to reach the melting
temperature (in the order of hundreds of µA) [132, 133].

• Ferroelectric devices - are based on the ability of certain materials, known as ferroelectrics,
to switch between different polarization states, when an electric field is applied. This polar-
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ization switching can change the band bending and thus the resistance of the device, which
thus becomes capable of storing data. Ferroelectric memristors have the potential to offer
high density, low power and fast data storage and computing capabilities. Three examples of
ferroelectric materials that have been used to create ferroelectric memristors include zirconate
titanate (PZT), barium strontium titanate (BST) and hafnium oxide (HfO2). Some examples
of ferroelectric memristor devices are Ferroelectric FET (FeFETs) or FTJs [134, 135].

The above-mentioned memristor technologies are more suitable for neuromorphic computing
compared to, for example, fully-CMOS static RAMs. In fact, the integration of memristive devices
in the BEOL is considered a key enabler for neuromorphic computing applications, because it could
significantly increase the effective memory density of a chip, without introducing major changes in
the silicon substrate.

In this perspective, the discovery of ferroelectricity in the Hafnium oxides (HfO2) [136] paved
the way to a set of BEOL compatible, ferroelectric devices including Ferroelectric Tunnel Junctions
and Ferroelectric FETs. The focus of the following chapter, in particular, is on FTJs as promising
candidates for artificial synapses [137, 138]. In particular, chapter 4 introduces the baseline notions
to model the ferroelectric polarization and the stacks consisting of a ferroelectric and a dielectric
material. Then, we focus on the interplay between charge trapping and ferroelectric polarization in
ferroelectric-dielectric stacks [139]. Finally, we conclude our analysis with some design guidelines to
increase Tunneling Electro-Resistance (TER) [140] and maximum reading current in FTJs intended
as artificial synapses.
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Chapter 4

Memristors based on Ferroelectric
Tunnel Junctions

In the previous chapter, we reviewed the literature on hardware implementations of SNN . With
this understanding, we have chosen to focus on the study of FTJs as a potential solution for reduc-
ing energy consumption in neuromorphic hardware in this chapter, as they can be implemented as
BEOL memristors in cross-bar applications. In particular, this chapter covers the role of ferroelec-
tric materials in synaptic device concepts, from a physical perspective to the design of FTJ devices.
In particular, firstly, Sec. 3.2 introduces the general memristor concept as a synaptic device. In
fact, these tunable resistors, and in particular the ferroelectric-based ones, are considered valid can-
didates for in-memory computing applications. Therefore, Sec. 4.1 briefly explains the ferroelectric
phenomena in order to introduce the FTJs working principle in Sec. 4.2. Then Sec. 4.3 reports a
comprehensive modeling of a MFIM stack as baseline physical system for FTJ devices.

After the introductive part, in Sec. 5.1, after a model calibration between simulations and the
experimental results reported in [141], we proposed a new design perspective to enhance FTJ de-
vices. After that, in Sec. 5.2, we considered different conditions of compensation of the interfacial
ferroelectric polarization in a quasi-static regime. Moreover, in order to reconcile qualitatively dis-
crepancies between the spontaneous polarization versus applied voltage curves that emerged in the
previous paragraph, we propose, in Sec. 5.3, a novel design technique that takes into account charge
traps induced compensation of ferroelectric polarization at the interface between the ferroelectric
and the dielectrc material. Last but not least, in Sec. 5.4, we conclude our analysis on FTJs by
identifying the compensation conditions that enable an optimal operation of FTJs.
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4.1 A brief introduction to ferroelectric materials

Ferroelectricity is observed in some crystalline or poly-crystalline materials (called ferroelectric
materials), which show a non-linear response in polarization when a varying electric field is applied
to the sample. In particular, ferroelectricity was firstly observed in 1921 by analyzing a "Rochelle
salt" (i.e. potassium sodium tartrate tetrahydrate) sample. The name ferroelectricity was chosen
after the observation of the typical hysterical voltage-polarization characteristics, very similar to
the behavior of ferromagnetics in a variable magnetic field.

A ferroelectric material shows, in general, two stable states of the electric dipole moment, re-
ferred to as remnant polarization (PR), when zero voltage is applied externally. Moreover, it is
possible to switch between them by sweeping the external field. In fact, near the coercive field
(EC), the polarization switches between the stable polarization states, see Fig. 4.1. Ferroelectricity
depends strongly also on temperature: at high temperatures, ferroelectricity first reduces and then
it completely vanishes when the so-called Curie temperature is reached and surpassed, leading to
the paraelectric phase of the material [142].

E

P

( EC, PC)

(EC, PC)

PR

PR

Figure 4.1: Typical "S" shaped curve corresponding to steady states points of Eq. 4.2 calculated thanks
to Eq. 4.4 where PR is the remnant polarization, while EC and PC detect the coercive point.

In a sample of ferroelectric material, it is possible to identify microscopic regions, called domains,
where the remnant polarization is constant. Moreover, these regions are separated by an interme-
diate region called domain-wall : the characteristics of each domain tend to influence neighboring
domains through a direct domain wall coupling term and an indirect coupling due e to electrostatic
interactions [63, 142].

Nowadays large collections of ferroelectric materials have been discovered and employed in many
devices and applications such as perovskites (e.g. BaTiO3 or PbZrxTi1−xO3). However, until a few
years ago ferroelectricity didn’t become very popular in modern silicon technologies due to the
limited CMOS processing compatibility of perovskites [143]. Nonetheless, the recent discovery of
ferroelectricity in HfO2 boosted the interest in this device concept due to the successful integration
with CMOS technology [136]. The formation of a non-centrosymmetric, orthorhombic phase is
responsible for the ferroelectric behavior of this material. Although the orthorhombic phase of
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HfO2 can be obtained by introducing various dopants into the crystal lattice, such as Si, Zr, or Al.
The doping through Zr is the most promising dopant for integration into the BEOL [144]. Hence,
the most promising Hafnia and Zirconium alloy is the Hf0.5Zr0.5O2 compound, often denoted as
HZO, which presents good characteristics in terms of polarizability and resilience [143].

The Landau–Ginzburg–Devonshire theory is employed in this thesis to model and predict the
characteristics of phase transitions and polarization switching properties of ferroelectrics. In partic-
ular, to describe the behavior of ferroelectrics a dynamic theory is needed to describe the switching
mechanism of the polarization. Landau and Khalatnikov have shown in [145] that in a homogeneous
ferroelectric the dynamics of the spontaneous polarization, P, can be described by combining the
Lagrange and the Gibb’s free-energy equation, as:

ρ
dP

dt
= −∂U

∂P
(4.1)

where U is the system’s Gibbs energy and ρ is a resistivity governing the switching kinetics of
the domains. In general, the bulk ferroelectric state is determined by temperature, polarization,
electric field, stress, and strain, even if, in order to simplify the overall picture, we neglected the
role of stress and strain in our simulated devices. Moreover, the resistivity ρ is strictly linked
with the switching dynamics of the domains. In this context, the Merz law has been proposed as an
empirical relationship between the dynamics of the domains and the electric field of the ferroelectric
material [146, 147]. However, for the sake of simplicity, we kept constant the value of ρ through
this thesis. This decision has been taken in order to simplify the overall analysis. Moreover, despite
this approximation, by fitting the value of ρ with a direct comparison between our simulations
and experimental data, a good average dynamic behavior of the numerical data can be observed
[148]. In particular, the Landau-Khalatnikov equation describes the free energy of the system as a
thermodynamic function defining the polarization state [145, 149]:

G(P,E, T ) = G0 +
1

2
α(T )P 2 +

1

4
βP 4 +

1

6
γP 6 − EP, (4.2)

where the expansion is usually truncated at sixth order. In Eq. 4.2 E is the electric field in the
ferroelectric, and α, β, and γ known as anisotropy constants. Moreover, the temperature dependence
of α is usually expressed as

α(T ) = α0 (T − Tc) , (4.3)

where, for a ferroelectric material, α is negative for a temperature below the Curie temperature Tc,
above which a paraelectric behavior is observed. The β constant can be either positive or negative
instead. This parameter classifies the ferroelectric material in two different orders. The first order
(β < 0) corresponds to two local minimums of the Gibbs’ free energy at non-zero polarization
higher than the paraelectric global minimum at P=0. By increasing the temperature, these two local
minimums tend to rise in energy following mainly the relationship of α with the temperature reported
above. This behavior progressively decreases the energy well between the local minimums and the
absolute minimum in P=0 until reaching the temperature at which the system is energetically
stable at the paraelectric state (P=0). At that particular temperature, a steep drop of spontaneous
polarization can be observed. On the other hand, a second-order ferroelectric (β > 0) does not
present any local minimum in the free-energy function larger than the paraelectric state (P=0).
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This means that, by increasing the temperature, just only a smooth transition from the ferroelectric
phase (two well-distinguished energy minimums below the energy of the paraelectric state P=0) to
the paraelectric phase (single absolute minimum at P=0) is possible at the Curie temperature [150].
In this manuscript, we did not perform a temperature phase transition analysis of our samples,
therefore we exploited the three anisotropy constants only as fitting parameters. Moreover, we
highlight that, in principle, P is a three-component vector, so the free energy should be written
using the vector components. Here, for simplicity, we consider only a scalar value of P, which, for
thin ferroelectrics, can be simply taken as the polarization component along the thickness direction.

P

G(P)

E=0

E>0

Figure 4.2: Examples of energy configurations of Eq. 4.2 for different values of the electric field

We can observe a two-well configuration where the polarization could stabilize by plotting the
free energy configuration of Eq. 4.2. Moreover, as it can be observed in Fig. 4.2, the electric field
E can make one minimum progressively more energetically favorable compared to the second one,
thus finally forcing the switching between the two stable states.

The steady-state points corresponding to the trajectories described by Eq. 4.2 can be found by
minimizing the total energy in Eq. 4.2, which leads to:

∂G(P,E, T )

∂P
= 0→ E = α(T )P + βP 3 + γP 5 (4.4)

By plotting Eq. 4.4 it can be observed the typical "S-shaped" Polarization-Electric Field curve
displaying all stable points of the polarization, see Fig.4.1. It is important to notice that this static
curve shows a central negative-slope branch intersecting the origin of the plot, which corresponds
to a negative differential capacitance CFE = ∂P/∂E < 0. This Negative Capacitance (NC) branch
is not directly observed in experiments, in fact, the quasi-static experimental characteristic has the
well-known hysteretic behavior [141] because the NC region is intrinsically unstable. Therefore,
as thoroughly mentioned in [63], NC can be stabilized with the use of a proper value capacitance
in series. In other words, by the use of the negative-positive capacitance series, we can obtain a
voltage gain between the capacitances themselves, hence a sort of step-up voltage transformer that
relies only on capacitances and can be, in principle, embodied in the gate-stack of a transistor.
This voltage gain is the key concept of the so-called NC-FETs, proposed for the first time by
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Salahuddin and Datta in [151]. They, in fact, proposed to replace the conventional gate insulator
with a ferroelectric insulator with the aim of obtaining a value of subthreshold-swing lower than
60 mV/decade, and, consequently, reduce further the leakage current in modern semiconductor
technologies. The NC operation of ferroelectric capacitors is an interesting and partly elusive topic
from a material science perspective [152–155], and it is a promising option for the design of nanoscale
transistors [151, 156, 157]. In this latter respect, several studies have experimentally reported NC
operation in MOS transistors and discussed the potential benefits up to industrial level CMOS
circuits [158, 159], and other contributions have addressed different design aspects related to NC
transistors [160–169]. Even if these kinds of devices are still a matter of research, we will not
cover this topic in this thesis, but we explored the ferroelectric stability concept in [148] to better
understand the role of domain coupling and interactions in ferroelectric dynamics. The results
obtained in [148] help to understand the depolarization instability principle of ferroelectric domains
reported in this manuscript. In fact, with the phenomenological discussion of domain alignment
and NC we were able to estimate not only the domain wall coupling constant, but also provide a
quantitative description of the dynamics ruling ferroelectric devices. This is a fundamental aspect
to properly describe the synaptic behavior of the FTJ devices described in the following chapters
of the manuscript.
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4.2 FTJs device concept

Figure 4.3: (a) Cross-section of an MFM based FTJ. (b) Band diagram for an MFM based FTJ, where λ1

and λ2 (with λ1>λ2) are the screening lengths in the metal electrodes. (c) Same as in (b) but for the MFIM
structure. (d) Band diagram across a MFIM based FTJ during reading VT=VR. qVD should be larger than
the ferroelectric tunnelling barrier [ΦM,D−χF ], so that the ferroelectric conduction band profile can drop
below Ef,MD. E0 and ΦM,D are respectively the vacuum level and the work function of the MD electrodes.
χF , χD are the electron affinity of the ferroelectric and dielectric, Ef,MD, Ef,MF are the Fermi levels of the
MD and MF electrode.

The Ferroelectric Tunnel Junction device consists of a ferroelectric layer sandwiched between
two metals (see Fig. 4.3(a)). In general, the finite screening length of the electrodes results in
a band bending dependent on the polarization of the ferroelectric itself. In fact, the positive or
negative charge changes the effective tunnel barrier height and consequently affects the tunneling
resistance. In general, different electrodes should be used to ensure a different effective tunneling
barrier is obtained for the two opposite polarizations, see Fig. 4.3(b). However, the main issue with
the Metal-Ferroelectric-Metal (MFM) stack device is the need for a very thin ferroelectric layer to
ensure large enough tunneling current densities.

In this respect, in order to overcome the challenge of ultra–thin ferroelectric layers (1–3 nm)
needed in MFM stacks, the FTJs design has been steered towards two different device structures:
Metal-Ferroelectric-Semiconductor (MFS) and MFIM stacks [29, 138, 170, 171]. MFS replace one
metal electrode with a semiconducting contact in order to produce a controlled band-bending and
ensure a non-symmetric tunneling barrier for different ferroelectric polarity orientations. Recently,
good results have been obtained in this direction, exploiting Germanium as semiconducting material.
In fact, very thin FTJs were reported in [171], showing excellent polarization characteristics and
low coercive voltages.
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On the other hand, MFIM devices (see Fig. 4.3(c)) integrate a dielectric interlayer between
the ferroelectric material and one of the metal contacts. These devices are particularly suited for
the integration in the BEOL of CMOS circuits [170, 172]. Moreover, as it can be inferred from
Fig. 4.3(d), in the MFIM case, the tunneling current should be mainly limited by the dielectric for
a positive ferroelectric polarization (P ). On the other hand, when the polarity flips, the internal
electric field generated by the uncompensated charge pushes upward the conduction band minimum
at the Ferroelectric-Dielectric (FE-DE) interface between the two oxides. Hence, the current in the
low-conductive state is limited by the thicker potential energy barrier. Hence, in MFIM structures,
relatively thick ferroelectric films can be used and still achieve not too small current densities and
good values for the TER ratio1 [29]. FTJ is a promising candidate as synaptic device with high
energy efficiency. A four-level operation has been already experimentally reported in a MFIM archi-
tecture (Fig. 4.3(a)) [141]. However, the design of a MFIM FTJ has a delicate trade–off between the
read operation and the retention condition. Indeed, during reading in the low resistance state, the
voltage drop VD across the dielectric layer should be large enough to induce a tunneling limited by
the thin oxide, namely qVD>[ΦMD−χF ]. This requires a small dielectric capacitance CD=εD/tD.
The retention condition requires, instead, a large CD/CF ratio (with CF=εF /tF being the capaci-
tance due to background polarization of the ferroelectric), so as to minimize the depolarization field
EDEP and prevent the backswitching of the ferroelectric layer [138]. Furthermore, the dielectric
thickness tD and its electron affinity χD have a large impact on the read tunnelling current.

Due to this complex trade–off and the many material and device options, there is an urgent need
for a simulation driven optimization of the FTJs. However, the modeling of FTJs is challenging, as
it entails the ferroelectric dynamics for a three dimensional (3D) electrostatics and the tunneling
through the dielectric stack. Furthermore, since the non-idealities of the different materials in the
stack and/or at the interfaces can play an important role in the operation and in the performance
of the FTJs [173–176], modelling strategies to include these effects are needed.

1The so-called TER is measured as the ratio between the conductance of the device in high-conductive state and
low-conductive state, respectively
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4.3 Modelling of FTJs

In this section, we report a comprehensive modeling of FTJs metal-ferroelectric-dielectric-metal
(MFIM) structures, used in the results shown in the following chapters of this manuscript. Firstly,
for the sake of clarity, we expose the electrodynamic modeling developed in [63], which is the starting
point of the analysis in Sec. 5.1. In particular, Sec. 4.3.1 introduces the modeling of the aforemen-
tioned structure in the single domain case. However, the mono-domain model could not explain
all the features of a complex multi-crystalline and multi-domain model shown by a ferroelectric
device (e.g. Hafnia-based ferroelectric tunnel junction multi-level conductances analyzed in [177]).
Therefore, Sec. 4.3.2 expands the discussion to multi-domain structures deriving the constitutive
equation ruling the dynamics of the ferroelectric polarization in such devices. In particular, in order
to simplify the abstraction and the modeling of these kinds of devices, we will consider systems of
domains electrostatically coupled to each other but with the same dimension in all spatial direc-
tions. Moreover, for the sake of simplicity, within each domain, an anisotropic ferroelectric material
condition has been considered. Therefore, the polarization within each domain of the structure is
homogeneous. As we will see in the next chapter, these assumptions simplify the whole picture
without weakening the link between simulations and experiments. Moreover, we report the ex-
pressions describing the uniform fixed charge effects at the FE-DE interface. On top of that, we
design our charge trapping model to rule the interactions between polarization and trapped charge
at the interface between the ferroelectric and dielectric material. Therefore, in Sec. 4.3.5, we link
the previous electrodynamic analysis with the presence of charge trapped at the FE-DE interface,
while in Sec. 4.3.6, we present a novel model that rules the charging/discharging of trapping states
at FE-DE interface considering electrons elastic tunneling fluxes. At the end of this chapter, we
provide expressions to calculate the charge and currents induced in the metals of the capacitors
(with or without charge trapping) and, consequently, a comprehensive set of equations to compare
simulations with experiments.

4.3.1 Single-Domain MFIM structure

Figure 4.4: Ferroelectric capacitors and related symbols. a) Sketch of a MFIM capacitor, where tF and
tD are the ferroelectric and dielectric thicknesses. A positive ferroelectric polarization points towards the
dielectric. VT is the external bias, while VD(r̄) and VF (r̄) are the voltage drop respectively across the
dielectric and ferroelectric.

Our starting point is the mono-domain of the Landau, Ginzburg, Devonshire (LGD) model for
an MFIM capacitor presented in [63, 148, 178, 179]. The equation, describing the energy density of
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a Ferroelectric material is:

UF = αP 2 + βP 4 + γP 6 + k(∇P )2 +
ε0εB
2

E2
F [J/m3] (4.5)

where α, β and γ are the ferroelectric anisotropy constants, ε0 and εB are the vacuum permittivity
and the ferroelectric relative permittivity, k is the domain wall term for the multi-domain structure,
P is the spontaneous polarization while EF is the electric field in the ferroelectric material. The
boundary conditions between the ferroelectric and the dielectric material are expressed as:

ε0εrED = P + ε0εBEF

VT = tFEF + tDED

(4.6)

where tD and tF are the dielectric and the ferroelectric thickness, respectively, while VT is the
applied voltage to the MFIM structure. From Eqs. 4.6, we can extract the dependence of the
electric fields of the system from P and VT as:

EF =
1

tFC0
(CDVT − P )

ED =
1

tDC0
(CFVT + P )

(4.7)

In Eqs. 4.7, CD e CF are the capacitance per unit area of the dielectric and the paraelectric
component of the ferroelectric (CD = ε0εr/tD, CF = ε0εB/tF ) while C0 = CD + CF . Therefore,
we can describe the electrostatic term of the free energy remembering that VD = EDtD is the
FE-DE interface potential (at z=0 in Fig. 4.4).

Moreover, the electrostatic energy lis expressed as:

UE =
1

2
PVD +

ε0εF
2

EFVT =

=
1

2
PtD

1

tDC0
(P + CFVT ) +

VTCF

2C0
(−P + CDVT ) =

=
P 2

2C0
+

V 2
TCs

2
[J/m2]

(4.8)

where Cs = (CFCD)/(CF +CD). The energy term related to an external battery can be expressed
as:

UB = −VT PT = −VT (P + ε0εFEF ) = −PVT
CD

C0
− V 2

TCs [J/m2] (4.9)

where the total polarization is:

PT = P + ε0εFEF [C/m2] (4.10)

Therefore, the free energy of the system will be written as the sum between the battery, the
electrostatic and the LKE term:

UT = UE + UB + ULKE =

=
P 2

2C0
+

V 2
TCs

2
−
(
PVT

CD

C0
+ V 2

TCs

)
+ tF

(
αP 2 + βP 4 + γP 6

) (4.11)
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By recalling Eq. 4.1 and differentiating UT against P , we obtain the equation governing the
polarization dynamics:

tF ρ
dP

dt
= −∂UT

∂P
= −

[
tF
(
2αP + 4βP 3 + 6γP 5

)
+

P

C0
− CD

C0
VT

]
= −

(
2αtF +

1

C0

)
P − 4tFβP

3 − 6tFγP
5 +

CD

C0
VT [V ].

(4.12)

Eq. 4.12 is valid only for a single domain system, namely for a homogeneous ferroelectric material.
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4.3.2 Multi-Domain MFIM structure

Figure 4.5: Ferroelectric capacitors and related symbols. a) Sketch of a MFIM capacitor, where tF
and tD are the ferroelectric and dielectric thicknesses. A positive ferroelectric polarization points towards
the dielectric (red arrow). (b) Zoom on the ferroelectric domain wall regions, where d is the side of the
square domain and w is the width of the domain-wall region, which are used to calculate the domain wall
energy [63]. VT is the external bias, while VD(r̄) and VF (r̄) are the voltage drop respectively across the
dielectric and ferroelectric, depending on the position r̄=(x, y) in the (x,y) plane.

In a multi-domain framework, we describe the electrostatic energy of the system (UE) by con-
sidering the contribution of all domains as

UE =

nD∑
i=1

[
1

2

∫
Di

PiVD(r̄)dr̄

]
+

VT

2

∫
A
ε0εFEF,z(r̄,−tF )dr̄ [J ] (4.13)

where VD(r̄) is the FE-DE interface potential at z = 0. Here EF,z(r̄,−tF ) is the z-component of
the electric field at the interface between the ferroelectric and the metal gate (MF) at z = −tF ,
while nD is the total number of domains and A = nDAD is the device area. In order to simplify our
approach, it has been assumed that the area of any domain in the structure is squared and equal
to AD = d2, where d is the side dimension of any domain in the structure.

In the multi-domain framework, the energy term related to the external battery is described as

UB = −VT

[
nD∑
i=1

[PiAD] +

∫
A
ε0εFEFz(r̄)dr̄

]
[J ]. (4.14)

and the total polarization of the ferroelectric is:

PT =
1

A

[
nD∑
i=1

[PiAD] +

∫
A
ε0εFEFz(r̄)dr̄

]
=

=
1

nD

nD∑
i=1

Pi +
1

A

∫
A
ε0εFEFz(r̄)dr̄ [C/m2]

(4.15)

Adding together these two terms (Eqs. 4.13 and 4.14) we obtain the total electrostatic energy
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of the structure:

UET = UE + UB =

nD∑
i=1

[
Pi

2

∫
Di

VD(r̄)dr̄ −ADVTPi

]
− VT

2

∫
A
ε0εFEFz(r̄)dr̄ [J ]. (4.16)

In general, VD and EFz can be calculated thanks to the superimposition of the effects of Pi in each
domain and of VT . The final dynamic equations ruling the system will be obtained differentiating
by each domain polarization Pi. By exploiting the superimposition of effects, we can also express
the z-component of the electric field:

EF,z(r̄, z) =

nD∑
h=1

PhḠF,h(r̄, z) +
CDVT

tFC0
îz (4.17)

it is valid for each (r̄, z) with −tF ≤ z < 0. In particular, we would like to calculate the EFe,z at
the interface between the oxide and TOP electrode (i.e. a z = −tF ), therefore, we write:

ETz = EF (r̄,−tF ) =
nD∑
h=1

PhGTz,h(r̄) +
CD

tFC0
VT . (4.18)

where GTz,h are the Green’s functions of Ph in combination with ETz expressed in [m/F ]. Moreover,
we define the electrostatic potential at the FE-DE interface (z = 0), as:

VD(r̄) =

nD∑
h=1

PhGD,h(r̄) +
CF

C0
VT . (4.19)

Recalling now Eq. 4.16, we can split the two terms as U (1)
ET,i and U (2)

ET :

U (1)
ET,i =

Pi

2

∫
Di

[∑
h

PhGD,h(r̄) +
CF

C0
VT

]
dr̄ − d2VTPi

=
Pi

2

∑
h

Ph

∫
Di

GD,h(r̄)dr̄ + d2
PiCF

2C0
VT − d2VTPi [J ].

(4.20)

Normalizing against the area A, we obtain:

U
(1)
ET,i =

Pi

2

∑
h

Ph

Ci,h
+ PiVT

(
CF

2C0
− 1

)
=

Pi

2

∑
h

Ph

Ci,h︸ ︷︷ ︸
Udep,i

−VT

2
Pi

(
1 +

CD

C0

)
[J/m2] (4.21)

where the capacitance Ci,h is defined as:

1

Ci,h
=

1

d2

∫
Di

GD,h(r̄)dr̄ [m2/F ]. (4.22)
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The second term U (2)
ET can be rewritten as:

U (2)
ET = −VT

2

∫
A
ε0εF

[∑
h

PhGTz,h(r̄) +
CD

tFC0
VT

]
dr̄

= −d2VT

2

∑
h

PhBh −
ACs

2
V 2
T [J ]

(4.23)

where Bh is dimensionless and it is defined as:

Bh =
ε0εF
d2

∫
A
GTz,h(r̄)dr̄ (4.24)

Normalizing against the domain’s area we obtain:

U
(2)
ET = −VT

2

∑
h

PhBh − nD
CsV

2
T

2
[J/m2] (4.25)

Consequently, we can rewrite Eq.4.15, as:

PT =
1

nD

nD∑
i=1

Pi +
1

nD

nD∑
i=1

PhBh + CS VT (4.26)

Important notes:

1. Because GTz,h and GD,h are proportional to the domain’s area d2, Eqs.4.22, 4.24, where
Ci,h and Bh (normalized against the domain’s area as well) ensure the model tends to the
continuum case where d→ 0 ;

2. Because the Ci,h definition, by summing up all capacitance components against every h for
a single i, we obtain the potential on the i-domain produced by an uniform distribution of
charges, corresponding to the case of Eq.4.7. Due to this, in this case, we can introduce the
following sum rule:

nD∑
h=1

1

Ci,h
=

1

C0
(4.27)

The sum rule in Eq.4.27 is i-domain indipendent, consequently we can also write:

nD∑
i,h=1

1

Ci,h
=

nD

C0
. (4.28)

3. Because the Bh definition, by summing-up on avery h we are integrating the ferroelectric
electric field at the top-interface on a uniform distribution of charges, this is related to the
uni-dimensional electrostatics exposed in the single domain section (Eq.4.7). Due to this we
can define a second sum rule for the bh components:

nD∑
h=1

bh = nD

(
−CF

C0

)
(4.29)

Moreover, the numerical elaboration of the bh components by exploiting null electric fields
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boundary conditions on the x and y direction, shows that:

Bh ≃ −CF /C0 (4.30)

Therefore, we can write UET as:

UET =

nD∑
j=1

[
Pj

2

(∑
h

Ph

Cj,h
+

CF

C0
VT

)
− VTPj

]
− VT

2

nD∑
j=1

PjBj −
nDCsV

2
T

2

=
1

2

nD∑
j,h=1

PjPh

Cj,h
− VT

2

nD∑
j

Pj (Bj + 1 + CD/C0)−
nDCsV

2
T

2

(4.31)

By differentiate against Pi, we obtain:

∂UET

∂Pi
=

1

2

nD∑
j=1

[
1

Ci,j
+

1

Cj,i

]
Pj −

VT

2

[
Bi + 1 +

CD

C0

]
. (4.32)

where
∑nD

j=1 [1/Ci,j + 1/Cj,i]Pj incorporates the depolarization energy term.
Moreover, by considering Eq.4.30 we have:[

Bi + 1 +
CD

C0

]
≃ 2CD

C0
(4.33)

Considering now the domain-walls energy term UW,i we have:

uW,i =
∑
j

k

(
Pi − Pj

w

)2

[J/m3] (4.34)

where w is the domain-walls thickness. Now, by integrating the Eq. 4.34 on the w/2 side shell
surrounding the domain trough all the ferroelectric thickness (tF ), and by also dividing by the
considered area (d+ w)2, we have:

UW,i =
dw tF

2(d+ w)2

∑
j

k

(
Pi − Pj

w

)2

=
tF
2

d

(d+ w)2

∑
j

k

w
(Pi − Pj)

2 [J/m2]

(4.35)

While the ULKE term is :

ULKE,i =
(
αiP

2
i + βiP

4
i + γiP

6
i

)
tF (4.36)

We gather all energy components into the total energy

UTOT = ULKE + UW + UET (4.37)
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to be differentiated against each domain polarization Pi:

tFρi
dPi

dt
=−

(
2αiPi + 4βiP

3
i + 6γiP

5
i

)
tF+

−

 tFd

(d+ w)2

∑
j−neighbor

k

w
(Pi − Pj)

+

−

1
2

nD∑
j=1

[
1

Ci,j
+

1

Cj,i

]
Pj −

VT

2

(
Bi + 1 +

CD

C0

) [V ].

(4.38)

where αi, βi and γi are the domain-dependent ferroelectric anisotropy constants. When nD = 1

domain-wall term becomes null, therefore Eq.4.38 equals the single domain constitutive Eq. 4.8.
When tD → 0, 1/C0, 1/Cj,h and Bi become negligible, while [CD/C0] → 1, therefore Eq.4.38

tends to the MFM case.
Equation 4.38 provides at each time t and bias VT (t) all the domain polarizations Pi(t), so that

the dielectric, VD,i, and ferroelectric, VF,i, voltage drops are given by [63]:

VD,i =
1

d2

∫
Di

VD(r̄)dr̄ =

nD∑
j=1

1

Ci,j
Pj +

CF

C0
VT ,

VF,i =VT − VD,i = −
nD∑
j=1

1

Ci,j
Pj +

CD

C0
VT

(4.39)

As it can be seen, the resistivity ρ sets a time scale tρ = ρ/(2|⟨α⟩|) of the ferroelectric dynamics,
where ⟨α⟩ is the average α across the domains. In this respect, a slow VT (t) bias compared to tρ

results in a quasi-static behavior.
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4.3.3 Effects of an uniform charge QDF at the FE-DE interface

Due to the system linearity, the superimposition principle can be used to account also for possible
fixed charges, QDF , at the FE-DE interface. In the presence of fixed charges, the overall charge per
unit area in each domain can be expressed as

P̃i = Pi +QDF (4.40)

An additional charge at the interface modifes Eqs. 4.18 and 4.19 as

ETz = EF (r̄,−tF ) =
nD∑
h=1

P̃hGTz,h(r̄) +
CD

tFC0
VT (4.41)

VD(r̄) =

nD∑
h=1

P̃hGD,h(r̄) +
CF

C0
VT . (4.42)

and the total polarization of the ferroelectric material becomes:

PT =
1

nD

nD∑
i=1

Pi +
1

nD

nD∑
i=1

P̃hBh + CS VT (4.43)

In the battery energy term, we should consider not only the spontaneous polarization Pi but
also the energy contribution of the electric field due to fixed charges.

The battery energy term is consequently defined as:

UB = −VT

[
nD∑
i=1

[PiAD] +

∫
A
ε0εFEFz(r̄)dr̄

]
[J ]. (4.44)

therefore, normalizing by AD=d2 for each domain we have:

UB = −VT

[
nD∑
i=1

Pi +

nD∑
i=1

P̃hBh + nD CS VT

]
[J/m2]. (4.45)

All electrostatic energy terms are practically equal to the expressions presented in the previous
section (by substituting Pi with P̃i), except for the first term between square brackets of Eq. 4.45,
where the equation includes just the spontaneous polarization Pi. Therefore Eq. 4.31 becomes:

UET =

nD∑
j=1

[
P̃j

2

(∑
h

P̃h

Cj,h
+

CF

C0
VT

)
− VTPj

]
− VT

2

nD∑
j=1

P̃jBj −
nDCsV

2
T

2

=
∑
j,h

P̃jP̃h

2Cj,h
+

CF

2C0
VT

∑
j

P̃j − VT

∑
j

Pj −
VT

2

∑
j

P̃jBj −
nDCsV

2
T

2

(4.46)
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We can differentiate the electrostatic total energy Pi:

∂UET

∂Pi
=
1

2

∑
j

Pj

[
1

Ci,j
+

1

Cj,i

]
− VT −

VT

2
Bi+

+
CF

2C0
VT +

QDF

2

∑
j

[
1

Ci,j
+

1

Cj,i

]

=
1

2

∑
j

Pj

[
1

Ci,j
+

1

Cj,i

]
− VT

2

[
Bi + 1 +

CD

C0

]
+

QDF

2

∑
j

[
1

Ci,j
+

1

Cj,i

]

=
1

2

∑
j

Pj

[
1

Ci,j
+

1

Cj,i

]
− VT

2

[
Bi + 1 +

CD

C0

]
+

QDF

C0

(4.47)

and obtain the constitutive equation (replacing Eq. 4.38):

tFρi
dPi

dt
=−

(
2αiPi + 4βiP

3
i + 6γiP

5
i

)
tF+

−

 tFd

(d+ w)2

∑
j−vicini

k

w
(Pi − Pj)

+

−

1
2

∑
j

Pj

[
1

Ci,j
+

1

Cj,i

]
− VT

2

[
Bi + 1 +

CD

C0

]
+

QDF

C0

 [V ].

(4.48)
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4.3.4 Read operation and tunnelling current

Figure 4.6: Energy band diagram across the MFIM stack. E0, ΦMF and ΦMD are respectively the
vacuum level, and the work function of the MF and MD electrodes. χF , χD are the electron affinity of the
ferroelectric and dielectric, Ef,MD, Ef,MF are the Fermi levels in MD and MF. (a) Read condition with
a voltage VT=VR: qVD should be larger than the ferroelectric tunnelling barrier [ΦMD−χF ], so that the
ferroelectric conduction band profile can drop below Ef,MD; (b) Retention condition for VT = 0 V: the
depolarization field EDEP ≈ Pr [εF (CD/CF + 1)]

−1 should be minimized to prevent backswitching (Pr is
the remnant polarization).

We assume in the model that the current in the read operation, IR, is dominated by the tunnelling
through the dielectric stack, which is estimated as the sum of the IR,i in each domain. The IR,i is
in turn expressed by using a Landauer model as [180]:

IR,i =
q

πℏ

∞∫
−∞

∑
kx,ky

Ti(E⊥) [f0,MD(E⊥ + ε(k))− f0,MF (E⊥ + ε(k))] dE⊥ (4.49)

while the transverse energy is

ε(k) =
ℏ2

2m∥

1

kx
2 + ky

2 . (4.50)

The Fermi functions in Eq. 4.49 are defined as

f0,MD(F )(E) =
1

1 + exp
(
E − Ef,MD(F )

) (4.51)

with Ef,MD, Ef,MF being the Fermi levels of the electrodes. Equation 4.49 assumes an effective
mass approximation and an energy separability E=E⊥+ε(k), with the transverse energy ε(k) being
conserved in the tunnelling process [181]. For a tunnelling transmission, Ti(E⊥), independent of
(kx, ky), the sum over (kx, ky) can be evaluated analytically for each electrode M = MD or MF as
[182] ∑

kxky

f0,M (E⊥ + ε(k)) =
A

(2π)2

∫
k
f0,M (E⊥ + ε(k))dk

=
AKBTm∥

2πℏ2
ln

[
1 + exp

(
Ef,M − E⊥

KBT

)] (4.52)
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Hence the expression for IR,i simplifies as

IR,i =
AKBTm∥q

2π2ℏ3

+∞∫
−∞

Ti(E⊥)

[
ln

[
1 + exp

(
Ef,MD − E⊥

KBT

)]
− ln

[
1 + exp

(
Ef,MF − E⊥

KBT

)]]
dE⊥

(4.53)
For a read voltage VR applied to the MF electrode, we have Ef,MF=Ef,MD−qVR. Finally, Ti(E⊥)

is calculated accordingly with a WKB approximation and an effective oxide mass mox. Here we
notice that the m∥ in Eq. 4.53 corresponds to an effective mass for the density of states of the metal
electrodes. In the lack of a better determination of m∥, we used the popular assumption m∥ ≈ m0

[183].
For the purpose of WKB calculations the conduction band profile ECD,i(z), ECF,i(z) in the

oxide and ferroelectric is assumed to be linear and set by the VD,i and VF,i given by Eqs.4.39;
this simplifies the determination of the extrema zin, zout of the tunnelling paths illustrated in
Fig. 4.6(b). Depending on the specific polarization condition, two tunnelling paths may be involved
in the WKB calculation at a given E⊥ (see Fig. 4.6(b)), in which case Ti(E⊥) is obtained as the
product of the two tunnelling transmission probabilities. This approach neglects the influence on
Ti(E⊥) of interference effects, which is a reasonable approximation also in virtue of the empirical
calibration of some modelling parameters discussed below.
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4.3.5 Trapped charges in the MFIM structure

It has been recently pointed out that in ferroelectric–dielectric systems the charge injection through
the thin dielectric and the charge trapping can play an important role [173–176]. Hereafter we
will assume that tunnelling is the dominant conduction mechanism across the Al2O3 layer, even
if additional mechanisms assisted by defects are also possible in thin oxides [184]. The following
paragraphs provide simplified expressions for the charge induced at the metal contact and relative
currents in MFIM structure with or without charge trapping at the FE-DE interface. The following
expressions will be integrated in a more precise manner in Sec. 4.3.6.

MFIM without any charge trapped at the FE-DE interface

The charge per unit area on the metal contacts (in the MFIM structure without charge trapping)
should be calculated with the following expressions:

QM,F =
1

A

[
d2

nD∑
h=1

Ph (Bh + 1) + VTCS · nDd
2

]
(4.54)

QM,D =
1

A

[
d2

nD∑
h=1

PhDh − VTCS · nDd
2

]
(4.55)

where the whole device area is denoted A = nDd
2, while Bh and Dh provide the ferroelectric and

dielectric metal induced charge from a FE-DE interfacial charge.
It should be noted that in QM,F the polarization Ph is multiplied by (Bh+1) to take into account

both polarization at the interface and the opposite polarization close to the MF contact (−Ph). As
already mentioned Bh and Dh can be expressed analytically by using the following equation:

Bh ≃ −CF /C0 Dh ≃ −CD/C0 Bh +Dh = −1 (4.56)

Consequently, by introducing the average polarization PAV =(
∑nD

i=1 Pi)/nD, we can re-write Eqs. 4.54
and 4.55 as

QM,F =

(
1− CF

C0

)
PAV + VTCS =

CD

C0
PAV + VTCS (4.57)

QM,D =
−CD

C0
PAV − VTCS · (4.58)

therefore, we have that QM,F (t) +QM,D(t) = 0.
The corresponding displacement currents are:

iM,F (t) =
∂QM,F (t)

∂t
= CS

∂VT

∂t
+

CD

C0

∂PAV

∂t

iM,D(t) =
∂QM,D(t)

∂t
= −CS

∂VT

∂t
− CD

C0

∂PAV

∂t
= −iM,F (t)

(4.59)
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MFIM with trapped charge at the FE-DE interface

The charge per unit area on the metal contacts should be calculated with the following expressions:

QM,F =
1

A

[
d2

nD∑
h=1

BhQint,h + d2
nD∑
h=1

Ph(Bh + 1) + VTCS · nDd
2

]
(4.60)

QM,D =
1

A

[
d2

nD∑
h=1

(Ph +Qint)Dh − VTCS · nDd
2

]
(4.61)

where Qint,h is the interface charge, and it could be expressed as Qint,h=(QIF +QT,h), where QIF

and QT,h are fixed charge and the charge trapped in the hth domain. Therefore, by exploiting
Eq. 4.56 we have:

QM,F = −CF

C0
Qint,AV +

CD

C0
PAV + VTCS (4.62)

QM,D =
−CD

C0
Qint,AV −

CD

C0
PAV − VTCS · (4.63)

Recalling now the total charge in the ferroelectric:

Q = PAV + ε0εFEfe,AV (4.64)

we can observe that, by substituting Efe,AV with Eq. 4.7 and by denoting with Qint,AV the total
trapped charge at the FE-DE interface, we obtain an updated expression of QM,F :

QAV = PAV +
ε0εF
tF

1

C0
(CDVT − PAV −Qint,AV ) =

− CF

C0
Qint,AV +

CD

C0
PAV + CSVT = QM,F (4.65)

Now, the current at the metal contact is composed by two different components: the first is
the displacement current due to the time derivative of the charges QM,F (t) and QM,D(t), while the
second component is a current flow via tunneling between the metal electrodes and the traps at the
FE-DE interface.

In general, fD denotes the fraction of the charge exchanged with the interface between the
dielectric and the metal gate (MD) and the FE-DE interface. Consequently, the ratio of the charge
exchange between the MF and the FE-DE interface is (1 − fD). Thereby, we can describe the
currents as:

iM,F (t) =
∂QM,F (t)

∂t
+ (1− fD)

∂Qint,AV (t)

∂t

iM,D(t) =
∂QM,D(t)

∂t
+ fD

∂Qint,AV (t)

∂t

(4.66)

which can be rewritten as:

iM,F (t) = −CF

C0

∂Qint,AV

∂t
+ CS

∂VT

∂t
+

CD

C0

∂P

∂t
+ (1− fD)

∂Qint,AV (t)

∂t

iM,D(t) = −CD

C0

∂Qint,AV

∂t
− CS

∂VT

∂t
− CD

C0

∂P

∂t
+ fD

∂Qint,AV (t)

∂t

(4.67)
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Equation 4.67 ensures iM,F (t)+ iM,D(t) = 0. If the dielectric is much thinner than the ferroelectric,
it may be a reasonable approximation to consider that the tunneling current is almost completely
exchanged with the MD electrode, namely, we can use the approximation fD ≈ 1
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4.3.6 Tunneling assisted by traps at the FE-DE interface

In this section, we introduce a novel model for charge injection and trapping in MFIM structures.
We describe the trap density and trapped charge in terms of areal densities at the FE-DE interface.
However, it is acknowledged that these figures should be considered as equivalent areal densities
possibly including also a charge trapping in the ferroelectric and dielectric films.

Figure 4.7: Sketch of charge injection fluxes through the MFIM structure

A first-order dynamic equation for a trap level at the FE-DE interface having an energy ET and
an occupation fT can be written as

q
∂fT (ET )

∂t
= I

(IN)
MD (ET ) + I

(IN)
MF (ET )− I

(OUT )
MD (ET )− I

(OUT )
MF (ET ) (4.68)

where fT is the traps occupation function. Moreover, the current at the MD electrode injected into
the trap at ET can be written as:

I
(IN)
MD (ET ) = σT (1− fT )

ET+
σE
2∫

ET−σE
2

JMD (E)dE (4.69)

which can be approximated as:
I
(IN)
MD = σTσEJMD(1− fT ) (4.70)

where:

• σT [m2] is the trap cross-section in which the traps collect the electron flux;

• σE [J ] o [eV ] is the energy cross-section;

• JMD

[
A

m2 J

]
is the impinging current density (per unit energy and unit area) at the FE-

DE interface.

Then, the trap’s occupation must be in equilibrium with the Fermi level of the metal in a steady-
state condition (∂fT /∂t→ 0). This is done by applying the detailed balance principle to the current
fluxes of Eq. 4.68 for each metal. In this condition, I(IN)

MD = I
(OUT )
MD and consequently we can define

the output current towards the MD contact as

I
(OUT )
MD = σTσEJMD(ET ) [1− f0,MD(ET )] (4.71)
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In the same manner, we define the input current at the FE contact as:

I
(IN)
MF (ET ) = σTσEJMF (ET )(1− fT ) (4.72)

And consistently with the MD conctact, we define the output current of MF as

I
(OUT )
MF (ET ) = σTσEJMF (ET ) [1− f0,MF (ET )] (4.73)

To calculate JMD(ET ) we exploted the Landauer model:

IMD(ET ) ≈
q

πℏ
∑
k

T
(MD)
k (E⊥)f0,MD(ET )

[
A

J

]
(4.74)

where k = (kx, ky) with z the elastic tunnelling direction. Moreover, the transmission coefficient
T
(MD)
k (E⊥) ≈ TMD(E⊥) depends on E⊥ = ET − εk with εk = ℏ2k2

2m∥
thanks the effective mass

approximation [183]. Therefore, we can write:

IMD(ET ) =
q

πℏ2
f0,MD(ET )

∑
k

TMD(ET − εk) (4.75)

the sum over k can be converted into an integral proportional to the area:

∑
k

T (ET − εk) =
A

(2π)2

2π∫
0

dθ

+∞∫
0

TMD(ET − εk)kdk

=
Am∥

2πℏ2

+∞∫
0

TMD(ET − ε)dε (4.76)

We can write the final density of current from the MD contact as:

JMD(ET ) =
IMD

A
= f0,MD(ET )

qm∥

2π2ℏ3

+∞∫
0

TMD(ET − ε)dε (4.77)

Thanks to the WKB approximation, the transmission coefficient is expressed as an exponential
function which has the imaginary exponent proportional to the wave vector kT evaluated through
the tunneling direction:

TMD(z, E) ∝ exp (ikT (z, E)) = exp

i

√
2mD

eff (E − Ec(z))

ℏ

 (4.78)

where mD
eff is the effective mass of the dielectric, Ec(z) is the conduction band minimum at point

z. In our case Ec(z) > E, therefore the transmission coefficient is real. It can be demonstrated that
TMD can be expressed in the form:

TMD(E⊥) = exp
{
− 4

3ℏq

√
2mox

Eox

[
(β + qEoxtox)

3
2 − β

3
2

]}
(4.79)
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with
β(E⊥) = Φm − χox − qVbias + qEF tF − (E⊥) (4.80)

For the MF contact we have the same behavior:

JMF (ET ) = f0,MF (ET )
qm∥

2π2ℏ3

+∞∫
0

TMF (ET − ε)dε (4.81)

and the transmission coefficient is:

TMF (z, E) ∝ exp (ikT (z, E)) = exp

i

√
2mF

eff (E − Ec(z))

ℏ

 (4.82)

where mF
eff is the effective mass of the ferroelectric.

Where TMF can be expressed as:

TMF (E⊥) = exp
{
− 4

3ℏq

√
2mF

EF

[
(α+ qEF tF )

3
2 − α

3
2

]}
(4.83)

with
α(E⊥) = Φm − χF − qVbias − E⊥ (4.84)

In particular, JMD and JMF depend on TMD and TMF with the following relation:

• JMD ∝ f0,MD(ET )
∫ +∞
0 TMD(ET − ε)dε

• JMF ∝ f0,MF (ET )
∫ +∞
0 TMF (ET − ε)dε

When ET goes below the Fermi-level of the MD contact Ef,MD, the electron emission becomes
negligible compared to the capture rate, therefore fT → 1 in a steady-state condition. Conversely,
when ET exceeds Ef,MD the capture rate becomes negligible and fT → 0.
The trap-assisted tunneling currents can be calculated as:

I
(TAT )
MF =

∑
traps

(
I
(IN)
MF − I

(OUT )
MF

)
(4.85)

I
(TAT )
MD =

∑
traps

(
I
(IN)
MD − I

(OUT )
MD

)
(4.86)

The charge in the traps should be calculated with:

QT (ET ) = fTN
acc
T︸ ︷︷ ︸

=ntr

(−q)︸︷︷︸
acc. traps

+(1− fT )N
don
T︸ ︷︷ ︸

=ptr

(+q)︸︷︷︸
donor traps

(4.87)

where Nacc
T and Ndon

T

[
1

cm2

]
are the density per unit area of the acceptors and donor traps, respec-

tively. The total trapped charge at the FE-DE interface can be calculated also with the formula:

QT (ET ) = fTNacc∆E︸ ︷︷ ︸
=ntr

(−q)︸︷︷︸
acc. traps

+(1− fT )Ndon∆E︸ ︷︷ ︸
=ptr

(+q)︸︷︷︸
donor traps

(4.88)

where Nacc and Ndon

[
1

Jcm2

]
are the density per unit area and unit energy for acceptors and donors
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traps, respectively. Comparing Eq. 4.87 with Eq. 4.88 we can set:Nacc∆E = Nacc
T

Ndon∆E = Ndon
T

(4.89)

where ∆E is the finite energy discretization step to evaluate numerically the energy integral of
Eqs. 4.77 and 4.81. Moreover, the average charge trapped in the acceptor ( Qacc) is:

Qacc =
(−q)
nD

∑
nD,ET

NaccfT (ET )∆E =
(−q)
nD

∑
nD,ET

Nacc
T fT (ET ) (4.90)

while a donor trap charge can be expressed as

Qdon = (+q)
∑
ET

Ndon(1− fT (ET ))∆E =

= (+q)
∑
ET

Ndon
T (1− fT (ET ))

(4.91)

Now, in order to gather all the results obtained until now and link them with the detailed balance
principle, we rewrite the dynamic traps equation (Eq. 4.104) as a function of capture and emission
rates of the carriers at the MD and MF contact, respectively:

∂fT
∂t

= cn,MD (1− fT )− en,MDfT + cn,MF (1− fT )− en,MF fT (4.92)

where cn,M and en,M (M = MD or MF) denote capture and emission rate of each trap. When
fT is equal to the Fermi function at the electrode MD or MF, a detailed balance must be satisfied
between the capture and emission rate towards the electrodes. Consequently, we can write the
detailed balanced principle in steady-state (∂fT /∂t = 0) at the MD contact:

cn,MD (1− fT )− en,MDfT = 0 fT = f0,MD (4.93)

en,MD = cn,MD
1− f0,MD

f0,MD
= cn,MDexp

(
ET − Ef,MD

KBT

)
(4.94)

and at MF contact:

cn,MF (1− fT )− en,MF fT = 0 fT = f0,MF (4.95)

en,MF = cn,MF
1− f0,MF

f0,MF
= cn,MF exp

(
ET − Ef,MF

KBT

)
(4.96)

Now, considering the definitions of the carrier’s currents in Eqs. 4.70, 4.71, 4.72 and 4.73 together
with Eqs. 4.77 and 4.81, we can link the capture and emission rates in terms of the tunnelling
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transmission coefficient between the FE-DE interface and each terminal MD or MF according to:

cn,MD0 = en,MD0 = σTσE
m∥

2π2ℏ3

+∞∫
0

TMD(ET − ε)dε (4.97)

Then, we can rewrite the emission and capture rates for the MD contact as:

cn,MD = cn,MD0 f0,MD(ET ) (4.98)

en,MD = cn,MD (1− f0,MD(ET )) = cn0
exp((ET − Ef,MD)/KT )

1 + exp((ET − Ef,MD)/KT )
(4.99)

At the MF electrode, we can similarly :

cn,MF0 = en,MF0 = σTσE
m∥

2π2ℏ3

+∞∫
0

TMF (ET − ε)dε (4.100)

and re-write the emission and capture rates for the MF contact as:

cn,MF = cn,MF0 f0,MF (ET ) (4.101)

en,MF = cn,MF0 (1− f0,MF (ET )) = cn0
exp((ET − Ef,MF )/KT )

1 + exp((ET − Ef,MF )/KT )
(4.102)

With Eqs. 4.98, 4.99, 4.101 and 4.102 we can further simplify the r.h.s. of Eq. 4.68, in fact, at
both electrodes we have:

cn (1− fT )− en fT =

= en0 f0,M (ET ) (1− fT )− en0 fT (1− f0,M (ET )) =

= en0 (f0,M (ET )− fT )

(4.103)

and consequently Eq. 4.104 can be re-written as:

∂fT
∂t

= en,MD0 [f0,MD(ET )− fT ] + en,MF0 [f0,MF (ET )− fT ] (4.104)

with en,MD0 and en,MF0 are given by Eqs. 4.97 and 4.100. Equations 4.104 refers to a single domain
in the FTJ structure, but it is understood that it was solved in each domain and self-consistently
with the LGD equations for the ferroelectric dynamics.

Moreover, in steady-state (∂fT /∂t → 0), the traps occupation can be calculated taking into
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account Eqs. 4.98, 4.99, 4.101, 4.102 and 4.104 as:

fT =
cn,MD + cn,MF

cn,MD + cn,MF + en,MD + en,MF

=
cn,MD + cn,MF

cn,MD

[
1 + exp

(
ET − Ef,MD

KBT

)]
+ cn,MF

[
1 + exp

(
ET − Ef,MF

KBT

)]
=

en,MD0 f0,MD(ET ) + en,MF0 f0,MF (ET )

en,MD0 + en,MF0

(4.105)

Equation 4.105 shows that at the equilibrium, namely in steady state for VT = 0 V and thus for
Ef,MD = Ef,MF , the fT of acceptor type traps is duly set by the equilibrium Fermi function. When
a non zero VT is applied to the structure, instead, the steady state fT approaches the equilibrium
condition with one of the two electrodes only if the capture rate from that one electrode is much
larger than the capture rate from the second electrode.

In particular, if a trap is located inside the Fermi window (Ef,MF < ET < Ef,MD), we can
approximate the Fermi function at the MD as f0,MD(ET ) ≈ 1, while at MF with f0,MF (ET ) ≈
exp(−(ET − Ef,MF )/KT ). Thereby, Eq. 4.105 becomes:

fT ≃
en,MD0 + en,MF0 exp(−(ET − Ef,MF )/KT )

en,MD0 + en,MF0
(4.106)

Eq. 4.106 describes the dependence of the traps occupation fT as a function of the trap energy ET,
and of en,MD0 and en,MF0. As it is well known, the trap-assisted tunnelling is mainly dependent on
the traps located inside at the Fermi window.

Figure 4.8 shows an example of the steady state occupation of acceptor type traps with an energy
located 0.4 eV below the HZO conduction band edge and after a SET pulse (see the VT waveform in
the inset). In the example at study, the capture rate cMD0 is much larger than cMF0, because of the
very different thickness of the dielectric and ferroelectric layers, so that the steady state occupation
of the trap is essentially in equilibrium with the Fermi level Ef,MD of the MD electrode.

Now, in order to calculate the total current flowing through the metal contacts (generalized by
Eq. 4.67), we need to link the time derivative of the acceptor and donor traps with the tunneling
fluxes reported below. Therefore, for the acceptor traps we have:

∂Qacc

∂t
=

1

nD

∑
nD,ET

[
J
(IN)
MD (ET ) + J

(OUT )
MD (ET )+

J
(IN)
MF (ET ) + J

(OUT )
MF (ET )

]
acc

∆E

(4.107)

while for the donor:

∂Qdon

∂t
=

1

nD

∑
nD,ET

[
J
(IN)
MD (ET ) + J

(OUT )
MD (ET )+

J
(IN)
MF (ET ) + J

(OUT )
MF (ET )

]
don

∆E

(4.108)
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Figure 4.8: Steady state equilibrium occupation (i.e. at VT = 0 V) for acceptor–type traps after a SET
pulse. The trap energy on the x–axis is referred to the Fermi level Ef,MD of the MD electrode. The red
line is a plot of the Fermi occupation function f0,MD(F )(E) of the MD electrode. The inset shows the VT

waveform used for the simulations and the vertical arrow indicates the time at which the trap occupation
fT has been plotted.

Now we can rewrite Eq. 4.67 adding the charge trapping terms:

iMF (t) = −
CF

C0

∂Qacc,AV

∂t
+ CS

∂VT

∂t
+

CD

C0

∂P

∂t

+
1

nD

∑
nD,ET

[
J
(IN)
MF,acc(ET ) + J

(OUT )
MF,acc(ET )

J
(IN)
MF,don(ET ) + J

(OUT )
MF,don(ET )

]
∆E − i

(dir)
tunn(t) =

= −CF

C0

∂Qacc,AV

∂t
+ CS

∂VT

∂t
+

CD

C0

∂P

∂t
+[

IinMF − IoutMF

]
− i

(dir)
tunn(t)

(4.109)
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iMD(t) = −
CD

C0

∂Qacc,AV

∂t
− CS

∂VT

∂t
− CD

C0

∂P

∂t

+
1

nD

∑
nD,ET

[
J
(IN)
MD,acc(ET ) + J

(OUT )
MD,acc(ET )

J
(IN)
MD,don(ET ) + J

(OUT )
MD,don(ET )

]
∆E + i

(dir)
tunn(t)

= −CD

C0

∂Qacc,AV

∂t
− CS

∂VT

∂t
− CD

C0

∂P

∂t
+[

IinMD − IoutMD

]
+ i

(dir)
tunn(t)

(4.110)

which, by recalling Eq.4.107, ensures iM,F (t)+iM,D(t) = 0. In general terms, the conduction current
could be non zero in state condition.
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Chapter 5

Operation and design of Ferroelectric
Tunnel Junctions

In this chapter, we initially calibrate our model with some experimental results reported in the
literature, providing a set of parameters to reproduce experiments for different stacks of oxides.
In particular, Sec. 5.1, extract from the MFM structure a full set of anisotropy constants for the
ferroelectric material. By exploiting those values we are able to predict the read tunneling current
of the devices reported in [141] and we also provide different design options to enhance FTJs .
Hereafter we take into account the presence of charge trapped at the FE-DE interface as discussed
in [176]. Consequently, we reported a quasi-static analysis in Sec. 5.2 that shows the impact of
the charge-trapped compensation of the ferroelectric polarization in FTJs . The results of Sec. 5.2
have been confirmed and extended in the following discussion of Sec. 5.3, where a joint effort
based on experiments and comprehensive numerical modelling investigates the role of polarization
switching, charge trapping and depolarization effects in MFIM structures. Last but not least,
Sec. 5.4 quantitatively investigates the trade–offs implied in the operation of FTJs as synaptic
devices. Moreover, we report optimal compensation conditions that can be exploited to optimize
FTJs as synaptic devices with multiple conductance levels.
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5.1 Operation and design of defects free FTJs

In this section we calibrate and validate our model with measurements [141, 177]: firstly, we compare
some measurements of a MFM stack with our simulation results to extract the anisotropy constants
of the ferroelectric material. Then we used those values to simulate the MFIM stack and compare
read currents in the quasi-static regime with the experimental values reported in [141]. After
that, we use our calibrated simulator to investigate some design trade–off, exploring different oxide
materials and metal contacts to improve the maximum read current and the TER ratio of these
devices.

Figure 5.1: (a) Sketch of an MFIM based FTJ, where MF , MD are the electrodes contacting respectively
the ferroelectric and the dielectric, while tF , tD, εF and εD are the ferroelectric and dielectric thickness and
permittivity, respectively. A positive ferroelectric polarization points towards the dielectric (red arrow). (b)
Zoom on ferroelectric domains where d is the side of the square domain and w is the width of the domain-wall
region used for the domain wall energy in LGD (Eq. 4.38) [63]. Throughout the work we used d = 5 nm,
w/d = 0.1 and the domain wall coupling factor in Eq. 4.38 was set to k/w = 2 × 10−3 [m2/F]. VT is the
external bias. (c),(d) Qualitative band diagram across the dielectric stack during the read operation, where
VR denotes the read voltage. (c) Positive polarization and low resistance state; (d) Negative polarization
and high resistance state.

HZO Al2O3 SiO2

χD, χF [eV] 2.1 1.4 0.95
mox(F,D)[m0] 0.4 0.3 0.5
ϵD, ϵF [ϵ0] 30 10 3.9

Table 5.1: Material parameters used in simulations. The work function ΦM of Al and TiN were taken as
4.08eV and 4.55eV , respectively.
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Figure 5.2: Experiments from [177] (symbols) and simulated polarization (lines) versus ferroelectric voltage
characteristic of a Hf0.5Zr0.5O2 layer with tF = 12 nm. The nominal values of the anisotropy constants in
the LGD equations are α = −5.8 · 108 m/F, β = 2.9 · 109 m5/F/C2, γ = 6.5 · 1010 m9/F/C4, and domain
to domain variations are introduced according to a normal distribution of αi, βi, γi, where σα,β,γ denote
the standard deviations normalized to the mean values. Both experiments and simulations correspond to a
quasi-static condition.

5.1.1 Model validation and analysis of experimental data

The models have been validated by comparison with recent experimental data for both the ferro-
electric Q–VF curve (with Q = P + ε0εFEF ) [177], and the read current in corresponding FTJs
[141]. Figure 5.2 shows the Q-VF curve measured in the MFM system of [177], featuring a 12nm
thick Hf0.5Zr0.5O2 (HZO); the simulations with the LGD multi–domain model described in Sec. 4.3
are also reported. The agreement between simulations and experiments is good and the matching
in the switching region improves by accounting for the domain–to–domain variations of αi, βi and
γi. Throughout this section we will use the nominal values for α, β and γ reported in the caption
of Fig. 5.2.

We simulated a MFIM structure featuring a 12 nm HZO ferroelectric, a 2 nm Al2O3 dielectric
and TiN metal electrodes [141] (see Tab. 5.1 for material parameters). Figure 5.3 (top) shows
examples of the setting and reading waveforms applied during the simulations of the FTJs, that
were shaped to emulate the triangular waveforms used in the experiments of [141]. As it can be seen
from the x-axis, the VT waveforms are very slow compared to tρ, hence the simulations correspond
to a quasi static operation.

In Fig. 5.3 (bottom), different maximum SET voltage values (VSET ) have been used, clearly
resulting in different fractions, fUP , of domains with a positive polarization, stemming from the
minor loops in the Q versus VT curve shown in the inset. By inspecting the fUP in the set and read
operation we also see that the MFIM device suffers from a quite strong depolarization effect. In
fact, for a given VSET , the fUP during retention (i.e. for VT = 0 V) and read (i.e. for VT = 2 V) is
significantly smaller than the corresponding fUP reached in the SET operation. This occurs because
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Figure 5.3: (Top) Examples of setting and reading waveforms used in the simulations of the MFIM based
FTJs of [141] (see parameters in Tab. 5.1); read voltage is VR = 2 V. (Bottom) Corresponding fractions fUP ,
defined as the percentage of the domains having a positive polarization during the set and read operation
and for different VSET . The inset shows minor loops in the Q versus VT plots corresponding to different
VSET values.

the fairly large dielectric thickness tD=2 nm results in a strong depolarization field (see the sketch
in Fig. 4.6(b)), producing a backswitching to Pi < 0 of some of the domains that had switched to
Pi > 0 during the setting phase.

Figure 5.4 finally compares simulations and experiments for the IR of FTJs at a read voltage
VR = 2 V. Our simulations in Fig. 5.4 can track the experiments quite well with the reasonable
values of the oxide mass mox reported in Tab. 5.1 [185].

5.1.2 Simulation based design of FTJs

The minimum IR value required by applications is set by the transistors leakage current and by the
noise of the sense amplifier and, for recent designs of neuromorphic processors, a reasonable target
is approximately 100 pA [102, 186, 187]. The results in Fig. 5.4 show that, for VSET = 2.5 V, a
device area larger than 104 µm2 is needed to reach the IR = 100 pA limit. Moreover the ON/OFF
current ratio RI = [IR,max/IR,min] is only about ten, that seems too small for the desired 4–bit
resolution of the synaptic weights [188]. Hence the primary goals of our FTJ design exploration are
the increase of IR and RI .

The most obvious route to increase IR is the scaling of the dielectric thickness tD, whose effects
are illustrated in Fig. 5.5 for the HZO/Al2O3 stack. As it can be seen, by thinning the Al2O3 layer
the IR increases, but RI degrades (see inset). A marked RI reduction with decreasing tD has been

Riccardo Fontanini 85



5.1. Operation and design of defects free FTJs

Figure 5.4: Experiments from [141] (boxes, device area ≈ 3.14 · 10−4 cm2), and simulations (black solid
line) for the read current at VR = 2 V of an HZO/Al2O3 FTJ (12 nm / 2 nm) and versus the set voltage
VSET . The error bars for experiments were inferred from the cycle to cycle variations reported in Fig. 3(d)
of [141].

Figure 5.5: Read current at VR = 2 V (left y axis) versus the Al2O3 thickness for an HZO/Al2O3 FTJ
(tF = 12 nm) and for VSET = 2.5 V or 6.5 V. The average voltage drop, VD,up, for the positive polarization
domains is also reported (right y axis) in read condition, and the current ratio RI=[IR,max/IR,min] is shown
in the inset.

observed also in experiments [177]. Fig. 5.5 also shows that, by thinning Al2O3 and thus increasing
CD, the average VD,up for the positive polarization domains decreases (right y axis), and eventually
qVD,up cannot overcome [ΦMD − χF ] ≃ 2.45 eV (see Fig. 4.6(a)).

In order to reduce CD for a given tD, we replaced the tunneling oxide with SiO2, having a
dielectric constant about 2.5 times smaller than Al2O3. Figure 5.6(a) reports the read current IR

and RI versus VSET for two variants of a HZO/SiO2 based FTJ, and compared to the HZO/Al2O3

baseline case of Fig. 5.4 (black line). By using a 1 nm SiO2 layer and maintaining TiN electrodes
the IR at VR=2.0 V largely increases (red line), but RI does not improve. In the second option of
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Figure 5.6: (a) Read current (left y axis) and RI = [IR,max/IR,min] (right y axis) versus the SET voltage
for the TiN/HZO/Al2O3/TiN structure (tD = 2 nm, VR = 2 V) in Fig. 5.4, and for two variants of an
HZO/SiO2 based FTJ, namely for TiN/HZO/SiO2/TiN (tD = 1 nm, VR = 2 V), and for Al/HZO/SiO2/Al
(tD = 1 nm, VR = 1.5 V). The HZO thickness is tF = 12 nm in all cases. (b) Average voltage drop, VD,up,
for the positive polarization domains (as in Fig. 5.5), for the different design options. The ferroelectric
tunnelling barrier [ΦMD − χF ] is substantially reduced for the Al electrode.

the HZO/SiO2 based FTJ we considered a low workfunction Al electrode (ΦM ≃ 4.08 eV), so as to
reduce the SiO2 tunnelling barrier [ΦMD−χD]. This leads to a large IR increase at fixed VR, that we
exploited to decrease both VR to 1.5 V and the minimum VSET to 2 V. The corresponding results in
Fig. 5.6(a) (green line) show a large improvement for both IR and RI compared to the HZO/Al2O3

case. Indeed, Fig. 5.6(b) reveals that the 1 nm SiO2 design leads to VD,up values comparable to the
2 nm Al2O3 for VR = 2 V; moreover for Al electrodes the qVD,up can overcome [ΦMD − χF ] even
for VR = 1.5 V.

The engineering of the metal work-function for the capping electrodes is still quite actively in-
vestigated for the design of FTJs [189, 190]. In this respect, while the crystallization annealing
with a TiN electrode is the most popular option to induce ferroelectricity in the HZO, a robust
HZO ferroelectricity has been experimentally reported also for different metal electrodes [189, 191].

In this section, we compared experiments reported in [177] with our LGD in-house developed
simulator. We began our analyses by fitting charge-versus-voltage measurements of MFM capacitors
with our model, then we analyzed in a quasi-static regime the behavior of MFIM structure, providing
also a comparison between simulations and experiments of the read tunneling current. After that,
we engineered different FTJs structures exploiting also different work-functions. Our simulation
results show an enhanced read current with a decent TER ratio that can be useful to improve the
number of discrete levels and scalability of FTJ devices. However, as recently stated in [176], charge
trapped in the oxide stack could affect the general behavior of the device. Therefore, in the next
session, we discuss the presence of charge trapping at the FE-DE interface and how it affects the
quasi-static behavior of FTJs .
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5.2 Charge trapping induced compensation of the ferroelectric po-
larization in quasi-static regime

In the previous section, we investigated the quasi-static behavior of FTJ devices under the simplistic
assumption of a clean interface between the ferroelectric and the dielectric layer. We also proposed
a novel design perspective to enhance the window between the minimum and maximum currents
during the read operation by combining the perks of exploiting a SiO2 interlayer instead of the
alumina and a non-negligible work-function engineering.

However, because it has been argued that in ferroelectric–dielectric stacks the charge injection
and trapping can compensate to a large extent the ferroelectric polarization [173], we have here
analyzed the influence of such a charge trapping on the operation of FTJs. In order to be as
much consistent as possible with the previous analysis, we initially investigated the behavior of
such devices considering the same structures and an equal set of parameters as the one reported
in Sec. 5.1. In this perspective, with this first quasi-static and FE/DE interface charge trapping
enabled exploration, our aim is to provide a qualitative direct comparison between the results of
Sec. 5.1 and the following analysis. Therefore, we here first introduce the quasi-static results of
the trapping model described in Sec. 4.3.6. In particular, this model allows us to have the trap
occupation fT for any waveform of the external bias VT , which can be used to calculate the charges
Qacc, Qdon trapped in respective acceptor and donor traps as expressed in Eqs. 4.90 and 4.91, thus
reported below to for the sake of clarity:

Qacc =
(−q)
nD

∑
ET

Nacc fT (ET )∆E,

Qdon =
q

nD

∑
ET

Ndon (1− fT (ET )) ∆E,

where Nacc, Ndon denote the trap densities and ∆E is the energy step between the discrete trap
levels. The overall interface charge Qint is simply the sum of Qacc and Qdon. Moreover, in all
simulations including traps, in each domain the charge Qint was duly added to the polarization P

in the calculation of all relevant quantities, such as VD,i, VF,i in Eqs. 4.39. As discussed above, the
tunneling transmission TMD(ET ) and TMF (ET ) of Eqs. 4.79 and 4.83 were calculated through the
WKB approximation, by using the effective tunnelling masses mD, mF , and the energy barriers
ΦD = (ΦT iN − χD), ΦF = (ΦT iN − χF ) in Tabs. 5.1 and 5.2.

σE [meV] σT [cm2] mD [m0] mF

7 5 · 10−14 - 1 · 10−15 0.23− 0.3 0.4

Table 5.2: The acceptor and donor traps are located 0.4 eV and 2.4 eV below the conduction band minimum
at the ferroelectric–dielectric interface, respectively, and they both extend for 2 eV wide range in the energy
gap.

Figure 5.7 shows an example of the waveforms for the average spontaneous polarization, P , and
interface charge, Qint, during a SET and a RESET pulses followed by a read pulse. As it can be
seen, the acceptor and donor trap densities are such that approximately 50% of the ferroelectric
polarization is compensated by Qint during the SET/RESET phase, as well as during the read
operation. Furthermore, the average P and Qint tend to follow specular trajectories in Fig. 5.7. If
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Figure 5.7: Simulated spontaneous polarization (P , red line) and interface charge (Qint, green line)
averaged across the device area. (a) Results for a SET pulse followed by a 2 V read waveform; (b) results for
a RESET pulse followed by the same read waveform. The interfacial trap densities used in these simulations
are Nacc = Ndon = 5× 1013 [cm−2eV−1].

Figure 5.8: Percentage of domains with a positive polarization, fUP , versus the charge compensation
produced by interface traps and here quantified as |Qint/P |). The fUP is evaluated after a SET pulse during
either retention or read phases. The inset illustrates the conduction band profile (averaged across the device
area) close to the ferroelectric–dielectric interface and evaluated during the read pulse. The interfacial trap
densities (with Nacc = Ndon) varies between 0 and 5× 1013 [cm−2eV−1]

we focus on the rising VT ramp in Fig. 5.7(a), for example, this can be understood because, when
Qint produces a significant compensation of P , then the Qint detrapping and the rising VT ramp
have an additive effect on the increase of the ferroelectric field that produces the P switching. This
creates the link between Qint and P that results in roughly specular variations.

We now notice that the trapping induced compensation of the ferroelctric polarization observed
in Fig. 5.7 is instrumental in order to stabilize the polarization by reducing the otherwise very large
depolarization field in the ferroelectric. This latter point is best illustrated by Fig. 5.8, reporting
the percentage fUP of domains with a positive polarization after a SET pulse versus the charge
compensation quantified as |Qint/P |. The results are shown for either the retention (i.e. VT = 0 V)
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or the read phase (i.e. VT = 2 V). As expected, a larger polarization can be stabilized by increasing
Qint, however this does not result in an improved band bending in read mode. In fact, the inset
shows that, by increasing |Qint/P |, the average voltage drop, VD, across the dielectric degrades and
the HZO conduction band minimum at the ferroelectric–dielectric interface is pushed up. This is
a serious drawback of the charge compensation via Qint, which hinders the attainment of a band
diagram favorable for the tunneling injection through the thin dielectric layer.

It is presently difficult to be more quantitative about the trade–off between the favorable and the
detrimental effects of the trapping-induced compensation of the ferroelectric polarization, particu-
larly because it is difficult to estimate the trapped charge in actual devices. In this latter respect,
the values of trap densities considered in Figs. 5.7, 5.8 are admittedly quite large, however, they are
not at all inconsistent with recent experimental papers that have reported estimates for the areal
density of trapped charge in HZO based FTJs or FeFETs in the range of 1014 cm−2 [174], [192].

In summary, by comparing the charge trapping free FTJ results reported in Fig. 5.3 with the
one reported in Figs. 5.7 and 5.8, we observe a strong dependence of the stable average polarization
with the amount of compensation provided by the trapped charge at the interface between dielectric
and ferroelectric material. This discrepancy is more visible by comparing the ratio of domains with
positive polarization. In fact, in the case without any charge trapping, fUP tends approximately
70% during the read pulse when the maximum set voltage is applied. On the other hand, when
strong compensation is taken into account, that value reaches the maximum, synth of a homogeneous
polarization condition (see the red curve in Fig. 5.8). This means that traps could play a crucial
role in the switching dynamics of ferroelectric materials. To shed some light on this, in the next
section, we will discuss more thoroughly this interplay between charge trapping and ferroelectric
polarization by comparing and matching dynamic measurements with a complete set of dynamic
(non quasi-static) simulations.
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5.3 Interplay between charge trapping and polarization switching
in BEOL-compatible FTJs

Energy efficiency is a main target for neuromorphic computing and it is a major concern for all
computational technologies [193, 194]. As shown in Sec. 5.1, thanks to the field-driven polarization
switching, FTJs can provide high impedance and low energy synaptic devices. A four-level operation
has been demonstrated in a MFIM structure [141]. Moreover, as anticipated in Sec. 5.1, charge
injection through the thin dielectric and charge trapping are expected to play a prominent role
in the switching and stabilization of the polarization [173, 195] in ferroelectric-dielectric (FE-DE)
systems. In fact, large interface charge densities have been reported both for FeFETs [174, 196] and
MFIM capacitors [175, 192], albeit some quantitative aspects are still actively debated [176].

In this section we present a joint effort based on experiments and comprehensive numerical
modelling to investigate the role of polarization switching, charge trapping and depolarization effects
in TiN/HfZrO4/Al2O3/TiN CMOS compatible FTJs. Our results help in clarifying the physical
operation of the devices and provide a sound basis for the device design.

5.3.1 Device fabrication and measurements

Large area (7850 µm2) FTJ structures were fabricated, featuring TiN top- and bottom-electrodes,
an aluminum oxide (Al2O3) tunneling layer at the top electrode interface and a 10 nm thick hafnium
zirconium oxide (Hf0.5Zr0.5O2 or, equivalently, HfZrO4) ferroelectric between the bottom electrode
and the tunneling layer. The Al2O3 layer thickness was varied between 1.5 nm and 2.0 nm.

Figure 5.9: a) High resolution TEM cross section of the TiN/1.5 nm Al2O3/10 nm HZO/TiN devices used
in experiments; b) Sketch of the device template for numerical simulations.

The TiN electrodes were deposited by physical vapor deposition at 350°C. Figure 5.9(a) reports
a high-resolution TEM cross-section of the device. Prior to the HZO deposition, the TiN bottom
electrode underwent chemical mechanical polishing (CMP) to improve roughness (rms= 0.1 nm).
Both oxide layers were grown by atomic layer deposition at 280°C. HfZrO4 films were deposited
with HyALD and ZyALD precursors and O3 as oxidant, at a rate of 0.8 /cycle using 1:1 supercycles
of HfO2 and ZrO2 to ensure uniform stoichiometry. Al2O3 was deposited at a rate of 1 /cycle using
TMA as a precursor and O3 as oxidant. The maximum thermal budget for all structures was 450°C
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in order to be compatible with BEOL integration. Reactive Ion etching (RIE) was used to etch the
TiN/Al2O3/HfZrO4 stack with an etch stop in the TiN bottom electrode.

Grazing-incidence X-ray diffraction measurements were undertaken on nominally identical film
stacks without CMP bottom electrodes, annealed at 500°C, on a Bruker D8 Discover X-ray analyzer.
2θ scans were measured in the grazing incidence geometry, at an incidence angle of 0.45°, to minimize
the signal from the underlying substrate and allow the identification of crystal phases of the HfZrO4

film. These data are plotted in Fig. 5.10(a) for stacks with 1.5 and 2 nm Al2O3, and the dashed
lines indicate the expected peak positions of the strongest crystal reflections in these films [197].
The spectra were fitted with Gaussian peaks centered around these positions and the areas of the
fitted peaks were used to calculate the phase fractions of the m-, o- and t-phases in our films.

Ferroelectricity in HfZrO4 is attributed to the polar orthorhombic (o-) phase, while phase trans-
formations can also occur during electric field cycling, contributing to the wake-up effect [170, 198].
Thus the high o-phase fraction of these films in the pristine state (57% and 54% for 1.5 and 2
nm, respectively) suggests their good ferroelectric properties, despite the relatively thick dielectric
interlayers. At the annealing temperatures used for both BEOL and reference samples, the Al2O3

layer remains amorphous.
This section compares simulations with measurements obtained with the Positive-Up-Negative-

Down (PUND) technique, which was originally conceived for MFM systems [142, 199], and is nowa-
days also routinely employed in MFIM device structures [200–204]. The PUND method consists of
a series of triangular pulses (see also Fig. 5.10(c)) and it is widely used in the characterization of
ferroelectric devices [139, 142, 170]. Hereafter, we used a 10kHz PUND with a delay time of 5ns
between each pulse. Wake-up of the experimental results was achieved by bipolar triangular cycling
(1000 cycles - 100kHz frequency) with a maximal voltage the same as the PUND.

Figure 5.10(b) represents the switched charge measured for 10 kHz triangular pulses of 6 V, for
samples with (blue solid lines) and without (red dashed lines) CMP bottom electrodes. The bias
was applied on the bottom electrode. The plotted curves are obtained by integrating the difference
in P-U and N-D currents, which should provide an estimate of the switched polarization without
the influence of leakage and displacement currents. It should be pointed out that this does not
necessarily correspond entirely to the polarization switching current, as highlighted recently [204].
From Fig. 5.10(b) it is clear, nonetheless, that the switched charge is larger for CMP devices. As the
film stacks are nominally identical, the increase in switched charge may be related to an increased Pr
due to different texturing of the TiN in the BEOL samples [205]. In addition, the reduced negative
coercive voltage for the CMP process indicates a reduction in non-switching dead layers, and thus
attests to the improvement of the bottom interface.

5.3.2 Models and comparison to experiments

The ferroelectric dynamics and electrostatics of an FTJ with the structure illustrated in Fig. 5.9(b)
were self-consistently solved by using the multi-domain Landau, Ginzburg, Devonshire (LGD) model
thoroughly described in Sec.4.3. The nominal values for the anisotropic constants used in simu-
lations are α=−1.1 · 108 m/F, β=−1.5 · 1010 m5/F/C2, γ=1.85 · 1011 m9/F/C4, which result in a
remnant polarization Pr ≈ 24 µC/cm2 and coercive field Ec ≈ 1.8 MV/cm, that are in fairly good
agreement with polarization-voltage response of MFM samples deposited under similar conditions
[206]. Our simulations typically include nD=100 domains, and we account for domain-to-domain
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Figure 5.10: a) 2θ scans taken in grazing-incidence geometry for films stacks with nominally 10 nm HSO
and 1.5 nm Al2O3 (green) and 2 nm Al2O3 (blue). Dashed lines indicate the expected peak positions for the
monoclinic (m-), polar orthorhombic (o-) and tetragonal (t-) phases; b) comparison of the switched charge
measured on a 6 V - 10 kHz PUND waveform (represented in c), for samples with/without CMP bottom
electrodes

random variations of α, β, γ (see Tab.5.3). We have also verified that simulation results are prac-
tically insensitive to a further increase in the number of domains.

At each time t and external bias VB(t), the LGD equations provide the domain polarization Pi(t),
the electric fields in the ferroelectric EF,i and in the dielectric ED,i, and thus the band diagram in
each domain (with i=1, 2 · · ·nD).

As shown in Fig. 5.3 and also in Fig. 5.11, simulations neglecting any trapped charge at the
FE-DE interface (or inside the dielectrics) result in much more stretched P -V curves compared to
experiments. These simulations are instead consistent experimental P -V curves reported for an
HZO capacitor serially connected to a discrete ceramic capacitor, which ensures a negligible charge
injection through the dielectric [173], or to measurements in MFIM structures with thicker Al2O3

layers similarly suppressing charge injection [155]. These results are also qualitatively consistent
with the analysis previously reported in [214].
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Material Thick.[nm] χ[eV] εr [ad.] ΦM [eV]

HfZrO4 10 2.4 34 -
Al2O3 1.5, 2 1.4 10 -
TiN - - - 4.55

Table 5.3: Material parameters employed in simulations: εr is the relative permittivity, and χ, ΦM are
respectively the electron affinities of the dielectrics and the TiN workfunction. Calculations include domain to
domain variations of αi, βi, γi parameters (with i=1, 2 · · ·nD), corresponding to a ratio σEC

= 10% between
the standard deviation and the mean value of the coercive field EC . The resistivity for the ferroelectric is
ρ=112 Ωm which is consistent with recently reported values for HZO based capacitors [207].

tD σT,acc [cm2] σT,don mD [m0] mF

1.5 nm 2.5 · 10−16 10−16 0.2 0.4
2.0 nm 5 · 10−15 10−15 0.15 0.4

Table 5.4: Material parameters related to tunneling and trapping in TiN/HfZrO4/Al2O3/TiN FTJs. The
value of mD for Al2O3 and mF for HZO are within the range reported in [208–210]; likewise, the values for
σT,acc and σT,don are within the admittedly quite wide range of values reported in the literature [211–213].
The energy cross-section σE was set to 7 meV in all simulations. Acceptor and donor type traps
are uniformly distributed in energy respectively from 0.6 to 2.6 eV and from 1.8 to 3.8 eV below

the HZO conduction band, respectively (see also Fig. 4.6).

Figure 5.11(c) illustrates the I-V curves during the P and N pulses. In simulations with no
traps (black solid line) the displacement current, CS(∂VB/∂t), due to the linear polarization re-
sponse is reproduced well (with CS=[1/CD +1/CF ]

−1 and CD=ε0εD/tD, CF=ε0εF /tF ). However,
the simulated switching current (∂P/∂t) is spread over a large voltage range, which results in a
relatively wide current plateau rather than a fairly narrow current peak exceeding the CS(∂VB/∂t)

contribution. This feature is again in stark disagreement with experiments.
The discrepancies between simulations and experiments in Fig. 5.11 suggest that charge injection

and trapping in the dielectric stack plays an important role in the polarization switching for the
FTJs, when considering the small dielectric thickness [173, 215]. Hereafter we will assume that
conduction in the Al2O3 layer is limited by tunnelling, even if transport mechanisms assisted by
defects through Poole-Frenkel and hopping mechanisms are also possible in thin oxides [184]. We
assume that the most important trapping effects for the polarization switching occur close to the FE-
DE interface, and thus we describe the trap density and trapped charge in terms of areal densities.
However, it is understood that these figures should be regarded as equivalent areal densities possibly
summarizing also a charge trapping in the DE and FE films.

The trapping model exploited in this section is thoroughly presented in Sec. 4.3.6. Acceptor
and donor type traps at the FE-DE interface were described according to the first order dynamic
equation (see Eq. 4.104). Moreover, all simulation parameters regarding the dynamic trapping
model are reported in Tabs. 5.3 and 5.4.

Trapped acceptors and donor charges are defined in Eqs. 4.90 and 4.91 respectively. We here
reported the expressions of Qacc and Qdon for the sake of clarity:

Qacc =
−q
nD

∑
ET

Nacc fT (ET )∆E,
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Figure 5.11: Polarization versus voltage characteristics measured by the PUND method for a 50 µs width
of the triangular pulse and for an Al2O3 FTJ with tD=1.5 nm. Results are reported for the P pulse (a), and
for the N pulse (b). (c) Current versus voltage characteristics corresponding to the PUND measurements.
Corresponding simulations are shown for no trapped charge (black solid line), and for different equivalent
areal density of acceptor and donor type traps.

Qdon =
q

nD

∑
ET

Ndon (1− fT (ET )) ∆E,

where Nacc, Ndon denote the trap densities, ∆E is the energy step between the discrete trap
levels and fT is the traps occupation. The total trapped charge at the FE-DE interface can be
consequently calculated as Qint = Qacc +Qdon.

Figure 5.11 suggests that simulations can be reconciled with experiments only by assuming a
large equivalent trap density, and Fig. 5.11(c) shows that the corresponding simulated I-V plot
can also track quite well the coercive voltage and the shape of the measured current. Figure 5.12
offers a simulation-based insight about the behavior of the average polarization and interface charge
(P and Qint, both averaged over the device area) along a PUND waveform. In this example both
positive and negative P are compensated by Qint to a large extent. This is the basic mechanism by
which the depolarization field can be reduced compared to the case with Qint ≈ 0 C/m2, and the
simulated P -V curves reconciled with experiments. Figure 5.13 also reports the simulated field, ED,
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Figure 5.12: Polarization, P , and interface charge, Qint=Qacc+Qdon, versus time during for the same
PUND simulations as in Figs. 5.11, 5.11. The Al2O3 thickness is tD=1.5 nm and the trap densities are
Nacc = Ndon = 8 · 1013 1/(cm2eV). The VB waveform is also shown (blue line).

Figure 5.13: Electric field across the Al2O3 layer during the P pulse analyzed in Fig. 5.11(a), hence for
tD=1.5 nm.

across the Al2O3 layer during the P pulse analyzed in Fig. 5.11(a). In simulations with no traps,
ED exceeds 30 MV/cm at the VB peak, which is an unrealistically large value and would also lead
to a huge tunnelling current. In the presence of traps, instead, when ED exceeds approximately
15 MV/cm electrons are injected through the dielectric and trapped at the FE-DE interface. The
resulting building up of negative charge quenches the increase of ED, which is a physical picture
consistent with the one proposed in [173]. The reduction of ED induced by the trapped charge is
accompanied by an increase of EF , which is however much smaller in magnitude than ED.

Figure 5.14 shows that the results are qualitatively similar for the FTJs having a slightly thicker
Al2O3 layer. Even for tD = 2.0 nm the simulations with no traps are in sharp disagreement with
experiments. Moreover, the same trap densities result in a fairly good agreement with P-V and I-V
curves for both tD = 1.5 nm and 2.0 nm.

The experiments in Figs. 5.11 and 5.14 suggest that, if it is the charge injection through Al2O3

that feeds the charge trapping at the FE-DE interface, then such an injection must be similarly
effective for tD = 1.5 nm and 2.0 nm. To obtain this behaviour in our tunnelling based model, for
the tD = 2.0 nm case it was necessary to increase the trap cross section σT and slightly decrease
the Al2O3 tunnelling mass (see Tab.5.4). The need for an empirical adjustment of these parameters
may suggest that additional transport mechanisms are involved in Al2O3 [184].
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Figure 5.14: Measured and simulated P-V curves for a PUND waveform as in Fig. 5.11, but for an Al2O3

FTJ with tD=2.0 nm.

5.3.3 Implications for FTJ device dynamics

Figure 5.15: Polarization (black line) and interface charge (red line) during an N pulse and the following re-
tention phase at VB = 0 V. The percentage of positive polarization domains (yellow dashed line, right y axis)
increases during the retention phase. Insets show the band diagram for negative (left) and a backswitched
(right) polarization configurations.

The results of the previous section suggest that charge injection and trapping play an important
role in the polarization switching and stabilization in the MFIM-based FTJs at study. As a corollary,
we found that the interface charge has implications for different aspects of the device design. Figure
5.15, for example, examines the polarization loss at VB = 0 V after the N pulse of a PUND sequence,
which is linked to detrapping. In the simulations of Fig. 5.15, in fact, a fraction of the donor traps
that have positively charged during the N pulse lie below the Fermi level when VB goes back to
zero. During the retention at VB=0 V such donor traps capture electrons and thus become neutral
(see Eq. 4.104). The resulting reduction of the positive interface charge Qint≈Qdon enhances the
depolarization field, which eventually leads to the back-switching of a fraction of domains.

Of course the behaviour in Fig. 5.15 is critically influenced by the position of the trap energy
levels. However, a similar interplay between detrapping and back-switching is plausible in actual
devices. As an example, the polarization loss along time was experimentally investigated in Fig. 5.16,
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where the delay between two consecutive, negative identical pulses was varied within nine orders of
magnitude. The polarization loss was here defined as the ratio between the polarization switched
during the S2 pulse divided by the counterpart during the S1 pulse. Figure 5.16 shows that the lost
polarization increases with time from 100 ns to 10 ms and then saturates for longer times, with a
plateau at typically 30% of the total polarization for an alumina thickness of 1.5 nm. Increasing
the alumina thickness from 1.5 nm to 2.0 nm is expected to increase the depolarization field and
therefore the polarization loss at a fixed trapped charge areal density, which is in fact observed in
Fig. 5.16.

Figure 5.16: FTJ current-voltage characteristics measured at different delay times after a set operation S1
at T = 300 K (schematic of the measurement waveform in inset), showing Pr loss due to depolarization field
and charge detrapping. b) Extracted percentage of remnant polarization lost during tdelay observed on a).
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5.4 Optimal conditions for the synaptic operation of FTJs

Figure 5.17: a), b) Sketches of the Stack Anneal–Bottom (SAB) FTJ and of the Post Anneal–Deposition
(PAD) device, respectively. The main difference between SAB and PAD is the annealing process undergone
by the Al2O3. Devices have a top electrode area of 95×95 µm2. c) Cross section TEM image of the SAB
FTJ stack in this work.

As shown in the previous section, the operation of MFIM FTJs inherently relies on delicate
trade–offs. In fact, the depolarization field enables a polarization-dependent tunneling read cur-
rent, but it also tends to destabilize the polarization in retention and read mode. Moreover, in
ferroelectric–dielectric stacks the charge injection and trapping substantially influence the stability
of polarization and its switching dynamics [173], as it has also been recognized and debated for
ferroelectric–based FETs [174–176].

In this last chapter, we exploit the information legacy of previous sections to understand and
quantitatively investigate the trade–offs implied in the operation of FTJs as synaptic devices. The
calibration of the simulator against experiments clarifies some crucial aspects of the device operation
related to the charge trapping inside the MFIM stack. In particular, our results show that either
a small or a very large trapping induce, respectively, negligible or complete compensation of the
ferroelectric polarization, that hinder the FTJ operation in both cases. In this respect, we report
optimal compensation conditions that can be exploited to optimize FTJs as synaptic devices with
multiple conductance levels.

5.4.1 Device fabrication and experiments

Two types of MFIM FTJs stacks were fabricated with the same nominal thickness for FE and DE
films, but through different process sequences. The sketch of the devices is reported in Fig. 5.17.
The first stack named ‘Stack Anneal–Bottom’ [SAB, Fig. 5.17a)] was fabricated as follows: a 30
nm TiN layer was sputtered on p++ Si substrate as the bottom electrode, then a 3 nm Al2O3

film followed by a 10 nm Hf0.5Zr0.5O2 layer were deposited by atomic layer deposition at 250◦C.
Finally, a 30 nm W layer was deposited as top electrode by sputtering at room temperature. The
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Figure 5.18: Examples for the band diagram across the FE–DE stack in read mode. Polarization is taken
as positive when it points toward the DE–FE interface. VT is the external applied voltage at the metal
contacting the ferroelectric. ΦM is the electrodes work function. χF = 2.4 eV, χD = 1.6 eV are the electron
affinity of the HZO and Al2O3 layer, Ef,MD, Ef,MF are the Fermi levels of the MD and MF electrodes.
(a) The voltage drop VD in the DE is such that the HZO conduction band minimum, EC,I , at the FE–DE
interface is smaller than the Fermi level at the MD electrodeI, thus enabling a tunnelling injection, Itunn,
limited by the dielectric; (b) A smaller VD compared to results in (a) is expected in case of a Poole–Frenkel
current, IPF , in shallow HZO traps [184].

entire stack underwent a crystallization anneal by RTP at 400◦C for 120 s in N2 ambient. The top
electrodes were patterned by Ti/Pt lift–off followed by W etch in H2O2. A TEM image of a SAB
FTJ is shown in Fig. 5.17c).

The second FTJ named ‘Post–Anneal Deposition’ [PAD, Fig. 5.17b)] was fabricated as follows.
After the deposition of the 30 nm bottom TiN electrode onto the p++ Si substrate, a 10 nm HZO
layer followed by a 30 nm TiN film were first deposited. The obtained TiN/HZO/TiN stack was
RTP annealed at 400◦C for 120 s in N2 ambient. After the anneal, the top TiN layer was completely
etched away and the 3 nm Al2O3 film was deposited at 250◦C. The deposition and patterning of
top W pads was then performed with the process described earlier for the SAB device. Note that,
in the PAD FTJ case, the HZO was not in contact with the Al2O3 layer during annealing, while
in the SAB stack the HZO and Al2O3 layers were annealed together. This is expected to lead to
different HZO/Al2O3 interfaces in the two devices and, thus, to different chemical and electrical
boundary conditions for the switching and stabilization of the HZO polarization. In particular, one
may expect a significantly larger density of traps at the annealed HZO/Al2O3 interface of the SAB
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stack compared to the PAD case. TiN/HZO/TiN capacitors with a 10 nm HZO layer were also
fabricated as a reference.

After fabrication, SAB and PAD FTJs are woken–up through 2000 cycles of a triangular wave-
form at 1 kHz with 4.5 V amplitude. The number of wake–up cycles corresponds to what is needed to
wake–up the reference TiN/HZO/TiN capacitors. Then, polarization–voltage (P–V) and current–
volage (I–V) loops are measured by applying 1 ms long triangular pulses to the top electrode,
with the substrate at ground potential. To avoid the breakdown of devices, the maximum voltage
amplitudes used for SAB and PAD FTJs are 5 and 4.5 V, respectively.

5.4.2 Modelling framework and calibration

Figure 5.19: Simulated and experimental charge vs. electric field characteristic for a TiN/HZO/TiN
device. Mean values of the gaussian distributed LGD constants are reported. The model reproduces well
the experiment, validating also the HZO permittivity used in our calculations.

For the FTJs simulations, we used the in–house numerical model reported in Sec. 4.3, the
trapping model of Sec.4.3.6, while the read current framework was developed in Sec. 5.1. In all
simulations, we used ρ = 100 Ω·m and k ≃ 0, consistently with the analysis in [148].

Concerning the read current, IR, it is assumed to be dominated by the tunnelling across the
Al2O3 layer, even if additional mechanisms assisted by defects are also possible [184]. In this respect,
Fig. 5.18 qualitatively shows that a similar band bending across the Al2O3 layer is necessary for
either a current dominated by tunneling (Itunn, a) or by a Poole–Frenkel mechanism in shallow
HZO traps (IPF , b).

We calibrated the model against experiments. In Fig. 5.19 the simulations based on the LGD
equations agree fairly well with the experimental charge versus electric field, EF , curve for a
TiN/HZO/TiN structure, except for the slight asymmetry in the measured P–V. This could be
due to differences in top and bottom TiN–HZO interfaces, that are not considered in the simu-
lations. Such a comparison allowed us to extract the LGD constants. In particular, in order to
reproduce the experiments well, we considered domain–to–domain variations of the LGD parame-
ters by assuming a normal distribution of α, β and γ. The mean values of such distributions are
reported in Fig. 5.19, while the standard deviation of each constant are σα = 25%, σβ = 5% and
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σγ = 8%. We will use these nominal values throughout this section, if not otherwise stated.
In all simulations, the work functions of W and TiN electrodes were taken as 4.5 eV, while for

the tunneling mass and the permittivity we assumed mFE = 0.38 ·m0 and εFE = 34 · ε0 for the
HZO, mDE = 0.15 ·m0 and εDE = 10 · ε0 for the Al2O3, with m0 being the free electron mass and
ε0 the permittivity of vacuum. The values for these material parameters are empirically validated
by the fairly good agreement between simulations and experiments.

Figure 5.20: P–V characteristics for SAB FTJs (blue circles) measured by using the triangular waveform
shown in the inset; Al2O3 thickness is tD = 3 nm. Corresponding simulations for no trapped charge (green
line) or by accounting for acceptor and donor traps (blue line) are shown.

Figure 5.21: I–V curves corresponding to the P–V plots in Fig. 5.20. Trap densities are the same as in
Fig. 5.20 and are summarized in Tab. 5.5.

5.4.3 Evidence of trap contribution in FTJ operation

Figure 5.20 compares simulations and experiments concerning the polarization–voltage (P–V ) curves
of the SAB devices. As it can be seen, consistently with Fig. 5.3 of Sec. 5.1 and Fig. 5.11 of Sec. 5.3,
simulations neglecting charge injection and trapping (green line) exhibit a much more stretched P–
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V curves compared to experiments. These simulation results are actually qualitatively consistent
with experiments reported for an HZO capacitor serially connected to a discrete ceramic capac-
itor ensuring zero charge injection [155, 173]. Similarly, in Fig. 5.21, also current–voltage (I–V )
simulations hardly show any switching current when trapping is neglected.

A fairly good agreement with P–V and I–V experiments can instead be achieved by including,
in the simulations, an adequate charge density at the FE–DE interface (see blue lines in Figs. 5.20
and 5.21). This is a clear evidence of the contribution of charge trapping in the operation of FTJs,
that is in line with recent results reported for FeFET devices [174–176]. It is worth mentioning that
in Figs. 5.20, 5.21 and 5.22 the LGD constants had to be changed compared to Fig. 5.19, in order
to increase the coercive field Ec, thus improving the agreement with experiments. This increase of
the apparent Ec in MFIM compared to MFM structures has been previously reported and it has
been ascribed to the division of external voltage between DE and FE layer. The capacitance of the
ferroelectric increases as the field approaches Ec, causing an increased drop across the DE layer and
thus higher apparent Ec than in MFM [216].

Table 5.5: Trapping cross sections σT,acc, σT,don, σE used in simulations throughout this section and trap
densities used in the simulations of Fig. 5.20 (SAB) and Fig. 5.22 (PAD).

Nacc Ndon σT,acc σT,don σE
[cm−2eV −1] [cm−2eV −1] [cm2] [cm2] [eV ]

SAB 5.25 · 1013 2.5 · 1013 3.5 · 10−14 8 · 10−16 7 · 10−3

PAD 1.12 · 1013 1 · 1013 7 · 10−14 7 · 10−14 7 · 10−3

Figure 5.22: Comparison similar that in Fig. 5.20 between simulations and experiments for the P–V curves
for PAD devices. Corresponding trap densities are reported in Tab. 5.5. Green line shows the no traps case,
while red line is the simulation with traps included.

Figure 5.22 reports an analysis similar to that in Fig. 5.20 for the PAD devices. Even for the PAD
FTJs, the simulations neglecting trapping (green line) exhibit large discrepancies with experiments
(symbols). However, the trap density matching simulations with experiments is smaller than the
concentration used for the SAB devices (see Tab. 5.5). It should be mentioned that not only the
processing conditions but also the FTJ wake–up may influence the density of the electrically active
defects. However, since both FTJs underwent the same wake–up sequence, we expect that this
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difference is due to the different annealing conditions for the two devices. The discrepancy in the
simulated interfacial charge in SAB and PAD samples is best illustrated by Fig. 5.23, reporting
the average polarization and trapped charge Qint = (Qacc +Qdon) along a triangular VT waveform.
Figure 5.23 shows that the polarization is partly compensated by Qint in both devices, but the
effect is more prominent in SAB FTJs. Again, this is ascribed to the different annealing sequence
between the two devices and Fig. 5.23 provides an insight about the role of the trap density at the
HZO/Al2O3 interface in the FTJ operation.

Figure 5.23: Simulated polarization (P , dashed lines) and trapped interface charge (Qint, symbols) aver-
aged across the device area for the SAB and PAD simulations in Figs. 5.20 and 5.22; the VT waveform is
shown as a yellow solid line. The used interfacial trap densities are reported in Tab. 5.5.

Figure 5.24: Measured current density for a SAB device at a read voltage VR = 2 V (black diamonds)
versus the corresponding voltage drop, VD, across the 3 nm Al2O3 estimated by using simulations with
different density, Nacc [cm−2eV−1], of acceptor traps. In these simulations, the density of donors does not
affect the final result. Measured tunnelling current in thin SiO2 layers (red symbols) and corresponding
simulations with the tunnelling model of this work are reported as a reference.

In read mode, the compensation of the positive polarization is expected to reduce the band
bending and thus the read current IR (see Fig. 5.18). In this regard, Fig. 5.24 shows the measured
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ON current density of about 0.12 A/m2 (black diamonds) for SAB FTJs, together with the tunnelling
current density in metal–SiO2–metal (MIM) systems [217]; incidentally, our tunnelling model is in
good agreement with experiments in the MIM systems. For the FTJ device, the voltage drop, VD,
across the Al2O3 layer is estimated by simulations and for different Nacc. Figure 5.24 shows that
the estimated VD for Nacc ≃ 5 · 1013 cm−2eV−1 (see SAB parameters in Tab. 5.5) is clearly smaller
than the value VD = (ΦM − χF )/q = 2.1 V required to have a read current IR limited by the Itunn

through the Al2O3 film alone [see Fig. 5.18a)]. Consistently with this picture, the measured IR is
much smaller than the Itunn in MIM systems, and it may be limited by Poole–Frenkel conduction
[see IPF in Fig. 5.18b)].

5.4.4 Polarization–compensation–aware design of the FTJ

Figure 5.25: Minimum, IR,min, and maximum, IR,max, simulated read current (right y–axis) versus the
trap density at read voltage VR = 2 V. IR,min and IR,max correspond to a SET pulse voltage of VSET,min =
2.5 V and VSET,max = 4.5 V, respectively. The corresponding tunnel electroresistance, TER = (IR,max −
IR,min)/IR,min is reported (left y–axis).

In recent designs of neuromorphic processors, a reasonable target for the minimum read current
is set to about 100 pA [102, 186], which requires a read current density of about IR/A ≃ 100 A/m2

for an FTJ area of A ≈ 1 µm2. Hereafter, we use our calibrated simulations to examine the optimal
design of FTJs in terms of IR and tunneling electroresistance TER = (IR,max− IR,min)/IR,min. For
the simulations in this paragraph, the LGD constants are those in Fig. 5.19, calibrated on the MFM
device, in order to precisely account for the characteristics of the integrated HZO layer.

Figure 5.25 reports the simulated minimum and maximum read current densities and TER for
a FTJ having an Al2O3 thickness scaled down to tD = 2.5 nm and for different trap densities
Nacc = Ndon

1. Despite the uncertainties that admittedly affect our calculations of the read current
and have been also discussed in Fig. 5.24, the IR and the TER values calculated at large trap
densities are in–line with recent literature on SoA FTJ devices, showing read currents in the 0.05–
0.6 A/m2 range and TER values between 5 and 12.5 [141, 202, 218].

Quite interestingly, Figure 5.25 shows that the TER exhibits an optimal value for Nacc around

1This simplifying assumption of an equal density of acceptor and donor traps has been introduced in order to
limit the number of free parameters in the analysis carried out in this section. We expect that the main outcome of
this discussion does not change if Nacc and Ndon are allowed to be different.
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Figure 5.26: Average polarization, P , interface charge, Qint, and net or compensated polarization (P+Qint)
vs. the trap density in read condition (VR = 2 V) and for different SET voltages. At low Nacc, (P +Qint)
degrades due to depolarization field and back–switching, while at large Nacc, (P +Qint) decreases due to a
large P compensation.

4 ·1013 cm−2eV−1, which stems from the behavior of the net or compensated polarization (P +Qint)

illustrated in Fig. 5.26. In fact, at low Nacc values, the compensation of the positive P is too weak,
so that the depolarization field EF increases and destabilizes the polarization. In this respect, we
calculated the difference between the number of domains with positive spontaneous polarization P at
the maximum value of the SET voltage and at zero external bias (i.e. during retention) and then we
divided this value by the overall number of domains. This is indeed the fraction of the domains set to
positive P during the SET pulse that back–switch to negative P during retention. We defined such
value as back—switching in Fig. 5.27b), which shows that at low Nacc a significant back–switching
of the ferroelectric domains occurs. The large back—switching at low Nacc deteriorates the TER in
Fig. 5.25.

At large Nacc, instead, there is an excessive compensation that reduces (P +Qint). This implies
an increase of the HZO conduction band minimum, EC,I , at the FE–DE interface during the read
mode, which is reported in Fig. 5.27a). Such an EC,I raise leads to the large IR drop at high Nacc

shown in Fig. 5.25. Moreover, a large compensation tends to merge the states obtained by different
VSET values, which seriously hinders a multi–level read current and thus the operation as a synaptic
device.

The results of Fig. 5.25 and the inspection of the internal quantities performed in Figs. 5.26 and
5.27, clearly show that an optimal compensation condition exists for the operation of FTJs. In this
respect, as discussed above, both negligible and excessive charge–trapping–induced compensation
of the ferroelectric polarization are detrimental for the operation of the FTJs under study. Indeed,
there exists a quite delicate balance between the suppression of back–switching and TER values
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Figure 5.27: a) HZO conduction band minimum, EC,I , in read mode versus the trap density, where the
Fermi level at the MD electrode is EF,MD = 0 eV (see inset). b) Ferroelectric domain back–switching, BSW,
defined as the percentage of domains having a negative P in retention after being set to a positive P during
the SET pulse.

enabling a multi–level operation in read mode. In Fig. 5.28, for a given FTJ structure, we leverage
the optimal design condition in Fig. 5.25 and show that eight current levels can be placed in
the memory window of the FTJ for the optimal compensation condition corresponding to Nacc =

4 · 1013 cm−2eV−1, thus enabling a 3–bit synaptic weight resolution. It is worth mentioning that
such an optimal condition corresponds to a VD across the Al2O3 layer that is very close to or larger
than the value (ΦM − χF )/q = 2.1 V required to have tunnelling through the thin dielectric film
alone [see Figs. 5.18a) and 5.27]. A comparison of the calculated IR with experiments suggests that
it is probably difficult in actual FTJs to reach this favorable condition where IR is only limited by
the tunnelling through the Al2O3 layer, as also discussed in Fig. 5.24.
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Figure 5.28: Simulation results for the FTJ of Fig. 5.25 under optimal compensation conditions corre-
sponding to Nacc = 4 · 1013 cm−2eV−1. The box plots reveal overlapping distributions for the current levels
for small area FTJs with nD = 100 ferroelectric domains. Simulations have been performed for a small
device area of 2500 nm2 (corresponding to a domain size d = 5 nm).
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Chapter 6

Conclusions

The project of this Ph.D. has focused on the development of energy reduction methodologies for
information technology and, in particular, for AI applications. In this thesis, we report a top-
down overview of neuromorphic computing solutions, suitable to create novel and more efficient
computational paradigms compared to von-Neumann-based AI computational platforms. In this
perspective, we first exploited a learning strategy that leverages the exact computation of the
gradient in SNNs. We observed that a gradient descent strategy alone is not sufficient to obtain
a small spike rate and good accuracy in deep SNNs, because a challenging trade-off between the
frequency of spikes and the minimization of the loss function emerges during the training. Acting
on the spike rate only, in fact, can cause many neurons to be silent, hence resulting in a gradient
vanishing problem. On the other hand, focusing only on the network accuracy almost invariably
results in a large spike rate. The neural over-excitation issue gains more relevance as the network
becomes deeper or the number of neurons becomes larger, hence we proposed a learning strategy
composed of two phases. The first phase uses an “augmented” loss function (LA) that is built
to avoid silent neurons. While the minimization of LA does not converge to the minimum of
the real metric of interest (the cross-entropy), it tends to converge to a point that is close to
such a minimum and it is thus an effective starting point for the second training phase. Here, a
“correct” loss (L) is used that still pursues also a minimization of the spike rate, thus leading to
the convergence of the network towards the minimum of the cross-entropy, while maintaining at
the same time a small average spike rate. Even though we applied this methodology to a relatively
simple network that takes advantage of the computational efficiency of Leaky Integrate and Fire
neurons, the mathematical framework can be exploited for different tasks, network topologies, or
neural implementations. It would be interesting, in fact, to apply the combination of the two-
phase learning and the Event-Prop back-propagation algorithm to different applications, such as
Autoencoders. These networks are designed to shrink information from a large set of inputs/signals
to a more compact and dense representation. These networks are used in many fields as data
aggregators, transformers, or anomaly detectors [219]. Moreover, spikes-based Autoencoders can
take advantage of the intrinsic duality of space-time representation of the data as spikes. Therefore,
differently from normal Autoencoders based on classical neural networks, spike-based Autoencoders
can exploit time to represent information and reduce the overhead of the area needed to acquire
and process data. In this conversion process, however, the minimum average spike rate needed to
represent information in the internal layer limits the performance of the network in terms of energy
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consumption. Consequently, the two-phase learning introduced in this thesis can be applied not
only to improve the efficacy of the learning process, but also to find out an optimum in terms of
reconstruction capability and power efficiency. As a proof of concept, we reported in Fig. 6.1 a
sketch of a transformer Autoencoder made by a 5 spiking layers network. In this simple example,
the network takes as input an MNIST image, shrinks the input data with an encoder network to
a hidden internal state of 60 neurons, and then expands the internal representation with a decoder
network to recreate the input image. The input/output encoding and learning methodologies are
compatible with the one reported in chapter 2. As can be observed, after training the network,
the internal representation of the input data shows a prominent neural activity that must be taken
under control in order to limit the power consumption of the system (each point in the graph depicts
a spike emitted by a neuron of the middle layer). The one reported in Fig. 6.1 is just an example of a
possible reconstruction application, and the details of this implementation are not reported to keep
the focus on the working principle and approach followed in this thesis. Moreover, among several
open questions on the efficacy of the Event-Prop algorithm, the behavioral relationship between
networks implemented with different neural models and trained with the Event-Prop algorithm
remains to be explored. Nonetheless, a step ahead in this direction has been reported in this thesis
in Appendix B, where a full set of equations extends the training algorithm Event-Prop to the
Izhikevich neural model. Therefore, a direct comparison between SNNs based on the Izhikevic or
the LIF models trained with Event-Prop can be performed. Moreover, the two–phase learning can
be considered during the training of those different implementations of neural networks.

After a deep analysis of artificial neural behavior, we then focused on another fundamental
building block of neuromorphic computing: artificial synapses. In fact, as already mentioned, neu-
romorphic computing aims to change the computational paradigm not just by the use of a more
biologically plausible neural activation, but also with the implementation of SNNs in VLSI circuits.
In this respect, memristive memories are a promising option to implement artificial synapses in
the BEOL stacked in cross-bar arrays. Among different memristive technologies reported in the
literature, we focused on FTJs. Hence, we first introduced the working principle of FTJs and the
physical modeling of the MFIM structure. After that, we calibrated our model against experiments.
Thanks to simulations, we observed delicate tradeoffs between the reading current modulation and
the depolarization field that hampers the retention of FTJs based synaptic devices. Then, we inves-
tigated the behavior of FTJs in the presence of charge trapping. As for the detrimental effects of the
depolarization field, we demonstrated that the contribution of charge trapping can be beneficial for
the stabilization of the polarization during retention. However, the trapped charge may reduce the
read current dynamics, thus limiting the benefits of an optimized design for ferroelectric tunneling
junctions. From this perspective, we thoroughly studied the switching dynamics of the MFIM ferro-
electric capacitors and we observed a strong dependence on the injection and trapping of charge into
the dielectric stack, which compensates the ferroelectric polarization to a large extent. We argue
that the understanding and control of such a charge compensation is crucial for the design of FTJs
based on an MFIMs structure. Therefore to better understand the interplay between ferroelectric
polarization and charge trapping, in Sec. 5.4, we presented a joint effort between numerical modeling
and experiments. We identified and physically explained the optimal compensation condition for
a robust operation of FTJs. Even if tailoring trap densities may be challenging from a technolog-
ical standpoint, we experimentally demonstrated that appropriate processing steps and annealing
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Figure 6.1: Example of Spike-based Autoencoder which generates a lossy version of the MNIST image in
input. In particular, the Autoencoder is formed by 5 layers (784/150/60/150/784) of fully connected LIF
spiking neurons. In the middle of the picture, 5 examples of image reconstructions with the corresponding
central layer activity are reported. In particular, the five graphs depict, in time, the neural spike activity of
the internal neurons with a dot. Neurons are shown in different colors.
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conditions can lead to different trap densities at the FE-DE interface of actual FTJs. Moreover,
the trap density can be partly controlled in ALD deposited Al2O3 films by tuning the deposition
parameters, such as the precursor pulse duration, the oxidant precursor type (water, O2 plasma,
ozone), the deposition temperature, and the dosing time. These processing parameters have been
shown to change the Al2O3 defect density at least by an order of magnitude [220–222]. Another
pathway is to include an ultrathin charge trapping layer between the tunneling dielectric and HZO
[223]. As a final remark, the insertion of an ultra–thin metal layer at the FE-DE interface may
also be an interesting design option to control the compensation of the ferroelectric polarization in
FTJs, as it has been suggested in [160].

In the pursuit of a good matching between simulations and experiments, a simplified analysis
helped to understand the main building blocks of the theory behind ferroelectricity. Therefore,
some approximations have been taken into account to reduce the number of fitting parameters and
degrees of uncertainty. This means future developments of this work should discuss and verify
the validity of our analysis, taking also into account an improved model validated on more exper-
imental conditions compared to the one reported in this manuscript. First of all, we neglected
the dependency between the electric field and the intrinsic resistivity of the ferroelectric material,
which regulates the switching dynamics of the ferroelectric domains (ρ parameter). However, a
deeper understanding of this parameter can improve simulation results with different external slew–
rate conditions. In fact, the interplay between domain switching and charge traps is still not fully
understood, and it requires further analysis with different experimental conditions to derive a set
of equations that satisfies the whole landscape of possibilities: the presence of charges trapped at
the interface between FE-DE can modify the internal field of the structure and, consequently, the
switching speed of the ferroelectric domains. On the other hand, the dynamics of the domains may
influence the band diagram of the structure, thus changing the transmission coefficients linked with
tunneling fluxes of carriers between metals and the FE-DE interface.

Moreover, through this manuscript we assumed direct tunneling as the principal transport mech-
anism. However, as discussed in chapter 5.4, different transport mechanisms can play a prominent
role in the charge trapping and the tunneling current of FTJs. Therefore, a direct comparison
between transport mechanisms (such as direct tunneling, indirect tunneling, Pool-Frenkel etc.)
supported by experiments can shed light on this topic and help the research community to improve
further the FTJs usability and reliability, allowing the creation of even more energy efficient and
intelligent technological devices.
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Appendix A

Proof of Event-Prop backpropagation
algorithm using adjoint variables in LIF
Spiking Neural Networks

The equations reported below describe the free dynamic of a simple model for LIF spiking neurons:
τm

dV
dt = −V +Φ(D)RI

τs
dI
dt = −I

τd
dD
dt = −D

(A.1)

then we can define implicit version of A.1:

fV := τmV̇ +V −RI (A.2)

fI := τsİ+ I (A.3)

fD := τdḊ+D (A.4)

where V, I, ,D, fV, fI, fD ∈ ℜNn and Nn is the number of neurons in the network. Moreover the
transition condition of the the state variables reported below for a spiking neuron (denoted with
n(k)) and a non spiking neuron (denoted with m) are:

(
V+
)
n(k)

= γ (A.5)

(
V+
)
m

=
(
V−)

m
(A.6)

(
I+
)
n(k)

= G
(
I−
)
n(k)

(A.7)

(
I+
)
m

=
(
I−
)
m
+ βWm,n (A.8)

(
D+
)
n(k)

= ϵ (A.9)
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(
D+
)
m

=
(
D−)

m
(A.10)

While the threshold condition for spiking is defined as:

(
V−)

n(k)
= θ (A.11)

The cost function has been defined as follows:

L = lp(t
post) +

∫
T
lV
(
tpost,V

)
dtpost (A.12)

and, in general, the integral can be split between spikes events because lV
(
tpost,V

)
is always defined

and limited in time:

L = lp(t
post) +

Npost∑
k=0

∫ tpostk+1

tpostk

lV
(
tpost,V

)
dtpost (A.13)

where lV
(
tpost,V

)
: ℜNn → ℜ. Moreover, the sum over k starts from 0, consequently, t0 is the

beginning of the simulation and, in general, is equal to 0 s. The time gap t0 − t1 is the inactivity
period of the network where no spike has been emitted by the network.

In order to calculate the gradient of the loss function, we need to add the adjoint variables λV,
λI and λD to A.13 :

L = lp(t
post) +

Npost∑
k=0

∫ tpostk+1

tpostk

lV
(
tpost,V

)
+ λV · fV + λI · fI + λD · fD dtpost (A.14)

Therefore, by differentiating the payoff function we obtain:

dL

dWi,j
=
dlp(t

post)

dWi,j
+

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost
dlV

(
tpostk ,V

)
dWi,j

+

+
dλV · fV
dWi,j

+
dλI · fI
dWi,j

+
dλD · fD
dWi,j

(A.15)

and because the adjoint functions don’t depend on the weights:

dL

dWi,j
=
dlp(t

post)

dWi,j
+

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost
dlV

(
tpost,V

)
dWi,j

+

+ λV ·
dfV
dWi,j

+ λI ·
dfI

dWi,j
+ λD ·

dfD
dWi,j

(A.16)

Now each term should be expanded. Let’s begin with the loss functions terms lV
(
tpost,V

)
and

lp(t
post). These loss functions depend indirectly from the weights of networks, therefore, we can

compute the total derivative with the chain rule:

dlV

(
tpostk ,V

)
dWi,j

=
∂lV

(
tpostk ,V

)
∂tpostk

∂tpostk

∂Wi,j
+

∂lV

(
tpostk ,V

)
∂V

∂V

∂Wi,j
(A.17)
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dlp(t
post)

dWi,j
=

Npost∑
k=0

∂lp(t
post
k )

∂tpostk

∂tpostk

∂Wi,j
(A.18)

Then, taking into account A.2 and A.3:

λV ·
dfV
dWi,j

= λV ·

(
τm

dV̇

dWi,j
+

dV

dWi,j
− Φ(D)R

dI

dWi,j

)
(A.19)

λI ·
dfI

dWi,j
= λI ·

(
τs

dİ

dWi,j
+

dI

dWi,j

)
(A.20)

λD ·
dfD
dWi,j

= λD ·

(
τD

dḊ

dWi,j
+

dD

dWi,j

)
(A.21)

Because the weights of the network are fixed in time, and in particular between two spikes events
(also due to Gronwall’s theorem) we can exchange the position of the differentials operators:

d

dWi,j

[
d

dt

]
=

d

dt

[
d

dWi,j

]
Substituting then Eqs. A.17, A.18, A.19, A.20 and A.21 in eq. A.16, we obtain:

dL

dWi,j
=

Npost∑
k=0

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j

+

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost
∂lV

(
tpostk ,V

)
∂tpostk

∂tpostk

∂Wi,j
+

∂lV

(
tpostk ,V

)
∂V

∂V

∂Wi,j

+ λV ·

(
τm

dV̇

dWi,j
+

dV

dWi,j
− Φ(D)R

dI

dWi,j

)

+ λI ·

(
τs

dİ

dWi,j
+

dI

dWi,j

)
+ λD ·

(
τD

dḊ

dWi,j
+

dD

dWi,j

)
(A.22)

Then, we need to integrate by parts:

∫ tpostk+1

tpostk

∂lV
(
tpost,V

)
∂tpost

∂t

∂Wi,j
dtpost =

=

[
lV
(
tpost,V

) ∂t

∂Wi,j

]tk+1

tk

−
∫ tpostk+1

tpostk

lV
(
tpost,V

) ∂

∂Wi,j

[
∂tk
∂t︸︷︷︸
=1

]
︸ ︷︷ ︸

=0

dtpost

= lV

(
tpostk+1,V

) ∂tk+1

∂Wi,j
− lV

(
tpostk ,V

) ∂tk
∂Wi,j

(A.23)
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∫ tpostk+1

tpostk

τmλV ·
∂V̇

∂Wi,j︸ ︷︷ ︸
= d

dt

[
∂V

∂Wi,j

] dtpost =

[
τmλV ·

∂V

∂Wi,j

]tk+1

tk

− τm

∫ tpostk+1

tpostk

˙λV ·
∂V

∂Wi,j
dtpost =

= τmλV ·
∂V

∂Wi,j

∣∣∣∣
tk+1

− τmλV ·
∂V

∂Wi,j

∣∣∣∣
tk

− τm

∫ tpostk+1

tpostk

˙λV ·
∂V

∂Wi,j
dtpost (A.24)

The same happens for I and D:

∫ tpostk+1

tpostk

τsλI ·
∂İ

∂Wi,j
dtpost = τsλI ·

∂I

∂Wi,j

∣∣∣∣
tk+1

− τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk

−τs
∫ tpostk+1

tpostk

λ̇I ·
∂I

∂Wi,j
dtpost (A.25)

∫ tpostk+1

tpostk

τdλD ·
∂Ḋ

∂Wi,j
dtpost = τdλD ·

∂D

∂Wi,j

∣∣∣∣
tk+1

− τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk

− τd

∫ tpostk+1

tpostk

˙λD ·
∂D

∂Wi,j
dtpost

(A.26)

Combining everything in A.22, we obtain:

dL

dWi,j
= A+B + C (A.27)

where A,B and C are respectively:

A =

Npost∑
k=0

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
(A.28)

B =

Npost∑
k=0

lV

(
tpostk+1,V

) ∂tpostk+1

∂Wi,j
− lV

(
tpostk ,V

) ∂tpostk

∂Wi,j
+

+ τmλV ·
∂V

∂Wi,j

∣∣∣∣
tk+1

− τmλV ·
∂V

∂Wi,j

∣∣∣∣
tk

+

+ τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk+1

− τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk

+

+ τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk+1

− τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk

(A.29)
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C =

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost

[
−τm ˙λV + λV +

∂lV
(
tpost,V

)
∂V

]
∂V

∂Wi,j

+
[
−τsλ̇I + λI − Φ(D)RλI

] ∂I

∂Wi,j
+
[
−τd ˙λD + λD

] ∂D

∂Wi,j

(A.30)

In particular, C becomes = 0 when the terms between square brakets are imposed = 0, defining
in this way the dynamic response for the adjoint functions:

τm
dλV

dt
= λV +

∂lV
(
tpost,V

)
∂V

(A.31)

τs
dλI

dt
= λI − Φ(D)RλV (A.32)

τd
dλD

dt
= λD (A.33)

The loss function lp(t
post) is null in the time interval [t0; t1] (the inactivity period between the

beginning of the simulation and the first spike time emitted by the network). Consequently, all its
derivative in that time gap are null. Therefore the A term could be reduced as:

A =

Npost∑
k=1

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
(A.34)

Now, B presents a numerical series that could be group as:

Npost∑
k=0

a−k+1 − a+k = a−
∣∣
1
− a+

∣∣
0
+ a−

∣∣
2
− a+

∣∣
1
+ ...+ a−

∣∣
Npost+1︸ ︷︷ ︸
=0

− a+
∣∣
Npost

=

= − a+
∣∣
0
+

Npost∑
k=1

[
a− − a+

]∣∣
tk

(A.35)

Therefore, applying this formalism we obtain:

B =− l+V

(
tpost0 ,V

) ∂tpost0

∂Wi,j
+

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+

− τm

[
λ+
V ·

∂V+

∂Wi,j

]
k=0

+ τm

Npost∑
k=1

[
λ−
V ·

∂V−

∂Wi,j
− λ+

V ·
∂V+

∂Wi,j

]
tk

− τs

[
λ+
I ·

∂I+

∂Wi,j

]
k=0

+ τs

Npost∑
k=1

[
λ−
I ·

∂I−

∂Wi,j
− λ+

I ·
∂I+

∂Wi,j

]
tk

− τd

[
λ+
D ·

∂D+

∂Wi,j

]
k=0

+ τd

Npost∑
k=1

[
λ−
D ·

∂D−

∂Wi,j
− λ+

D ·
∂D+

∂Wi,j

]
tk

(A.36)
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Now, the starting condition of the internal variable V, I and D are parameter independent
(V|k=0 = 0, I|k=0 = 0, D|k=0 = 0), therefore:(

∂V+

∂Wi,j

)
n

∣∣∣∣
k=0

=

(
∂I+

∂Wi,j

)
n

∣∣∣∣
k=0

=

(
∂D+

∂Wi,j

)
n

∣∣∣∣
k=0

= 0

Moreover, the loss function l+V

(
tpost0 ,V

)
is also null at the beginning of the simulation. Therefore

we can re-write the B term as:

B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+ τm

[
λ−
V ·

∂V−

∂Wi,j
− λ+

V ·
∂V+

∂Wi,j

]
tk

+

τs

[
λ−
I ·

∂I−

∂Wi,j
− λ+

I ·
∂I+

∂Wi,j

]
tk

+ τd

[
λ−
D ·

∂D−

∂Wi,j
− λ+

D ·
∂D+

∂Wi,j

]
tk

(A.37)

Now, we can apply the implicit function theorem to the discontinuity equations of all neural
state variable (Eqs. A.5, A.6, A.7, A.8, A.7, A.8 and A.11):

dtk
dWi,j

= −

(
∂(V−−θ)
∂Wi,j

)
n(k)(

∂(V−−θ)
∂tk

)
n(k)

= −

(
∂V−

∂Wi,j

)
n(k)(

V̇−
)
n(k)

(A.38)

dtk
dWi,j

= −

(
∂(V+−γ)
∂Wi,j

)
n(k)(

∂(V+−γ)
∂tk

)
n(k)

= −

(
∂V+

∂Wi,j

)
n(k)(

V̇+
)
n(k)

(A.39)

dtk
dWi,j

= −

(
∂(V−−V+)

∂Wi,j

)
m(

∂(V−−V+)
∂tk

)
m

= −

(
∂V−

∂Wi,j

)
m
−
(

∂V+

∂Wi,j

)
m(

V̇−
)
m
−
(
V̇+
)
m

(A.40)

Then, taking into account that eq. A.1 is always verified for a non-spiking neuron we can write:
Consequently, considering eq. A.10:(

V̇−
)
m
−
(
V̇+
)
m

= −Rϕ(D−
m)

τm

((
I−
)
m
−
(
I+
)
m

)
+

1

τm

((
V−)

m
−
(
V+
)
m

)︸ ︷︷ ︸
=0

(A.41)

Therefore, substituting eqs. A.6 and A.8:

(
V̇−
)
m
−
(
V̇+
)
m

= −
Rϕ ((D−)m)

τm

((
I−
)
m
+ βWm.n −

(
I−
)
m

)
= −

Rϕ ((D−)m)

τm
βWm.n

(A.42)

Now, we can substitute the result just obtained in eq. A.42 in eq. A.40:(
∂V+

∂Wi,j

)
m

=

(
∂V−

∂Wi,j

)
m

−
Rϕ ((D−)m)

τm
βWm.n

dtk
dWi,j

(A.43)
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Then, the dtk/dW can be expressed by considering eq. A.38:

dtk
dWi,j

= − 1(
V̇−
)
n(k)

(
∂V−

∂Wi,j

)
n(k)

= − τm− (V−)
n(k)︸ ︷︷ ︸

=θ

+R (I−)n(k) ϕ
((

D−)
n(k)

)
︸ ︷︷ ︸

=1


(
∂V−

∂Wi,j

)
n(k)

= − τm(
−θ +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

(A.44)

Natural existence condition is
(
V̇
)
n(k)
̸= 0 that should be always verified. Considering eq. A.39

we have:

dtk
dWi,j

= −
(
∂V+

∂Wi,j

)
n(k)

1(
V̇+
)
n(k)

= −
(
∂V+

∂Wi,j

)
n(k)

τm− (V+
)
n(k)︸ ︷︷ ︸

=γ

+R
(
I+
)
n(k)︸ ︷︷ ︸

G(I−)n(k)

ϕ
(
(D+)n(k)

)
= −

(
∂V+

∂Wi,j

)
n(k)

τm(
−γ +RG (I−)n(k) ϕ

(
(D+)n(k)

))

(A.45)

Substituting A.39 in A.45 we obtain:

(
∂V+

∂Wi,j

)
n(k)

=
γ −RG (I−)n(k) ϕ

(
(D+)n(k)

)
(
θ −R (I−)n(k)

) (
∂V−

∂Wi,j

)
n(k)

(A.46)

By applying the definition of partial derivative to eq. A.7 we obtain:

d
(
(I+)n(k) −G (I−)n(k)

)
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

dWi,j

dWi,j︸ ︷︷ ︸
=1

+
∂
(
(I+)n(k) −G (I−)n(k)

)
∂tk

dtk
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

+

((
˙I+
)
n(k)
−G

(
˙I−
)
n(k)

)
dtk
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

+
1

τs

((
I+
)
n(k)
−G

(
I−
)
n(k)

)
︸ ︷︷ ︸

=0

dtk
dWi,j

(A.47)
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This means that the total derivative is equal to the partial derivative, consequently we have:(
∂I+

∂Wi,j

)
n(k)

= G

(
∂I−

∂Wi,j

)
n(k)

(A.48)

By applying the implicit function theorem to eq. A.8 we obtain:

dtk
dWi,j

= −

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− β

(
∂Wm,n

∂Wi,j

)
m(

∂I+

∂tk

)
m︸ ︷︷ ︸

( ˙I+)
m

−
(
∂I−

∂tk

)
m︸ ︷︷ ︸

( ˙I−)
m

−β
(
∂Wm,n

∂tk

)
m︸ ︷︷ ︸

=0

= −τs

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− βδi,mδj,n

− (I+)m + (I−)m

= τs

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− βδi,mδj,n

βWm,n

(A.49)

Therefore, we can rewrite the equation below as:(
∂I+

∂Wi,j

)
m

=
βWm,n

τs

dtk
dWi,j

+ βδi,mδj,n +

(
∂I−

∂Wi,j

)
m

(A.50)

We applied the implicit function theorem on eq. A.9:

dtk
dWi,j

= −

(
∂D+

∂Wi,j

)
n(k)(

∂D+

∂tk

)
n(k)︸ ︷︷ ︸

(Ḋ+)
m

= τD

(
∂D+

∂Wi,j

)
n(k)

(D+)n(k)
(A.51)

And consequently we have:

(
∂D+

∂Wi,j

)
n(k)

=
1

τD

dtk
dWi,j

(
D+
)
n(k)︸ ︷︷ ︸

=ϵ

= − τmϵ

τD

(
−θ +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

(A.52)

While the m-component is similar to eq. A.48 and corresponds to:(
∂D+

∂Wi,j

)
m

=

(
∂D−

∂Wi,j

)
m

(A.53)

Then, combining eqs. A.54, A.44,A.52 and A.50, we obtain:
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(
∂V+

∂Wi,j

)
m

=

(
∂V−

∂Wi,j

)
m

−
Rϕ ((D−)m)

τm
βWm,n

dtk
dWi,j

=

(
∂V−

∂Wi,j

)
m

+
RβWm,nϕ ((D−)m)

−θ +R (I−)n(k)

(
∂V−

∂Wi,j

)
n(k)

(A.54)

(
∂I+

∂Wi,j

)
m

= − βWm,nτm

τs

(
−θ +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+ βδi,mδj,n +

(
∂I−

∂Wi,j

)
m

(A.55)

Now, considering the inner products of eq. A.37 we can expand each term as represented below:

λ · d = (λ)n(k) (d)n(k) +

Nn−1∑
m̸=n(k)

(λ)m (d)m

Consequently, eq. A.36 expands in:

B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+

+ τm
(
λ−
V

)
n(k)

(
∂V−

∂Wi,j

)
n(k)

+ τm

Nn−1∑
m ̸=n(k)

(
λ−
V

)
m

(
∂V−

∂Wi,j

)
m

+

− τm
(
λ+
V

)
n(k)

(
∂V+

∂Wi,j

)
n(k)

− τm

Nn−1∑
m ̸=n(k)

(
λ+
V

)
m

(
∂V+

∂Wi,j

)
m

+

+ τs
(
λ−
I

)
n(k)

(
∂I−

∂Wi,j

)
n(k)

+ τs

Nn−1∑
m̸=n(k)

(
λ−
I

)
m

(
∂I−

∂Wi,j

)
m

+

− τs
(
λ+
I

)
n(k)

(
∂I+

∂Wi,j

)
n(k)

− τs

Nn−1∑
m̸=n(k)

(
λ+
I

)
m

(
∂I+

∂Wi,j

)
m

+

τD
(
λ−
D

)
n(k)

(
∂D−

∂Wi,j

)
n(k)

+ τD

Nn−1∑
m̸=n(k)

(
λ−
D

)
m

(
∂D−

∂Wi,j

)
m

+

− τD
(
λ+
D

)
n(k)

(
∂D+

∂Wi,j

)
n(k)

− τD

Nn−1∑
m̸=n(k)

(
λ+
D

)
m

(
∂D+

∂Wi,j

)
m

+

(A.56)
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B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] τm(
θ −R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+

+ τm
(
λ−
V

)
n(k)

(
∂V−

∂Wi,j

)
n(k)

+ τm

Nn−1∑
m ̸=n(k)

(
λ−
V

)
m

(
∂V−

∂Wi,j

)
m

+

− τm
(
λ+
V

)
n(k)

γ −RG (I−)n(k) ϕ
(
(D+)n(k)

)
(
θ −R (I−)n(k)

) (
∂V−

∂Wi,j

)
n(k)

+

− τm

Nn−1∑
m ̸=n(k)

(
λ+
V

)
m

[(
∂V−

∂Wi,j

)
m

−
RβWm,nϕ ((D−)m)

θ −R (I−)n(k)

(
∂V−

∂Wi,j

)
n(k)

]
+

+ τs
(
λ−
I

)
n(k)

(
∂I−

∂Wi,j

)
n(k)

+ τs

Nn−1∑
m̸=n(k)

(
λ−
I

)
m

(
∂I−

∂Wi,j

)
m

+

− τsG
(
λ+
I

)
n(k)

(
∂I−

∂Wi,j

)
n(k)

+

− τs

Nn−1∑
m̸=n(k)

(
λ+
I

)
m

 βWm,nτm

τs

(
θ −R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+ βδi,mδj,n +

(
∂I−

∂Wi,j

)
m

+

+ τD
(
λ−
D

)
n(k)

(
∂D−

∂Wi,j

)
n(k)

+ τD

Nn−1∑
m̸=n(k)

(
λ−
D

)
m

(
∂D−

∂Wi,j

)
m

+

−
(
λ+
D

)
n(k)

τmϵ(
θ −R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+

− τD

Nn−1∑
m̸=n(k)

(
λ+
D

)
m

(
∂D−

∂Wi,j

)
m

(A.57)

A =

Npost∑
k=1

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
= −

Npost∑
k=1

τm(
−θ +R (I−)n(k)

) ∂lp(tpost)
∂tpostk

(
∂V−

∂Wi,j

)
n(k)

(A.58)
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Let’s now group different terms:

dL

dWi,j
=

Npost∑
k=1

τm(
θ −R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

[
− ∂lp(t

post)

∂tpostk

+
(
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

))
+

(
λ−
V

)
n(k)

(
θ −R

(
I−
)
n(k)

)
−
(
λ+
V

)
n(k)

(
γ −RGϕ

((
D+
)
n(k)

) (
I−
)
n(k)

)
+

Nn−1∑
m ̸=n(k)

βWm,n

((
λ+
V

)
m
Rϕ
((
D+
)
m

)
−
(
λ+
I

)
m

)
−
(
λ+
D

)
n(k)

ϵ

]
+

Nn−1∑
m ̸=n(k)

(
∂V−

∂Wi,j

)
m

τm

[ (
λ−
V

)
m
−
(
λ+
V

)
m

]
+

Nn−1∑
m̸=n(k)

(
∂I−

∂Wi,j

)
m

τs

[ (
λ−
I

)
m
−
(
λ+
I

)
m

]
+

(
∂I−

∂Wi,j

)
n(k)

τs

[ (
λ−
I

)
n(k)
−G

(
λ+
I

)
n(k)

]
+

(
∂D−

∂Wi,j

)
n(k)

τD
(
λ−
D

)
n(k)

+

Nn−1∑
m̸=n(k)

(
∂D−

∂Wi,j

)
m

τD

[ (
λ−
D

)
m
−
(
λ+
D

)
m

]
+

−
Nn−1∑
m ̸=n(k)

τsβδi,mδj,n
(
λ−
I

)
n(k)

(A.59)

In order to delete as much term possible we can define the following continuity conditions:

(
λ−
V

)
m

=
(
λ+
V

)
m

(A.60)

(
λ−
I

)
m

=
(
λ+
I

)
m

(A.61)

(
λ−
I

)
n(k)

= G
(
λ+
I

)
m

(A.62)

(
λ−
D

)
m

=
(
λ+
D

)
m

(A.63)

(
λ−
D

)
n(k)

= 0 (A.64)
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(
λ−
V

)
n(k)

=
1(

θ −R (I−)n(k)

)[∂lp(tpost)
∂tpostk

+
(
l+V

(
tpostk ,V

)
− l−V

(
tpostk ,V

))
+

(
λ+
V

)
n(k)

(
γ −RGϕ

((
D+
)
n(k)

) (
I−
)
n(k)

)
+

Nn−1∑
m ̸=n(k)

βWm,n

((
λ+
I

)
m
−
(
λ+
V

)
m
Rϕ
((
D+
)
m

))
+
(
λ+
D

)
n(k)

ϵ

] (A.65)

And consequently eq. A.59 reduces to:

dL

dWi,j
= −τs

Npost∑
k=1

Nn−1∑
m ̸=n(k)

(
λ+
I

)
m
βδi,mδj,n =

= −τs
∑

spikesfromj

(
λI

+
i

)
m
β

(A.66)
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Appendix B

Extension of Event-Prop
backpropagation algorithm using adjoint
variables in Izhikevich-based Spiking
Neural Networks

In this section, we extend the backpropagation learning algorithm Event-Prop [89] with the biolog-
ically plausible Izhikevich neural model [69] to provide a reliable methodology to train biological
compatible artificial spiking neural networks.

As mentioned in [89], the Event-prop algorithm is developed for LIF spiking neural networks.
This makes unsuitable the backpropagation-based algorithm to train a network of Izhikevich neurons
as it is. Nevertheless, we report in this paragraph an adaptation of Even-prop that substitutes the
LIF with the Izhikevich model.

In order to simplify and generalize the treatment, we used the same nomenclature adopted in
Sec. 2.2 in this paragraph. Moreover, for the sake of simplicity, we consider a parametric version of
the membrane potential equation expressed in Eq. 2.4:

dV

dt
= M0V

2 +M1V +M2 + I−M3U

After the spiking event, the membrane potential resets at (V+)n(k) = γ = c, while during
other neuron spikes the membrane potential is continuous (V+)m = (V−)m. Consistently, also
the membrane recovery potential U presents a discontinuous behavior during spikes (U+)n(k) =

(U−)n(k) + d and otherwise a continuous one (U+)m = (U−)m. Moreover, the spiking threshold
condition is expressed by: (

V−)
n(k)

= θ (B.1)

Then, we impose that post-synaptic current follows an exponential behavior as it charges a
neural membrane which can be approximated with a linear capacitor, as described in literature [89].
Therefore, I follows:

τs
dI

dt
= −I (B.2)
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where τs is the post-synaptic time constant.
The strong non-linearity of the Izhikevich model, combined with the presence of the membrane

recovery variable which doesn’t reset at each spiking event, generates a non-linear spiking time
distribution. Due to this, the application of the 2-phase method proposed in Sec. 2.2 is not as
straightforward as in the LIF case. Moreover, the Izhikevich model doesn’t include any minimum
refractory period to easily limit the spiking frequency, due to this, the application of the 2-phase
method proposed in Sec. 2.2 can help in this sense, as well as include a dumping function that
locally decouples the membrane potential and the input synaptic current for a limited period of
time to prevent uncontrolled neural overexcitation during training. However, this last method
leads to dissipative energy wastes in a neuromorphic application. To model an externally imposed
refractory period Tr, we include a fictitious state variable D that resets to a fixed value ϵ at each
spike emission and decades exponentially in time. As it will later be shown, this additive state
variable should not be calculated during the normal operation of the algorithm, but it is useful just
to mathematically demonstrate that the adjoint function related to the refractory period is always
null and, consequently, the calculation of D itself is not needed during the training and the inference
process. The dynamic equation that describes the behavior of D is:

τd
dD

dt
= −D (B.3)

where τD is the time constant associated with the state function D. The discontinuity condition
for this state function is, as mentioned before, (D+)n(k) = ϵ, while it is continuous during other
neural spiking events (D+)m = (D−)m. Then the dumping function Φ(D) is included in membrane
potential dynamic equation as:

dV

dt
= M0V

2 +M1V +M2 +Φ(D) (RI−M3U)

where

Φ(D) =

0 when D > ϵ exp (−Tr/τr)

1 otherwise
(B.4)

The equations reported below describe the free dynamic of the complete model:

dV

dt
= M0V

2 +M1V +M2 +Φ(D) (RI−M3U)

dU

dt
= a (bV −U)

τs
dI

dt
= −I

τd
dD

dt
= −D

(B.5)

Then we can define implicit version of B.5:

fV := τmV̇ −M0V
2 −M1V −M2 − Φ(D) (RI−M3U) (B.6)

fI := τsİ+ I (B.7)

fD := τdḊ+D (B.8)
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fU := τdU̇− a (bV −U) (B.9)

where V, I,D,U, fV, fI, fD, fU ∈ ℜNn and Nn is the number of neurons in the network. Moreover
the transition condition of the the state variables reported below for a spiking neuron (denoted with
n(k)) and a non spiking neuron (denoted with m) are:

(
V+
)
n(k)

= γ = c (B.10)

c is the parameter defined by the Izhikevich model.

(
V+
)
m

=
(
V−)

m
(B.11)

(
I+
)
n(k)

= G
(
I−
)
n(k)

(B.12)

G is a scale factor applied to input synaptic current during the spiking event. Usually, G is imposed
at 1.0

(
I+
)
m

=
(
I−
)
m
+ βWm,n (B.13)

where Wm,n is the synaptic conductance that links the neuron n with the post-synaptic neuron
m. β is the post-neural potential.

(
D+
)
n(k)

= ϵ (B.14)

(
D+
)
m

=
(
D−)

m
(B.15)

(
U+
)
m

=
(
U−)

m
(B.16)

(
U+
)
n(k)

=
(
U−)

n(k)
+ d (B.17)

Moreover, as described by [69], the fictitious state variable U is augmented by a d factor during the
fire event. The threshold condition is defined as:

(
V−)

n(k)
= θ (B.18)

While the initial conditions of the state functions are defined as the static solution of the state
variable differential equation:

dV

dt
= M0V

2 +M1V +M2 +Φ(D) (RI−M3U) = 0

dU

dt
= a (bV −U) = 0

(B.19)

In this case Φ(D) = 1, I→ 0 and
U = bV (B.20)
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By substituting Eq. B.20 in Eq. B.19, we obtain:

M0V
2 + (M1 − bM3)V +M2 = 0 (B.21)

Which solutions are:

V1,2 =
−M1 + bM3 ±

√
(M1 − bM3)

2 − 4M0M2

2M0
(B.22)

That is valid, just when:
|M1 −M3b| >

√
4M0M2 (B.23)

The vectors V and U should be initialized as Eqs. B.22 and B.20. When the condition expressed
by Eq. B.23 is not verified, the starting value for the membrane potential is V = c. The initial value
of the state functions doesn’t affect the adjoint function method to calculate the weight’s gradient.

The cost function to minimize has been generalized as follows:

L = lp(t
post) +

∫
T
lV
(
tpost,V

)
dtpost (B.24)

and, in general, the integral can be split between spikes events because lV
(
tpost,V

)
is always defined

and limited in time:

L = lp(t
post) +

Npost∑
k=0

∫ tpostk+1

tpostk

lV
(
tpost,V

)
dtpost (B.25)

where lV
(
tpost,V

)
: ℜNn → ℜ. Moreover, the sum over k starts from 0, consequently, t0 denotes

the beginning of the simulation. The time gap t0 − t1 is the inactivity period of the network where
no spike has been emitted by the network.

In order to calculate the gradient of the loss function, we need to add the adjoint variables λV,
λI and λD to B.25 :

L = lp(t
post) +

Npost∑
k=0

∫ tpostk+1

tpostk

lV
(
tpost,V

)
+ λV · fV + λI · fI + λD · fD + λU · fU dtpost (B.26)

Therefore, by differentiating the payoff function we obtain:

dL

dWi,j
=
dlp(t

post)

dWi,j
+

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost
dlV

(
tpostk ,V

)
dWi,j

+

+
dλV · fV
dWi,j

+
dλI · fI
dWi,j

+
dλD · fU
dWi,j

+
dλU · fU
dWi,j

(B.27)

And because the adjoint functions don’t depend on the weights:

dL

dWi,j
=

dlp(t
post)

dWi,j
+

Npost∑
k=0

∫ tpostk+1

tpostk

dtpost
dlV

(
tpost,V

)
dWi,j

+

+ λV ·
dfV
dWi,j

+ λI ·
dfI

dWi,j
+ λD ·

dfD
dWi,j

+ λU ·
dfU
dWi,j

(B.28)
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Now each term should be expanded. Let’s begin with the loss functions terms lV
(
tpost,V

)
and

lp(t
post). These loss functions depend indirectly from the weights of networks, therefore, we can

compute the total derivative with the chain rule:

dlV

(
tpostk ,V

)
dWi,j

=
∂lV

(
tpostk ,V

)
∂tpostk

∂tpostk

∂Wi,j
+

∂lV

(
tpostk ,V

)
∂V

∂V

∂Wi,j
(B.29)

dlp(t
post)

dWi,j
=

Npost∑
k=0

∂lp(t
post
k )

∂tpostk

∂tpostk

∂Wi,j
(B.30)

Then, by taking into account B.6 and B.7:

λV ·
dfV
dWi,j

=λV ·

[
dV̇

dWi,j
−M0

dV2

dWi,j
−M1

dV

dWi,j
+

+Φ(D)

(
M3

dU

dWi,j
−R

dI

dWi,j

)]
=λV ·

[
dV̇

dWi,j
− 2M0V

dV

dWi,j
−M1

dV

dWi,j
+

+Φ(D)

(
M3

dU

dWi,j
−R

dI

dWi,j

)]
(B.31)

λI ·
dfI

dWi,j
= λI ·

(
τs

dİ

dWi,j
+

dI

dWi,j

)
(B.32)

λD ·
dfD
dWi,j

= λD ·

(
τD

dḊ

dWi,j
+

dD

dWi,j

)
(B.33)

λU ·
dfU
dWi,j

= λU ·

(
−ab dV

dWi,j
+ a

dU

dWi,j
+

dU̇

dWi,j

)
(B.34)

Because the weights of the network are fixed in time, and in particular between two spikes events
(also due to the Gronwall’s theorem) we can exchange the position of the differential operators:

d

dWi,j

[
d

dt

]
=

d

dt

[
d

dWi,j

]
Substituting then eqs. B.29, B.30, B.31, B.32 and B.34 in eq. B.28, we obtain:
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dL

dWi,j
=

Npost∑
k=0

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
+

+

Npost∑
k=0

∫ tpostk+1

tpostk

∂lV

(
tpostk ,V

)
∂tpostk

∂tpostk

∂Wi,j
+

∂lV

(
tpostk ,V

)
∂V

∂V

∂Wi,j
+

+ λV ·

[
dV̇

dWi,j
− 2M0V

dV

dWi,j
−M1

dV

dWi,j
+

+Φ(D)

(
M3

dU

dWi,j
−R

dI

dWi,j

)]
+

+ λI ·

(
τs

dİ

dWi,j
+

dI

dWi,j

)

+ λD ·

(
τD

dḊ

dWi,j
+

dD

dWi,j

)
+

+ λU ·

(
dU̇

dWi,j
− ab

dV

dWi,j
+ a

dU

dWi,j

)
dtpost

(B.35)

Then, we need to integrate by parts:

∫ tpostk+1

tpostk

∂lV
(
tpost,V

)
∂tpost

∂tpost

∂Wi,j
dtpost =

[
lV
(
tpost,V

) ∂tpost
∂Wi,j

]tk+1

tk

−
∫ tpostk+1

tpostk

lV
(
tpost,V

) ∂

∂Wi,j

[
∂tpost

∂tpost︸ ︷︷ ︸
=1

]
︸ ︷︷ ︸

=0

dtpost =

= lV

(
tpostk+1,V

) ∂tpostk+1

∂Wi,j
− lV

(
tpostk ,V

) ∂tpostk

∂Wi,j
(B.36)

∫ tpostk+1

tpostk

λV ·
∂V̇

∂Wi,j︸ ︷︷ ︸
= d

dt

[
∂V

∂Wi,j

] dtpost =

[
λV ·

∂V

∂Wi,j

]tk+1

tk

−
∫ tpostk+1

tpostk

˙λV ·
∂V

∂Wi,j
dtpost =

= λV ·
∂V

∂Wi,j

∣∣∣∣
tk+1

− λV ·
∂V

∂Wi,j

∣∣∣∣
tk

−
∫ tpostk+1

tpostk

˙λV ·
∂V

∂Wi,j
dtpost (B.37)
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The same happens for I and D:

∫ tpostk+1

tpostk

τsλI ·
∂İ

∂Wi,j
dtpost =

= τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk+1

− τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk

− τs

∫ tpostk+1

tpostk

λ̇I ·
∂I

∂Wi,j
dtpost (B.38)

∫ tpostk+1

tpostk

τdλD ·
∂Ḋ

∂Wi,j
dtpost =

= τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk+1

− τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk

− τd

∫ tpostk+1

tpostk

˙λD ·
∂D

∂Wi,j
dtpost (B.39)

∫ tpostk+1

tpostk

λU ·
∂U̇

∂Wi,j
dtpost =

= λU ·
∂U

∂Wi,j

∣∣∣∣
tk+1

− λU ·
∂U

∂Wi,j

∣∣∣∣
tk

−
∫ tpostk+1

tpostk

˙λU ·
∂U

∂Wi,j
dtpost (B.40)

Combining Eqs. B.36, B.37, B.38, B.39 and B.40 in B.35, we obtain:

dL

dWi,j
= A+B + C (B.41)

where A,B and C are respectively:

A =

Npost∑
k=0

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
(B.42)

B =

Npost∑
k=0

lV

(
tpostk+1,V

) ∂tpostk+1

∂Wi,j
− lV

(
tpostk ,V

) ∂tpostk

∂Wi,j
+

+ λV ·
∂V

∂Wi,j

∣∣∣∣
tk+1

− λV ·
∂V

∂Wi,j

∣∣∣∣
tk

+

+ τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk+1

− τsλI ·
∂I

∂Wi,j

∣∣∣∣
tk

+

+ τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk+1

− τdλD ·
∂D

∂Wi,j

∣∣∣∣
tk

+ λU ·
∂U

∂Wi,j

∣∣∣∣
tk+1

− λU ·
∂U

∂Wi,j

∣∣∣∣
tk

+

(B.43)
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C =

Npost∑
k=0

∫ tpostk+1

tpostk

[
− ˙λV − 2M0λVV −M1V − abλU +

∂lV
(
tpost,V

)
∂V

]
· ∂V

∂Wi,j
+

+
[
−τsλ̇I + λI − Φ(D)RλI

]
· ∂I

∂Wi,j
+

+
[
−τd ˙λD + λD

]
· ∂D

∂Wi,j

+
[
− ˙λU + aλU +Φ(D)M3λV

]
· ∂U

∂Wi,j
dtpost

(B.44)

In particular, C becomes = 0 when the terms between square brackets are imposed = 0, defining
in this way the dynamic response for the adjoint functions:

dλV

dt
= −2M0λVV −M1λV − abλU +

∂lV
(
tpost,V

)
∂V

(B.45)

τs
dλI

dt
= λI − Φ(D)RλV (B.46)

τd
dλD

dt
= λD (B.47)

dλU

dt
= aλU +M3Φ(D)λV (B.48)

The loss function lp(t
post) is null in the time interval [t0; t1] (the inactivity period between the

beginning of the simulation and the first spike time emitted by the network). Consequently, all its
derivatives in that time gap are null. Therefore the A term could be reduced as:

A =

Npost∑
k=1

∂lp(t
post)

∂tpostk

∂tpostk

∂Wi,j
(B.49)

Now, B presents a numerical series that could be group as:

Npost∑
k=0

a−k+1 − a+k =

= a−
∣∣
1
− a+

∣∣
0
+ a−

∣∣
2
− a+

∣∣
1
+ ...+ a−

∣∣
Npost+1︸ ︷︷ ︸
=0

− a+
∣∣
Npost

=

= − a+
∣∣
0
+

Npost∑
k=1

[
a− − a+

]∣∣
tk

(B.50)

Therefore, applying this formalism we obtain:
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B =− l+V

(
tpost0 ,V

) ∂tpost0

∂Wi,j
+

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+

−
[
λ+
V ·

∂V+

∂Wi,j

]
k=0

+

Npost∑
k=1

[
λ−
V ·

∂V−

∂Wi,j
− λ+

V ·
∂V+

∂Wi,j

]
tk

− τs

[
λ+
I ·

∂I+

∂Wi,j

]
k=0

+ τs

Npost∑
k=1

[
λ−
I ·

∂I−

∂Wi,j
− λ+

I ·
∂I+

∂Wi,j

]
tk

− τd

[
λ+
D ·

∂D+

∂Wi,j

]
k=0

+ τd

Npost∑
k=1

[
λ−
D ·

∂D−

∂Wi,j
− λ+

D ·
∂D+

∂Wi,j

]
tk

−
[
λ+
U ·

∂U+

∂Wi,j

]
k=0

+

Npost∑
k=1

[
λ−
U ·

∂U−

∂Wi,j
− λ+

U ·
∂U+

∂Wi,j

]
tk

(B.51)

Now, the starting condition of the internal variable V, I and D are parameter independent
(V|k=0 = 0, I|k=0 = 0, D|k=0 = 0), therefore:(

∂V+

∂Wi,j

)
n

∣∣∣∣
k=0

=

(
∂I+

∂Wi,j

)
n

∣∣∣∣
k=0

=

(
∂D+

∂Wi,j

)
n

∣∣∣∣
k=0

=

(
∂U+

∂Wi,j

)
n

∣∣∣∣
k=0

= 0

Moreover, the loss function l+V

(
tpost0 ,V

)
is null at the beginning of the simulation by definition.

Therefore we can re-write the B term as:

B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+[

λ−
V ·

∂V−

∂Wi,j
− λ+

V ·
∂V+

∂Wi,j

]
tk

+

τs

[
λ−
I ·

∂I−

∂Wi,j
− λ+

I ·
∂I+

∂Wi,j

]
tk

+

τd

[
λ−
D ·

∂D−

∂Wi,j
− λ+

D ·
∂D+

∂Wi,j

]
tk[

λ−
U ·

∂U−

∂Wi,j
− λ+

U ·
∂U+

∂Wi,j

]
tk

(B.52)

Now, we can apply the implicit function theorem to the discontinuity equations of all neural
state variable (eqs. B.10, B.11, B.12, B.13, B.14, B.15, B.17, B.16 and B.18):

dtk
dWi,j

= −

(
∂(V−−θ)
∂Wi,j

)
n(k)(

∂(V−−θ)
∂tk

)
n(k)

= −

(
∂V−

∂Wi,j

)
n(k)(

V̇−
)
n(k)

(B.53)

dtk
dWi,j

= −

(
∂(V+−γ)
∂Wi,j

)
n(k)(

∂(V+−γ)
∂tk

)
n(k)

= −

(
∂V+

∂Wi,j

)
n(k)(

V̇+
)
n(k)

(B.54)
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dtk
dWi,j

= −

(
∂(V−−V+)

∂Wi,j

)
m(

∂(V−−V+)
∂tk

)
m

= −

(
∂V−

∂Wi,j

)
m
−
(

∂V+

∂Wi,j

)
m(

V̇−
)
m
−
(
V̇+
)
m

(B.55)

Then, taking into account that eq. B.5 is always verified for a non-spiking neuron we can write:(
V̇− −M0

(
V−)2 −M1V

− −M2 + ϕ(D−)M3U
− − ϕ(D−)RI−

)
m

=(
V̇+ −M0

(
V+
)2 −M1V

+ −M2 + ϕ(D+)M3U
+ − ϕ(D+)RI+

)
m

(B.56)

Consequently, considering eq. B.15:(
V̇−
)
m
−
(
V̇+
)
m

= −Rϕ(D−
m)
((
I−
)
m
−
(
I+
)
m

)
(B.57)

Therefore, substituting eqs. B.11 and B.13:(
V̇−
)
m
−
(
V̇+
)
m

= −Rϕ
((
D−)

m

) ((
I−
)
m
+ βWm.n −

(
I−
)
m

)
= −Rϕ

((
D−)

m

)
βWm.n

(B.58)

Now, we can substitute the result just obtained in eq. B.58 in eq. B.55:(
∂V+

∂Wi,j

)
m

=

(
∂V−

∂Wi,j

)
m

−Rϕ
((
D−)

m

)
βWm.n

dtk
dWi,j

(B.59)

Then, the dtk/dW can be expressed by considering eq. B.53:

dtk
dWi,j

= − 1(
V̇−
)
n(k)

(
∂V−

∂Wi,j

)
n(k)

= −

(
∂V−

∂Wi,j

)
n(k)M0

(
V−2

)
n(k)︸ ︷︷ ︸

=θ2

+M1

(
V−)

n(k)︸ ︷︷ ︸
=θ

+M2 + ϕ
((

D−)
n(k)

)
︸ ︷︷ ︸

=1

(
−M3 (U−)n(k) +R (I−)n(k)

)
= − 1(

M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

(B.60)

A natural existence condition is
(
V̇
)
n(k)
̸= 0 which should be always verified. Considering eq.

B.54 we have:
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dtk
dWi,j

= −
(
∂V+

∂Wi,j

)
n(k)

1(
V̇+
)
n(k)

= −
(
∂V+

∂Wi,j

)
n(k)

1M0

(
V+
)2
n(k)︸ ︷︷ ︸

=γ2

+M1

(
V+
)
n(k)︸ ︷︷ ︸

=γ

+M2 + ϕ
(
(D+)n(k)

)R
(
I+
)
n(k)︸ ︷︷ ︸

G(I−)n(k)

−M3

(
U+
)
n(k)︸ ︷︷ ︸

(U−)n(k)+d




= −
(
∂V+

∂Wi,j

)
n(k)

1(
M0γ2 +M1γ +M2 + ϕ

(
(D+)n(k)

)(
RG (I−)n(k) −M3

(
(U−)n(k) + d

)))
(B.61)

Substituting B.54 in B.61 we obtain:

(
∂V+

∂Wi,j

)
n(k)

=

(
M0γ

2 +M1γ +M2 + ϕ
(
(D+)n(k)

)(
RG (I−)n(k) −M3

(
(U−)n(k) + d

)))
(
M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) (
∂V−

∂Wi,j

)
n(k)

(B.62)
By applying the definition of partial derivative to eq. B.12 we obtain:

d
(
(I+)n(k) −G (I−)n(k)

)
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

dWi,j

dWi,j︸ ︷︷ ︸
=1

+
∂
(
(I+)n(k) −G (I−)n(k)

)
∂tk

dtk
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

+

((
˙I+
)
n(k)
−G

(
˙I−
)
n(k)

)
dtk
dWi,j

=
∂
(
(I+)n(k) −G (I−)n(k)

)
∂Wi,j

+
1

τs

((
I+
)
n(k)
−G

(
I−
)
n(k)

)
︸ ︷︷ ︸

=0

dtk
dWi,j

(B.63)

This means that the total derivative is equal to the partial derivative, consequently we have:(
∂I+

∂Wi,j

)
n(k)

= G

(
∂I−

∂Wi,j

)
n(k)

(B.64)
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By applying the implicit function theorem to eq. B.13 we obtain:

dtk
dWi,j

= −

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− β

(
∂Wm,n

∂Wi,j

)
m(

∂I+

∂tk

)
m︸ ︷︷ ︸

( ˙I+)
m

−
(
∂I−

∂tk

)
m︸ ︷︷ ︸

( ˙I−)
m

−β
(
∂Wm,n

∂tk

)
m︸ ︷︷ ︸

=0

= −τs

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− βδi,mδj,n

− (I+)m + (I−)m

= τs

(
∂I+

∂Wi,j

)
m
−
(

∂I−

∂Wi,j

)
m
− βδi,mδj,n

βWm,n

(B.65)

Therefore, we can rewrite the equation below as:(
∂I+

∂Wi,j

)
m

=
βWm,n

τs

dtk
dWi,j

+ βδi,mδj,n +

(
∂I−

∂Wi,j

)
m

(B.66)

We applied the implicit function theorem on eq. B.14:

dtk
dWi,j

= −

(
∂D+

∂Wi,j

)
n(k)(

∂D+

∂tk

)
n(k)︸ ︷︷ ︸

(Ḋ+)
m

= τD

(
∂D+

∂Wi,j

)
n(k)

(D+)n(k)
(B.67)

And consequently we have:

(
∂D+

∂Wi,j

)
n(k)

=
1

τD

dtk
dWi,j

(
D+
)
n(k)︸ ︷︷ ︸

=ϵ

= − ϵ

τD

(
M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

(B.68)

While the m-component is similar to eq. B.64 and corresponds to:(
∂D+

∂Wi,j

)
m

=

(
∂D−

∂Wi,j

)
m

(B.69)

By applying the chain rule to eq. B.16 we obtain:

0 =
d [(U+)m − (U−)m]

dWi,j
=

∂ [(U+)m − (U−)m]

∂Wi,j

∂Wi,j

∂Wi,j
+

∂

∂tk

[(
U+
)
m
−
(
U−)

m

] ∂tk
∂Wi,j

=
∂ (U+)m
∂Wi,j

−
∂ (U−)m
∂Wi,j

+
[(

U̇+
)
m
−
(
U̇−
)
m

] ∂tk
∂Wi,j

=
∂ (U+)m
∂Wi,j

−
∂ (U−)m
∂Wi,j

+
[
a
(
b
(
V+
)
m
−
(
U+
)
m

)
− a

(
b
(
V−)

m
−
(
U−)

m

)]︸ ︷︷ ︸
=0

∂tk
∂Wi,j

(B.70)
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Therefore, we obtain:

∂ (U+)m
∂Wi,j

=
∂ (U+)m
∂Wi,j

(B.71)

By applying the implicit function theorem to B.17 to the (I)n(k) component:

∂tk
∂Wi,j

= −
∂

∂Wi,j

[
(U+)n(k) − (U−)n(k) − d

]
∂
∂tk

[
(U+)n(k) − (U−)n(k) − d

]
= −

∂(U+)
n(k)

∂Wi,j
−

∂(U−)
n(k)

∂Wi,j(
U̇+
)
n(k)
−
(
U̇−
)
n(k)

= −

∂(U+)
n(k)

∂Wi,j
−

∂(U−)
n(k)

∂Wi,j

a

b
(
V+
)
n(k)︸ ︷︷ ︸

=γ

−
(
U+
)
n(k)︸ ︷︷ ︸

(U−)n(k)+d

− a

b
(
V−)

n(k)︸ ︷︷ ︸
θ

− (U−)n(k)



=

∂(U+)
n(k)

∂Wi,j
−

∂(U−)
n(k)

∂Wi,j

−ab (γ − θ) + ad

(B.72)

Then, combining eqs. B.73, B.60,B.68 and B.66, we obtain:

(
∂V+

∂Wi,j

)
m

=

(
∂V−

∂Wi,j

)
m

−Rϕ
((
D−)

m

)
βWm,n

dtk
dWi,j

=

(
∂V−

∂Wi,j

)
m

+
Rϕ ((D−)m)βWm,n(

M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

(B.73)

(
∂I+

∂Wi,j

)
m

=− βWm,n

τs

(
M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+

βδi,mδj,n +

(
∂I−

∂Wi,j

)
m

(B.74)

(
∂U+

∂Wi,j

)
n(k)

=− ad− ab (γ − θ)(
M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+

(
∂I−

∂Wi,j

)
n(k)

(B.75)
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Now, considering the inner products of eq. B.52 we can expand each term as represented below:

λ · d = (λ)n(k) (d)n(k) +

Nn−1∑
m̸=n(k)

(λ)m (d)m

Consequently, eq. B.51 expands in:

B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] ∂tpostk

∂Wi,j
+

+
(
λ−
V

)
n(k)

(
∂V−

∂Wi,j

)
n(k)

+

Nn−1∑
m̸=n(k)

(
λ−
V

)
m

(
∂V−

∂Wi,j

)
m

+

−
(
λ+
V

)
n(k)

(
∂V+

∂Wi,j

)
n(k)

−
Nn−1∑
m̸=n(k)

(
λ+
V

)
m

(
∂V+

∂Wi,j

)
m

+

+ τs
(
λ−
I

)
n(k)

(
∂I−

∂Wi,j

)
n(k)

+ τs

Nn−1∑
m̸=n(k)

(
λ−
I

)
m

(
∂I−

∂Wi,j

)
m

+

− τs
(
λ+
I

)
n(k)

(
∂I+

∂Wi,j

)
n(k)

− τs

Nn−1∑
m̸=n(k)

(
λ+
I

)
m

(
∂I+

∂Wi,j

)
m

+

τD
(
λ−
D

)
n(k)

(
∂D−

∂Wi,j

)
n(k)

+ τD

Nn−1∑
m ̸=n(k)

(
λ−
D

)
m

(
∂D−

∂Wi,j

)
m

+

− τD
(
λ+
D

)
n(k)

(
∂D+

∂Wi,j

)
n(k)

− τD

Nn−1∑
m̸=n(k)

(
λ+
D

)
m

(
∂D+

∂Wi,j

)
m

+

+
(
λ−
U

)
n(k)

(
∂U−

∂Wi,j

)
n(k)

+

Nn−1∑
m ̸=n(k)

(
λ−
U

)
m

(
∂U−

∂Wi,j

)
m

+

−
(
λ+
U

)
n(k)

(
∂U+

∂Wi,j

)
n(k)

−
Nn−1∑
m ̸=n(k)

(
λ+
U

)
m

(
∂U+

∂Wi,j

)
m

+

(B.76)
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B =

Npost∑
k=1

[
l−V

(
tpostk ,V

)
− l+V

(
tpostk ,V

)] 1(
M0θ2 +M1θ +M2 +−M3 (U−)n(k) +R (I−)n(k)

) ( ∂V−

∂Wi,j

)
n(k)

+

+
(
λ−
V

)
n(k)

(
∂V−

∂Wi,j

)
n(k)

+

Nn−1∑
m ̸=n(k)

(
λ−
V

)
m

(
∂V−

∂Wi,j

)
m

+

−
(
λ+
V

)
n(k)
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In the following equation gathered different terms:
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In order to delete as much term possible we can define the following continuity conditions:
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And consequently eq. B.79 reduces to:
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