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Abstract

This thesis focuses on the problem of image segmentation in low-data set-

tings. In particular, the two specific problems that are tackled in the present

work are the ones revolving around anomaly segmentation for industrial qual-

ity control and document layout segmentation of ancient manuscripts. For

the first problem, two novel attention-based approaches are proposed, one

based on the popular U-Net architecture and the second one on the more re-

cent Vision Transformer which has been enhanced for the task at hand with a

masking module and a multi-resolution self-attention component. As for the

document layout analysis, we introduce a few-shot segmentation framework

based on the combination of DeepLabV3+, a robust deep learning architec-

ture for semantic segmentation, with a traditional computer vision algorithm

for image binarization while at the same time relying on a novel instance gen-

eration strategy that allows to leverage the small amount of data available

fully. Furthermore, we provide an analysis of the effects of transfer learn-

ing in this domain-specific context, showing the drawbacks of pre-training

on large general-purpose datasets compared to smaller domain-specific ones.

For each of the proposed approaches, we provide the experimental results

obtained on popular publicly available datasets for the corresponding task.
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1
Introduction

1.1 An introduction to image segmentation

Image segmentation has always been a fundamental task in the field of com-

puter vision and image understanding and it gained even more popularity in

recent years with the advent of deep learning techniques. The problem of

segmenting images is highly relevant for a plethora of important applications

including, but not limited to:

• Medical imaging [69, 137] (e.g. tumor detection, tissue volume estima-

tion)

• Video surveillance [48] (e.g. moving objects identification, novelty de-

tection)

• Autonomous driving vehicles [45, 121] (e.g. obstacle and navigable

surface detection)

• Document analysis [41, 127] (e.g. layout segmentation)

• Anomaly detection [97] (segmentation of the anomalous areas for in-

creased explainability)

But what is image segmentation? Image segmentation can be defined

as the problem of individually classifying each pixel contained in an image

based on one or multiple criteria. There are mainly three macro-categories
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of image segmentation tasks, semantic segmentation, instance segmentation

and panoptic segmentation [72](Fig. 1.1). Semantic segmentation is the task

of separating the different elements of an image by individually classifying

each of its pixels based on the semantic category they belong to. Typically

this task is much more complex than simply classifying the image as a whole,

as the required level of detail is much higher. As an example, we can think

about the perception system of an autonomous driving vehicle, where we

want to identify the different components of the scene that is captured by the

cameras mounted on it, such as the road, pedestrians, other cars, potential

obstacles, etc. This approach can result in the problem statement being

poorly defined, especially if there are several instances belonging to the same

class. Think about a very crowded street, in that case, all the people would

be grouped together resulting in a segmentation that presents a relatively

low level of detail.

Instance segmentation adds a further level of complexity and detail by

requiring that each individual instance belonging to a semantic class is iden-

tified as a separate entity. This would mean, going back to the previous

example of the crowded street, that each individual must be segmented sep-

arately. Finally, panoptic segmentation combines the two tasks by requiring

a segmentation both at a semantic and at an individual level. This type

of segmentation is usually required for applications where a high degree of

perceptual detail is required.

1.2 Types of approaches

Over time a wide variety of approaches has been employed to solve this type

of problem. Traditional computer vision techniques adopted for this task can

be grouped into 5 main categories:

1. Threshold based [110]: Threshold-based algorithms represent the

simplest form of image segmentation techniques and work by classifying

each pixel based in an image based on a pre-defined and task-dependant
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Figure 1.1: Example of the three types of image segmentation problems. [59]

threshold which can be either globally defined for the entire image or,

in more sophisticated algorithms it can be dynamically and locally de-

fined inside sub-regions of the original image. A common application

for threshold-based image segmentation is represented by the sub-task

of image binarization, widely adopted in the context of document anal-

ysis to separate the text from the background. While their scope is

somewhat limited they can be very efficient for some applications as

they are usually fast to implement and execute.

2. Edge based [53, 3, 67]: Approaches belonging to this category

work by identifying the edges of the different elements belonging to an

image by analyzing different types of features such as contrast, texture,

color and saturation variations. the main downside of this type of

approach is that they are only reliable on high-contrast images with a

limited amount of edges. Furthermore, they tend to be computationally
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expensive.

3. Region-growth [70]: In region-based image segmentation, the image

is divided into a set of regions represented by a group of pixels located

based on a seed. These regions are then progressively expanded or

shrunk based on the similarity of the surrounding pixels until conver-

gence. The main issue with this type of approach is that they are very

heavily reliant on the selection of the hyperparameters, being repre-

sented by the starting seed and the similarity measure.

4. Clustering-based [128, 6]: Similarly to region-based approaches,

clustering ones try to group together the parts of the image that share

common characteristics but are not necessarily located spatially close

to each other.

5. Watershed [75]: Watershed segmentation algorithms treat grayscale

images like topographic maps, where the elevation is determined by

the brightness of each pixel. Then, the image is divided into multiple

regions being represented by pixels with the same height (i.e. same

gray value). Watershed segmentation approaches are typically very ef-

ficient, however, they suffer from a major drawback, represented by

over-segmentation, which is the situation in which the algorithm de-

tects an overly large amount of boundaries and ends up segmenting the

various regions composing an image into smaller, potentially meaning-

less, sub-regions.

In general, the majority of the most successful approaches were based on

the extraction of handcrafted sets of features from the input images, such

as HOG [31] and SIFT [114]. While these approaches have proved to be

effective to a certain extent for the task of image segmentation, they pose a

series of challenges that are typically hard to overcome. In fact, Handcrafted

feature approaches require a high degree of domain knowledge which can

and has severely limited the adoption of these systems to a wide range of
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application areas while at the same time making the developed strategies

hard to seamlessly transfer to another domain.

1.2.1 Deep Learning approaches

A huge step forward in terms of effectiveness, efficiency and applicability

has been represented by the advent of deep learning systems. The main

advantage of deep learning approaches is that they represent an end-to-end

framework that relies solely on data to provide highly accurate outputs for

the tasks at hand, making them much more general-purpose compare to

traditional approaches.

The fact that nowadays data availability is rarely an issue, thanks to the

plethora of datasets that have been publicly released for all kinds of appli-

cations, including image segmentation, led to an exponential growth in the

adoption of deep learning systems which, in turn, achieved higher and higher

degrees of accuracy in their predictions. Since the advent of deep neural net-

works, a wide variety of models and architectures have been explored with

the goal of solving the problem of image segmentation in its different declina-

tions. Consistently with what happened for other computer vision-oriented

tasks the most prominent architectures in this field have been historically

based on Convolutional Neural Networks (CNNs) which overtime appeared

in different forms while preserving their core idea of spatial invariance that

allows capturing the features that characterize the different elements of an

image without being affected by their position.

A convolution-based architecture that gained a lot of attention in se-

mantic segmentation is represented by Fully Convolutional Networks (FCN),

characterized by the removal of the fully connected layers that appeared in

the first CNNs, mainly used for the task of image classification, and the in-

troduction of a set of deconvolution operations aimed at providing a dense

prediction by reconstructing an output of the same size as the input image,

namely the segmentation map [65]

Different types of convolutions have also been explored over time, with
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prominent examples such as the Deeplab architecture which introduced the

use of Atrous convolutions in all its different iterations [22, 23, 24, 26] with

the aim of leveraging contextual information at multiple scales in the image

to achieve improved accuracy in the segmentation task.

A further example of CNN architecture that has been widely used in

the context of semantic segmentation is represented by U-shaped networks,

introduced in the U-net paper [95], and characterized by a contraction of the

input through an encoder component, which extracts the most meaningful

features of the input image and a decoder component which takes this feature

map and expands it back to the original image size via upconvolution layers.

Many different improvements have been implemented in U-Nets over time

including, for example, multires blocks [56].

Recent works also explored the use of different types of attention mech-

anisms to further improve the performance of the models on the image seg-

mentation task Some notable examples include the adoption of criss-cross

attention [54], the aggregation of long-range contextual information through

the use of global attention [135] and, more recently, the introduction of a

Vision Transformer (ViT) [39] base architecture as the feature extraction

module of the segmentation framework [111].

1.3 Motivation

As previously stated, the advent of deep learning techniques greatly advanced

the field of image segmentation, which represents a step of paramount im-

portance in the field of image analysis, as it is necessary to perform fur-

ther processing such as recognition or description tasks. However, many of

the modern deep neural networks require very large amounts of data to be

trained. In particular, the harder it is the task the larger the amount of data

needed to train a model that can effectively tackle it. While data has be-

come increasingly available in the past years, there are still settings in which

gathering the necessary data can be a problem for a variety of reasons, be
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it an intrinsic lack of it as in the context of anomaly detection, where we

typically have a huge amount of available data for the positive samples but

almost no data available for the negative ones, or the difficulty in obtaining

an appropriate amount of ground truths which is a common problem for se-

mantic segmentation tasks where manually labeling each pixel in an image is

a very time-consuming task and may also require a certain degree of domain

knowledge as in the context of document layout analysis. This lack of data in

certain settings leads to the necessity to develop specific strategies in order

to be able to effectively perform the task at hand and, while there has been

an increasing effort toward the goal of data efficiency in image segmentation

tasks this is still a relatively young area of research which presents many

opportunities for further improvements.

1.4 Problems overview

In this section, we will provide an overview of the 2 main problems which

this thesis focuses on, namely Anomaly Detection and Segmentation and

Document Layout Segmentation.

1.4.1 Anomaly Detection and Segmentation

Anomaly detection is referred to as the process of identifying novel samples

that exhibit significantly different traits compared to an accepted and prede-

fined model of normality. In real-life scenarios, like Visual Inspection Systems

(VIS), the novel sample can show a previously unseen and considerable dif-

ference from the reference data, and labeling novel examples is not possible.

Systems that can perform such a task in an autonomous way are in high

demand, ranging from banking [129], medical imaging [68], defect segmen-

tation [91, 74], inspection [91], quality control [76], video surveillance [92],

etc (Fig. 1.2).

In fact, while this kind of task could be easy for a human being, the same

does not hold for an autonomous system trained over a small set of data. A
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(a) Industrial quality inspection (b) Structural monitoring

(c) Video survaillance (d) Medical Imaging

Figure 1.2: Examples of anomaly localization tasks in different application
fields.

significantly pressing reason that makes this task challenging is the fact that,

while it is a classification problem, the traditional methods are intrinsically

flawed by the way they process the data. In fact, most often the industrial-

grade data available in real-life are highly imbalanced [73] or labeled data

exist only for the normal class. When dealing with images we also have the

added problem of the high dimensionality of the data which often leads to

more classical methods for anomaly detection, such as clustering techniques,

to achieve poor performance. The task of anomaly segmentation brings the

problem a step further by requiring not only a classification of the instances

based on their normal or anomalous nature but also the identification of the

region inside the image that contains the anomaly.
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1.4.2 Document Layout Segmentation

Layout analysis is the process of identifying and recognizing the physical and

logical organization and structure of document images [64, 14]. Document

layout analysis includes three main tasks each with a specific purpose and

which leads to the study of different characteristics of the document. These

three key sub-processes of layout analysis are layout segmentation, text line

segmentation and baseline detection.

Document Layout Segmentation is a prerequisite step of DIA. Layout

segmentation is the process that segments the document pages into differ-

ent semantically meaningful regions such as main text, paratexts, decora-

tions and background. In particular, the page segmentation of historical

manuscripts allows humanists to study documents more quickly and eas-

ily because it allows the paratexts (i.e all the semantic elements which are

part of the foreground but don’t belong to the main text) to be analyzed

separately. Furthermore, layout segmentation is a step of paramount impor-

tance in document analysis as it enables further processing steps such as, for

example, Optical Character Recognition (OCR) and automated transcrip-

tion.However, performing this task in historical manuscripts is much more

difficult than in printed documents [94], due to many variations, such as lay-

out structure, decoration, different writing styles, texture, and degradation.

1.5 Goals and outline of the thesis

The main goal of this thesis is to investigate new techniques to perform image

segmentation in low-data settings. The focus will be specifically on two main

application settings. The first one is represented by anomaly segmentation

in industrial settings, where the core problem is represented by a high imbal-

ance in the available data due to the lack of negative (anomalous) instances.

The second task is document layout segmentation in ancient manuscripts for

which the motivation to develop a data-efficient models setting comes from

the fact that generating the ground truths necessary to train a regular deep
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learning model is an extremely daunting task due to the level of precision and

domain knowledge required, which often varies from document to document

due to their historical nature and due to the fact they may be written in

different languages. The rest of the thesis is organized as follows. Chapter

2 outlines previous works in the field of image segmentation with a particu-

lar focus on the current state-of-the-art approaches. Chapter 3 introduces

an attention-based variant of a previously established anomaly segmentation

framework, Chapter 4 builds upon the previous chapter by introducing an

entire attention-based anomaly segmentation framework relying on the use

of a novel iteration of the Vision Transformer architecture featuring both a

masking and a multi-resolution component. In Chapter 5 a few-shot docu-

ment layout segmentation framework, based on the combination of a robust

semantic segmentation network with a traditional binarization algorithm is

proposed. Chapter 6 tackles the efficiency aspect of segmentation systems

from a different point of view, focusing on a thorough analysis of transfer

learning approaches in the context of document layout segmentation. Finally,

in chapter 7 a conclusion of the thesis is provided together with potential

ideas for further development in this research area.



2
Related works and State of the

art

In the previous chapter, we have provided an introduction that clearly shows

how important and active the research field of image segmentation is. All

the efforts put into improving the quality of the predictions of the systems

employed for this task have led to a variety of highly effective deep-learning

models and frameworks for a wide range of application scenarios. In this

chapter, a brief description of the most prominent of these systems will be

provided, with a particular focus on those focusing on the problems of anomaly

segmentation and document layout segmentation.

2.1 General purpose semantic segmentation

In this section, we will provide a thorough description of two very prominent

state-of-the-art models for general-purpose semantic segmentation based, re-

spectively, on the CNN and Vision Transformer architectures. These two

models are namely DeepLabV3+[26] and SegFormer [126].

2.1.1 DeepLabV3+

DeepLabV3+ [26] represents the latest iteration, introduced by Google in

2018, of the DeepLab framework series of segmentation models. The success

of this model is to be attributed to a set of architectural choices, some of
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Figure 2.1: Atrous convolution with different dilation rates [24]

which were inherited from its predecessors (such as the introduction of atrous

convolution) and some others which represented a departure from them.

The first element characterizing the Deeplabv3+ architecture is repre-

sented by the replacement of the traditional convolution operation with the

atrous one, also called dilated convolution (Fig. 2.1). Atrous convolution

is characterized by the weights of the kernel being spaced apart instead of

adjacent as in traditional convolutional layers. To control the amount of

spacing between them an additional parameter ”r” is introduced. The key

advantage of this type of convolution is that it allows for wider receptive

fields at the same computational cost as a traditional convolution which,

in turn, allows for more contextual information to be captured which is of

great importance in the context of semantic segmentation. DeepLab3+, as

its predecessor DeepLab3, employs atrous convolution in both a cascade ar-

rangement, which allows for bigger feature maps to be retrieved, as well as in

a parallel fashion by assigning a different dilation rate to each of the modules

to capture information at multiple scales in the original image. The first im-

provement introduced by DeepLabv3+ is represented by the encoder-Decoder

structure that wasn’t present in the previous iterations of the architecture.

In particular, DeepLabV3 is used as the encoder module of this new version

of the framework to extract the feature map from the input image. This

feature map is then fed to the decoder module which processes it in the fol-
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Figure 2.2: Visual representation of the full DeepLabV3+ architecture. [26]

lowing way: first, the encoded features are bilinearly upsampled by a factor

of 4 and concatenated with the corresponding lower-level feature, which are

passed through a 1x1 convolution layer to reduced the amount of channels

that usually characterizes them. After the concatenation the resulting fea-

ture map is refined through another 3x3 convolutional layer and finally, a last

upsampling step is performed to ensure that the output segmentation map

has the same size of the input image. This process proved to provide much

more precise segmentation maps compared to just upsampling the original

feature map by a factor of 16. Finally, a modified version of the Aligned

Xception [30] replaced the more traditional ResNet [49] as the backbone of

the framework. The first change compared to the original Aligned Xception

paper is that a deeper network is used in this context. Furthermore, all the

max pooling operations are replaced by depthwise separable convolutions

with striding which allow to extract feature maps at an arbitrary resolution.

Finally, inspired by the MobileNet [52] architecture design, each 3x3 depth-

wise convolution is followed by batch normalization and ReLU activation

functions.

The full architecture is reported in Fig. 2.2.
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Figure 2.3: Visual depiction of the difference between the traditional Multi-
Head Attention (MHA) module and the Spatial Reduction Attention mod-
ule. [126]

2.1.2 SegFormer

In the last few years methods relying on the Transformer architecture to per-

form different types of computer vision tasks became more and more popular.

The Transformer represents an alternative to traditional CNNs where the

main component is based on a self-attention mechanism that allows captur-

ing relationships between distant parts of the images more effectively. The

drawback, however, is that its original form is not a very scalable solution as

the complexity of the networks increases quadratically with the resolution of

the image to be analyzed. For this reason, alternative, more efficient, solu-

tions have been proposed. One of these is represented by SegFormer [126],

a ViT-based Encoder-Decoder architecture that improved the SoTA for se-

mantic segmentation when introduced in 2021. Compared to the original

ViT architecture, there are 3 main differences introduced by SegFromer to

improve efficiency. The first change is represented by the removal of the

positional encoding that was originally used to identify the position of each

region of the image. The main problem with this approach is that it loses

its effectiveness when the resolution of the test set images is different from

the ones from the training set, as in this scenario the positional information

encoded by it needs to be interpolated leading to a reduction in the model’s
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accuracy. In its stead, SegGFormer introduced a new way to retrieve loca-

tion information, with a module named MiX-FFN (Feed Forward Network)

which considers the effect of zero padding to leak location information and

is defined as follows:

Xout = MLP (GELU(Conv3x3(MLP (Xin)))) + Xin (2.1)

where Xin is the feature extracted by the self-attention module. The second

change introduced by SegFormer involves the Self-Attention module which is

the main bottleneck in the original ViT architecture as it is characterized by

a quadratic complexity. To avoid this a sequence reduction process (Fig. 2.3),

as proposed in [123], is used in the SegFormer architecture. The key idea

behind this process is to use a reduction ratio R to reduce the length of the

input sequence in the following way:

K̂ = Reshape(
N

R
,C ·R)(K̂)

K = Linear(C ·R,C)(K̂)

(2.2)

where K is the sequence to be reduced, Reshape is the function used to bring

K to the shape of N
R
× C · R and Linear is a linear layer that takes a Cin

tensor as input and produces a Cout dimensional output, leading to a new K

with shape N
R
× C. This process allows for a reduction in complexity from

O(N2) to O(N
2

R
).

These two newly introduced modules, coupled with an Overlapped Patch

Merging module that allows performing the self-attention process on over-

lapped patches, instead of separated ones as in the original ViT architecture,

allow obtaining an Encoder for the SegFormer framework with improved ef-

fectiveness and efficiency.

The third and last key departure from the original ViT architecture in-

troduced by SegFormer involves the decoder structure. In fact, the latter

implements a lightweight decoder that consists only of MLP layers and is

enabled by the hierarchical Transformer encoder that is characterized by a
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Figure 2.4: Visual representation of the SegFromer architecture [126]

larger, more effective, receptive field compared to traditional CNN ones.

The Decoder architecture of SegFormer consists of four main steps re-

ported hereafter:

F̂i = Linear(Ci, C)(Fi), ∀i

F̂i = Upsample(
W

4
X

W

4)(F̂i

, ∀i

F = Linear(4C,C)(Concat(F̂i)), ∀i

K = Linear(C,Ncls)(F )

(2.3)

In the first step, the feature maps extracted by the Encoder are passed

through an MLP layer to unify their channel dimension. Then, they are

upsampled to 1/4th and concatenated together. Subsequently, the concate-

nated maps are fused through an additional MLP layer. Finally, one last

MLP layer processes the fused feature maps and produces the segmentation

mask M with a H
4
× W

4
×Ncls resolution, with Ncls representing the number

of categories contained in the segmentation mask. As for DeepLabV3+, the

SegFormer architecture is shown in Fig. 2.4.
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2.2 Anomaly segmentation

When it comes to Anomaly detection and segmentation, traditional training

strategies can rarely be used, as typically this type of problem is characterized

by a very marked data imbalance in favor of the normal instances. This means

that the data containing the abnormalities or defects is rarely available in

large enough quantities to be used to effectively train a deep learning model.

For this reason, the majority of approaches dealing with anomaly detection

or segmentation task rely on alternative learning paradigms such as self-

supervised and unsupervised learning. In this section, we will provide both

an overview of the deep learning approaches for this class of problems and

an in-depth description of the current state-of-the-art approach.

When it comes to Deep Learning approaches to anomaly detection and

segmentation, we can classify them into 3 main categories: deep learning for

feature extraction, deep learning approaches that learn a feature representa-

tion of normality and end-to-end anomaly score learning frameworks [83].

Deep learning for feature extraction

In the systems belonging to the first category, the power of deep learning

is leveraged to extract a low-dimensional representation that capsules the

key features of the high-dimensional input, in our case consisting of images,

provided to the network. In this set of approaches, the feature extraction and

the anomaly scoring modules are completely disjoint and the performance of

the latter is strongly dependent on the quality of the features extracted by

the former.

A popular way of approach to improve the quality of the extracted fea-

tures while minimizing the computational cost is to employ a pre-trained

network, such as the popular VGG [108] or ResNet [49], and then fine-tune

it on the target domain dataset or even use it as it is and train only the

anomaly scoring module [119, 7, 86]. In recent years ImageNet [36] has be-

come the de-facto standard dataset on which to perform the pre-training step
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for the feature extraction networks in the field of computer vision, the reason

behind this is that it consists of a wide variety of classes and a large number

of instances.

While pre-training on a general-purpose dataset is often very convenient

in terms of computational cost, it doesn’t always lead to the best results. In

fact, when working within domains that present very specific characteristics,

such as medical imaging, for example, this approach is not always effective.

For this reason, as a second class of approaches explicitly trains the feature

extraction network on the target domain dataset [42, 57, 32]. While this

approach requires more time and computational resources it ensures that

the extracted features specifically target the criticalities of the task at hand,

therefore leading, most of the time, to improved results.

Learning normality representation

Compared to the previous category of approaches, normality learning ones

typically introduce a connection between feature extraction and anomaly

scoring. These approaches can be categorized into two main groups: Generic

Normality Feature Learning and Anomaly Measure-dependent feature learn-

ing.

The first category includes all those approaches that try to optimize a

generic feature learning objective, non necessarily designed for the task of

anomaly detection/localization but that can still lead to learning the reg-

ularities of the data. Self-supervised learning approaches, such as Autoen-

coders (AE) and Generative Adversarial Networks (GANs) typically fall in

this category.

A GAN network is typically composed of two main components, a Gen-

erator which starting from a latent representation tries to generate images

as close as possible to the one present in the dataset used, and a Discrim-

inator which receives as input both the images generated by the Generator

and the original ones and tries to discriminate between the two. One way of

performing anomaly detection through the use of GANs is to train the model
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only with “good” images so that during the testing process it should be able

to recognize them but not the anomalous one and therefore it could be used

to discriminate between data with and without anomalies. A different ap-

proach, which also allows performing Anomaly localization, was proposed by

Schlegl et al. with the introduction of the AnoGAN architecture[102]. The

main idea behind this model is represented by the introduction of an ad-

ditional component which is trained to learn the inverse transformation of

the Generator in order to produce the latent representation of the original

images, which can then be used to perform a reconstruction of said images

and thus compare it with the respective original ones. The main issue with

this idea is that the inversion process is very computationally expensive.

For this reason, another model, known as f-AnoGAN [103] (faster AnoGAN)

was introduced. This approach, compared to the original AnoGAN network,

provides much faster convergence thanks to the introduction of an additional

encoder network used to learn a function that maps the original images into

their respective latent space, which makes the expensive process of finding

the inverse of the generator superfluous.

The idea behind the AE architecture, on the other hand, is to use an

encoder to map the inputs to a latent space that is much smaller than the

original one and which is then used as the input for a Decoder which tries

to learn how to reconstruct the original input starting from this latent rep-

resentation. The assumption is that the model should learn to map only the

most important, or more common, features regarding the instances of the

dataset leaving out every superfluous or specific information. Therefore it

shouldn’t be able to properly reconstruct anomalies, leading to a greater dif-

ference between input and reconstruction for this class of instances compared

to the normal ones. For this reason, one possible approach to anomaly detec-

tion is to use an Autoencoder, usually trained only on the normal instances,

to obtain a latent representation (which is typically much smaller than the

original one) for each element of the dataset and then apply a clustering al-

gorithm in order to discriminate between the good and the anomalous ones.
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The limit of this approach is that it cannot be used for the localization of

the anomalies but only for the detection. Many approaches based on AEs

have been proposed over time with different characteristics related to their

structure and type of loss functions adopted. Recent works specifically fo-

cused on Anomaly Segmentation[12] in images, showed the benefit of using

a structural similarity-based loss (e.g. SSIM) to assess the quality of the

reconstruction in substitution, or addition, to the pixel-wise one (e.g. MSE)

adopted in previous works.

The second category of approaches is represented by all those systems

that try to learn a representation of normality via a domain-specific opti-

mization task. The simplest systems belonging to this category typically

rely on the optimization of a distance-based task [132, 82, 122] that allows

distinguishing between normal and anomalous instances at inference time.

The drawback of optimizing a distance measure is that it becomes exponen-

tially harder as the dimensionality of the input increases and therefore can

be only applied to relatively simple problems or, as an alternative, it must

be coupled with a dimensionality reduction step. An alternative is repre-

sented by one-class-classification systems, that typically involve the use of a

Support Vector Machine (SVM) either on its own [104, 117] or paired with

neural networks [77, 125], to learn the description of a set of data instances

as to be able to detect whether new instances come from the same set (are

normal) or not (are anomalous).

End-to-end anomaly score learning

End-to-end anomaly detection approaches share some similarities with the

ones that try to learn a normality representation through the optimization of

an anomaly measure. However, while the latter focus on synthesizing existing

neural network models and anomaly measures, with all the inherent disad-

vantages they carry, the former aim at defining new loss functions to direct

the learning of the anomaly score. There are four main types of approaches

belonging to this category.
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The first one is represented by ranking models, which aim at learning

a ranking model to sort the data instances based on an ordinal value that

represents their level of abnormality and that is used to drive the behavior

of the anomaly scoring neural network [84, 87, 115]. Ranking models usually

require the availability of some labeled anomalous instances which may not

be available in certain application scenarios. Furthermore by relying on a

small set of labeled anomalies the models belonging to this category may not

generalize well to previously unseen ones.

A second type of approach is one relying on prior-driven models that use a

prior distribution to drive the learning process for the anomaly scores [85, 80].

While these approaches provide a flexible framework that allows to incorpo-

rate of different priors into the anomaly scoring process and also potentially

allows more interpretable results compared to other methods, the main draw-

back that characterizes them is that it’s really hard, if not impossible to

design an effective prior that generalizes to different application scenarios.

Softmax likelihood models represent yet another way of tackling the

anomaly detection task. They work by maximizing the likelihood of events

in the training data. The idea behind this category of approaches is that

typically normal and anomalous instances are characterized by frequent and

rare patterns respectively, therefore it’s fair to assume that the former are

high-probability events while the latter are low-probability ones [44]. The

anomaly score that drives the learning of this category of approaches is then

naturally defined as the negative of the event likelihood.

Finally, end-to-end one-class classification approaches learn to discrimi-

nate between the instances belonging or not to what is considered the normal

class. Compared to more traditional one-class classification approaches the

one belonging to this category does not rely on any existing one-class clas-

sification measures. One common example of an approach performing end-

to-end one-class classification is represented by a subset of GANs that are

trained to perform this task in an adversarial fashion by learning a discrim-

inative criterion that allows to effectively discriminate between the normal
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Figure 2.5: Visual representation of the Patchcore architecture [96]

instances, provided by the dataset, and the pseudo-anomalies generated by

the Generator component of the network [136, 89, 98].

2.2.1 Patchcore

The Patchcore framework (Fig. 2.5), introduced in 2021 [96], represented

a big step forward in the field of anomaly detection, becoming the state-

of-the-art approach for this class of problems. Patchcore is a patch-based

anomaly detection approach that builds on the idea that if a single patch is

found to be anomalous then the whole image can be classified as anomalous.

This framework consists of three main components that combined together

lead to an efficient and robust architecture for the task of anomaly detection,

namely: the adoption of local patch features aggregated into a memory bank.

a coreset reduction method and the final anomaly detection and localization

module.

The first step involves the adoption of a ResNet-based architecture, pre-

trained on the popular Imagenet dataset [36], to extract a set of patch-level

locally aware features from the input images. In particular, the extracted

features come from the intermediate layers of the pre-trained network to avoid

relying on features that are either too generic (first layers of the CNN) or too

heavily biased towards a specific task, in this case, Imagenet classification

(last layers of the CNN). Each patch is formally defined as the c∗-dimensional

feature slice at position h ∈ {1, ..., h∗} and w ∈ {1, ..., w∗} of the feature
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map φi,j ∈ R
c∗×h∗

×w∗

. Each patch is then enhanced by incorporating some

local information from the neighboring ones, this allows for an increased

robustness to small spatial deviation while preserving the spatial resolution

of the feature maps. The way this goal is achieved is by incorporating into

each patch representation the feature vectors from its neighborhood, leading

to the following new patch definition:

φi,j(N
(h,w)
p = fagg({φi,j(a, b)|(a, b) ∈ Nh,w

p }) (2.4)

where
N (h,w)

p = {(a, b)|a ∈ [h− [p/2], ..., h + [p/2]],

b ∈ [w − [p/2], ..., w + [p/2]]}
(2.5)

represents the feature vectors from the neighborhood of size p surrounding

the patch, and Fagg is some aggregation function for the neighborhood, in

this case, the one used is adaptive average pooling. For each feature map

tensor φi,j we can now define its locally aware patch feature collection as:

Ps,p(φi,j) = {φi,j(N
(h,w)
p )|

h, w mod s = 0, h < h∗, w < w∗, h, w ∈ N}
(2.6)

where s is an optional striding parameter that is typically set to 1. Finally, a

memory bank containing the patch representations for all the normal (non-

anomalous) training samples x∈XN , is created and defined as:

M =
⋃

xi∈XN

Ps,p(φj(xi)). (2.7)

The main problem with the memory bank construction is that for increas-

ing sizes of XN it becomes too large to handle, leading to a drastic increase in

inference time and storage space needed. This leads us to the second step in

the Patchcore framework, represented by the reduction of the patch-feature

memory bank to a reduced coreset. This process aims at finding a subset

S ⊂ A such that solutions over A can be more efficiently computed over
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S while maintaining a close approximation to the original ones. The way

the coreset (M∗

C) is obtained is by applying a greedy variant of the facility

location coreset selection algorithm [105] (eq. 2.8) which is made even more

efficient by the reduction in the dimensionality of the elements of M through

random linear projections that allow preserving a close resemblance to the

characteristics of the starting, higher dimensionality space [109].

M∗

C = argmin
MC⊂M

max
m∈M

min
n∈MC

||m− n||2 (2.8)

Finally, through the patch-feature memory bank M an estimated image-

level anomaly score s is produced for each test image. The way this score is

obtained is by calculating the maximum distance between the feature vector

of each patch in the test patch collection and the respective nearest neigh-

bor m∗ ∈ M , denoted as s∗, then this score is scaled based on the distance

between m∗ and the neighbor patches in M . The idea behind this scaling is

that if m∗ is an ”outlier” itself with respect to the other patches in M then

the patch we are currently analyzing, mtest,∗, is more likely to be anomalous,

consequently its anomaly score is increased. The final formula used to calcu-

late the anomaly score is reported in Eq. 2.9, where Nb(m
∗) are the b nearest

patch-features in m to test patch-feature m∗

s =

(

1 − exp||mtest,∗ −m∗||2
∑

m∈Nb(m∗) exp||mtest,∗ −m||2

)

· s∗. (2.9)

Starting from Eq. 2.9 the image-level anomaly map can be computed by

realigning the computed anomaly scores for each patch of the test image

based on their spatial location and then upscaling the obtained map via

bi-linear interpolation.
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2.3 Document layout segmentation

Semantic segmentation in the context of document layout analysis, commonly

referred to as document layout segmentation, is characterized by very specific

challenges compared to its general-purpose counterpart, especially when the

target documents are handwritten and ancient. The first key challenge is

represented by the very high degree of similarity between the semantic classes

we want to distinguish. In fact, since the main goal of this type of problem

is to classify different types of text, the adopted models need to be very

sensitive to small details and contextual information. Furthermore, when it

comes to ancient manuscripts there is an added challenge introduced by the

degradation of the document pages due to aging, ink stains, and scratches

which coupled with a potentially low quality of digitally acquired instances

makes the segmentation task even harder.

Many different approaches have been proposed to tackle the layout anal-

ysis, especially for handwritten historical documents. This section reviews

some representative state-of-the-art methods for historical document image

segmentation. In general, the techniques employed for document layout anal-

ysis are usually divided into three categories: bottom-up, top-down and hy-

brid [13].

The bottom-up strategy derives document analysis dynamically from

smaller granularity data levels such as pixels and connected components.

Then, the analysis grows up to form larger document regions and stops once

it reaches a page segmentation into different regions with uniform elements.

These techniques are flexible and do not require any prior knowledge of the

layout structure. However, usually, they demand many labeled training data

that is often not available, especially in the domain of historical documents

where highly specialized expertise is needed to label the data.

On the contrary, top-down approaches assume that pages have a well-

defined structure and layout. Various characteristics of the document page

structure are then considered, such as white space between text regions,

size of text blocks and the measures between main texts and paratext [33].



26 2. Related works and State of the art

The page segmentation process then starts from the whole page and cuts it

into areas to produce small homogeneous regions. In general, the top-down

methods are easily applicable but not suitable for complex layouts such as

handwritten historical documents. In addition, these methods depend on the

layout structure of the document, so they have a low generalization capability.

Even though the research of this technique is well established, there are

still many challenging issues that neither bottom-up nor top-down strategies

can address appropriately. For this reason, the hybrid strategy has been iden-

tified and derives from the integration of the other two main categories [13].

Over the years, many techniques have been used to address this task, from

classical computer vision algorithms to deep learning methods.

Chen et al. [20] used a convolutional autoencoder to learn the features di-

rectly from the pixel intensity values. Then, by using these features to train

Support Vector Machines (SVM), this method got high-quality segmenta-

tion without any assumption of specific topologies and shapes of document

layouts.

A different approach, which also allows performing layout analysis, was

proposed by Mehri et al. [71] with the method based on learning texture

features. This method used the simple linear iterative clustering super-pixels,

Gabor descriptors, the co-occurrence matrix of the gray level, and an SVM

to classify pixels into foreground and background. A super-pixel is a set of

pixels that shares similar spatial and intensity information.

Many researchers have approached the page segmentation problem as a

pixel labeling problem such as the work by Chen et al.[19]. In this paper,

the features are learned directly from randomly selected image patches by

using stacked convolutional autoencoders. With an SVM trained with the

features of the central pixels of the super-pixels, an image is segmented into

four regions. Finally, the segmentation results are refined by a connected

components-based smoothing procedure. The authors show that by using

super-pixels as units of labeling, the speed of the method is increased.

Following the same idea of [19], in Chen et al. [21] local features are
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learned with stacked convolutional autoencoders in an unsupervised manner

for the purpose of initial labeling. Then a conditional random field model is

applied for modeling the local and contextual information jointly to improve

the segmentation results. The graph nodes are represented by super-pixels,

so the label of each pixel is determined by the label of the super-pixels to

which it belongs.

[118] proposed a hybrid method for page segmentation problems. In the

first stage, the text and non-text elements are classified by using a minimum

homogeneity algorithm which is the combination of connected component

analysis and multilevel homogeneity structure. Then, in the second stage,

a new homogeneity structure is combined with an adaptive mathematical

morphology in the text document to get a set of text regions. [33] proposed

a novel method for document layout analysis that reduces the need for la-

beled data. This method is a dictionary-based feature learning model where

a sparse autoencoder is first trained in an unsupervised manner on a docu-

ment’s image patch. Then, the latent representation of image patches is then

used to classify pixels into various region categories of the document using

a feed-forward neural network. Also, [4] used the patching of the document

image to train a siamese network model that takes in input a pair of patches

and gives as an output a distance that corresponds to their similarity. The

trained model is also used to calculate a distance matrix which in turn is used

to cluster the patches of a page as either main text, side text, or a background

patch. [112] tackle the problem of the limited presence of annotated data by

introducing the use of pre-trained segmentation models on images from a

different domain and then fine-tuning them on historical handwritten docu-

ments. The results demonstrated that on some manuscripts pre-training on

ImageNet increases the performance, but on others, the pre-trained network

performs much worse. Finally, [116] propose the few-shot learning approach

Deep&Syntax to segment historical handwritten registers. Their work uses a

hybrid system that exploits recurring patterns to delimit each record, com-

bining U-shaped networks and logical rules such as filter and text alignment.
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While the presented approaches have different degrees of effectiveness when

trying to solve the document layout segmentation task, they all rely on large

amounts of data for their training. The main contribution we bring with

the present work is the ability to achieve similar, or even better performance

while relying on just a fraction of the available data.

2.3.1 MLA

In 2018 Xu et al. proposed a Multi-task Layout Analysis framework (MLA)

for the layout analysis of historical handwritten documents which established

the current state of the art in this research field [127].

The proposed framework is based on a Fully Convolutional Network

(FCN) for semantic segmentation trained on 4 different tasks concurrently.

While the first 5 convolutional modules of the network are kept consistent

with previous works, the authors introduced three main modifications to the

architecture. The first one is represented by a stronger focus on low-level

features which are concatenated to the final feature map extracted by the

network (FIG 2.6, Stage 2). This choice is motivated by the idea that when

dealing with text classification tasks, where the difference between the vari-

ous elements we want to partition lies in very small and subtle details, we are

more interested in features that represent simple characteristics as opposed

to the ones extracted by the deeper layers of the network, which usually

capture more complex structures.

Furthermore, the depth of the network is increased by adding three addi-

tional 3× 3 convolutional layers on top of stage 5, in order to extract feature

maps characterized by a larger receptive field. The reason behind this is that

when it comes to document layout segmentation contextual information is

very important as, for example, the relative position between text blocks can

indicate to which category they belong.

Finally, as previously stated, instead of training the network on just the

task of layout segmentation three more heads are introduced to leverage

the full annotation information provided by the dataset. The first head is
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Figure 2.6: Multi-task Layout Analysis framework [127]

specialized in the segmentation of decoration regions, which represent the

only layout class not characterized by textual information. The second head

focuses on the recognition of the main text and comment regions which typ-

ically represent the bulk of the content of a document page. These first two

heads not only extract the category information but also provide a coarse

contour outside of the text lines. The third head is trained to perform a

binarization task on the document page, to separate the foreground pixels

from the background ones. Finally, the last head performs the text line

segmentation task or, in other words, learns the center line of each line of

text.

The way the segmentation task is performed is thus by combining the

predictions of the first three heads, in particular, the coarse segmentation

masks produced by heads one and two are combined with the binarization

masks produced by head three to obtain a more precise, segmentation mask.

However, at this stage, the obtained mask is still characterized by noise and

misclassified regions. For this reason, some additional refinement steps are

performed. The first one is based on the observation that small isolated

regions are typically characterized by the same class as their surroundings

and also, the length of contacted boundary between the elements belonging

to the main text and comments classes is short. Therefore, supposing Ca

and Cb are two adjacent connected components (CC) belonging to different

classes (A and B respectively) and let La be the boundary length of Ca and
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Lab the length of the boundary touching both Ca and Cb then, if Lab ≥ La/3,

Ca will be considered an isolated CC surrounded by class B. At this point, a

window of fixed size around the CCs is considered and each pixel inside it is

converted to the predominant class.

As a second refinement step, each foreground CC is analyzed and if 80%

of its pixels are classified as a decoration then all the remaining ones are also

converted to the decoration class.

Finally, all the CCs with an area smaller than a predefined threshold

value are removed and considered as background to reduce the noise.



3
Bringing attention to image

anomaly detection

In the following chapter we analyze the effects of the introduction of an

attention-based mechanism in a traditional reconstruction-based anomaly seg-

mentation framework. Furthermore, a novel masking approach for the input

image is adopted to prevent the accurate reconstruction of anomalous regions

thus improving the anomaly localization capabilities of the system.

3.1 Introduction

In this chapter we are presenting an attention-based approach built upon the

RIAD Framework [130] which leverages a patchwise inpainting process in or-

der to detect and localize anomalies in images. In particular, while keeping

the patchwise structure of said approach, we modify the original reconstruc-

tion module of the framework by introducing an Attention U-Net model in

place of the original U-Net. Furthermore, we propose a new approach for the

masking process of the images which works on a higher number of overlap-

ping patches at a single scale of the image instead of using a multiple scale

approach. Finally, we also propose a new evaluation setup that uses both

an L2 and a multi-scale GMS loss, instead of relying just on the latter, to

generate the anomaly maps. We show how the combination of these ideas

significantly increases the overall performance of the model on the adopted
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dataset for the metrics considered.

The rest of the chapter is organized as follows: in section 3.2 we give

an overview of the proposed framework by describing in detail the masking

process and the attention-based reconstruction approach that characterizes

it. In section 3.3 we provide a comparison of our model with its baseline

counterpart as well as with other common approaches for anomaly localiza-

tion. Finally, section 3.4 is dedicated to the final remarks together with an

overview of possible future works in this area.

3.2 Methods

The approach we propose in the present chapter is based on the framework

presented in [130]. As in the original work, we try to address the problems

of anomaly detection and localization via an inpainting approach that aims

to reconstruct the missing parts of an image. The idea is to generate a set of

random masks for each image before feeding it to the model, which then tries

to reconstruct only the masked-out regions hopefully ignoring the anomalies

potentially contained in them, thus increasing the difference between the

original images and the reconstructed ones specifically in those anomalous

regions. The two main novelties we present in this work are, respectively, the

introduction of an attention mechanism in our reconstruction process through

the adoption of an Attention U-Net [81] instead of the original standard U-

Net, and the adoption of a new masking process which will now be described

in detail.

3.2.1 Masked regions generator

The masking approach we are proposing in the present works differs from the

one used in the original work [130] in the fact that, instead of masking out

non-overlapping patches at multiple scales of the original image it focuses on

patches of a single size. Our approach works by selecting N random, poten-

tially overlapping, masks consisting in a set of k × k regions which in total
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make up for the P percent of the total area of the input image, by setting

the corresponding pixels to a value of 0. The masked instances are then fed

to the model which tries to reconstruct the missing parts. Finally, the av-

erage of each reconstructed region of the input image is taken to determine

the output of the model. The main intuition behind this approach is that

by reconstructing each patch of the original instance starting from different

starting visible regions the robustness of the reconstructed image should im-

prove, making it harder for it to contain the reconstruction of any eventual

anomaly present in the corresponding input.

Figure 3.1: Scheme representing the function of the attention gates for the
Attention U-Net model [81]. The input features (xl) are scaled with the
attention coefficients (α) computed in the AG. These coefficients are obtained
through the use of additive attention computed between the input feature
and the gating signal (g) which is collected from a coarser scale and provides
the needed contextual information.
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3.2.2 Model

The model we adopted for the Reconstruction module in our framework is

represented by the popular Attention U-Net. This deep learning model was

initially introduced [81] as a way to address the problem of Multi-class image

segmentation in biomedical images. The Attention U-Net differs from its

original counterpart for the introduction of attention gates (Fig.3.1) in the

upsampling part of the network, which takes as their inputs a set of input

features, represented by the output of the previous layer of the model (called

the ”gating signal”) and the feature map obtained from the skip connection,

which also defines the size of the output of the gate. This way a set of

attention coefficients are learned in order to identify salient regions in the

feature maps, relative to the considered task.

3.3 Experiments

3.3.1 Datasets

The dataset we choose for the training and testing processes of the presented

model is represented by the MVTec Anomaly Detection dataset [8]. This

dataset, thanks to its heterogeneity, has become one of the most common

benchmarks for works that try to address the problem of anomaly detec-

tion and localization in images. MVTec consists of 3629 training images and

1725 test images distributed over 15 classes, 10 of which represent different

products while the remaining ones cover 5 different types of textures. The

classes have been chosen in order to provide heterogeneous characteristics

both regarding the appearance of the elements they represent and the type

of anomalies by which they can be affected. The way in which the images

have been collected is also heterogeneous as for some of the classes all the in-

stances tend to be roughly aligned while for some others a random rotation is

introduced. Moreover, three of the classes are characterized by the presence

of grayscale images only, as this is a common occurrence in real-world indus-
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trial settings. As previously mentioned, the testing set also presents a high

degree of heterogeneity. For each category, an average of 5 different types

of anomalies is provided for a total of 73 anomaly types across the dataset.

Furthermore, MVTec does not only provide the labels for defective images at

an instance level but also provides pixel-perfect Anomaly Maps which allow

us to assess the quality of our model also on the anomaly localization task.

A set of samples for the MVTec dataset is provided in Fig.3.2.

Figure 3.2: Samples for 5 texture classes and 5 product classes of the MVTec
dataset [9]. For each category are shown a normal instance (top row), an
anomalous one (middle row), and a close-up of the anomalous region (bottom
row)

3.3.2 Training Setup

The training of the model was performed using only the normal instances of

the dataset, through a self-supervised approach. The maximum number of
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epochs allowed was set to 300, which proved to be enough for each model

to converge, with an early stop in case the performance on the validation

set wouldn’t improve over the last 20 epochs. The total loss used to evalu-

ate this performance was calculated as the sum between the Mean squared

Error (MSE) loss, the Gradient Magnitude Similarity (GMS) loss, and the

negative of the Structured Similarity Index (SSIM) between the original and

the reconstructed images. The combination of these losses allows for focus

both on the overall structure and the smaller details of the images. A formal

description of the loss functions is given hereafter:

L2(X, X̂) =
h−1
∑

i=0

w−1
∑

j=0

(Xij − X̂ij)
2 (3.1)

LSSIM(X, X̂) = − (2µXµX̂ + c1)(2σXX̂ + c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂

+ c2)
(3.2)

LGMS(X, X̂) =
2g(X)g(X̂) + C

g(X)2 + g(X̂)2 + C
(3.3)

L(X, X̂) = α ∗ L1(X, X̂) + β ∗ LSSIM(X, X̂) + γ ∗ LGMS(X, X̂) (3.4)

where:

• X: Is the original image

• X̂: Is the reconstructed image

• h, w: Are the height and width of the image in pixel

• µx: Is average value of image x

• σ2

x
: Is variance of image x

• σxy: Is the covariance of x and y

• c1&c2 : Are two variables used to stabilize the division with weak

denominator
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• g(X) is the gradient magnitude map for image X calculated as: g(X) =
√

(G ∗ hx)2 + (G ∗ hy)2 with hx and hy being 3x3 filters along the x and

y dimensions respectively and ∗ being the convolution operation.

• α, β, γ: are the weights of every single loss in the total loss function,

for this work we kept them all equal.

As we can notice the SSIM is negated in the total loss function, the reason

behind this is that it represents a similarity measure defined in the interval

[−1, 1] where a value of 1 indicates that the compared images are completely

identical, therefore by keeping the obtained values as they are we would have

a maximization problem instead of a minimization one.

Finally, in Tab.3.1 we provide the hyper-parameters employed for the

model during the training process. The reported values have been selected

empirically by trying to provide a good compromise between the quality of

the predictions and the complexity of the model.

Table 3.1: model hyperparameters

LR Weight decay Batch Img size # of masks Patch sizes Masked region (%)

1eˆ-4 1eˆ-4 16 128x128 20 16x16 33

3.3.3 Anomaly localization process

Another area in which we departed from the original RIAD framework is the

one regarding how anomalous regions of the images are detected. Instead

of relying on just the anomaly maps obtained by calculating the gradient

magnitudes similarity between the input and the reconstructed images, we

combined these with the anomaly maps resulting from the normalized, pixel-

wise, MSE between the two images by summing the values of each of their

pixels. The idea behind this choice is that by taking in consideration different

similarity measures between the original and the reconstructed images the

reliability of the model in localizing the anomalies should improve.
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3.3.4 Metrics

For the evaluation process of the performance of the model on the selected

dataset, we opted to use two metrics. The first one is the Area Under the

ROC Curve (AUROC), which plots the False Positive Rates obtained by the

model versus its True positive Rates and then calculates the area under the

resulting curve. This measure is a common metric for the addressed prob-

lems in recent works. Instead of considering the whole curve, we decided to

set an upper limit for the FPR to 0.3 as proposed in [8]. This is because

results with a high FPR tend to lead to meaningless detection and segmen-

tation results, especially in real-world scenarios where they would lead to

the rejection of many products not presenting any real defects. The second

metric we adopted is the Area Under the Precision-Recall Curve, which has

been chosen because it is particularly well suited for those problems where

we are more interested in one specific class of the instances as it happens in

the context of anomaly detection. Furthermore, another important property

of this metric is that it is not affected by data imbalances in the test set.

3.3.5 Results

Hereafter we present the results achieved by our model on the MVTec dataset

for the 2 different metrics considered, and show how they compare to the

baseline on which our work is based, namely RIAD [130], as well as to other

widely used approaches, represented by the ones reported in the most recent

MVTec paper [8] from which we selected, for a fair comparison only those who

didn’t rely on additional data for pre-training. We additionally include, for

the results regarding the ROCAUC score, a comparison with VT-ADL [74]

which is of particular interest as it represents an alternative way of introduc-

ing the attention mechanism for the task of anomaly localization in images.

In Table 3.2 and Table 3.3 are reported the aforementioned comparative re-

sults, for the ROCAUC and PRAUC metrics respectively. While the scores

for the VT-ADL and baseline RIAD approaches have been calculated by us,
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which is of particular relevance especially for the latter as it allowed us to

really analyze and understand the power represented by the introduction of

the attention mechanism, for all the other models they have been gathered

from the original paper.

Table 3.2: Normalized area under the ROC curve up to an average false
positive rate per pixel of 30% for each dataset category. The values in bold
represent the best scores overall.

Class f-anoGan [101] l2-AE [11] SSIM-AE [11] Texture inspection [17] Variation model [18] VT-ADL [74] RIAD [130] Ours

Carpet 0.251 0.287 0.365 0.874 0.162 0.549 0.803 0.906

Grid 0.550 0.741 0.820 0.878 0.488 0.569 0.966 0.932

Leather 0.574 0.491 0.356 0.975 0.381 0.817 0.983 0.983

Tile 0.180 0.174 0.156 0.314 0.304 0.589 0.599 0.719

Wood 0.392 0.417 0.404 0.723 0.408 0.682 0.745 0.768

Bottle 0.422 0.528 0.624 0.454 0.667 0.687 0.893 0.926

Cable 0.453 0.510 0.302 0.512 0.423 0.751 0.665 0.854

Capsule 0.362 0.732 0.799 0.698 0.843 0.615 0.965 0.951

Hazelnut 0.825 0.879 0.847 0.955 0.802 0.926 0.944 0.954

Metal nut 0.435 0.572 0.539 0.135 0.462 0.711 0.706 0.913

Pill 0.504 0.690 0.698 0.440 0.666 0.748 0.919 0.903

Screw 0.814 0.867 0.885 0.877 0.697 0.771 0.881 0.945

Toothbrush 0.749 0.837 0.846 0.712 0.775 0.878 0.974 0.969

Transistor 0.372 0.657 0.562 0.363 0.601 0.689 0.731 0.886

Zipper 0.201 0.474 0.564 0.928 0.209 0.683 0.951 0.939

Mean 0.472 0.590 0.584 0.656 0.526 0.683 0.848 0.893

As we can see for the ROCAUC metric the proposed model vastly outper-

forms all the other ones, achieving margins going from 4.5% to 42.1% on the

mean value for the baseline RIAD and f-anogan models respectively, with a

significant improvement (21%) also over VT-ADL, the only other approach

using an attention-based mechanism. While the margin from the former is

not as large as the one from other models it is definitely noteworthy and

representative of the power of the attention mechanism. This aspect is also

accentuated by the fact that our model achieved the best performance on

most of the classes (10 out of 15) across all models. Regarding the PRAUC

scores, on the other hand, we can see that, while the results achieved by

our approach aren’t as markedly better than the ones reported for the other

approaches on the individual classes, where it obtains the top score in 6 out

of 15 of them, it still proves to be the best-performing model overall, again

with a significant margin over the competition. Is it interesting to observe
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Table 3.3: Normalized area under the Precision-Recall Curve for each dataset
category. The values in bold represent the best scores overall.

Class f-anoGan l2-AE SSIM-AE Variation model Texture inspection RIAD Ours

Carpet 0.025 0.042 0.035 0.017 0.568 0.223 0.292

Grid 0.050 0.252 0.081 0.096 0.179 0.278 0.208

Leather 0.156 0.089 0.037 0.072 0.603 0.600 0.555

Tile 0.093 0.093 0.077 0.218 0.187 0.157 0.198

Wood 0.159 0.196 0.086 0.213 0.529 0.322 0.290

Bottle 0.160 0.308 0.309 0.536 0.285 0.560 0.571

Cable 0.098 0.108 0.052 0.084 0.102 0.122 0.369

Capsule 0.033 0.276 0.128 0.226 0.071 0.184 0.317

Hazelnut 0.526 0.590 0.312 0.485 0.689 0.444 0.580

Metal nut 0.273 0.416 0.359 0.384 0.153 0.257 0.712

Pill 0.121 0.255 0.233 0.274 0.207 0.567 0.487

Screw 0.062 0.147 0.050 0.138 0.052 0.163 0.138

Toothbrush 0.133 0.367 0.183 0.416 0.140 0.456 0.492

Transistor 0.130 0.381 0.191 0.309 0.108 0.244 0.525

Zipper 0.027 0.095 0.088 0.038 0.611 0.605 0.312

Mean 0.136 0.241 0.148 0.234 0.299 0.339 0.403

in particular how the improvement over the baseline RIAD model is even

more significant for the PRAUC metric (6.4%), which can be considered a

stricter evaluation metric, than it is for the formerly analyzed ROCAUC one

(4.5%). Finally it’s important to mention that the computational complex-

ity of the proposed model is comparable to the original RIAD one as both

the new mask generation process and the introduction of the attention gates

introduce very little overhead.

3.4 Conclusions and Future Works

In the presented work we investigated the potential of the attention mech-

anism, and of an efficient masking process, in the context of Anomaly Lo-

calization, specifically through the introduction of an Attention U-Net as

the reconstruction module for the already effective RIAD Framework, which

used a traditional U-Net for this task. In particular, we have shown how the
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proposed approach is able to outperform other more traditional models on

the popular benchmark MVTec for the metrics considered, furthermore, it

provides a significant improvement in performance over its baseline counter-

part which doesn’t leverage the power of the Attention mechanism, showing

the effectiveness of the latter. Even though the results obtained with this

work clearly show the potential of attention-based approaches for anomaly

detection, we think that further investigation in this area could lead to even

more interesting outcomes. In future works, we would like to build an entire

framework that fully leverages the attention component as opposed to simply

introducing it in a preexisting one. Furthermore, we believe that a higher

degree of heterogeneity in the datasets considered for the benchmarking pro-

cess would definitely provide a more complete picture of the capabilities of

this approach in different real-world scenarios.



42 3. Bringing attention to image anomaly detection



4
Masked Transformer for image

Anomaly Localization

Most of the current deep learning approaches rely on image reconstruction:

the input image is projected in some latent space and then reconstructed,

assuming that the network (mostly trained on normal data) will not be able

to reconstruct the anomalous portions. However, this assumption does not

always hold. We thus propose a new model based on the Vision Transformer

architecture with patch masking: the input image is split into several patches,

and each patch is reconstructed only from the surrounding data, thus ignoring

the potentially anomalous information contained in the patch itself. We then

show that multi-resolution patches and their collective embeddings provide a

large improvement in the model’s performance compared to the exclusive use

of the traditional square patches.

4.1 Introduction

Most of the models used in recent years to tackle the anomaly detection

problem make use of Convolutional layers which exploit the typical charac-

teristics of images by detecting progressively more complex features starting

from the most basic ones (e.g. edges). In particular, there are two kinds of

architectures, with their respective variations, which gained a lot of popu-

larity for their effectiveness in dealing with this kind of problem, which are
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Figure 4.1: Vision Transformer architecture [40]

Autoencoders [28] and Generative Adversarial Networks (GANs) [131]. One

problem with classical image reconstruction approaches though, is that they

use the information extracted from the whole image to obtain the output

image, which can lead the model to be able to reconstruct also the anomalies

and therefore to not be able to identify them.

In this chapter, we propose a new approach a novel method for image

Anomaly Detection, called Masked Transformer for image Anomaly Local-

ization (MeTAL), that adopts as its backbone the recently presented Vision

Transformer (ViT) architecture [40], which instead of leveraging the prior

knowledge granted by the use of convolutional layers, is characterized by the

adoption of a masked multi-head self-attention mechanism that allows the

model to learn a relationship between different patches of the input images.

In particular, with the present work, we introduce two main novelties to

the original architecture. the first one regards a new masking component

we added to the multi-head self-attention module of the ViT encoder which

allows us to reconstruct each patch of the image without using any informa-

tion coming from the patch itself but using only the information extracted

from the surrounding patches based on the importance given to each of them
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by the attention module. The second idea we present regards, instead, the

way patches are generated from the original image. In particular, instead of

relying on just the square patches as in the original work presenting ViT,

we introduce the idea of calculating attention between patches of different

shapes, which are then combined to obtain the final image reconstruction.

As we will show in section 4.4 both ideas resulted in an improvement in

performance over the baseline model for the task at hand.

Furthermore, we show that the Vision Transformer architecture is a valid

option for anomaly detection problems and can be adopted effectively even

in scenarios where the amount of data available is relatively small without

necessarily relying on a pre-training procedure.

The rest of the chapter is organized as follows. In section 4.2 we give

a brief introduction to the Vision Transformer architecture. Then in sec-

tion 4.3, a detailed overview of the training process is given together with

a thorough description of the proposed architecture. The obtained results

are outlined in section 4.4 where a more in-depth description of the adopted

dataset is also provided. Finally, in section 4.5 we summarize our work and

discuss our ideas for future work.

4.2 Vision Transformers

The Vision Transformer is a deep neural network architecture proposed by

Dosovitskiy et al. [40] as an alternative to convolutional-based architectures

for computer vision applications. This model builds upon the idea of Self-

Attention introduced in the original Transformer paper [120], which has since

become the model of choice for Natural Language Processing (NLP) Appli-

cations, replacing Recurrent Neural Networks.

Architecture:

The Vision Transformer architecture (Fig. 4.1) differs from the original trans-

former one in the fact that it only uses the encoder module leaving out the
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Figure 4.2: Illustration of the masking process performed in the self-attention
module of our model. In the example we are calculating the attention values
for patch #1, therefore we set the dot product between Query #1 and Key #1
to 0 in order to take into account only the attention values of the remaining
patches

Decoder. The encoder module, which takes as its input a set of flattened

representations of the different patches composing the image we are trying

to analyze, consists of a Stack of N identical Layers each containing two sub-

layers: the first one is a multi-head self-attention block while the second one

is a fully connected feed-forward layer. Around each of the 2 blocks, a resid-

ual connection is applied, followed by a layer normalization step. The role of

the encoder module in the ViT architecture is that of learning a correlation

between the different patches composing an image. In order to preserve the

spatial information regarding the position of the different patches a positional

embedding is added to the patches representations before feeding them to the

ViT encoder. The positional embedding can be fixed or learned alongside

the other parameters.
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Figure 4.3: Overview of our model in its basic form: the original image is
split into patches of the same size which is used as the input of a Multi-Layer
Perceptron (MLP) in order to get the corresponding embedding. Then, to
each patch embedding, a position embedding is added. The resulting tensor
is then processed through a masked ViT encoder module in order to obtain
the final embedding which will be used to reconstruct the respective patch
by using an MLP Decoder

Multi-head Attention:

The attention mechanism can be described as a function that maps triplets of

vectors, represented by a query (Q) and key-value (K, V) pairs, to an output

which is computed as a weighted sum of the values where the weights of each

value are computed based on a compatibility relationship between a query

and the corresponding key. In Vision Transformers instead of performing

the self-attention step only once for each set of queries, keys and values, we

project them in h different spaces via learned linear projections. Attention is

then calculated for each of these different projections and the final outputs are

concatenated and projected again to obtain the final values. The whole self-

attention calculation process can be summarized by the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4.1)

This approach allows the model to consider different representation sub-

spaces when calculating attention between the different parts of the image.
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4.3 Methods

4.3.1 Data preparation

As far as data preparation is concerned we tried to adopt a very minimal

approach. The only way the images themselves are pre-processed is through

a resizing process that brings them all to the same final size, which is 128x128

for all the classes. This step was necessary in order to have a consistent

number of patches when dividing the images in the next steps and it was

also helpful for reducing the overall complexity of the model. The only other

operation applied to the dataset before training is a shuffling of the instances

in order to avoid any potential bias for the model based on their order.

4.3.2 Model description

The model on which the work for this chapter is based on the classical Vision

transformer architecture presented in the previous section.

In this work, however, we introduce two very important changes to the

aforementioned architecture which we will describe in detail in the present

section. The first change is represented by a masking process by which we try

to remove the focus of each patch of the original image on its own features,

redirecting the attention to the remaining ones. While the second idea we

introduced regards the division of the original images into multi-shaped and

multi-scale patches, as opposed to relying only on the traditional square

patches presented in the original work.

Masking process

While many of the image-reconstruction-based models for anomaly detection

work on the entire image, this approach leads to a very common problem.

Since the model uses all the information available in the input it tends to learn

how to reconstruct correctly the anomalous images as well as the normal one

which, of course, is not the desired behavior since the goal is to discriminate
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between the two classes. For this reason, the idea behind our proposed

method is to mask out some of the information of the original image and

use only the remaining data to perform the reconstruction. This as we will

show, greatly reduces the problem mentioned in the previous paragraph.

More specifically we decided to work on patches representing non-overlapping

subsets of the original image and to reconstruct each of these patches based

only on the content of the remaining ones. For this purpose, we decided

to adopt the ViT architecture as a baseline for our model, which as we

have previously shown, allows finding a correlation between different parts

of an image by calculating an attention score between its patches. In its

basic form, though, the ViT model provides for each patch an embedding

obtained by processing the whole information of the original image, including

the patch itself. For this reason, we altered the concept of self-attention

introduced by the original model in order to mask this piece of information.

In order to do so, we added a masking module in the multi-head self-attention

component of the original architecture which forces the dot product between

the key generated for each patch and the respective query to be set to 0,

as shown in Fig. 4.2. In other words, after obtaining the nxn (where n is

the number of patches) matrix in which the cell in position ij represents

the correlation between patches i and j, we set its diagonal, representing

the internal information of each patch, to 0 in order to use only external

information for its reconstruction. An overview of the model described so far

is given in Fig. 4.3.

Multi shape patch structure

Another direction in which we expanded the original idea of the ViT model

regards the way the patches fed to it are obtained from the original image.

While the use of square patches is a common choice, it is ultimately an ar-

bitrary one, for this reason, we introduced in our model a set of patches

with different shapes, in particular horizontal and vertical stripes, each of

which was processed in the same way as the square ones. The encodings of
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Figure 4.4: Overview of the proposed model using horizontal stripes only, in
addition to the square patches

the different types of patches have then been concatenated to form the final

representation for each patch which has then been used for its reconstruc-

tion. The reconstruction process involved the use of a simple MLP Decoder

which worked on each patch embedding singularly to reproduce the respec-

tive patch. This process has been carried out by ensuring that the masking

property of the network was held true, to do so the concatenation between

patches of different shapes has been carried on based on their spatial location

in the original image so that each square patch was fully contained in the

respective horizontal (or vertical) stripe patch. Furthermore, in order to keep

the final embedding size as small as possible, we split the embedding of each

stripe into p segments of the same size, where p = N/K (with N=size of the

image and K=size of the square patches) is the number of square patches

contained in each stripe, and then concatenated each of these segments to

the embedding of a different patch thus forcing the model to learn specific

information about each of them in different locations of the stripe embedding

(Fig. 4.5). A high level overview of our final model is provided in Fig. 4.4.



4.4. Evaluation 51

Figure 4.5: Illustration of the process carried out for the concatenation of the
patch embeddings. Two components are concatenated together, the first one
is the embedding obtained through the self-attention process performed on
square patches, while the second one is a subset of the embedding resulting
from the self-attention process carried out on strip patches.

4.4 Evaluation

4.4.1 datasets

To test our Framework we relied on two popular datasets, namely MVTec

which is currently one of the most popular and heterogeneous datasets in

the context of anomaly detection for industrial quality control, and HeadCT

which is instead a dataset representing a collection of X-Ray head scans in

which the anomalies are represented by the presence of hemorrhages. While

the use of larger datasets is usually preferable, the options available in the

context of anomaly detection are still very limited. MVTec already represents

a big step forward when it comes to the size and heterogeneity of datasets in

this area of research compared to the ones that were available before it and,

combined with the HeadCT dataset, we believe they provide and reliable

option for the evaluation of the proposed approach.
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The MVTec Dataset

As in the previous chapter he dataset we used for both the training and test-

ing of our model is the MVTec Anomaly Detection dataset [9], since it is the

de-facto benchmark in recent works on anomaly detection and localization.

In addition to the already provided description regarding this dataset, inn

Table 4.1 the details regarding each class are reported. As we can notice

there are no anomalous instances in the training set, this is because usually

the anomaly detection models are trained only on normal data.

Table 4.1: MVTec dataset details

Class
Train

(Normal)

Test

(Normal)

Test

(Anomaly)
Image side

Textures

Carpet 280 28 80 1024

Grid 264 21 57 1024

Leather 245 32 92 1024

Tile 230 33 84 1024

Wood 247 19 60 1024

Products

Bottle 209 20 63 900

Cable 224 58 92 1024

Capsule 219 23 109 1000

Hazelnut 391 40 70 1024

Metal nut 220 22 93 700

Pill 267 26 141 800

Screw 320 41 119 1024

Toothbrush 60 12 30 1024

Transistor 213 60 40 1024

Zipper 240 32 119 1024

Head CT Dataset

As a further benchmark for our model, we used the Head CT dataset [60],

which we selected because of its medical nature and because of its relatively
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Figure 4.6: Samples of anomalous (top row) and normal (bottom row) images
from the Head CT dataset

small size, which allowed us to prove the potential of the Vision Transformer

architecture even in this particularly challenging type of setting. The head ct

dataset is, in fact, composed of a total of 200 images 100 of which represent

head ct of healthy individuals while the remaining 100 represent scans of

patients with a head hemorrhage. For the purpose of this study, we adopted

80 normal images for the training of the model, while the remaining 120

instances (20 normal, 100 with an hemorrhage) were used in the testing

process. Some samples representing normal and anomalous images from the

dataset are reported in Fig. 4.6.

4.4.2 Training setup

The training of the model was performed in a self-supervised fashion, using

only the normal images of the dataset, over a maximum of 3000 epochs

with an early stop introduced after epoch 500 which would trigger when the

performance of the model on the validation set didn’t improve in the previous

50 epochs. The validation set was composed of 10% of the images present in

the training data of the datasets. While often larger percentages are used,
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both MVTec and HeadCT are relatively small datasets, which led us to prefer

keeping as much data as possible for the training of the model. The total

loss function we used is obtained by summing the L1 loss and the negative

of the SSIM Similarity, as defined in [124], calculated between the original

image given as input and the reconstructed image returned as the output of

the model. A formal description of the two functions is given hereafter:

L1(X, X̂) =
h−1
∑

i=0

w−1
∑

j=0

|Xij − X̂ij| (4.2)

LSSIM(X, X̂) = − (2µXµX̂ + c1)(2σXX̂ + c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂

+ c2)
(4.3)

L(X, X̂) = L1(X, X̂) + LSSIM(X, X̂) (4.4)

Where:

• X: Is the original image

• X̂: Is the reconstructed image

• h, w: Are the height and width of the image in pixel

• µx: Is mean value of image x

• σ2

x
: Is variance of image x

• σxy: Is the covariance of x and y

• c1 = (k1L)2&c2 = (k2L)2 : Are two variables used to stabilize the

division with weak denominator

• L: Is the dynamic range of the pixel-values (usually 2#bitsperpixel − 1)

• k1&k2: are two costants set to 0.01 and 0.03 respectively.

It is important to notice that the SSIM function represents a similarity mea-

sure defined in the interval [−1, 1] where 1 means that the two images being
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compared are identical. For this reason, to use it as a loss function it needs

to be negated.

The use of an L1 loss instead of a more classical MSE loss is motivated

by the fact that it reduces blurriness and color artifacts in the reconstructed

images [133].

The hyperparameters adopted during the training process are shown in

Table 4.2. We tried to keep the Structure of the TF encoders as shallow as

possible and actually noticed that increasing the number of blocks improved

the performance of the model only marginally for the texture classes while

for the product classes didn’t help at all. A possible reason for this is that by

increasing the depth, the model would become too complex for the relatively

small dataset we used for training and evaluation and thus lead to overfitting.

Another important hyperparameter that needs to be selected when adopt-

ing a ViT architecture is the size of the patches in which the image needs to

be divided. Following the original ViT paper with adopted 16x16 patches as

the baseline for our model, which empirical tests confirmed to be a proper

value for the task considered. In general, the idea to keep in mind during

patch size selection is that Vision Transformers tend to work better with

a high number of sequences as their input, for this reason, the size of the

patches needs to be kept relatively small compared to the image size. Fur-

thermore, in the context of the proposed approach, it was important not to

use patches that are too small, as this would make much more frequent the

presence of anomalies crossing multiple patches, which are easier to recon-

struct since they can be inferred from the surroundings of the current patch

analyzed and, therefore are more difficult to detect. The size of the short

side of the stripes was selected to match the square patch sizes, while the

long side is determined by the image size.

Table 4.2: Model hyperparameters

Classes LR Batch Img size Patch size Stripe size Emb. size #Heads #Blocks

Textures 1eˆ-4 64 128x128 16x16 128x16 128 4 2

Products 1eˆ-4 64 128x128 16x16 128x16 128 4 1
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Figure 4.7: Illustration of the thresholded AUROC metric. The red line
represents the selected threshold while the yellow region is the area taken
into consideration for the evaluation of the model.

4.4.3 Metrics

For the evaluation of our model, since our objective is to assess its anomaly

segmentation capabilities, we opted to use the Area Under the ROC Curve

(AUROC), which plots the False Positive Rate versus the True Positive Rate

and is a very commonly used metric for this type of problems. In order to

obtain consistent results with those presented by the authors of the MVTec

dataset, the values of the metric are computed up to a False Positive Rate of

0.3. The reason behind this choice is that thresholds that yield to a high FPR

lead to meaningless segmentation results, especially for industrial scenarios

where such results would lead to wrongly rejecting products not presenting

any defects. An illustration of the thresholding process is provided in Fig. 4.7
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4.4.4 Results

All the values presented in this section for our models have been obtained

by first generating the reconstructed images, patch by patch, for each of the

instances in the test set of the MVTec dataset, each of them has then been

compared to the respective original image by applying a pixel-wise MSE loss

(the deltas over the three channels of each pixel have been summed), in order

to obtain a heatmap that highlighted the largest differences between the two,

thus revealing the potentially anomalous regions. A Gaussian filter has also

been applied to the map to smooth out anomalous regions and reduce noise.

In Table 4.3 the results of our ablation study, in which we compare the

performance of our model when applying the masking process and differ-

ent combinations of patch shapes, are reported. As we can see the approach

which relies solely on the traditional square patches is outperformed by every

other method using a combination of different shapes. In particular, we show

that the best-performing approach is the one represented by a combination

of the square patches with horizontal, or vertical stripes, which leads to an

improvement in the pixelwise AUROC value of more than 4% compared to

the baseline approach. As we can see the orientation of the stripes combined

with the square patches didn’t affect the overall performance of the model,

which achieved, on mean, the same performance when using horizontal or

vertical ones. On the other hand, we can see how using both orientations to-

gether leads to a decrease in the performance of the model. Our guess is that

in this scenario the model becomes too complex compared to the relatively

small dataset we used and therefore becomes too specialized on the training

set, leading to overfitting. Finally, we can notice how completely removing

the square patches and relying only on the horizontal and vertical stripes

also affect the model performance negatively. A possible explanation for this

behavior is that the square patches are able to provide some more locally

specific information that the model needs to perform the reconstructions of

the single patches effectively.

In Table 4.4 we provide a comparison between our methods and other



58 4. Masked Transformer for image Anomaly Localization

Table 4.3: results of the ablation study in which we show the effect of using
different combinations of patch shapes on the model performance. All the
values reported represent the normalized area under the ROC curve up to a
mean FPR per pixel of 30%.

Class
Only Squares

(No Mask)

Only Squares

(Masked)
Squares + Rows Squares + Cols Rows + Cols

Squares +

Rows +

Cols

Carpet 0.495 0.510 0.712 0.723 0.755 0.661

Grid 0.814 0.835 0.884 0.883 0.800 0.817

Leather 0.734 0.792 0.976 0.905 0.723 0.723

Tile 0.727 0.754 0.771 0.772 0.659 0.690

Wood 0.701 0.757 0.836 0.851 0.808 0.840

Bottle 0.796 0.812 0.850 0.847 0.821 0.842

Cable 0.683 0.715 0.701 0.701 0.753 0.700

Capsule 0.863 0.895 0.891 0.885 0.889 0.893

Hazelnut 0.927 0.951 0.953 0.945 0.951 0.942

Metal nut 0.712 0.721 0.773 0.779 0.865 0.806

Pill 0.815 0.835 0.852 0.852 0.806 0.850

Screw 0.770 0.818 0.901 0.905 0.903 0.903

Toothbrush 0.926 0.949 0.975 0.966 0.967 0.971

Transistor 0.848 0.855 0.841 0.860 0.866 0.865

Zipper 0.783 0.805 0.750 0.770 0.634 0.720

Mean 0.773 0.800 0.844 0.843 0.814 0.815

approaches. In particular, we focus on the methods proposed in the MVTec

paper [8] as our benchmarks and on VT-ADL as the only other approach

using a ViT architecture for anomaly localization. For the latter, the results

shown have been calculated by us as the original paper didn’t provide the

values for the AUROC metric, while for every other model, the result has

been gathered from the original paper. As we can see our approach vastly

outperforms the previous method based on ViTs represented by VT-ADL, in

particular, by referring back to Table 4.3, we can see that even the approach

relying solely on square patches still achieves better results than VT-ADL by

improving over its results by almost an 12% margin, therefore proving the

effectiveness of the masking process introduced in the Self-attention module
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of our model. As for the remaining models, we show that while our approach

Table 4.4: Normalized area under the ROC curve up to a mean false positive
rate per pixel of 30% for each dataset category. The values in bold represent
the best scores overall, while the underlined ones represent the best scores
between the models not using extra data.

Class f-anoGan Feature dictionary Student teacher l2-AE SSIM-AE Texture inspection Variation model VT-ADL Ours

Carpet 0.251 0.943 0.927 0.287 0.365 0.874 0.162 0.549 0.712

Grid 0.550 0.872 0.974 0.741 0.820 0.878 0.488 0.569 0.884

Leather 0.574 0.819 0.976 0.491 0.356 0.975 0.381 0.817 0.976

Tile 0.180 0.854 0.946 0.174 0.156 0.314 0.304 0.589 0.771

Wood 0.392 0.720 0.895 0.417 0.404 0.723 0.408 0.682 0.836

Bottle 0.422 0.953 0.943 0.528 0.624 0.454 0.667 0.687 0.850

Cable 0.453 0.797 0.866 0.510 0.302 0.512 0.423 0.751 0.701

Capsule 0.362 0.793 0.952 0.732 0.799 0.698 0.843 0.615 0.891

Hazelnut 0.825 0.911 0.959 0.879 0.847 0.955 0.802 0.926 0.959

Metal nut 0.435 0.862 0.979 0.572 0.539 0.135 0.462 0.711 0.773

Pill 0.504 0.911 0.955 0.690 0.698 0.440 0.666 0.748 0.852

Screw 0.814 0.738 0.961 0.867 0.885 0.877 0.697 0.771 0.901

Toothbrush 0.749 0.916 0.971 0.837 0.846 0.712 0.775 0.878 0.975

Transistor 0.372 0.527 0.566 0.657 0.562 0.363 0.601 0.689 0.860

Zipper 0.201 0.921 0.964 0.474 0.564 0.928 0.209 0.683 0.750

Mean 0.472 0.836 0.922 0.590 0.584 0.656 0.526 0.683 0.844

performs worst than the best one from the MVTec paper, represented by the

student-teacher architecture (7.8% AUROC score difference), it outperforms

every other method by a margin going from 1% to 37%. One important

aspect to notice is that the two top-performing methods presented in the

MVTec paper, namely the student-teacher and the Feature Dictionary mod-

els which are the only ones exceeding a mean AUROC score of 0.7, both

rely on feature extractors pre-trained on much larger datasets such as the

popular imagenet one [37] while our model is trained from scratch on the

MVTec dataset making it the best-performing model not relying on extra

data for training and thus showing the possibility of adopting transformer-

based models, typically considered very heavy, even to scenarios where we

have a relatively small amount of data available.

Finally, in Fig. 4.8, we provide some qualitative results of our model by

showing a comparison between the original images and ground truth anomaly

maps with the reconstructed images and anomaly maps generated by our
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model. As we can see the model is able to effectively mask out the smaller

anomalies from the reconstructed images, leaving only small artifacts in their

places. As for larger anomalies that are spread through different regions of

the original images, the model is usually not able to completely remove them

as it can infer their structure from the surrounding patches. Nonetheless, in

many cases, the defective part has a more “washed-out” appearance in the

reconstructed image which allows for its localization.

Figure 4.8: In order from left to right, we have: (1) The original image used
as input, (2) the ground truth mask showing the location of the anomaly in
the original image, and (3-11) the anomaly maps generated by our model
and the competition

Furthermore, we present the results for the Head CT-hemorrhage dataset.

In particular, since this dataset doesn’t provide masks for the instances

anomalies, we use as a comparison metric the images ROCAUC scores. We

report our results, together with the ones presented by Salehi et al. [99] which,

as far as we know, are the best ones available online for the headct dataset,

in Tab. 4.5. As we can see our model, even in its most basic configuration,

achieves results comparable to the State of the Art, while when horizontal

stripes are added it is able to surpass the other presented approaches by a

significant margin showing the effectiveness of the presented approach even
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for scenarios when the data available is very limited. The downside, how-

ever, is that the increased complexity of the model appears to make it less

stable as we can observe from the higher variance characterizing the results

achieved by this configuration.

Table 4.5: AUROC for anomaly detection on Head CT dataset.

AUROC Head CT (%)

OCGAN [90] 51.20 ± 0.358

LSA [1] 81.67 ± 3.626

GT [47] 49.5 ± 3.873

MKD [99] 80.4 ± 0.006

MeTAL (Squares Only) 81.35 ± 1.153

MeTAL (Squares+Rows) 86.32 ±4.03

Table 4.6: Comparison of the number of parameters defining the compared
models architectures

# of parameters

l2 - AE / SSIM-AE 1.2M

f-AnoGAN 24.6M

Feature dictionary 11.5M

Student teacher 26M

VT-ADL 25M

MKD 15M

Ours (Products) 17.8M

Ours (textures) 26.3M

For completeness, we are also providing a comparison of the model sizes

for the different approaches, expressed in the number of parameters defining

their structure (Tab. 4.6). As we can see the proposed approach size is
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generally comparable to the ones of the other frameworks, excluding the

most simple ones being represented by the two autoencoder variations which,

however, achieve very poor performances on the selected dataset.

4.5 Conclusions and Future Work

In the present chapter, we investigated the use of a Framework based on the

Self-Attention mechanism introduced by the Vision Transformer model. In

particular, we proposed an image Inpainting approach to anomaly detection

which leverages the ability of the ViT encoder to find correlations between

different regions of a given image in order to reconstruct each of them based

only on the information contained in the surrounding ones. Furthermore, we

have shown that the model’s performance is affected positively by the use of

heterogeneous shapes for the subsets into which the original image is split.

Our opinion is that this approach allows the model to learn correlations

between patches at different scales of the image, therefore increasing the

quality of the generated reconstructions. Finally, we have shown how the ViT

model, while usually considered a heavy architecture, can be used effectively

even on a relatively small dataset without the need to rely on extra data from

external sources, achieving the best performance compared to other models

trained in a similar setting on the MVTec dataset.

Nonetheless, as future work, we believe it would be interesting to explore

our model’s capabilities when pre-trained on a larger dataset before fine-

tuning it on the final task’s data and we would also like to investigate the

possibility of a more general approach to the multi-scale patch acquisition

we introduced in this work.

As another line of research we believe it would be also worth investigating

the adoption of ideas introduced in other recent works present in the liter-

ature, such as [2], [88], [5], [93], in order to try to further improve the

performance of the proposed architecture.

Furthermore, we believe that the main limitation of the proposed ap-
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proach regards the ability to handle large-scale anomalies since these can be

inferred from the context of the image even when no information is avail-

able for the specific patch we are reconstructing. For this reason, in future

works, we would like to investigate more sophisticated masking approaches

that allow for a better generalization of the model to different anomaly scales.

Finally, in the future, we will also extend our idea to process 3D applications

[10].
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5
Few-shot layout segmentation via

dynamic instance generation

and local thresholding

Over the years, the humanities community has increasingly requested the cre-

ation of artificial intelligence frameworks to help the study of cultural her-

itage. Document Layout segmentation, which aims at identifying the differ-

ent structural components of a document page, is a particularly interesting

task connected to this trend, specifically when it comes to handwritten texts.

While there are many effective approaches to this problem, they all rely on

large amounts of data for the training of the underlying models, which is

rarely possible in a real-world scenario, as the process of producing the ground

truth segmentation task with the required precision to the pixel level is a very

time-consuming task and often requires a certain degree of domain knowl-

edge regarding the documents at hand. For this reason, in the present chap-

ter, we propose an effective few-shot learning framework for document layout

segmentation relying on two novel components, namely a dynamic instance

generation and a segmentation refinement module.
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5.1 Introduction

Page segmentation of historical manuscripts allows humanists to study doc-

uments more quickly and easily because it allows the paratexts (i.e all the

semantic elements which are part of the foreground but don’t belong to the

main text) to be analyzed separately.However, performing this task in histor-

ical manuscripts is much more difficult than in printed documents [94] due

to many potential variables, such as layout structure, decoration, different

writing styles, texture, and degradation.

While, in recent years, machine learning and deep learning-based ap-

proaches have been more and more commonly adopted for this kind of task

as they represent a more effective alternative compared to traditional ap-

proaches, they require a large amount of carefully defined ground truth maps

in order to be properly trained and compared with other approaches.

Furthermore, for ground truths to be suitable for training accurate deep

learning models, the annotation of the segmentation masks must be as pre-

cise as possible down to the pixel level [46]. The disadvantage is that the

pixel-precise annotation of the entire historical document page dataset is a

very time-consuming process and requires domain-specific knowledge, which

only an expert humanist can satisfy, especially when working with historical

manuscripts [79], making this type of information rarely available in a real-

world scenario. Nonetheless, few-shot learning approaches in the context of

document layout segmentation are still under-explored in the literature.

For this reason, in the present work, we propose a novel few-shot learning

framework for efficient pixel-precise page segmentation of historical manuscripts,

which is able to accurately segment the different components of a document

page (e.g. text, paratext, images) achieving results comparable to the cur-

rent state-of-the-art approaches on the popular Diva-HisDB dataset (Fig. 5.1)

while using only a fraction of the available data for the training process. The

rest of the chapter is organized as follows: Sections 5.2 and 5.3 contain,

respectively, a detailed description of the proposed framework and the ex-

perimental setup used to train and test it. Section 5.4 provides an in-depth
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(a) CSG18 page (b) CSG863 page (c) CB55 page

(d) CSG18 detail (e) CSG863 detail (f) CB55 detail

Figure 5.1: Samples from the three representative manuscripts (CSG18,
CSG863 and CB55) present in DIVA-HisDB. Fig. 5.1a– 5.1c show a full
page for each manuscripts, while Fig. 5.1d– 5.1f show a detail extracted from
each of them.

description of the results achieved by our model, both from a quantitative

and a qualitative perspective. Finally, in Section 5.5, the conclusions are

drawn.

5.2 Proposed approach

The proposed approach is built on three core components, namely a robust

segmentation backbone used to retrieve the semantic components of each

document page, a dynamic instance generation module that allows us to fully

leverage the limited amount of data available at training time and finally a

segmentation refinement module that makes it possible to further improve

the quality of the segmentation maps produced by our model. A visual

representation of the proposed framework pipeline is reported in Fig. 5.2.
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Figure 5.2: Visual representation of the segmentation pipeline for the pro-
posed framework. The green area represents the processes carried out during
the training phase, where each input image is split into 2 sets of patches: the
baseline patches, which are non-overlapping patches of size k × k providing
a complete representation of the original image and a set of C random crops
which are extracted from random locations of the image at each training
epoch. These 2 sets of patches are then combined and given in input to the
backbone segmentation model which provides a predicted coarse segmenta-
tion map for each of them. These maps are compared with the ground truth
ones through the application of a weighted cross-entropy loss. At inference
time the dynamic instance generation step is removed while a segmentation
refinement process is applied to the outputs of the backbone architecture to
obtain more precise segmentation maps

5.2.1 Segmentation backbone

Adoption of a robust backbone is a crucial step in each Deep Learning frame-

work. When working in a few-shot setting in particular we need a network
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that is able to capture a sufficient level of detail while being given in input just

a handful of samples. For this reason, we selected DeepLabV3+ [27] as the

backbone of our framework. DeepLabV3+ is a popular pixel-wise semantic

segmentation model built on its predecessor DeepLabV3 [25]. The latter is a

ResNet [50] based architecture heavily relying on atrous convolutions which

are employed both in parallel and in a cascade in order to enlarge the recep-

tive fields of the filters and consequently retain a higher spatial resolution

throughout the network. The key advantage of this approach is that it allows

for deeper neural networks that provide larger feature maps at no additional

computational cost. Finally, the Atrous Spatial Pyramid Pooling (ASPP) is

introduced in DeepLabV3 as a way of capturing features at different scales

in the original image by relying on a heterogeneous set of dilation rates in

the network. DeepLabV3+ introduces two substantial changes compared to

the aforementioned architecture. The first one regards the substitution of the

ResNet encoder with a custom version of the Aligned XCeption [29] model in

which all max pooling operations are replaced by depth-wise separable con-

volution. Furthermore, it adds a simple yet effective decoder which refines

the segmentation results. The decoder module employs depth-wise separable

convolutions to enhance the spatial resolution of the feature maps, resulting

in sharper and more detailed output segmentation maps.

5.2.2 Dynamic instance generation

The dynamic instance generation module is a key component of the training

pipeline of our framework. The key idea behind it is that it efficiently ex-

ploits the small amount of data available at training time. To do so, instead

of relying on the full document pages as the instances of our dataset, we

split them into two sets of smaller patches. The first ones, which we will

refer to as baseline patches, consist of a set of non-overlapping sub-regions of

size m × n extracted from the original input image in order to cover its en-

tire surface and are kept consistent between the training and inference time

(Fig. 5.3a). In addition to the baseline patches, as a way to further improve
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the generalization capabilities of our model, we also generate a small set of k

potentially overlapping crops of the same size as the baseline patches which

are extracted from random locations of the original image (Fig. 5.3b). This

process is carried out at each epoch during training time, while at inference

time no additional crops are generated as they are not needed to obtain the

final segmentation mask. While relying on sub-patches of the original im-

ages is a common approach in computer vision-related tasks, in most cases,

these patches are either limited to the ones corresponding to our baseline

ones, which leads to losing potentially useful information contained in the

data. As an alternative approach, they may generate a large number of

patches in advance, without considering the varying complexity of different

datasets [127] . As a consequence, excessive amounts of potentially unneces-

sary data is produced. Our dynamic instance generation approach addresses

both limitations effectively at the cost of a very small computational overhead

at training time.

(a) Baseline patches (b) Randomly selected crops

Figure 5.3: Representation of the instance generation process of the 2 sets
of patches used to train our model: in 5.3a is shown the generation process
for baseline non-overlapping patches, while 5.3b provides a visual depiction
of our dynamic crop generation process
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5.2.3 Segmentation refinement

Our segmentation refinement module is based on the Sauvola thresholding

algorithm for document binarization [100]. The Sauvola thresholding algo-

rithm is an evolution of Niblack’s method [78], which introduced the idea

of a dynamic threshold that is calculated based on the mean and standard

deviation of the gray levels of a local window inside an image. The main

drawback of Niblack’s approach is that it didn’t perform well for images

with a light-textured background as it would result in very noisy binariza-

tion masks. Sauvola solved this problem by introducing the dynamic range

of the standard deviation as an additional term in the equation used to cal-

culate the local threshold, which has the effect of amplifying the contribution

of the standard deviation in an adaptive manner throughout the image. The

resulting equation adopted by the Sauvola algorithm is shown in Eq. 5.1,

where N is the local window of size n× n, µ(N) and σ(N) are, respectively,

the corresponding mean and standard deviation and R is the dynamic range

of the standard deviation. Finally, k is a manually selected parameter that

regulates the value of the local threshold.

T = µ(N) ×
(

1 + k × (
σ(N)

R
− 1)

)

(5.1)

The refined segmentation masks are then obtained by performing the Hadamard

product between the layout segmentation predictions provided by our back-

bone and the mask resulting from running the Sauvola algorithm on the

corresponding images of the dataset.

5.3 Experimental setup

In this section, we outline a detailed description of the dataset adopted for

the experiments and the training setup. Furthermore, the metrics used to

evaluate and compare the performance of the proposed approach are pre-

sented, together with the results of the ablation study.
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Table 5.1: Classes distribution (%) for each manuscripts of Diva-HisDB [106]
(CB55, CSG18 and CSG863), and for Bukhari et al. [16] dataset

Manuscript BG Comment Decoration Text

CB55 82.41 8.36 0.55 8.68

CSG18 85.16 6.78 1.47 6.59

CSG863 77.82 6.35 1.83 14.00

Bukhari et al. 86.07 4.71 — 9.22

5.3.1 Dataset

To train and test our model we selected the popular DivaHisDB dataset [106].

Diva-HisDB is a collection of 3 medieval manuscripts (CB55, CSG18 and

CSG863) selected for their heterogeneity and layout complexity. All the

documents contained in the dataset are characterized by 4 classes of seman-

tic components, namely main text, comments, decorations and background

(BG), with very unbalanced distributions making the dataset particularly

challenging for a few shot settings as the less common classes are present

in a very small amount or not at all in some of the instances. A detail

of the semantic component distributions for each manuscript is provided in

Tab. 5.1.

Furthermore, the manuscripts provide a high degree of heterogeneity con-

cerning the level of degradation of the pages, the epoch in which they were

written, and both inter and intra-class differences in the layout of the pages

and in writing styles, as both the CSG18 and CSG863 were written by an un-

specified number of authors. The dataset consists of a total of 150 instances,

50 for each document class, of these 60 are typically used for training, 30 for

validation and another 60 for testing the models. In the present work, we

relied on just 6 images, 2 for each class, for training our model (Fig. 5.4).

For each of the document pages, the dataset provides a corresponding ground

truth segmentation mask as shown in Fig. 5.5.

Finally, to further validate the robustness of our approach we also tested it
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Figure 5.4: Instances selected from each manuscript in DIVA-HisDB as the
training set for the proposed approach. Each of them was chosen to effectively
represent the characteristics for the corresponding class

on the dataset proposed by Bukhari et al.[16] which consists of 32 images each

representing a page from one of three different Arabic historical manuscripts.

Out of all the samples, 24 are typically used for the training process while

the remaining 8 are used for the testing, while for the purpose of this work

we only relied on 3 images, one for each manuscript, to train our model. A

detail of the semantic component distributions is provided in Tab. 5.1.

5.3.2 Training and inference setup

Our model was trained using the popular Adam optimizer with a learning

rate of 10−3 and a weight decay of 10−5. The maximum number of epochs for
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(a) Original page (b) Page ground truth

Figure 5.5: Images showing a page of the CSG18 manuscript ( 5.5a) as
well as its corresponding ground truth mask ( 5.5b), in which the magenta
areas represent the main text, while the yellow and cyan areas represent the
comments and decorations respectively. Finally, the black area represents
the background of the image

which it was allowed to run has been set to 200 with an early stop in case the

validation loss didn’t improve in the last 20 epochs and a buffer of 50 epochs

which guarantees that the model will be trained at least for the specified

amount of iterations. During each epoch, a set of 10 dynamic crops of size

672 × 672 px has been generated in addition to the baseline patches of the

same sizes extracted from the original image. This process led to a maximum

of 4012 instances being generated for each document class during training,

in case the model needed all the 200 epochs in order to converge. In order

to be able to fit them in the GPU memory the images of the dataset have

been resized from their original high resolution (up to 4.8k× 6.8k px), down

to a size of 1344 × 2016 px. The loss function selected to train the model

is a weighted Cross Entropy Loss [58] in which the weight for each semantic

element class is inversely proportional to the frequency of that element in

that dataset and, more precisely is calculated as the square root of 1 over

the square root of the occurrence frequency of the corresponding element in
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the dataset (Eq. 5.2).

Wi =

√

1

Fi

(5.2)

This specific choice was made to take into account the high imbalance be-

tween the semantic class distribution in each document category of the datasets

(Tab. 5.1). Our model was trained separately and from scratch on each doc-

ument class. Regarding the inference setup, the main choice involved in it

is represented by the hyperparameters of the segmentation refinement al-

gorithm, namely the window size which was kept consistent at 15 × 15 px

for all document classes and the control value k, which regulates the value

of the threshold in the local window (the higher the k value, the lower the

threshold) and was set at the value of 0.01 for all classes.

5.3.3 Evaluation metrics

In order to evaluate the performance of our proposed approach we use dif-

ferent metrics such as Precision, Recall, Intersection over Union (IoU) and

F1-Score. These evaluation metrics are calculated individually for each one of

the manuscripts that compose DIVA-HisDB dataset. Metric definitions are

reported in Eq. 5.3– 5.6, where TP, FP and FN stand respectively for True

Positives, False positives and False Negatives. For each metric a weighted

average is performed, based on each class frequency in each manuscript. The

final evaluation of a model is then obtained by averaging the metrics of all

pages of the three manuscripts.

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)

IoU =
TP

TP + FP + FN
(5.5)

F1-score =
2 × Precision × Recall

Precision + Recall
(5.6)



76 5. Few-shot layout segmentation

5.4 Results

In the following section, we provide a thorough comparison between the re-

sults achieved by the proposed framework and a set of popular semantic

segmentation approaches, namely DeepLabV3 [25], its improvement repre-

sented by DeepLabV3+ [27], FCN [66], Lite Reduced Atrous Spatial Pyramid

Pooling (LRASPP) [51] and Pyramid Scene Parsing Network (PSPNet) [134],

furthermore we also include the results obtained by current state of the art

for the task of document layout segmentation, which we will refer to as

MLA [127]. The comparison focuses both on a quantitative and a qualita-

tive perspective in order to provide a complete overview of the quality of the

model’s predicted segmentations. To this end, we also provide a discussion

about the critical cases in which our approach fails to provide the correct seg-

mentation for the corresponding instances. All the models, excluding MLA

for which we gathered the results from the respective paper, have been per-

sonally tested by us keeping the training and evaluation settings as consistent

as possible.

Table 5.2: Comparison between the performance of our model and the com-
petition on the 4 selected metrics. The best and second-best performing
models are reported in a bold and underlined fashion respectively while FS
indicates the models trained in a few-shot setting by using the same set of
images selected for our framework

CB55 CSG18 CSG863 Mean

Backbone Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

FCN (FS) 0.894 0.883 0.783 0.863 0.874 0.885 0.797 0.863 0.915 0.907 0.826 0.895 0.894 0.892 0.802 0.874

FCN 0.902 0.900 0.815 0.884 0.930 0.930 0.869 0.919 0.923 0.919 0.847 0.909 0.918 0.916 0.844 0.904

LRSAPP (FS) 0.847 0.837 0.718 0.808 0.919 0.913 0.871 0.911 0.869 0.864 0.757 0.842 0.878 0.871 0.782 0.854

LRSAPP 0.880 0.883 0.789 0.864 0.921 0.927 0.868 0.918 0.911 0.910 0.833 0.899 0.904 0.907 0.830 0.894

PSPNET (FS) 0.876 0.868 0.761 0.846 0.906 0.905 0.829 0.890 0.913 0.896 0.817 0.888 0.898 0.890 0.802 0.875

PSPNET 0.887 0.894 0.811 0.880 0.912 0.920 0.857 0.910 0.913 0.915 0.845 0.906 0.904 0.910 0.838 0.899

DeepLabV3 (FS) 0.893 0.883 0.784 0.863 0.901 0.895 0.806 0.873 0.864 0.853 0.737 0.828 0.886 0.877 0.776 0.855

DeepLabV3 0.905 0.901 0.817 0.886 0.930 0.931 0.871 0.920 0.920 0.914 0.839 0.903 0.918 0.915 0.842 0.903

DeepLabV3+ (FS) 0.908 0.903 0.821 0.888 0.931 0.929 0.867 0.918 0.936 0.933 0.875 0.927 0.925 0.922 0.854 0.911

DeepLabV3+ 0.943 0.945 0.896 0.939 0.961 0.962 0.929 0.959 0.965 0.965 0.935 0.964 0.956 0.957 0.920 0.954

MLA - - - - - - - - - - - - 0.965 0.995 0.989 0.995

Ours 0.989 0.987 0.977 0.988 0.983 0.982 0.967 0.982 0.986 0.983 0.971 0.984 0.986 0.984 0.972 0.985
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Figure 5.6: Image showing a qualitative comparison between our framework
and the competition ones. Each row represents a zoomed area belonging to a
different instance of the dataset, representing the three classes of manuscript
contained in it. In the first column, the ground truth segmentation maps
for the 3 images are shown, while on the remaining columns we provide
the results produced by the three systems, FCN, DeepLabV3+ and Ours
respectively

5.4.1 Quantitative results

In Tab. 5.2 the quantitative results achieved by our proposed framework

for all the selected metrics across all the document classes contained in the
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Diva-HisDB dataset, are shown and compared with the competitor models.

In particular, for all the models, excluding MLA, we provide both the re-

sults obtained by training them on the entire available dataset and the ones

obtained by training the model only on the subset of 2 pages selected for

our approach (FS = Few-Shot setting). Unfortunately, MLA authors pro-

vided only the mean scores for the selected metrics and some implementation

details were missing, leading our attempt at reimplementing their work to

achieve sub-optimal results. As we can see our model is consistently capa-

ble of outperforming the other semantic segmentation networks on all the

metrics, regardless of the setup in which they have been trained. In partic-

ular, compared to the second-best performing approach, being represented

by DeepLabV3+, our model achieves a mean improvement of 7.7% when the

former is trained in a few-shot setting with a peak improvement of 11.8% for

the IoU metric. While, when DeepLabv3+ is trained using the full training

set, our approach outperforms it by a still substantial mean of 3.5% (5.2%

for the IoU metric) while using only a fraction of the available data.

Furthermore, our framework achieves very close performance even when

compared with the current state-of-the-art MLA, even surpassing it by 2.1%

on the mean precision metric. As for the remaining metrics our model perfor-

mance is still comparable to that of MLA with a difference going from 1.7%

for the IoU metric, to as little as 1% for the F1-score. It is important to

notice, however, that MLA is trained on around 180000 instances extracted

from all the images of the training set, while our framework, as previously

mentioned, extracts at most 4012 unique instances from just 2 of the avail-

able images in the training set, resulting in a reduction of the needed data

by a factor approximately 45.

Finally in Tab. 5.3 we show the comparison between our model and the

competition on the Bukhari dataset for Arabic manuscript layout segmenta-

tion. As we can see our framework achieves the best performance compared

to all the other approaches even when they are trained using the full training

set. In particular, compared to the single best performing model, being rep-
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resented by DeepLabV3+ our achieves a 2-4% improvement across all metrics

against its fully trained configuration and around a 4-9% performance im-

provement against the few shot version of the model.

Table 5.3: Comparison between the performance of our model and the compe-
tition on the Bukhari dataset. The best and second-best performing models
are reported in a bold and underlined fashion respectively while FS indicates
the models trained in a few-shot setting by using the same set of images
selected for our framework

Backbone Prec Rec IoU F1

FCN (FS) 0.836 0.875 0.788 0.853

FCN 0.865 0.899 0.824 0.879

LRSAPP (FS) 0.806 0.858 0.742 0.805

LRSAPP 0.899 0.876 0.806 0.884

PSPNET (FS) 0.843 0.859 0.770 0.846

PSPNET 0.911 0.861 0.790 0.875

DeepLabV3 (FS) 0.879 0.815 0.735 0.836

DeepLabV3 0.908 0.871 0.802 0.883

DeepLabV3+ (FS) 0.929 0.907 0.850 0.914

DeepLabV3+ 0.956 0.943 0.902 0.946

Ours 0.970 0.966 0.940 0.967

5.4.2 Qualitative results

Fig. 5.6 shows the segmentation maps produced by our model for three doc-

ument pages belonging, respectively, to the three document class present in

the Diva-HisDB dataset and compared with the ones predicted by the FCN

and DeepLabV3+ models, both trained on the whole available training set.

Furthermore, the corresponding ground truth segmentation is provided as a

reference.
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While the maps produced by FCN are typically correct and with very

limited amounts of noise, they tend to be very coarse, especially when ob-

served in the areas of the pages where the text is smaller and the different

components more intertwined. DeeplabV3+ provides a higher level of detail,

in particular when looking at the main text component (magenta segmenta-

tion). Finally, our model provides visibly more precise segmentation maps

than the competition when compared to the ground truth ones.

(a) Degraded page (b) Edge misclassification

(c) Adjacent page text (d) Foreground misclassification

Figure 5.7: Overview of the main instances of misclassification for the pro-
posed approach. From the top left corner we have: 5.7a degraded spots in
the page background being misclassified as foreground, 5.7b the same type
of misclassification involving page edges, 5.7c Text belonging to the adja-
cent page being recognized as part of the current one, 5.7d a simple case of
misclassified foreground elements in particular involving the main text being
mistaken as part of the comments

Fail cases

As already mentioned in the previous section the main drawback of the pre-

sented approach is that compared to the competition it introduces more noise

in the provided segmentations. For completeness, in Fig. 5.7 we provide some
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more criticalities of the proposed framework together with the original image

and the corresponding ground truth. In particular, other than the typical

misclassification of foreground elements (Fig. 5.7d) we can notice three main

instances of recurrent mistakes. The first one is represented by the edge of

the pages of the documents which, being lighter than the black background

introduces an area of high contrast that is identified both by the model and

by the thresholding algorithm as part of the text (Fig. 5.7b). A similar

occurrence can be observed for degraded areas in the page’s background,

these areas are, in fact, typically darker than the rest of the background and

are once again misclassified as foreground elements (Fig. 5.7a). Finally, we

have the misclassification caused by the text belonging to the page adjacent

to the currently analyzed instance, which while correctly identified as part

of the text by our model, is not included in the ground truth segmenta-

tions (Fig. 5.7c). This last case, however, is highly dependent on the coarse

cropping process of the instances of the Diva-HisDB dataset which doesn’t

precisely include only the elements of the current page and, as such, is easily

solvable by refining the crops.

5.4.3 Ablation study

In this section, we provide the details regarding the ablation study we con-

ducted in order to obtain the final version of the proposed framework. In

particular, we show the effects that different segmentation backbones and

patch sizes for the generated instances have on the performance of our ap-

proach for the task at hand. Furthermore, we provide a comparison between

the performance of the baseline model and the models enhanced with the

additional modules introduced in this work in order to provide proof of their

effectiveness.

Backbones

Tab. 5.4 shows a comparison of the performance of our framework when

using different backbones for the segmentation module. For this compar-
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Table 5.4: Comparison between the use of different neural network architec-
tures as the segmentation backbone for our model, in bold is reported the
best-performing model

CB55 CSG18 CSG863 Mean

Backbone Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

FCN 0,871 0,850 0,728 0,820 0,887 0,876 0,773 0,847 0,884 0,874 0,770 0,851 0,881 0,867 0,757 0,839

LRASPP 0,801 0,770 0,614 0,718 0,815 0,835 0,718 0,797 0,919 0,908 0,858 0,912 0,845 0,838 0,730 0,809

PSPNET 0,849 0,828 0,694 0,792 0,877 0,869 0,761 0,838 0,901 0,887 0,801 0,876 0,876 0,861 0,752 0,835

DeeplabV3 0,873 0,853 0,734 0,824 0,891 0,881 0,781 0,854 0,882 0,869 0,762 0,845 0,882 0,868 0,759 0,841

DeeplabV3+ 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.910 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

Table 5.5: Comparison between the adoption of different patch sizes during
the instance generation process of our framework, in bold is reported the
best-performing model

CB55 CSG18 CSG863 Mean

Patch size Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

224 0.911 0.900 0.813 0.884 0.920 0.916 0.843 0.900 0.919 0.917 0.846 0.904 0.917 0.911 0.834 0.896

336 0.916 0.906 0.823 0.891 0.925 0.920 0.849 0.905 0.928 0.926 0.860 0.916 0.923 0.917 0.844 0.904

672 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.910 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

ison, we selected a set of recent and popular semantic segmentation net-

works (DeepLabV3 [25], DeepLabV3+ [27], FCN [66], LRASPP [51] and

PSPNet [134]). To allow for a fair comparison all the models have been

trained and tested with the exact same setup, with 2 images for each docu-

ment class as the training set and a consistent patch size of 672×672 px. As

we can see all the models provide reasonably good performance on the task

at hand achieving an IoU higher than 70% and a performance of over 80%

for all the remaining metrics. From this analysis emerges that DeepLabV3+

consistently outperforms all other models on each of the selected metrics

and on all the document classes present in the dataset, achieving an mean

improvement of 6.23% over the second-best model, being represented by its

predecessor DeepLabV3. A particularly interesting boost in performance is

achieved for the IoU metrics where an increase of almost 9% is obtained by

the former over the latter.
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Patch sizes

A further comparison has been performed by exploring the adoption of dif-

ferent sizes for the crops of the instances being provided to the backbone

networks. In particular, we selected 3 different sizes, going from the stan-

dard 224× 224 which is the size used by all the pre-trained models available

in PyTorch, to a much larger 672 × 672. The results of this comparison

are shown in Tab. 5.5. In this case, the difference in performance wasn’t

as substantial as the one resulting from the adoption of different types of

segmentation backbones. In particular, we can notice that the difference be-

tween the best and the worst performing models, which are the ones adopting

the largest and smallest patch sizes respectively, is on mean around 1%. A

potential explanation behind the improved performance corresponding to the

adoption of larger patch sizes is that the model to which they are given in

input is able to capture a higher amount of contextual information regarding

the layout of the original image from which they are extracted, allowing for

more accurate segmentation.

Table 5.6: Results of the ablation study. Each row shows the performance
of the different versions of our system across all the selected metrics for the
4 classes of manuscripts composing the DIVA-HisDB dataset. The last four
columns show the mean scores achieved by the models across the different
classes

CB55 CSG18 CSG863 Mean

Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

Ours (baseline) 0.907 0.900 0.815 0.884 0.926 0.923 0.860 0.912 0.917 0.914 0.840 0.900 0.917 0.912 0.838 0.899

Ours (w/ dynamic crop gen.) 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.912 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

Ours (w/ seg. refinement) 0.979 0.978 0.967 0.976 0.981 0.978 0.963 0.979 0.982 0.980 0.965 0.980 0.981 0.979 0.965 0.978

Ours (w/ both) 0.989 0.987 0.977 0.988 0.983 0.982 0.967 0.982 0.986 0.983 0.971 0.984 0.986 0.984 0.972 0.985

Framework modules

Finally, we provide a comparison between different versions of our frame-

work in which we systematically introduce the original modules presented

in this work, namely the dynamic instance generation and the segmenta-
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tion refinement ones. In particular, in Tab. 5.6 we show the performance

obtained by our baseline model, in which the images have been split into

patches but without the addition of either the dynamically generated crops

or the segmentation refinement process, as well as the one achieved by in-

troducing these 2 techniques singularly and in a combined fashion, which

represents our full framework pipeline. As we can see each of the additional

modules leads to a substantial improvement in performance over the base-

line approach with the best performance being achieved with the use of both

modules. More specifically the final framework achieves an improvement in

performance going from 6.8% for the precision metric to a very substantial

13.3% for the Intersection over Union one, with a mean improvement of 9%

across all metrics when compared to the baseline approach.

As additional proof of the effectiveness of the proposed approach. In

Fig. 5.8 we provide a qualitative comparison between the segmentation masks

provided by the baseline and the final framework, while also showing the

corresponding ground truth as a reference.

5.5 Conclusions

In this chapter, we proposed an effective framework that tackles the under-

explored problem of few-shot document layout analysis by introducing two

original modules, namely the dynamic instance generation and segmenta-

tion refinement ones which help the core image segmentation backbone to

fully leverage the small amount of training data available in order to achieve

pixel-precise segmentations of the document pages. When compared to other

popular image segmentation algorithms, our model consistently outperforms

them, while relying only on a fraction of the training data and with a compu-

tational load that is comparable to the one of the original backbone segmen-

tation network adopted, being represented by DeepLabV3+. Furthermore,

when compared to the current State of the Art framework, our approach

achieves comparable performance on all the selected metrics. While the re-
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(a) Ground Truth

(b) Coarse Prediction

(c) Refined Prediction

Figure 5.8: Qualitative results showing the effects of the segmentation refine-
ment process. Fig. 5.8a shows the original ground truth for a zoomed area of
the original image. Fig. 5.8b shows the coarse segmentation mask obtained
by the model. Finally, Fig. 5.8c shows the segmentation prediction resulting
from the refinement process

ported results are very promising, there are still some criticalities we plan to

address in the future, specifically by investigating more effective segmenta-

tion refinement strategies.
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6
Effective Transfer Learning for

Document Layout Analysis

Semantic segmentation models have shown impressive performance in the

context of historical document layout analysis, but their effectiveness is reliant

on having access to a large number of high-quality of annotated images for

training. A popular approach to address the lack of training data in other

domains is to rely on transfer learning to transfer the knowledge learned from

a large-scale, general-purpose dataset (e.g. ImageNet) to a domain-specific

task. However, this approach has been shown to lead to unsatisfactory results

when the target task is completely unrelated to the data employed for the pre-

training process, which is the case when working on document layout analysis.

For this reason, in the present paper, we provide an overview of domain-

specific transfer learning for document layout segmentation. In particular,

we show how relying on document-related images for the pre-training process

leads to consistently improved performance and faster convergence compared

to training from scratch or even relying on a large, general-purpose, dataset

such as ImageNet.

6.1 Introduction

The availability of a sufficient amount of high-quality, annotated data from

historical documents is limited in the literature. As stated in the previous
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chapter, this is mainly due to the specialist nature of the content. Indeed,

annotating data requires domain expertise or specialist knowledge, and ob-

taining Ground Truth (GT) from domain experts can be time-consuming

and costly. To address this problem, several alternative approaches have

been proposed in the literature to perform the aforementioned task while

relying on a limited amount of data. These approaches involve the adoption

of unsupervised learning, few-shot learning and transfer learning techniques.

Transfer learning, which is the focus of the following chapter, involves prelim-

inary training of a model on a large annotated dataset in order to learn a set

of baseline parameters that will serve as an initialization for the fine-tuning

on the dataset connected to the target task. Transfer learning has become a

widely adopted technique in the field of computer vision [138, 15, 61], espe-

cially following the release of large-scale, general-purpose, datasets such as

ImageNet [38], CIFAR-10 [62], PASCAL [43] and COCO [63]. While these

datasets provide a valuable resource for the pre-training of deep learning

models on a wide array of tasks, they fall short when the downstream task

is related to a very specific domain (e.g. medical imaging, handwritten doc-

ument analysis, etc.). For this reason in the present chapter, we provide a

study on the effects of pre-training on domain-specific datasets as opposed

to general-purpose ones in the context of document layout analysis of an-

cient manuscripts. In particular, we show how performing the pre-training

step on a dataset that is related to the downstream tasks substantially im-

proves the performance of the model and allows for a faster convergence

compared to performing the pre-training on a general-purpose dataset or

training the model from scratch. The rest of the chapter is organized as

follows: Section 6.2 focuses on presenting a detailed description and setup of

the proposed experiments including a thorough presentation of the, currently

private, dataset employed to pre-train our system; in Section 6.3 the results

of the experiments are presented; finally, in Section 6.4, the conclusions and

future works are drawn.
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6.2 Methods

This section provides a comprehensive overview of the chosen architecture

and training setup, as well as the detailed datasets used for the experiments

and evaluation metrics.

6.2.1 Model Architecture

For our experiment, we chose a recent and popular model for semantic seg-

mentation called DeepLabv3+ [27]. This architecture improves upon its pre-

decessor DeepLabv3 [25], by incorporating an encoder-decoder architecture

that combines the benefits of both high-resolution and low-resolution fea-

tures. It utilizes a powerful backbone network, such as ResNet or Xcep-

tion, as the encoder to extract high-level semantic features from the input

image. These features are then fed into an Atrous Spatial Pyramid Pool-

ing module, which captures multi-scale contextual information. In addition,

DeepLabv3+ employs a decoder network that refines the segmentation re-

sults by upsampling the low-resolution features and combining them with

the high-resolution features from the encoder. This decoder network helps

to recover spatial details and produce more accurate segmentation maps.

This model and DeepLabv3 have already been used in other works on the

layout segmentation task of ancient manuscript datasets with excellent re-

sults [34, 113]. For the experiments presented in this paper, the ResNet50

version was chosen as the backbone of the DeepLabv3+ architecture.

6.2.2 Datasets descriptions

For the pre-training of the selected model, we relied on two datasets. The

first one is the popular ImageNet dataset [38], which serves as our general-

purpose pre-training baseline. The second one, on the other hand, is a private

domain-specific dataset, which we will refer to as ”U-DIADS-Bib” and which

will be described hereafter.
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(a) CB55 (b) CSG18 (c) CSG863 (d) Bukhari et al.

(e) CB55 GT (f) CSG18 GT (g) CSG863 GT (h) Bukhari et al. GT

Figure 6.1: Samples from the 3 manuscripts of Diva-HisDB dataset (CB55
Fig. 6.1a, CSG18 Fig. 6.1b, and CSG863 Fig. 6.1c) and from Bukhari et al.
dataset (Fig. 6.1d). For each sample the relative segmentation mask is shown
(Fig. 6.1e– 6.1h)

U-DIADS-Bib

U-DIADS-Bib is composed of 150 images, 50 for each of the 3 different

manuscripts that characterize it. These handwritten books were selected

in collaboration with humanist partners considering both the complexity of

their layout and the presence of significant and semantically distinguishable

elements. In particular, the images of the three manuscripts were collected

from the French digital library Gallica1. All manuscripts are Latin Bibles

published between the 6th and 12th centuries A.D. which will be briefly

described hereafter:

• Paris, Bibliothèque nationale de France, Latin 22. The manuscript,
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(a) Main Text (b) Decoration (c) Title

(d) Chapter Headings (e) Paratext (f) Background

Figure 6.2: Samples of the six segmentation classes of the pre-training
dataset: Main Text ( 6.2a), Decoration ( 6.2b), Title ( 6.2c), Chapter Head-
ings ( 6.2d) , Paratext ( 6.2e) and Background ( 6.2f).

known as the Second Bible of Charles the Bald, was produced between

A.D. 871 and 877 at the Abbey of Saint-Amand (Haute-France); it

was kept in the Abbey of Saint-Denis between A.D. 877 and 1595 and

later transferred to the Royal Library of France. It is composed of 444

parchment pages and the layout is structured in two columns.

• Paris, Bibliothèque nationale de France, Latin 143963. The manuscript

was produced between A.D. 1145 and 1150 in the Abbey of Saint-

Victor (Paris). It contains the biblical text from the Book of Ezra to

the Book of Revelation and it is probably the final part of a three-

volume Bible; this codex, known as Genesis-Kings, is the first volume.

The manuscript is composed of 170 parchment pages and the layout is

structured in two columns.

• Paris, Bibliothèque nationale de France, Latin 167464. The manuscript



92 6. Effective Transfer Learning for Document Layout Analysis

(a) Latin 2, page 144
original

(b) Latin 14396, page 325
original

(c) Latin 16746, page 187
original

(d) Latin 2 ground truth (e) Latin 14396 ground
truth

(f) Latin 16746 ground
truth

Figure 6.3: Images showing a page of each manuscript (Fig. 6.3a– 6.3c) as
well as its corresponding ground truth mask (Fig. 6.3d– 6.3f), in which each
color represents a different semantic class of the document layout.

was produced between A.D. 1170 and 1190 at the Abbey of Saint Bertin

(Pas-de-Calais). It contains the New Testament and it is the final part

of a four-volume Bible (Paris, Bibliothèque nationale de France Latin

16743-16746). The Bible had been kept for a long time in the Capuchin

convent of Saint-Honoré, in Paris. The manuscript is composed of 176

parchment pages and the layout is structured in two columns.
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Layout classes The six segmentation classes highlighted by humanist ex-

perts for the page segmentation task are visible in Fig. 6.2 and are:

• Main Text: This class includes the writing area and represents the

core and central content of the book. This class includes punctuation

and pause marks. It can be structured in different layouts such as one

or two columns.

• Decoration: This class includes both figurative elements in the proper

sense (miniatures and decorated initials), and elements of minimal dec-

oration, such as initials with a graphic element or color distinguishing

them from the rest of the text.

• Title: More properly ’incipit and explicit formulae’, identifiable by the

use of a different ink color and/or by the adoption of display scripts:

monumental (square) or rustic capital, uncials or mixed capital/uncials

script.

• Chapter Headings: The chapter headings function in ancient manuscripts

was to facilitate the retrieval of a particular chapter or passage, but ac-

cording to different scansion and interpretation from one set to another.

From a graphical point of view, they are often recognizable by a script

similar to that of the main text but smaller in size.

• Paratext: This class consists of several elements such as glosses,

marginal and interlinear notes, corrections, paragraph numbering, pos-

session notes from different periods, page or fascicle numbering. In

general, includes all hand annotations that do not fit into the other

classes.

• Background: This class includes the background of the page and any

outline visible in the scanned image.
1Source https://gallica.bnf.fr
2https://gallica.bnf.fr/ark:/12148/btv1b8452767n
3https://gallica.bnf.fr/ark:/12148/btv1b84429190
4https://gallica.bnf.fr/ark:/12148/btv1b85144288
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Ground Truth construction The annotation of the U-DIADS-Bib is the

result of the collaboration between humanists and computer scientists. As

previously addressed, manual annotation of images is a very time-consuming

task, especially in the context of document segmentation where the different

layout components can be very small and detailed, whilst annotations pro-

vided by algorithms tend to present many inaccuracies and are prone to the

introduction of noise. Consequently, since our goal was to produce a dataset

with a large number of annotated pages, pixel-precise segmentation and very

limited, if any, noise, we have defined a segmentation pipeline that involves

the alternation of humanist and algorithmic work, in order to optimize the

expected results.

First of all, after having chosen the manuscripts, a subset of 50 images was

selected in such a way as to represent all the chosen segmentation classes for

each manuscript. A subset of 10 images per manuscript was selected and bi-

narized using Sauvola threshold technique [100] and morphological operators

in order to give the human experts a starting point to work on. Then, experts

in manuscript texts have manually segmented at pixel level with different col-

ors these few images per manuscript contain examples of all expected classes.

The next step was to train a machine-learning model with these subsets of

images and the related GTs segmented by humanists to obtain a coarse seg-

mentation of the entire dataset. To achieve this, the framework proposed

in [35] was followed, where a few-shot pixel-precise document layout seg-

mentation method with high performance is presented. The segmentation

was done for 4 classes, so as to obtain a less detailed but well-defined seg-

mentation on the whole dataset and with the presence of almost zero noise.

Finally, the expert humanists introduced the other missing semantic classes

and meticulously refined and corrected all the color masks of the GTs by

comparing them to the original images. It is worth noting that, despite the

task being computer-aided, the final result is always defined by a human

expert, thus avoiding possible biases or errors in the dataset.

Fig. 6.3 illustrate some examples of the defined GT and corresponding
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original image for each manuscript of the U-DIADS-Bib. Each selected pixel

is marked by a color that symbolizes the corresponding content type.

U-DIADS-Bib is therefore composed of 50 original color page images for

each manuscript, stored in JPEG image format with resolution 1344 × 2016

px. Each page is associated with the corresponding GT data, stored in a PNG

image with the same size as the original one. GTs contain six different and

non-overlapping annotated classes (background (BG), comment, decoration,

text, title and chapter headings (CH)) encoded by RGB value as follows:

• RGB(0,0,0) Black: Background

• RGB(255,255,0) Yellow: Paratext

• RGB(0,255,255) Cyan: Decoration

• RGB(255,0,255) Magenta: Main Text

• RGB(255,0,0) Red: Title

• RGB(0,255,0) Lime: Chapter Headings

Out of the 150 images, 120 have been used to train the model and the

remaining 30 for the validation step.

Evaluation datasets

To test our approach we chose to use the two popular datasets for document

layout analysis described in the previous chapter: Diva-HisDB dataset [107]

and the dataset of Bukhari et al. [16]. The layout of these manuscripts

is particularly challenging and very different from each other, as visible in

Figure 6.1.

6.2.3 Evaluation setup

To evaluate the performance of our proposed approach, we employ four met-

rics, namely Precision, Recall, Intersection over Union (IoU), and F1-Score.
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In particular, for the present study, we considered the class-wise macro aver-

age of the selected metrics. These metrics are computed separately for each

manuscript in the Diva-HisDB dataset and are defined as follows:

Precision =
True Positive

True Positive + False Positive
(6.1)

Recall =
True Positive

True Positive + False Negative
(6.2)

IoU =
True Positive

True Positive + False Positive + False Negative
(6.3)

F1-Score =
2 × Precision × Recall

Precision + Recall
(6.4)

6.2.4 Training and fine-tuning setup

The pre-training of the DeepLabv3+ architecture on the private, domain-

specific, dataset was carried out by relying on the popular Adam optimizer

with a learning rate of 10−4, a weight decay of 10−5 and a batch size of 3.

The images were only slightly resized to 1344 × 2016 px, roughly one-third

of the original size, to retain as much detail as possible. The same hyper-

parameters were also used for the fine-tuning process and for training the

model from scratch on the dataset of the downstream task.

To address the high-class imbalance in each manuscript of the dataset,

we selected a weighted Cross Entropy Loss as the loss function for training

the model. Specifically, the weight assigned to each class, denoted as Wi, is

calculated as the square root of the reciprocal of the occurrence frequency of

the corresponding class in the dataset (as shown in Equation 6.5).

Wi =

√

1

Fi

(6.5)

The same loss function was used for training the model from scratch and for

the fine-tuning process, adjusting the weights to the respective segmentation

classes present in the Bukhari et al. and Diva-HisDB datasets (Table 6.1).
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CB55 CSG18 CSG863 Bukhari et al.

Background 82.41 85.16 77.82 86.07

Comment 8.36 6.78 6.35 4.71

Decoration 0.55 1.47 1.83 —

Text 8.68 6.59 14.00 9.22

Table 6.1: Classes distribution (%) for each manuscript of Diva-HisDB and
for Bukhari et al. dataset.

For the pre-trained ImageNet model relied on the one made available in

the Segmentation Models Pytorch repository [55].

On the other hand, when pre-training on the domain-specific dataset we

allowed a maximum of 500 epochs while introducing an early stop mechanism

that was triggered in case the performance of the model on the validation

set didn’t improve in the previous 20 epochs. Finally, when training the

models from scratch and for the fine-tuning process, the architectures were

trained for a total 100 epochs, with a checkpoint saved every 10. The fine-

tuning process, in particular, was carried out by freezing the weights of the

encoder, which performs the feature extraction, while updating the weights

of the decoder module of the network together with the new segmentation

head, introduced to match the number of classes present in the downstream

dataset.

6.3 Results

In Tab. 6.2 is reported the performance of the DeepLabv3+ model when

trained from scratch on the target datasets and when pre-trained on both

the ImageNet and the domain-specific datasets. As we can see the model pre-

trained on the domain-specific dataset consistently outperforms the other 2

across all the selected metrics on all the manuscript classes, with the excep-

tion of the recall on the Bukhari et al. dataset. In particular, domain-specific
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Manuscript Metric Scratch
Pre-Trained
(ImageNet)

Pre-Trained
(domain specific)

∆
(ImageNet)

∆
(domain specific)

Bukhari

Precision 0.730 0.738 0.780 +0.008 +0.050

Recall 0.910 0.906 0.902 -0.004 -0.008

IoU 0.678 0.685 0.706 +0.007 +0.028

F1-Score 0.798 0.802 0.818 +0.004 +0.020

CB55

Precision 0.722 0.703 0.737 -0.019 +0.015

Recall 0.914 0.942 0.920 +0.028 +0.006

IoU 0.681 0.673 0.698 -0.008 +0.017

F1-Score 0.799 0.791 0.812 -0.008 +0.013

CSG18

Precision 0.730 0.735 0.740 +0.005 +0.010

Recall 0.917 0.936 0.924 +0.019 +0.007

IoU 0.698 0.700 0.702 +0.002 +0.004

F1-Score 0.813 0.815 0.815 +0.002 +0.002

CSG863

Precision 0.778 0.786 0.792 +0.008 +0.014

Recall 0.891 0.896 0.898 +0.005 +0.007

IoU 0.719 0.735 0.736 +0.016 +0.017

F1-Score 0.828 0.834 0.839 +0.006 +0.011

Table 6.2: Results on the test set of the different manuscripts of Diva-HisDB
and Bukhari et al. datasets. Each metric is calculated for training from
scratch and for fine-tuning of ImageNet pre-training and domain-specific pre-
training. The results regarding the effect of fine-tuning from ImageNet and
from domain-specific is reported in ∆.

pre-training leads to a 1% average improvement on the classes belonging to

the Diva-HisDB dataset. Surprisingly, this strategy proved to be even more

effective for the Bukhari et al. dataset, which is the only one containing doc-

uments written in a different alphabet compared to the one present in the

pre-training dataset, with improvements going from a 2% on the F1-score

metric to a 5% for the Precision.

Furthermore, in Fig. 6.4 we report the performance, in terms of IoU,

at different stages during the training process on the downstream task. As

we can see, pre-training on a domain-specific dataset (blue line), leads to

improved performance in the early stages of training, allowing for a faster

convergence on all the classes with the exception of the Arabic manuscripts
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(a) CB55 (b) CSG18

(c) CSG863 (d) Bukhari et al.

Figure 6.4: Overview of the performance of the DeepLabv3+ architecture
at different stages of the training process for the 4 document classes. The
orange line represents the model trained from scratch on the target datasets,
the gray line the model pre-trained on ImageNet and the blue line the model
pre-trained on the domain-specific dataset

contained in the Bukhari dataset, for which the curves described by the 3

models appear very similar to each other. Conversely, pre-training the model

on a general-purpose dataset such as ImageNet doesn’t seem to have the same

positive effects, on the contrary, it seems to lead to a decreased performance

in the initial phase of the training for two of the classes, namely the CB55 and

CSG18 ones. Finally, pre-training on a domain-specific dataset consistently

leads to a more stable performance curve during training. This effect is

particularly visible for the CB55 and CSG863 document classes where the

model trained from scratch presents some very noticeable downward spikes

in performance around halfway during the training process.
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6.4 Conclusion and Future Work

In the present work, we have shown the advantages of relying on a domain-

specific dataset for the pre-training of models in the context of handwritten

document layout segmentation. Even when relying on a small amount of data

for this purpose the performance of the final model, fine-tuned on the target

dataset, is consistently improved compared with the one of a model that has

been trained from scratch on the latter or even compared with a model pre-

trained on a large scale, general purpose, dataset such as ImageNet. While

the obtained results are already promising we believe that an important

limiting factor of the present study has been represented by the relatively

small amount of data present in the private dataset we used for the pre-

training, which is not even comparable to the large datasets commonly used

for this purpose. A further limitation is represented by the homogeneity of

the said dataset, mainly in terms of the alphabet in it contained. For these

reasons in future works, we plan to expand and make publicly available the

dataset employed in this work so as to understand the effects it would have

on the performance achieved on the target task as well as to make the results

obtained reproducible. Finally, we would like to gain a better understanding

of the effectiveness of employing a transfer learning approach in a cross-task

scenario where the model is pre-trained on a set document analysis task and

fine-tuned on a different one.
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Conclusions

In this thesis, the problem of semantic segmentation in low-data settings has

been addressed. In particular, in chapters 3 and 4 two, attention-based frame-

works have been proposed to tackle the problem of anomaly segmentation

for industrial quality control and the identification of pathologies in medical

images. The former showcased a preliminary work introducing the positive

effects of attention-based mechanisms for this class of problems while the lat-

ter built upon it and presented a full framework revolving around the concept

of self-attention introduced by the Vision Transformer architecture. Further-

more, Chapter 4 showcased the effectiveness of relying on self-attention at

multiple scales from the original image, to leverage the full information con-

tained in them.

The following two chapters, on the other hand, focused on the problem

of layout segmentation in ancient handwritten documents which, compared

to printed ones, present a much higher degree of complexity and for which

generating the ground truth segmentation maps corresponding to the original

page images represents an even more difficult problem. In chapter 5 a few-

shot segmentation approach for this class of manuscripts is proposed. This

approach relies on the combination between a robust semantic segmentation

deep neural network, a dynamic instance generation module, which allows

to take full advantage of the very small amount of instances available, and a

traditional computer vision binarization algorithm to achieve state-of-the-art

performance while relying on just a fraction of the training data compared
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to the previously available approaches. Finally in chapter 6 an analysis of

transfer learning strategies in the context of document layout analysis is

provided. In particular, it shows how traditional pre-training approaches

are not very effective in this application domain, and relying on a domain-

specific, albeit much smaller, dataset is preferable.

For all the proposed approaches a quantitative comparison with competi-

tion models, through the adoption of popular metrics, has been provided to

prove their effectiveness on the corresponding task. Furthermore, for chap-

ters 4 and 5 the qualitative results achieved by the proposed approaches are

reported, to provide a clearer picture of the quality of the segmentation maps

they produced, as well as to showcase their fallbacks.
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