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Home healthcare has become more and more central in the last decades, due to the advantages it 
can bring to both healthcare institutions and patients. Planning activities in this context, however, 
presents significant challenges related to route planning and mutual synchronization of caregivers.

In this paper we propose a new compact model for the combined optimization of scheduling (of the 
activities) and routing (of the caregivers) characterized by fewer variables and constraints when 
compared with the models previously available in the literature. The new model is solved by a 
constraint programming solver and compared experimentally with the exact and metaheuristic 
approaches available in the literature on the common datasets adopted by the community. The 
results show that the new model provides improved lower bounds for the vast majority of the 
instances, while producing at the same time high quality heuristic solutions, comparable to those 
of tailored metaheuristics, for small/medium size instances.

1. Introduction

Home healthcare (HHC) has become popular in the last decades. It consists in moving supportive and geriatric care to the patients’ 
domicile. The reason of this shift is twofold: it offers patients the possibility of staying in a habitual environment and therefore it 
increases their quality of life. On the other hand, having patients at home decreases the overall healthcare costs substantially [19]. 
The idea behind the system can be summarized as follows. Treatments are carried out by trained caregivers. A caregiver visits the 
patient at home within a predfined time window, performs the service operations planned (e.g., medical care or just instrumental 
activities of daily living), and then travels to a next patient incurring a relevant travel time while moving. The decisions required 
in the classic activity scheduling problems in hospitals or other healthcare institutions now have a different routing dimension, that 
makes the problem more challenging. Synchronization issues are also common while planning HHC operations: some medical care 
activities (e.g., physiotherapy) require the simultaneous presence of more than a single caregiver (e.g., for taking the patient out 
of the bed). Other activities such as medicine administration or lunch services might require subsequent activities (e.g., a second 
medicine after a given time or collecting empty lunch boxes) to take place after a certain amount of time.

The motivation of the paper is to advance the quality of mathematical programming models for HHC, and to experimentally show 
that the new model we propose is able to improve the best-known bounds for different sets of benchmarks commonly adopted in the 
literature. The contributions of this work can therefore be summarized as follows. First, a new compact model with fewer variables 
and constraints with respect to those available in the literature, is proposed. Second, the model is expressed according to the syntax 
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of the Constraint Programming (CP) solver CP-SAT [44] and tested on three different datasets available from the literature and 
representing realistic operational cases. New best-known upper and lower bounds for the optimal solution cost of several instances 
are provided, showing that the new approach is able to provide high quality solutions for instances of sizes normally encountered 
in real applications (normally up to 100/150 patients). Third, we show how the best metaheuristic methods previously appeared for 
the problem can potentially exclude from the search space some feasible solutions due to their internal representations.

The rest of the paper is organized as follows: Section 2 provides some references for the aspects of HHC covered by the present 
work, which is consequently positioned in the available literature. Section 3 presents a formal definition of the problem under 
investigation and introduces the notation used along the paper. The new model we propose is detailed in Section 4, where some 
modelling and implementation issues are also discussed. An experimental analysis of the potentials of the new model is provided 
in Section 5, where the results achieved are compared to those of the state-of-the-art methods from the literature. Conclusions are 
finally drawn in Section 6.

2. Literature review

The idea of providing healthcare treatments at home has become popular in the last decades, and with it many scientific papers 
dealing with different aspects of the problem have been published. We focus on those of interested for the present work, treating 
rostering, scheduling and routing aspects in a deterministic setting. We refer the interested reader to the works by Fikar and Hirsch 
[18], Cissé et al. [10] and Di Mascolo et al. [16] for a more general literature review on operational research methods for home 
healthcare routing and scheduling problems. In the remainder of the section we will focus on the works relevant for the setting we 
consider.

Begur et al. [4] first took into consideration the problem and employed a simple scheduling heuristic to solve the HHC problem. 
The first Mixed Integer Linear Programming (MILP) model can be traced back to Cheng and Rich [9]. Other MILPs covering a variation 
of the problem were discussed by Nguyen and Montemanni [40]. A working planning system was presented by Eveborn et al. [17], 
while temporal dependencies among activities were first considered in the work of Rasmussen et al. [45]. Along the same line, 
Bredström and Rönnqvist [6] provided a model for the combined routing and scheduling problem with temporal precedence and 
synchronization constraints, without making explicit reference to home healthcare applications. Models considering the use of public 
transportation for caregivers (therefore oriented to metropolitan areas), either in a single- or multi-modal fashion, were considered 
by Bertels and Fahle [5] and Rendl et al. [46]. Temporal horizon spanning on multiple days and a balancing of the workload among 
caregivers were considered by Di Gaspero and Urli [15]. In addition, they also took into account the possibility not to serve some 
patients, as often occurs in real-world situations when external caregivers are considered. Their problem was modelled in constraint 
programming and solved via a Large Neighborhood Search approach.

Population based approaches were tried by a number of authors, in different problem settings. Specifically, Decerle et al. [12] and 
Grenouilleau et al. [21] devised Memetic Algorithms (i.e., genetic algorithms encapsulating a local search) for the problem, while 
Clapper et al. [11] presented a model-based Evolutionary Algorithm. In the work by Xiang et al. [49] the problem was formulated as 
a multi-objective problem trying to balance the total operating cost of caregivers and the patients satisfaction, and solved the problem 
through a NSGA-II genetic algorithm. A multi-objective perspective was also adopted by Kordi et al. [26] that considered four different 
objectives (total cost, environmental emission, workload balance, and service quality) and developed a Variable Neighborhood Search 
method. A recent work that designs and compares many metaheuristic approaches on the problem formulation proposed by Bredström 
and Rönnqvist [6] is carried out by Masmoudi et al. [36].

The variation of the problem object of the present study, was originally proposed by Mankowska et al. [35] along with a benchmark 
dataset. The rest of this review focuses on the works dealing with this variation of the problem. As a solution approach, Mankowska 
et al. [35] described a MILP and developed an Adaptive Variable Neighborhood Search method where the search space is represented 
by a vector containing the global ordering of patients. The different neighborhood relations reposition a patient in the global order, 
change the caregiver(s), or swap either the position or the caregiver(s). Lasfargeas et al. [31] developed a two-stage solution approach 
including a construction heuristic to generate an initial feasible solution, and a Variable Neighborhood Search procedure to explore 
locally the search space. The method was originally designed for a problem characterized by a horizon spanning multiple days, but 
results were reported also on the single-day dataset proposed by Mankowska et al. [35]. A Biased Random Key Genetic Algorithm for 
solving this version of the problem was proposed in the works by Kummer [28] and Kummer et al. [29,30]. In particular, Kummer 
et al. [30] explored the search space indirectly through a multi-population multi-parent biased random-key genetic algorithm, with 
an additional component of implicit path-relinking for intensfication of the search. The state-of-the-art in terms of heuristic solutions, 
with respect of the benchmarks introduced by Mankowska et al. [35] and adopted in this paper, are those obtained using Simulated 
Annealing (SA) by Ceschia et al. [8] and in the subsequent work [7] by the same authors, whose results are available at the repository 
[25]. They use the same search space of Mankowska et al. namely the global ordering of the patients, but a larger neighborhood 
which changes the position of a patient in the global ordering and assigns new caregiver(s) to him/her in one single move. These 
methods are summarized in Table 1, together with other recent and relevant works on other problems addressing single-period home 
healthcare routing and scheduling problems with different characteristics. The abbreviations used in Table 1 (and in the rest of the 
paper) for both characteristics and methods, are summarized in Table 2, with a higher level of detail for the methods referred to in 
the remainder of the paper. The ✓ symbol means that the specific feature is considered in the formulation proposed in the article. 
When dealing with constraints, ``H'' means hard constraints while ``S'' marks soft constraints.
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Table 1
Objectives, constraints and solution methods for single-period home healthcare routing and scheduling problems.

Objectives Constraints Solution method(s) 
Reference FA OT TC TT UP WT CB MC PR PC SY SK TW 
Mankowska et al. [35] ✓ ✓ ✓ H H H H AVNS 
Lasfargeas et al. [31] ✓ ✓ ✓ H H H H VNS 
Kummer et al. [29] ✓ ✓ ✓ H H H H BRKGA 
Kummer et al. [30] ✓ ✓ ✓ H H H H BRKGA 
Kummer [28] ✓ ✓ ✓ H H H H BRKGA-MP-IPR 
Ceschia et al. [8] ✓ ✓ ✓ H H H H SA 
Ceschia et al. [7] ✓ ✓ ✓ H H H H MN-SA 
Hiermann et al. [23] ✓ ✓ ✓ H S S S MA, SA, SS, VNS 
Ait Haddadene et al. [1] ✓ S H H H H GRASP+ILS 
Liu et al. [32] ✓ ✓ H H H B&P 
Decerle et al. [12] ✓ H S H S MA 
Parragh et al. [43] ✓ ✓ H H H H ALNS 
Liu et al. [33] ✓ ✓ H H S B&P 
Liu et al. [34] ✓ H H H H H GA, VNS, SA 
Xiang et al. [49] ✓ S H H NSGA 
Bazirha et al. [3] ✓ ✓ H H H GA, VNS 
Bazirha et al. [2] ✓ ✓ H H H SA 
Clapper et al. [11] ✓ ✓ ✓ S H H EA 
Kordi et al. [26] ✓ ✓ S H H VNS 
Oladzad-Abbasabady et al. [42] ✓ ✓ ✓ ✓ H S S S H S ILS 

Table 2
Abbreviations of objectives, constraints and solution methods for the 
home healthcare routing and scheduling problems reviewed in Table 1.

Abbreviation Description 
Objective

FA Fairness (work balance) 
OT Overtime 
TC Travel cost 
TT Travel time 
UP Unvisited patients 
WT Waiting time 
Constraint

CB Caregiver break 
MC Multiple centers 
PR Preference 
PC Precedence 
SY Synchronization 
SK Skill requirements 
TW Time windows 
WR Working time regulations 
Solution method

ALNS Adaptive Large Neighborhood Search 
AVNS Adaptive Variable Neighborhood Search 
B&P Branch & Price 
BRKGA Biased Random-Key Genetic Algorithms 
BRKGA-MP-IPR Biased Random-Key Genetic Algorithms with 

multi-parents and implicit path-relinking 
EA Evolutionary Algorithm 
GA Genetic Algorithm 
GRASP Greedy Randomized Adaptive Search Procedure 
ILS Iterated Local Search 
LNS Large Neighborhood Search 
MH Metaheuristics 
MN-SA Multi-Neighborhood Simulated Annealing 
NSGA Nondominated Sorting Genetic Algorithm 
SA Simulated Annealing 
SS Scatter Search 
VNS Variable Neighborhood Search 

EURO Journal on Computational Optimization 13 (2025) 100101 

3 



R. Montemanni, S. Ceschia and A. Schaerf 

Fig. 1. Optimal solution for the toy-size instance from [25]. 

3. Formal problem description and notation

The HHC problem under investigation can be described as follows. A set of patients 𝑃 , a set of service types 𝑆 , and a set of staff 
members (caregivers) 𝐶 are given. Each staff member 𝑘 ∈ 𝐶 is able to perform some of the services, and a binary parameter 𝑎𝑘𝑠 is 
equal to 1 if 𝑘 ∈ 𝐶 is qualfied to perform the service 𝑠 ∈ 𝑆 , and 0 otherwise. The employees start their routes at the HHC’s central 
office, which refers to a given node 0.

The set of patients 𝑃 is formed by patients of two different types: those requiring a single service, that are part of set 𝑃 1 , and 
patients requiring two services, to be provided by two distinct members of the staff, that are part of 𝑃 2 . Notice that 𝑃 = 𝑃 1 ∪ 𝑃 2.

A binary parameter 𝑟𝑖𝑠 is dfined such that 𝑟𝑖𝑠 = 1 if patient 𝑖 requires service 𝑠 ∈ 𝑆 , 0 otherwise. We dfine 𝑆𝑖 ⊆ 𝑆 containing 
the services requested by patient 𝑖 ∈ 𝑃 (i.e. 𝑟𝑖𝑠 = 1). Note that 1 ≤ |𝑆𝑖| ≤ 2 for 𝑖 ∈ 𝑃 , while for technical reasons we set 𝑆0 = 𝑆 . We 
also dfine 𝐶𝑖 ⊆ 𝐶 as the set of caregivers that have skills to provide at least one service to patient 𝑖 ∈ 𝑃 : Caregiver 𝑘 is in 𝐶𝑖 if 
∃𝑠 ∈ 𝑆𝑖 such that 𝑎𝑘𝑠 = 1. We finally dfine 𝑃𝑘 ⊆ 𝑃 as the set of patients that can be treated by caregiver 𝑘 ∈ 𝐶 and the central office: 
𝑃𝑘 = {𝑖 ∈ 𝑃 ∶ 𝑘 ∈ 𝑆𝑖} ∪ {0}.

For each double service patient 𝑖 ∈ 𝑃 2 we also have a minimal time distance 𝛿𝑚𝑖𝑛
𝑖

and a maximum time distance 𝛿𝑚𝑎𝑥
𝑖

≥ 𝛿𝑚𝑖𝑛
𝑖

that 
have to be fufilled between the first and the second service: the second service operation must start at a time within the interval 
[𝑡+ 𝛿𝑚𝑖𝑛

𝑖
, 𝑡+ 𝛿𝑚𝑎𝑥

𝑖
], where 𝑡 is the starting time of the first service. A precedence relation (≺) exists between the two services required 

by a patient 𝑖 ∈ 𝑃 2, but when 𝛿𝑚𝑖𝑛
𝑖

= 𝛿𝑚𝑎𝑥
𝑖

= 0 the service operations have to start simultaneously. It is also assumed that the two 
operations of a double service have to be executed by different caregivers.

Given the locations of two patients 𝑖, 𝑗 ∈ 𝑃 ∪ {0}, the traveling time between them is denoted as 𝜏𝑖𝑗 . Given a patient 𝑖 ∈ 𝑃 and a 
service 𝑠 ∈ 𝑆 such that 𝑟𝑖𝑠 = 1, a service time 𝜎𝑖𝑠 required to perform the treatment is also provided. For each patient 𝑖 ∈ 𝑃 , a time 
window [𝑒𝑖, 𝑙𝑖], referring to the start of service operations, is also given. If a caregiver arrives at patient 𝑖 before time 𝑒𝑖, he/she has to 
wait until the time window opens, otherwise the service is started immediately. Late arrivals of a caregiver (after time 𝑙𝑖) are allowed 
for the execution of a treatment, but a penalty, proportional to the delay itself, is incurred in such a case.

The objective function to be minimized is the weighted sum of three components. The first component represents the total distance 
travelled by the caregivers and is a measure of the efficiency of the solution from the viewpoint of the company. The second component 
accounts for the total tardiness in treatment accumulated by all the caregivers, and can be seen as a measure of the quality of the 
solution from the viewpoint of the patients. The third component is the maximum tardiness in treatment incurred in the solution, 
and its role is to avoid all the delay to be concentrated to one (or a few) patients, and therefore should guarantee a fair solution. The 
three weights, called 𝜆1, 𝜆2, and 𝜆3, are user-defined and model the importance of the different components.

The optimal solution for the toy-size instance of the repository [25] is provided in Fig. 1, where time is represented on the 𝑥
axis and the depot together with patients 𝑝1, 𝑝2,… , 𝑝6 are on the 𝑦 axis, with time windows depicted as gray blocks. The missions of 
caregivers 𝑐1, 𝑐2 and 𝑐3 are drawn, with dotted blocks representing waiting times, and full blocks service times (each service executed 
is identfied by a label). Notice that patients 𝑝5 and 𝑝6 require two consecutive services, while patient 𝑝4 needs two caregivers at the 
same time.

4. A compact mixed integer linear programming model

In this section we describe a compact MILP model for the HHC problem. The model discussed by Mankowska et al. [35], and 
later revisited by Kummer et al. [30], is equally a MILP, and accounts for 𝑂(|𝑃 |2|𝐶||𝑆|) variables and 𝑂(|𝑃 |2|𝐶|2|𝑆|2) constraints. 
In this paper, we propose a new model where the size is reduced to 𝑂(|𝑃 |2|𝐶|) for both the variables and the constraints. We 
decided to formalize our model in terms of constraints programming, but the model can be expressed in terms of mixed integer linear 
programming with no increase in the number of variables or constraints.

By observing that in the model we have no benfit associated with the concept of patients requiring two visits, a simplfication can 
be derived by doubling the nodes of the set 𝑃 2, those associated to patients requiring two services. Formally, we dfine 𝑃 ′ = 𝑃 ∪ 𝑃 3
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with 𝑃 3 = {𝑝′
𝑖
∶ 𝑝𝑖 ∈ 𝑃 2}, and by assigning a single service to each node of 𝑃 2 and 𝑃 3 and by imposing a precedence 𝑝𝑖 ≺ 𝑝′

𝑖
between 

nodes (originally the precedence was between the services required by the same node). Finally, after having doubled the patients 
of the set 𝑃 2, each patient 𝑖 ∈ 𝑃 ′ has now exactly one treatment request, and therefore a univocal service time, referred to as 𝜎𝑖 . 
The problem can then be modelled as a Vehicle Routing Problem with Soft Time Windows characterized by an articulated objective 
function and side constraints about the selection of service providers for each node, hard temporal constraints about the visit time 
of pairs of nodes associated with the same patient and some other details (a formal model will be dfined in the remainder of the 
section). The sets defining the problem are redfined consequently as 𝑃 ′

𝑘
= {𝑖 ∈ 𝑃 ′ ∶ 𝑘 ∈ 𝑆𝑖} ∪ {0}, where the definition of each 𝑆𝑖 is 

extended to the new set of nodes 𝑃 ′.
The variables of the corresponding model can be dfined as follows:

• 𝑥𝑘
𝑖𝑗

is a binary variable equal to 1 if caregiver 𝑘 ∈ 𝐶 visits patient 𝑗 ∈ 𝑃 ′
𝑘

right after patient 𝑖 ∈ 𝑃 ′
𝑘
, 0 otherwise. Furthermore, we 

also set 𝑥𝑘
𝑖𝑖
= 1 when patient 𝑖 is not visited by the caregiver 𝑘; 0 otherwise. This allows to simplify the logic of the constraints of 

the model.

• 𝑡𝑖 is the starting time of the visit at patient 𝑖 ∈ 𝑃 ′.
• 𝑧𝑖 is the delay in the execution of treatment at patient 𝑖 ∈ 𝑃 ′ with respect to the end of its time window 𝑙𝑖.
• 𝐷𝑚𝑎𝑥 is a technical non-negative variable used to capture the maximum tardiness incurred in visiting patients.

The resulting model is as follows.

min𝜆1
∑
𝑖∈𝑃 ′

0

∑
𝑗∈𝑃 ′∪{0},

𝑗≠𝑖

𝜏𝑖𝑗

∑
𝑘∈𝐶𝑖∩𝐶𝑗

𝑥𝑘
𝑖𝑗
+ 𝜆2

∑
𝑖∈𝑃 ′

𝑧𝑖 + 𝜆3𝐷𝑚𝑎𝑥 (1)

𝑠.𝑡. 𝐷𝑚𝑎𝑥 ≥ 𝑧𝑖 𝑖 ∈ 𝑃 ′ (2)∑
𝑗∈𝑃 ′

𝑘

𝑥𝑘
𝑗𝑖
= 1 𝑘 ∈ 𝐶, 𝑖 ∈ 𝑃𝑘 (3)

∑
𝑗∈𝑃 ′

𝑘
,𝑗≠𝑖

𝑥𝑘
𝑗𝑖
=

∑
𝑗∈𝑃 ′

𝑘
,𝑗≠𝑖

𝑥𝑘
𝑖𝑗

𝑘 ∈ 𝐶, 𝑖 ∈ 𝑃 ′
𝑘

(4)

𝑧𝑖 ≥ 𝑡𝑖 − 𝑙𝑖 𝑖 ∈ 𝑃 ′ (5)

𝑡𝑗 ≥ 𝑡𝑖 + 𝜎𝑖 + 𝜏𝑖𝑗 −𝑀 +𝑀𝑥𝑘
𝑖𝑗

𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′
𝑘
, 𝑖 ≠ 𝑗 (6)

𝛿𝑚𝑖𝑛
𝑖

≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝛿𝑚𝑎𝑥
𝑖

𝑖 ∈ 𝑃 2, 𝑗 ∈ 𝑃 3 ∶ 𝑖 ≺ 𝑗 (7)

𝑥𝑘
𝑖𝑗
≤ 1 − 𝑥𝑘00 𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′

𝑘
, 𝑖 ≠ 𝑗 (8)∑

𝑙∈𝑃 ′
𝑘
∖{𝑖}

𝑥𝑘
𝑙𝑖
+

∑
𝑙∈𝑃 ′

𝑘
∖{𝑗}

𝑥𝑘
𝑙𝑗
≤ 1 𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′

𝑘
∶ 𝑖 ≺ 𝑗 (9)

𝑥𝑘
𝑖𝑗
∈ {0,1} 𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′

𝑘
, 𝑖 ≠ 𝑗 (10)

𝑡𝑖 ≥ 𝑒𝑖 𝑖 ∈ 𝑃 ′ (11)

𝑧𝑖 ≥ 0 𝑖 ∈ 𝑃 ′ (12)

𝐷𝑚𝑎𝑥 ≥ 0 (13)

The objective function (1) is composed of the three separated components, combined together by the three factors 𝜆1 , 𝜆2 and 𝜆3. 
Constraint (2) captures the maximum among all the 𝑧𝑖 values. Constraints (3) impose that, given a caregiver 𝑘 ∈ 𝐶 and a patient 
𝑖 ∈ 𝑃 ′ that can be served by the caregiver, either the patient is visited by the caregiver (one incoming 𝑥 variable is active for the pair 
(𝑘, 𝑖)) or the variable 𝑥𝑘

𝑖𝑖
takes value 1. Constraints (4) are flow conservation constraints on the tours of the caregivers, and -- when 

combined with variables 𝑡 -- allow only feasible tours. Inequalities (5) set the value of 𝑧 variables measuring delays based on the 
values of variables 𝑡 modelling visiting times and latest times of time windows 𝑙𝑖 . Constraints (6) regulate timings and are based on a 
sufficiently large constant 𝑀 . Each constraint becomes active only when caregiver 𝑘 visits patient 𝑗 right after patient 𝑖, and regards 
the reciprocal timing of the two services provided. Inequalities (7) ensure that patients requiring two treatments receive them in the 
proper (hard) time separation. Constraints (8) ensure that no operation is carried out by a caregiver not leaving the central office. 
Constraints (9) impose that patients requiring two services are taken care by two distinct caregivers (as explicitly requested by the 
problem). Finally, constraints (10)--(13) dfine the domain of the variables. Note that 𝑡 variables cannot be assigned to values lower 
than the earlier arrival times of the respective patients.

4.1. Optimizing the model for the CP-SAT solver

Recently, models with characteristics similar to those of the model we propose (see, for example, Montemanni and Dell’Amico 
[37], Montemanni et al. [39], Dell’Amico et al. [13] and [14]) have been successfully attacked by the CP-SAT solver [44], part of 
the OR-Tools suite [20] by Google, that has proven superior to traditional MILP solvers such as Gurobi [22] or CPLEX [24] on these 
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specific models. For this reason, we plan to use such a solver and here we describe the modfication made to the model to fully exploit 
the CP-SAT solver.

The CP-SAT solver is base on the efficient use of a multi-threaded environment, compatible therefore with modern processors. 
The solver operates similarly to a portfolio strategy, where diverse methods work concurrently and exchanging limited data among 
threads. The main process runs a Constraint Programming solver based on a Lazy Clause Generation (LCG, Stuckey [47]), but other 
unrelated approaches work in parallel to support the main thread and exchange information such as new bounds and solutions. The 
idea behind LCG involves the transformation of the whole problem into a SAT-formula, subsequently employing a SAT-solver to 
look for solutions (or prove bounds by infeasibility). A (partial) linearization of the model is also created, and the corresponding 
linear program gets solved with simplex algorithms, while other classic MILP techniques are run to enhance bounds and retrieve 
new solutions, aiming at supporting the satifiability model. Different instances of a Large Neighborhood Search (LNS) metaheuristic, 
seeking for high-quality feasible solutions, are finally executed, aiming to unearth high-quality feasible solutions. While the general 
idea might appear inefficient due to potential redundancy, this approach demonstrates effectiveness in practice. The rationale behind 
this lies in the inherent challenge of predicting which algorithm is best suited to solve a given problem (No Free Lunch Theorem, 
Wolpert and Macready [48]). Consequently, a pragmatic strategy involves running diverse approaches simultaneously, with the hope 
that at least one will effectively address the problem at hand. In contrast, branch and cut-based MILP solvers such as Gurobi [22] or 
CPLEX [24] execute a more streamlined partitioning of the search space, thereby minimizing redundancy. However, they adhere to 
a specific strategy, which might not always align with the optimal choice for every scenario, although it might be extremely efficient 
for others.

Going back to efficient representations of the new model in terms of CP-SAT, inequalities (2) can be expressed through the 
following compact constraint, using the AddMaxEquality statement of CP-SAT:

𝐷𝑚𝑎𝑥 =max(𝑧𝑖, with 𝑖 ∈ 𝑃 ′) (14)

Inequalities (6) can be changed to the following set of constraints, that use channeling through the OnlyEnforceIf statement of 
CP-SAT, here indicated with the notation ``⇒'':

𝑥𝑘
𝑖𝑗
⇒ 𝑡𝑗 ≥ 𝑡𝑖 + 𝜎𝑖 + 𝜏𝑖𝑗 𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′

𝑘
, 𝑖 ≠ 𝑗 (15)

Inequalities (8) can be changed to the following constraints, making use of constraint channeling and of the negation operator, 
here indicated as ``¬'', and implemented via the Not statement of CP-SAT to negate a Boolean variable:

𝑥𝑘00 ⇒ ¬𝑥𝑘
𝑖𝑗

𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′
𝑘
, 𝑖 ≠ 𝑗 (16)

The global constraint AddBoolOr of CP-SAT, operating over Boolean variables and here indicated as ``∨'', can be used to represent 
inequalities (9).

𝑥𝑘
𝑖𝑖
∨ 𝑥𝑘

𝑗𝑗
𝑘 ∈ 𝐶, 𝑖, 𝑗 ∈ 𝑃 ′

𝑘
∶ 𝑖 ≺ 𝑗 (17)

Finally, in order to handle non-integer input data into CP-SAT (that only deals with integers), it is necessary to scale up all the 
interested values by a given factor 𝐹 , and then scale down the results obtained consequently. In our implementation we set 𝐹 = 10000, 
as recommended by Montemanni and Dell’Amico [38] for a similar application.

These settings will be kept for all the experiments with CP-SAT reported in this paper.

Some experimental results comparing CP-SAT with the state-of-the-art MILP solver Gurobi can be found in Appendix A.

5. Computational experiments

In this section the constraint programming model discussed in Section 4 is evaluated from an experimental perspective, and 
positioned with respect to the state-of-the-art approaches currently available.

The model described in Section 4 was implemented in Python and solved via the CP-SAT solver of Google OR-tools (v. 9.7) [44] 
using standard settings. Whenever available, for lower bounds on the cost of the optimal solution (LB) we consider that obtained in 
Kummer et al. [30] by solving a Mixed Integer Linear Program originally proposed in Mankowska et al. [35] (MILP), or the linear 
relaxation of the same model (LR) from Kummer [28]. For the heuristic solutions (UB) we compare with those obtained by Mankowska 
et al. [35] and Lasfargeas et al. [31] using Variable Neighborhood Search (VNS), Kummer [28], Kummer et al. [30] and Kummer et al. 
[29] by using Biased Random-Key Genetic Algorithms (BRKGA), Kummer [28] using an evolution of the same algorithm involving 
multi-parents and implicit path-relinking (BRKGA-MP-IPR), Ceschia et al. [8] using Simulated Annealing (SA) and those published in 
the repository [25] and obtained with a Multi-Neighborhood version of the same algorithm (MN-SA). Each new best lower or upper 
bound retrieved by the new model is highlighted in bold, while each suboptimal bound is in italics.

We consider in our experimental analysis three datasets: the one from Mankowska et al. (available at [41]), the one by Kummer 
(available at [27]), and the one by the IOLab (available at [25]). The datasets have different original data formats, but all three can 
be retrieved from [25] in a single, novel format, based on JSON. The remainder of this section is organized based on the dataset 
analyzed.
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Table 3
Results on the small instances from Mankowska et al. [35].

Instances MILPa VNSb VNSc BRKGAd BRKGAe SAf MN-SAg CP-SATh

LB UB Sec UB Sec UB Sec UB Sec UB Sec UB LB UB 
B1 428.1 458.9 <1 434.1 53.1 428.1 8.6 428.1 0.8 428.1 70.2 428.1 428.1 428.1 
B2 476.0 476.2 <1 476.0 27.7 483.6 8.4 476.0 0.9 476.0 68.9 476.0 476.0 476.0 
B3 399.1 399.2 <1 399.1 63.5 402.8 9.0 402.8 1.0 399.1 70.7 399.1 399.1 399.1 
B4 411.3 576.0 <1 414.0 66.8 420.3 8.2 422.1 1.1 411.3 68.7 411.3 411.3 411.3 
B5 366.3 391.1 <1 385.6 13.7 372.2 8.2 369.4 1.0 366.3 68.8 366.3 366.3 366.3 
B6 405.6 534.7 <1 447.8 443.7 471.0 8.9 470.6 1.2 464.6 70.1 464.6 393.1 440.9

B7 328.7 355.5 <1 328.7 61.5 328.7 9.5 328.7 0.9 328.7 68.6 328.7 328.7 328.7 
B8 357.7 357.8 <1 359.7 79.3 359.7 9.2 357.7 0.7 357.7 70.6 357.7 357.7 357.7 
B9 330.3 403.8 <1 404.1 62.1 402.7 10.0 404.1 0.9 402.7 71.9 402.7 319.3 402.7 
B10 421.0 500.4 <1 462.7 8.7 469.6 9.2 469.6 0.9 462.8 69.8 462.7 414.2 462.7 
Avg 392.4 445.4 <1 411.2 88.0 413.9 8.9 412.9 0.9 409.7 69.8 409.7 389.4 407.4

C1 459.3 1123.6 <1 974.2 96.2 965.2 36.9 969.1 3.1 943.7 96.0 943.7 499.0 943.7 
C2 373.9 673.8 <1 605.1 106.4 583.4 39.0 584.2 2.9 569.1 93.9 569.4 400.4 569.1 
C3 390.5 642.4 <1 562.9 109.8 548.8 37.4 549.6 2.9 537.8 94.7 541.1 419.8 537.8 
C4 372.0 580.4 <1 521.9 112.4 519.9 36.2 520.1 3.0 495.2 94.0 495.2 417.9 495.2 
C5 465.0 754.6 <1 683.1 114.9 678.6 31.4 668.7 3.4 655.7 93.2 655.7 516.6 655.7 
C6 360.7 951.6 <1 854.6 115.9 840.7 37.2 841.5 2.9 815.2 96.0 813.3 382.2 813.3 
C7 354.2 577.4 <1 529.2 109.4 534.9 42.2 533.9 3.4 514.1 92.8 511.9 385.9 511.9 
C8 375.5 540.6 <1 471.0 110.8 474.6 36.5 476.0 3.5 469.5 93.7 469.0 403.3 469.5

C9 355.3 608.7 <1 551.1 115.4 534.3 42.8 545.2 3.4 533.1 94.5 535.1 407.7 527.7

C10 431.2 679.3 <1 608.9 99.0 611.3 35.3 611.0 2.7 590.3 93.5 590.3 459.4 590.3 
Avg 393.8 713.2 <1 636.2 109.0 629.1 37.5 629.9 3.1 612.4 94.2 612.5 429.2 611.4

D1 492.1 1321.8 5.0 1278.2 143.0 1186.2 93.7 1193.2 8.0 1122.8 120.6 1111.4 503.3 1104.3

D2 384.7 892.7 4.0 746.9 168.7 693.3 82.9 679.6 7.2 649.1 119.0 652.2 461.5 653.3

D3 380.1 819.4 4.0 678.6 155.4 635.7 102.2 644.2 8.5 616.4 118.8 622.6 436.1 612.9

D4 418.9 877.4 4.0 809.7 148.5 814.4 82.3 795.2 7.2 776.6 119.5 773.0 453.5 772.4

D5 415.8 872.1 5.0 777.0 150.3 691.5 92.4 693.8 7.7 656.9 120.2 653.7 438.4 649.7

D6 392.1 835.2 5.0 768.6 154.6 733.7 105.8 731.7 7.9 688.6 119.3 688.2 407.9 697.6

D7 372.5 706.3 6.0 600.1 168.1 590.6 112.8 586.1 7.8 566.2 118.7 564.6 426.6 573.1

D8 409.4 811.4 4.0 715.5 149.8 661.8 102.7 658.5 8.1 650.0 117.4 650.6 486.5 658.2

D9 385.9 842.7 6.0 741.0 156.0 706.1 92.6 689.8 9.2 651.4 119.2 650.3 438.1 655.2

D10 485.6 1306.6 3.0 1424.6 173.1 1208.7 77.7 1189.3 6.9 1157.6 120.4 1152.1 539.0 1161.9

Avg 413.7 928.6 4.6 854.0 156.8 792.2 94.5 786.1 7.9 753.6 119.3 751.9 459.1 753.9

a Kummer et al. [30], CPU Intel Xeon E5-2697v2, 12x2.70 GHz; RAM 64 GB; IBM CPLEX 20.1.0.0 solver; 7200 sec time limit.
b Mankowska et al. [35], CPU Intel Core, 3.40 GHz.
c Lasfargeas et al. [31], CPU Intel Core i7, 4x4.0 GHz; RAM 32 GB; 40 runs, each with 1800 sec time limit.
d Kummer et al. [29], CPU Intel Core i7-3612QM, 4x2.10 GHz; RAM 8 GB; 15 runs.
e Kummer et al. [30], CPU Intel Xeon E5-2697v2, 12x2.70 GHz; RAM 64 GB; 20 runs.
f Ceschia et al. [8], CPU Intel Core i7-7700, 4x3.60 GHz; 10 runs.
g IOLab [25], CPU Intel Core i7-7700, 4x3.60 GHz; mixed computation times; unrecorded number of runs.
h CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools CP-SAT 9.7 solver; 3600 sec time limit.

5.1. Results on the dataset from Mankowska et al.

A consolidated dataset adopted to benchmark methods for the HHC problem is the one proposed by Mankowska et al. [35], where 
the interested reader is referred to for full details. The dataset is composed of seven groups -- labelled from A to G -- of ten instances 
each, with 10, 25, 50, 75, 100, 200, 300 patients, respectively, for a total of 70 instances. The objective function weights are set as 
𝜆1 = 𝜆2 = 𝜆3 = 1∕3. The number of services provided is always 6, with a number of caregivers ranging from 3 to 40. The number of 
patients requiring a double visit is between 30% and 33% of the total number of patients. In this work, we only consider groups B to 
G, ranging from 25 and 300 patients, being group A not challenging enough for any of the methods.

The results are split into Tables 3 and 4. Having this dataset being around for a fairy long time now, results have been reported 
for many different approaches.

The results suggest that the new model leads to high quality lower bounds, better than the previously best-known ones for almost 
all the instances considered in the tables, and notwithstanding that the previous best method by Kummer et al. [30] had been run 
for double the time with respect to our model. Concerning the quality of the heuristic solutions provided by the new method (UB), 
we can see that state-of-the-art or near-state-of-the-art results are reported up to 100 patients (group E). This result is remarkable 
since we compare with purposely-designed metaheuristic methods fully exploiting problem information that cannot be captured by 
our model. No feasible solution is found for the larger instances, clearly highlighting a threshold after which the new model suffers 
from scalability issues -- although such issues seem to appear later with respect to the other exact solvers -- and is not effective as a 
heuristic solver. It is also important to observe how well the method performs on the medium size instances (Table 3) with a number 
of patients ranging from 25 to 75: six new best-known heuristic solutions were retrieved (namely for the instances with a bold entry 
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Table 4
Results on the large instances from Mankowska et al. [35].

Instances MILPa VNSb BRKGAc BRKGAd SAe MN-SAf CP-SATg

LB UB Sec UB Sec UB Sec UB Sec UB LB UB 
E1 430.4 1604.9 17.0 1331.5 193.6 1327.7 17.2 1260.6 142.7 1255.9 572.3 1275.4

E2 444.9 1101.9 10.0 848.1 192.0 829.8 17.1 782.1 139.6 778.4 531.2 817.0

E3 454.3 986.4 14.0 788.0 182.9 789.6 16.7 763.4 142.2 757.8 506.0 760.1

E4 412.1 871.0 19.0 711.2 196.5 723.9 14.8 691.2 142.2 687.2 444.2 730.3

E5 416.6 1018.0 19.0 781.5 182.3 780.0 17.0 713.8 142.1 707.7 453.5 768.4

E6 416.6 1003.0 19.0 790.5 177.6 779.8 18.3 753.6 143.3 748.9 435.7 766.8

E7 389.6 921.1 20.0 711.1 191.8 705.8 18.0 682.7 141.6 679.0 451.9 691.4

E8 433.9 884.6 19.0 752.4 168.8 733.9 17.2 710.5 143.5 707.1 490.0 723.9

E9 446.5 1131.7 18.0 921.8 163.1 893.4 16.4 859.2 141.3 857.4 545.9 859.2

E10 455.1 1053.6 11.0 825.2 174.5 822.9 16.0 788.7 140.7 788.1 505.0 828.4

Avg 430.0 1057.6 16.6 846.1 182.3 838.7 16.9 800.6 141.9 796.8 493.6 822.1

F1 548.9 1721.4 889.0 1402.0 745.5 1311.1 124.4 1246.1 248.2 1237.0 618.2 -

F2 543.3 1763.8 909.0 1336.3 812.1 1298.3 121.7 1226.1 246.1 1206.9 582.2 -

F3 547.6 1549.6 868.0 1263.4 780.3 1216.0 116.5 1161.9 245.6 1128.6 559.3 -

F4 531.8 1420.4 1321.0 1124.2 901.9 1100.7 136.0 1055.2 246.9 1037.0 547.7 -

F5 538.1 1701.9 1145.0 1329.3 826.1 1298.6 119.8 1231.6 246.1 1191.5 561.8 -

F6 518.5 1639.7 836.0 1332.1 649.8 1292.5 109.6 1237.1 247.9 1219.8 452.7 -

F7 513.0 1384.3 1294.0 1131.3 817.0 1084.6 120.5 1073.2 245.5 1063.0 590.9 -

F8 536.2 1544.6 924.0 1132.8 716.4 1123.2 107.7 1089.4 246.4 1070.9 598.6 -

F9 543.2 1572.9 1642.0 1311.4 770.4 1263.2 125.4 1204.2 246.8 1177.9 574.1 -

F10 546.8 1581.0 1326.0 1418.5 740.3 1383.1 119.6 1270.5 248.6 1260.0 541.7 -

Avg 536.7 1588.0 1115.4 1278.1 776.0 1237.1 120.1 1179.5 246.8 1159.3 562.7 -

G1 612.4 2248.0 7200.0 1778.5 1949.8 1744.1 439.4 1681.1 367.7 1650.2 663.6 -

G2 605.8 2316.1 7200.0 1824.7 2115.1 1709.7 519.5 1652.7 362.0 1591.8 723.1 -

G3 614.2 1885.3 7147.0 1514.2 1935.1 1464.7 461.6 1432.4 367.4 1379.7 601.1 -

G4 604.3 2023.2 7200.0 1564.4 2137.6 1508.9 529.0 1458.5 373.6 1418.6 701.7 -

G5 633.7 2247.6 7200.0 1698.3 1840.9 1652.9 466.6 1550.8 371.3 1540.9 656.9 -

G6 621.5 2144.4 7200.0 1714.4 2014.4 1681.6 570.5 1654.7 371.5 1619.5 613.1 -

G7 602.4 1971.5 6934.0 1640.1 1844.3 1536.0 522.4 1493.9 365.1 1468.5 723.1 -

G8 618.7 1987.4 7200.0 1547.6 1799.1 1498.4 531.7 1457.0 367.3 1420.9 644.0 -

G9 662.7 2415.5 7023.0 1942.2 1810.7 1850.1 446.6 1768.9 371.3 1742.8 699.5 -

G10 633.8 2373.4 7003.0 1872.1 1649.6 1785.4 482.8 1690.6 372.4 1634.0 690.9 -

Avg 620.9 2161.2 7130.7 1709.7 1909.7 1643.2 497.0 1584.0 369.0 1546.7 671.7 -

a Kummer et al. [30], CPU Intel Xeon E5-2697v2, 12x2.70 GHz; RAM 64 GB; IBM CPLEX 20.1.0.0 solver; 7200 sec time limit.
b Mankowska et al. [35], CPU Intel Core, 3.40 GHz.
c Kummer et al. [29], CPU Intel Core i7-3612QM, 4x2.10 GHz; RAM 8 GB; 15 runs.
d Kummer et al. [30], CPU Intel Xeon E5-2697v2, 12x2.70 GHz; RAM 64 GB; 20 runs.
e Ceschia et al. [8], CPU Intel Core i7-7700, 4x3.60 GHz; 10 runs.
f IOLab [25], CPU Intel Core i7-7700, 4x3.60 GHz; mixed computation times; unrecorded number of runs.
g CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools CP-SAT 9.7 solver; 3600 sec time limit.

in the last column of Table 3). It should be observed that the CP-SAT solver was run for one hour, while the metaheuristics algorithms 
have running times that are one order of magnitude shorter. On the other hand, the best result over several runs is reported for them, 
re-balancing the fairness of the comparison. Concerning lower bounds, the new model is able to improve the best-known solution for 
all the instances but fourteen, matching anyway the best-known bound for seven of the latters.

5.2. Results on the instances from Kummer

According to the analysis reported by Kummer [28], the instances of the dataset proposed in Mankowska et al. [35] lack a structure 
in the geographic data, making them less realistic. The author proposes a new instance generator that overcomes this weakness by 
using data from real cities and computing real routes among randomly selected addresses representing patients and offices. This 
implies that the resulting instances are neither Euclidean nor symmetric. The ratio of patients requiring double visits is set exactly as 
in the dataset from Mankowska et al. and so is the number of services, fixed again to 6. The distribution of the skills of the caregivers 
is however more balanced, in order to avoid the case of services provided by a very small set of caregivers only. The instances are 
based on geographic data, and rely on three features: the node generation strategy (random or clustered), the central office placement 
strategy and the cluster density. A total of 22 different combinations of values for these features were selected and 100 instances 
were generated for each combination, for 8 different sizes (ranging between 10 and 400), thus creating a large set of 17,600 (22 ×
8 × 100) instances for training purposes. A selection of 160 instances was extracted as the validation set. Among those, we selected 
120 instances because we decided not to report results for the instances with 300 and 400 patients since no feasible solution was 
retrieved by the new model and just a few lower bounds were improved, all very marginally. The instances are available from [27].
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The results are summarized in Tables 5 and 6. Only for Table 5, a new column labelled OPT has been added to the CP-SAT results. 
When an instance is solved to optimality for the first time, the corresponding row will contain an asterisk. Being the examined dataset 
more recent, a limited number of methods is available for comparison purposes. The results achieved by solving the new model have 
a similar trend to that depicted in Section 5.1 for the previous dataset. The new lower bounds in this case are prominently better than 
those previously reported (they improve the state-of-the-art for all the instances but five, and even for these instances the state-of

the-art lower bound is matched). Concerning heuristic solutions, also for this dataset we were able to retrieve four new best-known 
solutions (bold entries in the last but one column), while matching or almost-matching all the best-known solutions for the instances 
up to 50 patients, and being anyway very close to the state-of-the-art for the instances with up to 100 patients. Finally, the new model 
allowed to close for the first time all the instances with 10 patients and half of those with 25 (last column of Table 5). In conclusion, 
solving the model we propose remains a viable way for having good solutions without having to devise a specialized metaheuristic 
method, at least for small/medium problems.

5.3. Results on the instances from IOLab

Another step towards real settings was taken with the new dataset available in the repository [25] from IOLab, where instances 
taking into account both the real distribution of population in a territory and the actual road distances were proposed. The aim was 
to establish a new valid and modern benchmark set for the research community. A variety of areas in Italy, including urban, rural, 
and mountainous regions, which possess varying features with respect to population, morphology, urban sprawl, and compactness, 
were selected to generate the benchmarks. Within each chosen area, the locations of the patients were sampled according to the 
population of each subarea, then travel times between each pair of points were calculated by considering the real road network 
and traffic conditions. A dataset of 200 instances was created by sampling various Italian territories of different size and population 
density. Differently from the previous two datasets, the values of the main features, such as patients, caregivers, and services, were 
selected randomly for each instance. Of the 200 instances, 30 form the benchmark dataset, while the remaining 170 are meant for 
training purposes. Full details about the instances and their features can be found in [25]. The computational results are summarized 
in Table 7. For this dataset only the upper bounds reported in the repository [25] are available. We here disclose the first-ever lower 
bounds, obtained by solving the new model. As for the previous datasets, the lower bounds are sharper for small- and medium-size 
instances, while they become loose with respect to the available upper bounds for the larger ones. In our opinion the heuristic solutions 
reported are already high-quality, while the lower bounds are perfectible, due to scalability issues encountered in solving the new 
model. This conjecture is corroborated by the few heuristic solutions retrieved by the new model on these instances, that show once 
again the scalability issues of the model. The few solutions retrieved are however of acceptable quality, although not matching those 
reported in the repository [25].

5.4. Considerations on the results

It is worth mentioning that our model is totally general and imposes no additional constraints on the structure of the solution. This 
is not the case for the approach by Mankowska et al. [35], followed also by Ceschia et al. [8], that is based on a strict global ordering of 
the patients. The consequence of this global ordering is that it is not possible to reach a solution in which two double-service patients 
are visited by the same two caregivers, but in reverse order. For example, our solution of instance 𝐵6 from the dataset Mankowska 
et al. [35], shown in Fig. 2 and represented according to the same logic of Fig. 1, exhibits this behavior for patients 𝑝22 and 𝑝25 with 
caregivers 𝑐1 and 𝑐3 (see top-left part of the figure highlighted with a dashed rectangular box). Indeed, this solution has a cost of 
440.9, that is never obtained by any of the cited papers. For example, Ceschia et al. [8] consistently find the best-known value for all 
the instances of the group 𝐵, except for 𝐵6, where it is stuck to the value 464.6. However, it should be observed that the limitation 
above has a marginal impact on the searching capabilities of the methods, while simplifying a lot their logic. The engineering idea 
remains therefore extremely valid in our opinion. Notice also that caregiver 𝑐2 is not leaving the central office, thus the route is 
empty.

A further experiment we carried out is to feed the CP-SAT solver (again running with standard settings) with the best-known 
heuristic solutions available in the repository [25], and reported in the MN-SA columns of the tables previously disclosed. The 
outcome of this study was that the quality of the lower bounds is consistently and substantially degraded, while some improved 
heuristic solutions are often found in a few to some hundred seconds. However, the improvements are always very limited, normally 
consistently below 1%, making the computational effort not fully justfied in our opinion. This however clearly indicates that the 
heuristic methods available are extremely good in identifying the most promising regions of the search space, but there is still some 
margin of improvement in their capability.

6. Conclusions

Home healthcare has been seen in the last few years both as a solution to reduce the costs of healthcare institutions and a way to 
have happier patients, since they can stay at home with their families. Such a system poses however new challenges when it is time 
to plan the activities of the caregivers, since now they not only have to carry out treatments, but also have to move among patients. 
Solving methods need to schedule the activities of caregivers at patients, which also implies routing the caregivers around, in such a 
way that all the requirements of the patients are attended.
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Table 5
Results on the small instances from Kummer [28].

Instances LRa BRKGAb BRKGA-MP-IPRc MN-SAd CP-SATe

LB UB UB Sec UB LB UB OPT 
10_3_11_0.4_R_C 61.0 110.3 110.3 44.0 106.7 106.7 106.7 * 
10_3_16_1.6_C_C 31.0 183.7 183.7 44.3 183.7 183.7 183.7 * 
10_3_22_1.6_R_C 42.0 79.0 79.0 44.1 79.0 79.0 79.0 * 
10_3_35_1.0_R_R 55.7 385.0 385.0 43.9 385.0 385.0 385.0 * 
10_3_40_0.8_R_C 18.1 129.7 129.7 43.9 129.7 129.7 129.7 * 
10_3_40_1.0_R_C 18.1 129.7 129.7 44.0 129.7 129.7 129.7 * 
10_3_46_1.6_R_C 33.4 86.0 86.0 43.9 86.0 86.0 86.0 * 
10_3_51_1.0_R_RC 54.7 97.0 97.0 44.1 91.7 91.7 91.7 * 
10_3_56_1.2_R_RC 42.4 92.3 92.3 51.6 88.0 88.0 88.0 * 
10_3_60_1.0_R_RC 57.0 83.0 83.0 44.0 83.0 83.0 83.0 * 
10_3_80_1.0_C_R 42.4 102.3 102.3 61.0 102.3 102.3 102.3 * 
10_3_81_1.2_R_C 38.1 241.7 241.7 43.8 234.0 234.0 234.0 * 
10_3_86_1.2_C_C 31.8 198.7 198.7 43.8 198.7 198.7 198.7 * 
10_3_88_1.0_R_C 17.7 113.7 113.7 43.8 113.7 113.7 113.7 * 
10_3_88_1.2_R_C 17.7 113.7 113.7 44.1 113.7 113.7 113.7 * 
10_3_88_1.6_C_C 14.4 89.3 89.3 43.8 87.0 87.0 87.0 * 
10_3_88_1.6_R_C 16.7 150.7 150.7 43.7 150.7 150.7 150.7 * 
10_3_90_1.2_C_C 42.3 64.3 64.3 43.8 64.3 64.3 64.3 * 
10_3_90_1.2_C_RC 49.7 75.0 75.0 43.9 75.0 75.0 75.0 * 
10_3_96_1.0_R_C 36.8 126.7 126.7 44.2 123.7 123.7 123.7 * 
Avg 36.0 132.6 132.6 45.2 131.3 131.3 131.3 
25_5_21_1.6_R_RC 93.7 205.0 204.7 50.0 197.7 197.7 197.7 * 
25_5_22_1.0_C_C 55.0 899.3 820.3 49.1 820.3 217.8 820.3 
25_5_26_0.8_C_C 62.4 956.3 956.3 49.2 952.3 246.0 952.3 
25_5_37_0.8_R_RC 93.4 1441.3 1434.7 49.2 1434.7 274.8 1434.7 
25_5_37_1.0_R_RC 93.4 1441.3 1434.7 49.2 1434.7 270.0 1434.7 
25_5_42_0.8_C_RC 101.0 287.7 287.7 49.4 287.3 287.3 287.3 * 
25_5_42_0.8_R_RC 93.1 1196.7 1161.7 49.0 1158.3 254.1 1159.0

25_5_47_0.8_R_C 53.7 848.7 848.0 49.2 842.3 246.0 849.0

25_5_48_1.0_C_C 78.4 280.3 275.0 49.5 272.0 272.0 272.0 * 
25_5_49_0.4_C_C 86.3 141.7 138.7 49.9 137.7 137.7 137.7 * 
25_5_56_0.8_R_RC 63.3 179.7 178.3 50.1 177.3 177.3 177.3 * 
25_5_69_1.6_R_C 52.7 715.3 695.0 49.1 695.0 252.9 695.0 
25_5_69_1.6_R_RC 72.7 1171.0 1149.0 49.0 1146.0 112.0 1146.0 
25_5_6_0.8_R_C 48.4 706.0 681.0 49.6 678.7 223.2 678.7 
25_5_70_1.0_R_C 65.0 146.0 146.0 50.0 141.7 141.7 141.7 * 
25_5_73_0.4_R_RC 73.7 155.3 151.0 49.6 150.0 150.0 150.0 * 
25_5_76_1.2_C_C 71.7 184.0 183.7 49.7 183.7 183.7 183.7 * 
25_5_80_0.8_C_RC 116.1 437.3 436.7 49.1 436.3 436.3 436.3 * 
25_5_96_0.8_R_C 57.4 730.3 707.7 49.5 697.7 176.3 697.7 
25_5_97_1.0_R_R 123.4 258.7 258.7 49.4 258.7 258.7 258.7 * 
Avg 77.7 619.1 607.4 49.4 605.1 225.8 605.5

50_10_100_1.6_C_C 75.0 162.3 159.0 61.9 154.7 139.6 155.0

50_10_26_1.0_C_RC 121.0 629.3 610.3 59.8 607.0 180.4 607.0 
50_10_26_1.2_R_C 67.3 349.3 312.0 60.9 304.0 175.0 307.3

50_10_2_1.0_C_R 155.7 370.7 345.0 60.8 345.3 294.4 344.7

50_10_32_1.2_R_C 85.7 473.7 442.3 60.8 434.3 167.5 430.0

50_10_33_0.4_R_RC 140.3 287.0 279.7 62.1 273.3 222.6 279.0

50_10_3_0.8_R_C 112.0 617.3 589.0 60.9 585.7 210.3 586.0

50_10_3_1.6_C_C 66.7 272.7 262.0 61.6 251.0 162.1 251.7

50_10_44_1.6_R_C 60.0 305.3 279.3 62.6 265.7 82.0 267.3

50_10_53_1.2_R_C 82.7 261.3 250.7 60.6 246.0 166.6 251.0

50_10_60_0.4_C_RC 107.0 281.3 266.3 62.3 261.7 200.3 260.7

50_10_61_1.0_R_RC 107.0 288.3 276.3 62.7 270.0 210.5 276.7

50_10_62_1.2_R_C 74.0 216.0 211.3 62.8 204.7 137.1 204.7 
50_10_74_1.0_R_RC 113.7 319.0 290.3 60.3 289.7 204.0 290.7

50_10_80_0.4_C_C 144.7 788.7 762.7 58.8 753.3 267.3 755.0

50_10_80_1.0_C_C 102.2 855.3 826.7 58.3 815.7 241.0 815.7 
50_10_80_1.0_C_RC 152.0 1081.3 1057.3 58.3 1045.0 279.5 1048.7

50_10_81_1.0_R_RC 133.4 1053.7 999.7 58.1 986.3 270.6 986.3 
50_10_88_1.6_C_RC 130.0 342.7 317.7 61.9 308.0 235.9 320.7

50_10_97_0.8_C_RC 129.7 784.0 759.7 59.2 749.7 243.0 763.0

Avg 108.0 487.0 464.9 60.7 457.6 204.5 460.0

a Kummer [28], CPU Intel i7-930, 2.80 GHz, IBM CPLEX 20.1.0.0 solver; unreported time.
b Kummer [28], CPU Intel i7-930, 2.80 GHz; unreported time.
c Kummer [28], CPU Intel i7-930, 2.80 GHz.
d IOLab [25], CPU Intel Core i7-7700, 4x3.60 GHz; mixed computation times; unrecorded number of runs.
e CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools CP-SAT 9.7 solver; 3600 sec time limit.
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Table 6
Results on the larger instances from Kummer [28].

Instances LRa BRKGAb BRKGA-MP-IPRc MN-SAd CP-SATe

LB UB UB Sec UB LB UB 
75_15_10_1.6_R_C 78.7 426.0 376.0 74.6 349.7 163.9 357.7

75_15_19_0.8_R_C 141.0 377.0 368.7 77.9 364.7 210.0 381.0

75_15_21_1.6_R_C 80.7 411.3 384.7 81.1 362.7 122.8 399.7

75_15_30_1.0_R_C 128.0 328.7 303.7 81.0 294.0 176.3 313.3

75_15_32_1.2_R_RC 151.7 380.0 353.7 76.3 337.3 246.9 356.7

75_15_35_0.8_R_C 130.3 774.3 719.0 72.9 703.7 247.1 711.0

75_15_35_1.0_C_RC 195.7 1145.3 1051.3 73.3 1033.3 380.7 1043.7

75_15_40_0.8_R_RC 184.3 452.7 423.7 82.9 408.3 214.2 422.3

75_15_5_0.8_C_RC 183.3 503.3 439.7 78.1 426.7 263.6 443.7

75_15_63_0.4_R_C 142.3 340.3 317.3 78.7 305.3 185.5 317.0

75_15_63_1.0_R_RC 147.3 453.3 408.0 78.2 392.7 204.0 411.7

75_15_65_1.0_C_C 118.7 280.0 257.0 78.8 252.3 158.5 265.3

75_15_79_1.2_R_C 89.3 495.0 404.3 79.1 394.7 165.9 426.0

75_15_84_0.8_R_RC 162.0 431.3 392.3 77.0 382.7 264.1 401.0

75_15_87_1.6_C_C 78.7 400.3 386.3 76.8 359.3 165.1 378.3

75_15_88_1.6_R_C 98.7 522.7 461.3 79.3 449.7 166.6 456.7

75_15_97_0.4_C_C 162.0 541.3 480.0 74.8 462.0 293.8 465.7

75_15_97_1.0_C_C 116.7 662.3 612.3 74.9 592.3 211.9 597.0

75_15_97_1.0_R_RC 144.4 924.3 798.0 72.5 780.0 287.0 797.7

75_15_98_1.6_R_C 81.5 423.3 375.7 76.7 358.7 170.9 368.3

Avg 130.8 513.6 465.7 77.2 450.5 214.9 465.7

100_20_10_1.2_R_C 132.7 340.3 300.0 103.6 298.0 184.9 299.7

100_20_11_1.2_R_C 118.0 634.0 535.3 95.2 508.3 204.8 531.3

100_20_23_1.2_R_C 102.0 528.7 454.0 107.6 437.0 177.5 437.7

100_20_25_0.8_R_C 138.3 750.7 654.7 97.8 624.0 219.9 635.3

100_20_30_1.0_R_C 133.3 707.0 621.7 101.7 602.3 222.3 644.7

100_20_35_1.6_C_RC 185.3 481.3 442.7 103.8 420.3 252.0 433.3

100_20_39_1.6_R_C 112.3 648.0 554.3 99.3 539.0 191.3 561.0

100_20_49_0.4_C_C 211.3 586.3 525.7 103.0 509.0 312.9 519.7

100_20_54_1.2_R_RC 176.0 435.3 398.7 101.4 400.3 264.4 403.3

100_20_57_1.6_R_C 105.0 574.7 505.7 105.0 485.3 180.5 494.0

100_20_61_0.4_R_RC 187.0 510.3 471.3 110.3 447.7 286.4 456.7

100_20_63_1.2_R_C 112.0 655.7 548.3 107.1 550.7 202.2 559.3

100_20_65_0.4_R_RC 212.0 533.7 495.0 104.8 481.3 284.8 498.7

100_20_68_1.6_R_C 87.0 351.3 304.7 115.4 304.7 141.8 306.7

100_20_76_1.6_R_C 100.7 568.0 500.0 98.4 470.0 177.9 495.3

100_20_77_1.0_R_C 134.7 730.0 613.7 105.6 604.0 224.5 610.7

100_20_88_1.2_C_C 111.3 301.7 269.7 99.4 264.0 175.2 272.0

100_20_8_1.2_R_C 117.0 729.7 607.3 105.7 604.7 186.5 640.7

100_20_99_0.4_C_RC 216.3 543.7 487.0 107.9 468.3 300.3 465.0

100_20_9_1.0_R_R 237.7 625.3 554.7 110.9 547.7 346.2 558.3

Avg 146.5 561.8 492.2 104.2 478.3 226.8 491.2

200_40_100_0.4_C_C 268.3 824.3 711.7 342.1 683.0 268.3 -

200_40_10_1.6_C_RC 309.0 1002.3 843.3 323.5 791.3 309.0 -

200_40_17_1.6_C_C 158.0 650.0 569.7 343.1 541.7 158.0 -

200_40_17_1.6_R_C 170.7 1005.0 835.0 340.2 783.7 180.3 -

200_40_30_1.6_R_C 180.3 1143.0 923.7 280.8 870.3 199.2 -

200_40_40_1.0_R_C 200.7 1128.3 913.0 297.2 849.0 203.7 -

200_40_51_1.0_R_C 214.0 1317.3 1136.7 292.7 1053.3 214.0 -

200_40_52_1.6_R_C 171.7 1109.7 932.0 277.0 871.0 189.3 -

200_40_60_0.4_C_RC 306.3 1005.0 870.7 268.9 827.3 312.0 -

200_40_69_1.0_C_R 342.7 1136.0 991.7 341.9 939.7 345.0 -

200_40_71_1.6_C_C 182.3 511.7 458.7 298.0 436.7 184.0 -

200_40_71_1.6_R_C 182.0 1018.3 857.7 274.8 790.7 203.0 -

200_40_75_1.6_R_C 200.3 791.7 679.0 296.4 643.0 206.2 -

200_40_76_1.2_R_C 218.0 1352.0 1133.3 301.4 1071.3 238.5 -

200_40_7_1.2_R_C 187.0 1207.7 1081.3 263.2 961.0 195.0 -

200_40_7_1.6_R_C 149.7 923.0 847.7 263.3 791.0 165.6 -

200_40_80_1.0_C_C 214.7 756.7 635.3 372.7 606.7 218.0 -

200_40_82_1.0_C_R 329.0 1123.0 944.0 296.2 894.0 334.3 -

200_40_98_1.2_R_C 202.0 1114.3 936.0 314.5 908.0 209.0 -

200_40_98_1.6_C_RC 294.0 944.3 830.3 311.0 782.7 294.0 -

Avg 224.0 1003.2 856.5 304.9 804.8 231.3 -

a Kummer [28], CPU Intel i7-930, 2.80 GHz, IBM CPLEX 20.1.0.0 solver; unreported time.
b Kummer [28], CPU Intel i7-930, 2.80 GHz; unreported time.
c Kummer [28], CPU Intel i7-930, 2.80 GHz.
d IOLab [25], CPU Intel Core i7-7700, 4x3.60 GHz; mixed computation times; unrecorded number of runs.
e CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools CP-SAT 9.7 solver; 3600 sec time limit.
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Table 7
Results on the instances from IOLab [25].

Instances MN-SAa CP-SATb

UB LB UB 
instance_000-cosenza-r26-p299-s4-sim1.6-seq5.7 2016.3 737.8 -

instance_001-florence-r19-p165-s3-sim20.3-seq22.1 849.7 385.3 -

instance_002-venice-r11-p229-s4-sim23.9-seq24.1 863.3 370.4 -

instance_003-rome-r19-p44-s4-sim22.3-seq22.9 365.7 301.1 376.0

instance_004-venice-padua-treviso-r26-p258-s3-sim14.0-seq4.2 1253.3 554.0 -

instance_005-macerata-r29-p212-s2-sim9.1-seq7.4 1217.7 478.3 -

instance_006-cosenza-r30-p213-s5-sim20.5-seq8.4 1889.7 669.3 -

instance_007-venice-r29-p297-s3-sim2.9-seq7.1 1549.3 571.3 -

instance_008-cesena-r32-p247-s4-sim12.3-seq20.5 1569.7 609.6 -

instance_009-reggio-emilia-r15-p55-s2-sim21.7-seq7.6 297.7 233.8 308.0

instance_010-milan-r15-p76-s2-sim17.7-seq13.7 422.0 274.8 448.7

instance_011-perugia-r33-p181-s4-sim5.3-seq11.4 1190.3 452.9 -

instance_012-cesena-r37-p130-s2-sim4.0-seq20.9 911.7 462.9 -

instance_013-macerata-r15-p131-s5-sim22.9-seq13.2 659.7 292.8 -

instance_014-perugia-r29-p213-s3-sim20.1-seq22.5 1267.3 500.7 -

instance_015-cesena-r15-p73-s2-sim20.2-seq15.8 459.0 242.5 524.7

instance_016-macerata-r11-p145-s3-sim14.2-seq0.5 495.3 243.6 -

instance_017-rome-r26-p101-s3-sim9.8-seq3.7 526.0 364.3 532.0

instance_018-udine-r17-p356-s3-sim21.2-seq21.7 1412.3 499.9 -

instance_019-cesena-r18-p203-s4-sim21.7-seq21.3 1217.7 471.2 -

instance_020-cesena-r15-p78-s3-sim23.4-seq24.3 431.0 267.8 454.0

instance_021-florence-r26-p323-s3-sim18.1-seq12.6 1796.0 696.3 -

instance_022-reggio-emilia-r29-p255-s2-sim10.7-seq15.5 1565.0 584.0 -

instance_023-udine-r15-p75-s3-sim8.1-seq23.0 333.3 265.6 338.3

instance_024-perugia-r25-p270-s2-sim4.2-seq8.1 1267.7 570.0 -

instance_025-cesena-r18-p45-s5-sim18.9-seq12.6 487.7 247.3 501.0

instance_026-cosenza-r17-p191-s2-sim1.3-seq18.0 1006.7 427.4 -

instance_027-venice-padua-treviso-r10-p157-s4-sim24.3-seq23.8 595.3 251.3 -

instance_028-venice-padua-treviso-r32-p378-s4-sim4.6-seq14.7 2122.7 703.0 -

instance_029-macerata-r21-p100-s3-sim1.5-seq2.2 611.3 372.0 650.3

Avg 1021.7 436.7 -

a IOLab [25], CPU Intel Core i7-7700, 4x3.60 GHz; mixed computation times; unrecorded number 
of runs.

b CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools CP-SAT 9.7 solver; 3600 sec time 
limit.

Fig. 2. Solution of instance 𝐵6 . 

In this paper, a new model, significantly simplfied with respect to those previously appeared, and based on the splitting of services 
required by a same patient into virtual copies of the patient itself, is presented and described in terms of constraint programming. 
An extensive experimental campaign to show the merits of the new model, carried out on datasets widely recognized by the research 
community, is presented. The comparison with the state-of-the-art methods in the literature suggests that the new model we propose 
is able to improve the best-known lower bounds consistently, and sometimes considerably. Solving the new model also leads to a few 
new best-known heuristic solutions, and in general to high-quality solutions for most of the instances (not on the largest ones, that 
are currently out-of-reach). This is remarkable given the simplicity behind the model, and the limited implementation effort required 
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Table 8
Comparison between the state-of-the-art MILP solver Gurobi and 
CP-SAT on some representative instances.

Instances Gurobi (MILP)a CP-SATb

LB UB LB UB 
from Mankowska et al. [35] 
B6 (25 patients) 440.9 440.9 393.1 440.9 
B9 (25 patients) 350.0 402.7 319.3 402.7 
C1 (50 patients) 491.4 948.2 499.0 943.7

C3 (50 patients) 433.2 547.0 419.8 537.8

D2 (75 patients) 416.2 725.5 461.5 653.3

D4 (75 patients) 452.3 822.5 453.5 772.4

E1 (100 patients) 489.1 5330.8 572.3 1275.4

E6 (100 patients) 429.3 856.1 435.7 766.8

F2 (200 patients) 547.9 - 582.2 -

F4 (200 patients) 538.2 - 547.7 -

G6 (300 patients) 548.3 - 613.1 -

G9 (300 patients) 588.2 - 699.5 -

from Kummer [28] 
25_5_22_1.0_C_C 229.7 820.3 217.8 820.3 
50_10_53_1.2_R_C 178.7 265.0 166.6 251.0

50_10_80_1.0_C_C 245.4 870.0 241.0 815.7

75_15_40_0.8_R_RC 209.1 - 214.2 422.3

100_20_30_1.0_R_C 212.1 - 222.3 644.7

100_20_68_1.6_R_C 139.5 - 141.8 306.7

200_40_51_1.0_R_C 207.8 - 214.0 -

a CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; Gurobi 
11.0 solver; 3600 sec time limit.

b CPU Intel Core i7 12700F -- 12x2.1 GHz; RAM 32 GB; OR-Tools 
CP-SAT 9.7 solver; 3600 sec time limit.

to have it in operation. Finally, considerations about the intrinsic limitations behind the best existing metaheuristic approaches, and 
their impacts on the results have been reported.

Future research could involve the embedding of the new constraint programming model within metaheuristic methods, leading 
to hybrid methods capable of retaining the best of the approaches. Namely, the capability of the model of producing lower bounds 
and carrying out domain-independent heuristic searches, and the capability of metaheuristics to search the solution space with a 
HHC-oriented vision. Finally, we plan to extend our model in order to apply it to other variants of the HHC problem. For example, the 
present formulation does not consider any penalty for the waiting time of caregivers at patients location due to early arrivals, and this 
aspect might be of extreme interest for real-world applications. Furthermore, it does not consider the possibility that a caregiver goes 
to the first patient directly from home, without passing through the central office first. This would lead to a multi-depot problem, 
and again would fit well with realistic settings.
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Appendix A

In this appendix we aim at comparing a state-of-the-art MILP solver operating on the model presented in Section 4 and the CP-SAT 
solver working on the same model, but with the improvements discussed in Section 4.1. A set of 19 representative instances has been 
selected at random for the comparison. Please refer to Section 5 for a description of the instances. The state-of-the-art solvers Gurobi 
11.0 [22] and CP-SAT 9.7 [44] are used, and all the tests reported are executed on the same machine, with the same maximum 
execution time of 3600 seconds. The results are summarized in Table 8 in terms of lower and upper bounds retrieved in the given 
time. Entries in bold highlight that the respective solver was better, entries in italics indicate that the respective solver was worse.

The results of Table 8 indicate that Gurobi is more effective in producing lower bounds for the smaller problems, although the 
differences between the two solver remain marginal. When the size of the instances increases, CP-SAT produces better lower bounds, 
and sometimes the gap is substantial. In terms of upper bounds, CP-SAT is consistently better than Gurobi, with a draw only for the 
three smallest instances.

We can conclude that for the particular compact model we propose, CP-SAT seems to currently perform better than Gurobi on the 
significant instances (the smallest instances are considered not very relevant, since most of them can be already solved to optimality), 
and therefore we used such a solver as a reference one.

Notice that the instance B6 from Mankowska et al. [35] was closed for the first time by Gurobi in these experiments.
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