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Abstract

Nowadays, the availability of an ever-increasing amount of digital medical data collected

through heterogeneous sources such as healthcare systems, sensors, and mobile consumer

technologies makes it possible to perform computer-aided analyses aimed at improving

the knowledge, diagnosis, and treatment of medical conditions.

In this thesis, we worked with two medical datasets that can be used to study

two different types of neurological disorders, motor control disorders (e.g., Parkinson’s

disease) and brain tumors.

The first dataset is comprised of the results of digital motor tests of the upper limbs

that have been taken by more than 10000 users of a free and publicly available mobile

application called MotorBrain. Motor tests are used by neurologists to assess human

motor performance and support the diagnosis of disorders affecting motor control.

Our first goal was to analyse the MotorBrain data with statistical methods to in-

vestigate the age-related behavior patterns of healthy subjects for the different motor

tests included in the application. Results show that the collected data reveal the typical

degradation of motor performance that is common with aging, thus providing support

for the appropriateness of the considered approach to motor performance data collection

and potentially helping neurologist to identify neurological disorders at an early stage

by comparing new data with the available normative data. At the same time, the results

highlight problems that emerge when data collection is performed in an unsupervised

non-clinical setting.

ii



Based on the results of the statistical analysis, we used machine learning to auto-

matically classify users according to their motor performance. The idea is to use such

classification to automatically flag cases whose motor performance differs significantly

from the typical performance of their age group and thus require manual inspection

from a neurologist. In particular, we used random forest and logistic regression clas-

sification techniques with Minimum Redundancy, Maximum Relevance (MRMR) and

Recursive Feature Elimination with SVM (RFE-SVM) feature selection methods. For

each motor test, we were able to achieve good average accuracy in discriminating motor

performance of young and old adults, with the random forest method leading to bet-

ter results. Similar results were obtained for multi-class discrimination based on 5 age

groups.

The second dataset we worked with consists of a standard set of MRI images of brain

tumors that is often used to develop and validate radiomics-based methods for overall

survival (OS) classification of brain gliomas. We specifically focused on two important

steps of the radiomics process, segmentation and feature selection.

We first used the MRI dataset to empirically evaluate the impact of six different

segmentation algorithms – five Convolutional Neural Networks and the STAPLE-fusion

method - and four multiregional radiomic models (Whole Tumor (WT), 3-subregions,

6-subregions, and 21-subregions) on OS classification. Results of the evaluation show

that the 3-subregions radiomics model has high predictive power but poor robustness

while the 6-subregions and 21-subregions radiomics models are more robust but have

low predictive power. The poor robustness of the 3-subregions radiomics model was

associated with highly variable and inferior segmentation of tumor core and active tu-

mor subregions as quantified by the Hausdorff metric. Failure analysis revealed that

the WT radiomics model, the 6-subregions radiomics model, and the 21-subregions ra-

diomics model failed for some subjects, possibly because of inaccurate segmentation of

the WT volume. Moreover, short-term survivors were largely misclassified by the ra-
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diomic models and were associated to large segmentation errors. The STAPLE fusion

method was able to circumvent these segmentation errors but was not found to be the

ultimate solution in terms of its predictive power.

We also evaluated the robustness of radiomic features with respect to automatic seg-

mentation variability. To this purpose, we took into consideration seven state-of-the-art

CNNs methods for brain tumor segmentation. We used the intra-class correlation coef-

ficient (ICC) and overall correlation coefficient (OCCC) to quantitatively measure the

robustness of radiomic features across the seven (independent) segmentation methods.

We employed two feature selection techniques to select discriminatory features: Mini-

mum Redundancy, Maximum Relevance (MRMR) and Recursive Feature Elimination

with SVM (RFE-SVM). We then evaluated the effect of using robust radiomic features

for OS classification by incorporating stability into feature selection methods, consider-

ing both stable features (via ICC and OCCC) and discriminatory features (via MRMR

and RFE-SVM). Results show improvement in OS classification when using both stable

and discriminatory features compared to using discriminatory features alone.
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1
Introduction

The human nervous system is responsible for all actions of the human body, from walking

to interacting with objects to sleeping. It is an advanced and complex network consisting

of the brain, spinal cord, and nerves distributed throughout the body [162]. The billions

of neurons in the brain communicate with the other parts of the body by transmitting

and receiving electrical signals through the spinal cord and nerves. Many different

neurological disorders can affect this system. Common disorders include epilepsy and

seizures, stroke, acute spinal cord injury, brain tumors, and neurodegenerative diseases

such as Parkinson’s [106]. These disorders are a consequence of structural, chemical, or

electrical abnormalities in the nervous system and are characterized by different signs

and symptoms [160].

In 2006, the World Health Organization estimated that neurological disorders affect

one billion people worldwide [121]. Neurological disorders are a major health concern

because of their impact on both patients and their families. Most of them make affected

people unable to carry out their normal daily activities. They also place a heavy burden

on society because their diagnosis, management and treatment are very difficult and
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expensive.

Deep knowledge, early diagnosis, and treatment of neurological disorders play a crit-

ical role in improving the life of affected patients. An increasingly used approach to

support the study, diagnosis, and treatment of neurological disorders is to take advan-

tage of the ever-increasing amount of digital medical data collected through specialized

healthcare systems, sensors, and even consumer solutions such as mobile applications.

In this thesis, we describe our work with two very different medical datasets that were

created to study two different types of neurological disorders: disorders affecting motor

control (e.g., Parkinson’s disease) and brain tumors. The two datasets are very different

in terms of the type, quality, amount, and characteristics of the data, and they have

been used for different purposes.

In the first part of the thesis, we present the process we followed and the results we

obtained in the analysis of a large dataset of neuro-motor performance data collected

in an unsupervised, non-clinical setting through a free and publicly available mobile

application [167]. The app includes digital versions of standard motor tests that are

used by neurologists in their classic pen-and-paper form to assess motor performance

of the upper limbs in a clinical setting and identify symptoms of movement disorders

such as Parkinson’s disease. The aim of the project was to collect data on a large scale

and analyze the collected data to identify age-related behavior patterns of healthy sub-

jects from different motor tests. These normative behavior patterns would then form

the basis for early diagnosis of motor-related symptoms of disorders such as Parkinson’s

disease. Because of the unsupervised data collection approach, we paid special attention

to the data cleaning process, identifying various criteria and trying different solutions

to remove incomplete and incorrect data. We then used a statistical approach to com-

pare the motor performance of different age groups in the different motor tests with the

goal of establishing whether the data revealed the degradation of human motor perfor-

mance that is typical of aging [95, 149] and hence if the app, the considered motor tests,

2



and the measures we used to characterize motor performance are appropriate for the

unsupervised collection and analysis of neuro-motor performance data. Subsequently,

we explored using machine learning techniques to automatically classify users based on

their motor performance. Since we were limited to use performance data of (presum-

ably) healthy individuals, the classification problem was formulated as an age group

identification problem, with the idea that a case that could not be clearly classified in

its correct age group would be flagged for manual inspection from a neurologist. To this

end, we first extracted additional motor performance measures from the data based on

relevant literature and then used appropriate feature selection methods to identify the

best features for the classification task. We then applied and evaluated the accuracy of

two different machine learning techniques in a binary (2 age groups) and a multi-class (5

age groups) classification problem. Chapter 2 provides the background for the first part

of the thesis introducing the topic of human motor performance assessment for motor

disorders identification and presenting related work on the use of digital diagnostic tests

for the evaluation of motor performance. The chapter includes a detailed description

of MotorBrain, the mobile application that was used to collect the dataset analyzed in

this part of the work, and concludes with a summary of our research goals. Chapter

3 gives an overview of the MotorBrain dataset in terms of size and user demographics,

before focusing on the process followed to clean the data captured by the app based on

multiple criteria. After presenting the performance measures we derived from the raw

data, Chapter 4 describes two statistical analyses we did on the dataset, the first focus-

ing on comparing performance of two age-groups that are often used in the literature,

young adults and old adults, and the second being a more fine-grained analysis of the

collected data in terms of a subdivision of the subjects in 5 age groups. Finally, Chapter

5 presents the machine learning process followed to automatically classify users by age

group based on their motor performance.

The main topic of the second part of the thesis is radiomics based prediction of the
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overall survival (OS) of patients suffering from High Grade Glioma (HGG), a major

category of tumors affecting the brain, through the automatic analysis of brain im-

ages obtained with 3D Multi-parametric Magnetic Resonance Imaging (MRI). In this

part, we used a standard dataset of MR images provided by the Brain Tumor Segmen-

tation Challenge (BraTS). Our main focus was on two steps of the radiomic process:

segmentation and feature selection. Radiomic features that are extracted from 3D Multi-

parametric MRI and that are used to predict OS are sensitive to the variability in tumor

subregions segmentation algorithms. While many algorithms have been proposed for au-

tomatic segmentation of brain tumor sub-regions, no evidence is available about how

much these algorithms affect radiomic performance. Our work thus aimed to quantify

the effect on OS prediction of variations in automatic segmentation of the brain tumor

volume. In particular, we segmented tumor subregions using five state-of-the-art Deep

Learning (DL) algorithms, creating 4 different types of segmentation models that we

used to extract radiomic features. We also used the STAPLE label fusion method [142],

to fuse the segmentation labels obtained from the five DL segmentation algorithms. We

then evaluated the efficacy of the multi-region segmentation maps obtained from the

individual DL algorithms and the STAPLE fusion method for the radiomics-based pre-

diction of OS in HGGs. Finally, we evaluated the impact of stability analysis of radiomic

features on OS prediction. To this purpose, we used the intra-class correlation coeffi-

cient (ICC) and overall correlation coefficient (OCCC) to quantitatively measure the

robustness of radiomic features across seven state-of-the-art (independent) segmenta-

tion methods based on Convoluted Neural Networks (CNNs). We employed two feature

selection techniques to select discriminatory features: Minimum Redundancy, Maximum

Relevance (MRMR) and Recursive Feature Elimination with SVM (RFE-SVM). Then

we evaluated the effect of robust radiomic features for OS classification by incorporating

stability into feature selection methods, considering both stable features (via ICC and

OCCC) and discriminatory features (via MRMR and RFE-SVM).
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Chapter 6 provides the background for this part of the thesis, introducing brain tu-

mors and the task of OS prediction of HGGs with radiomics, describing the radiomics

process, and presenting the state of the art on segmentation algorithms, feature ro-

bustness, and OS prediction. The chapter concludes with a summary of our research

goals in this context. Chapter 7 presents the experimental methodology we adopted

and the results we obtained in the evaluation of the impact of state-of-the-art segmen-

tation algorithms on OS prediction with multiregional radiomics. Chapter 8 presents

the experimental methodology we adopted and the results we obtained in the evaluation

the robustness of radiomic features for OS prediction. Finally, Chapter 9 presents the

conclusion of the thesis and discusses possible future work.
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PART I
Computer-aided analysis of a large

neuro-motor dataset for upper limbs motor
performance assessment
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2
Background: digital motor tests

for upper limbs motor

performance assessment

Neurologists use several different methods to evaluate human motor performance of the

upper limbs to support the diagnosis of movement disorders such as Parkinson’s disease.

In recent years, mobile technologies have increasingly being used to this purpose due

to their flexibility, familiarity, and capability to support the acquisition and analysis of

motor performance data. MotorBrain [167] is one such mobile application that allows

users to autonomously carry out different types of motor tests. The analysis of the

dataset collected through MotorBrain is the focus of our work in this part of the thesis.

In this chapter, after a brief introduction of the concept of motor control and of the

related disorders, we survey digital diagnostic tests that have been proposed in the

literature to assess upper limbs motor performance, focusing on mobile-based solutions.
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We then introduce the MotorBrain application, describing the digital motor tests it

includes and the types of data recorded by the app. We conclude by summarizing the

scientific goals of our work with the MotorBrain dataset.

2.1 Motor control, movement disorders, and aging

Motor control is the process that allows people to perform motor tasks through the

cooperation between the nervous system and the neuromuscular system [172]. People

who suffer from medical conditions that affect their motor control have difficulty in

controlling their bodies, such as regulating movement, stability, balance, coordination,

and interaction with the outside world [144].

As people age, various physiological and anatomical changes occur in the brain that

lead to a deterioration of their motor control. It is thus natural for motor performance

to get worse with aging [95, 149]. At the same time, disorders that affect motor control

are often strongly associated with age. As life expectancy increases, the number of

people suffering from movement disorders will thus steadily increase. Kontis et al. [89],

reported that the average life expectancy of people will be 85 years or more in 2030. In

European countries such as Italy, Greece, Germany and Portugal, the number of elderly

people is already higher than that of young people [126].

Among the many different neurological disorders that have an impact on motor

control and that appear to have a relation with age, Parkinson’s disease is certainly

one of the most common and most studied, affecting approximately 8 to 18 out of

100, 000 people each year. The prevalence of Parkinson’s disease is 1% in adults aged

65 to 69 years and 1 to 3% in people older than 80 years [120]. Figure 2.1 shows

the prevalence of Parkinson’s disease in different countries around the world. It can

be clearly seen that the percentage of Parkinson’s disease in European countries is

second only to China. Experts predict that the prevalence of brain diseases, including
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Parkinson’s, will quadruple by 2050, if not sooner.

Diagnosis and treatment of neurological disorders that affect motor control is diffi-

cult. The causes of these disorders are often unknown and diagnosis is typically based on

motor symptoms. In the case of Parkinson’s disease, there is some evidence that genetic

factors, environmental factors, or a combination of both play a role [79]. However, no

cure is known that slows the neurodegenerative process and treatment is mainly aimed

at reducing the effects of symptoms. Motor symptoms advance aggressively and are

more difficult to manage if they are not treated early and properly. It is thus crucial

to diagnose the patient in the early stage of the disease, when symptoms are mild and

often ignored, in order to make a proper prognosis.

Figure 2.1: Distribution of individuals with Parkinson’s disease by country from 2005 to
2030 [47]

2.2 Tests of motor control

There are no definitive tests to diagnose neurological disorders that affect motor con-

trol like Parkinson’s disease (PD). Methods such as neuroimaging, laboratory tests, and
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cerebrospinal fluid examinations are expensive and can only diagnose a disease in the

later stages [92]. While four motor symptoms are typically considered as the classic

identifying feature of PD (tremor, slowness of movement, rigidity, and postural insta-

bility), the signs and symptoms of movement disorders vary from patient to patient and

show a progressive decline in both motor and cognitive abilities.

Some studies have reported that PD patients show more irregularities in upper limbs

movements, such as abnormal hand movements, increased corrective movements, and

decreased speed compared to healthy adults [49, 50, 42]. Over the years, neurologists

have thus designed several noninvasive paper-and-pencil-based tests that can be used to

assess upper limbs motor performance and, in general, to assess patients’ motor skills

or impairments. The handwriting (writing some text on paper) [117], finger tapping

(tapping with the index finger on a specific surface) [4], trail making (drawing simple

shapes on paper) [139], clock drawing (drawing a clock by writing numbers around the

circle and then placing the clock hands on specific numbers) [60], and spiral drawing

(drawing a spiral shape) [36] tests are all common examples. Digital versions of the

paper-and-pencil tests have also been created and used to solve some of the limitations of

paper-and-pencil based methods such as their unsuitability for repeated measurements.

However, these methods still have limitations. They do not capture critical per-

formance changes over time, they usually provide small amounts of data on a limited

number of people, and they are usually performed in a laboratory environment under

supervision, making them not easily and equally accessible to everyone. In addition,

when the tests are administered, subjects may already be showing signs of motor activ-

ity decline. If subjects already suffer from some motor dysfunction, they may not be

able to adapt to new tasks and therefore may need some type of training sessions. Such

training allows them to become familiar with the tasks, which has an effect on their

performance [40].
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2.3 Mobile apps for motor control testing

In recent years, mobile technology has improved to the point that many digital health

applications for smartphones and tablets can be used to collect information about dif-

ferent parameters of the human body and support various informational, monitoring, or

diagnostic tasks. Some apps use both mobile devices and wearable sensors and require

a clinical setup to assess patients’ symptoms. Other apps can be used autonomously

by people to monitor their health. Examples of the different types of mobile health

applications that help monitor the patient’s condition include physiological health sys-

tems [154], health alerts with connection to medical professionals [78], calculators of the

required insulin dose [72], and medical information systems [48].

Digital versions of the paper-and-pencil motor tests have been proposed in the form of

mobile applications to overcome the previously mentioned limitations of the traditional

versions. Many of these solutions have been developed to support the diagnosis and

treatment of PD patients, allowing multiple and complex PD symptoms to be captured.

Lauraitis et al. [93] proposed a model for the digital screening of neurological impair-

ments. They collected a dataset about 15 subjects (8 healthy and 7 with neurological

disorders) that used a mobile app to carry out 16 tasks, of which 12 are a digital ver-

sion of the Self-Administered Gerocognitive Examination (SAGE), and the others are

finger tapping and speech recording tasks. From the dataset, they extracted a set of 238

features. The discriminatory features were selected using a variety of methods, such as

principal component analysis, wrapper subset evaluation, and classifier attribute evalu-

ation. A subset of the features was used to train 13 different machine learning classifiers.

The final results were obtained using the average of the probabilities and showed 96.12%

accuracy in classifying neurologically impaired and healthy individuals.

Creagh et al. [39] proposed a smartphone-based Draw a Shape (DaS) test to assess

upper limb function in people with multiple sclerosis. They collected data from 93
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subjects (22 healthy subjects and 71 multiple sclerosis patients). Each participant was

required to draw various shapes, such as lines, circles, squares, spirals, and 8 figures,

on a cell phone with their dominant and non-dominant hand. Temporal and spatial

features were extracted from the shape drawings. The dimensionality of the features

was reduced using the LASSO method. Random Forest and Support Vector Regressors

were used to evaluate the relationship between the DaS tests and the associated 9HPT

which is used to measure dexterity in patients with various neurological disorders. The

study found that shapes drawn with the nondominant hand more accurately predicted

9HPT time than those drawn with the dominant hand.

Iakovakis et al. [74] analysed key dynamics during typing on a mobile touchscreen

in a clinical setting to measure fine motor skills performance. They recorded the typing

of 18 PD and 15 healthy subjects, all of whom were right-handed and over 40 years of

age. Keystroke dynamics variables such as Hold Time (HT), Flight Time (FT), and

Normalised Pressure (NP) were extracted from the typing sessions. A logistic regres-

sion classifier was trained with statistical features (mean, standard deviation, kurtosis,

skewness, and covariance) extracted from the keystroke dynamic variables. The classi-

fication task was performed in two stages. In the first stage, three models, one for each

dynamic variable, were trained and used for prediction. In the second stage, the results

of the three models were combined and fed into a classifier to obtain a final prediction

of whether the typing session belonged to a healthy or PD subject.

In a study by Zham et al. [183], 31 subjects with Parkinson’s disease (PD) and 31

healthy subjects each performed spiral drawing and handwriting tasks on a tablet using

a digital pen. 14 spatial and temporal features were extracted. The top five features were

selected using the relief F method. A Naive Bayes classifier with spiral drawing features

was used to classify the PD and healthy subjects. The results showed an AUC of 0.933

when classifying PD and healthy subjects. Statistical analysis of features extracted from

the subjects’ drawing and handwriting tasks revealed a significant difference between
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the two groups.

Arroyo Gallego et al. [5] quantified motor skill impairment using touchscreen typing

and alternate finger tapping tests. They collected data from 24 PD and 27 healthy

subjects. Statistical features such as kurtosis, skewness, and covariance from touch

screen typing and the average number of finger taps from dominant and non-dominant

hands tapping were extracted. Feature selection was performed with an L1 regularizer

and used to train a linear support vector machine classifier. The study yielded an Area

Under the Curve (AUC) of 0.91 for the best feature typing sessions and an AUC of 0.85

for the finger tapping tests when classifying PD and healthy subjects.

Wissel et al. [116] used a mobile application called iMotor to distinguish motor

functions of PD subjects from those of healthy people. iMotor includes finger tapping,

pronation-supination (based on touching the screen alternatively with the palmar and

dorsal surface of hand), and reaction time neurological tasks. 19 PD and 17 healthy sub-

jects participated in the study. Variables for analysis were derived from recorded screen

pixels (x, y) and included total number of taps, tap accuracy, tap speed, tap interval,

tap duration, and reaction time. The results of a multivariate logistic regression analysis

for the extracted features show that reaction time was the best predictive variable with

an AUC of 0.90 for PD.

ParkNosis [145] is an Android-based smartphone app that provides users with hand

tremors, spiral drawing, and tapping tests, as well as a questionnaire to assess their

motor skills. The app was used by the authors to collect data from 11 participants (PD

and healthy subjects) belonging to different age groups, the majority of whom were

right-handed. The analysis was performed on the mobile phone. Based on the analysis

results, the authors defined a scale to evaluate the patients and inform them about their

PD status.
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2.4 The MotorBrain app

MotorBrain [167] is a mobile application that includes digital versions of four trail mak-

ing and two finger-tapping paper-and-pencil motor tests. It was designed and developed

by a research group at the HCI Lab of the University of Udine and was released in Italy

as a free app for major mobile platforms (iOS, Android, Windows Phone). Unlike most

of the mobile solutions mentioned in the previous section, MotorBrain was not meant to

be used exclusively in a clinical setting or for a specific medical condition, albeit it could

be used as such if needed. It was created as a data collection and assessment tool for

the millions of smartphones and tablets available to the general public. Its interface was

designed to be easy to use for individuals of any age, letting them interact naturally and

directly with the tests using their fingers. The app provides a preliminary assessment

of motor performance directly on the device but it also sends detailed motor test data

to a remote server for storage and further detailed analysis. Overall, more than 10000

users downloaded and used the app since its release.

2.4.1 Motor tests

The motor tests included in MotorBrain are organized in three groups consisting of two

tests each. The groups are defined based on the primary characteristic of motor control

they focus on (see Figure 2.2): two trail making tests have been designed to primarily

measure accuracy (how accurate users are in following the path displayed in the test),

the other two trail making tests focus on speed (how fast users are in following the path

displayed in the test), while the two finger tapping tests measure reaction time (how

quick users are to tap targets appearing in the test). Accuracy, speed, and reaction time

are common measures of users’ motor skills that have been employed in other studies

in the literature [18, 71, 138]. Only one category is enabled when the user launches the

app for the first time. The user must complete all tests in that category before the next
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one becomes available. To complete a test, users must perform three repetitions of it,

first with their dominant hand and then with their non-dominant hand.

Figure 2.2: MotorBrain tests are grouped in three categories based on the motor control
measure they focus on. The Accuracy category is enabled in this example. The number on the
right shows the number of times a users completed all the tests within that category. [167].

Accuracy tests

The two tests in the accuracy group, called Circle-A and Square, require users to follow

a path displayed on the screen as accurately as possible and differ for the shape of the

path to follow.

The Circle-A test requires users to move their index finger on a colored ring (see

Figure 2.3A), following its entire length once as accurately as possible and without

lifting their finger. The movement must be performed clockwise when users are using

their right hand and counterclockwise when they are using their left hand. The starting

point is displaced by 30 degrees on the left (right) for clockwise (counterclockwise)

movements. The diameter of the outer circle is 4cms while the thickness of the path is
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0.5cms. A repetition ends when the total distance moved by users with their finger is

equal to the circumference of the ring (in its middle point), when users lift their finger

off the screen for more than 0.15 seconds, or when 10 seconds have passed from the start

of movement.

In the Square test, users have to move their index finger on a square frame (see Figure

2.3B), following its entire length once as accurately as possible and without lifting their

finger. As in Circle-A, movement must be clockwise when users are using their right

hand and counterclockwise when they are using their left hand. The starting point is

the top left vertex of the frame for clockwise movement and the top right vertex for

counterclockwise movement. The side of the square frame is 4cms and its thickness is

0.5cms. A repetition ends when the total distance moved by users with their finger is

equal to the perimeter of the square frame (in its middle point), when users lift their

finger off the screen for more than 0.15 seconds, or when 10 seconds have passed from

the start of movement.

Figure 2.3: MotorBrain tests designed to measure accuracy: (A) Circle-A: follow the colored
ring starting from the highlighted position. (B) Square: follow the square frame starting from
the highlighted position.

16



Speed tests

The two tests in the speed group, called Circle-S and Path, require users to follow a

path displayed on the screen as fast as possible and differ for the shape of the path to

follow and the number of times the path can be repeated.

In the Circle-S test, users have to move their index finger on a colored ring (see

Figure 2.4A), following its entire length as many times as possible and without lifting

their finger, within a 7 seconds time limit. The ring has the same diameter as in Circle-A

but its thickness is slightly larger (0.7cms). As in the accuracy tests, movement must

be clockwise when users are using their right hand and counterclockwise when they are

using their left hand, and the starting point is displaced by 30degrees. A repetition

ends when the 7 seconds time limit is reached or when the user lifts her finger for more

than 0.15 seconds.

The Path test requires users to move their index finger over a path comprised of four

interconnected lines (see Figure 2.4A), following its entire length once as fast as possible

and without lifting their finger, within a 5 seconds time limit. Each line is 3.72cms long

with a 0.6cms thickness and the angle between each pair of connected lines is 19.80

degrees. When doing the test with their right hand, users start at the top left position

and move to the bottom of the path. When using their left hand, the path is mirrored

and users move from the top right position to the bottom of the path. A repetition ends

when the 5 seconds time limit is reached, when the user raises her finger for more than

0.15 seconds or when the total distance moved by users with their finger is equal to the

length of the path.

Reaction time tests

The two tests in the reaction time group, called Tapping-2 and Tapping-4, require users

to tap as fast as possible on a target that appears on the screen and differ for the number
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Figure 2.4: MotorBrain tests designed to measure Speed: (A) Circle-S: follow the ring as many
times as possible within a time limit. (B) Path: follow the path once as fast as possible.

of possible positions where the target could appear.

In the Tapping-2 test, the target to tap can appear alternatively in two different

but aligned positions. When the target is active, it is displayed as a colored circular

button of 1.6cms diameter with a viewfinder consisting of three concentric circles (see

Figure 2.5A). When the target is disabled, it is displayed as a light grey area without

viewfinder. When users tap on an active target, the target deactivates at that position

and becomes active at the other position. Users have to tap on the active target as

many times as possible during a 10-second interval, starting when the user taps on the

first target. At the beginning of the test, the active target is on the left for a test done

with the right hand and on the right for the left hand.

In the Tapping-4 test, the target is of the same type as in Tapping-2 but can appear

in 4 different positions (see Figure 2.5B). Unlike in Tapping-2, the initial position of the

active target as well as the position where the active target will appear after it has been

tapped once in its current position are randomly selected. As in Tapping-2, users have

to tap on the active target as many times as possible during a 10-second interval.
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Figure 2.5: MotorBrain tests designed to measure Reaction Time: (A) Tapping2: tap as many
times as possible on the active target, which is visible in one out of two possible positions and
changes position after each tap. (B) Tapping4: tap as many times as possible on the active
target, which is visible in one out of four possible positions and changes position after each tap.

2.4.2 Recorded data

MotorBrain automatically records four major categories of data: (a) data related to the

screen touch events that are generated by users when they carry out motor tests, (b)

demographic data about users, (c) technical data about the mobile device running the

app, and (d) derived data about user’s performance in the motor tests.

Screen touch event data

The bulk of the data recorded by MotorBrain consists of the coordinates (x, y) in pixels

and the corresponding timestamps tn of the events generated each time the user touches

the screen or changes finger position on the screen during one of the motor tests. The

temporal sequence of coordinates allows us to recreate the trajectories followed by users

during the trail making motor tests and the sequence of points tapped by users during

the finger tapping motor tests, and compare them to the expected outcome based on

the underlying stimulus (path to follow or target to tap).
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Screen touch event data is organized hierarchically. The set of touch event data

related to one repetition of a motor test is an individual record with its own identifier.

Each complete run of a motor test consists of 6 records, 3 repetitions each for the

dominant and non-dominant hand. At a higher level, motor tests are organized in

sessions which are created when a user logins into the app, with each session associated

to a specific user and having its own timestamp.

User data

User data recorded by the app consists of the age, gender, and dominant hand of each

user, which are asked through a demographic questionnaire when users run the app

for the first time. Users can also choose a nickname that will be locally associated to

their profile on the device. The app also records answers to yes/no questions that are

presented to users at the beginning of each session of use, about whether they suffered at

the time of the session from headache or migraine, or any illnesses or pain at the wrist,

elbow, or hand, and whether they were under the effects of drugs or abused substances

that could impair performance.

Device data

Device data recorded by the app consists of the device model (as communicated by the

device itself on request of the app), screen height, screen width, and screen resolution

in terms of dots per inch. Since the last three measures cannot always be obtained

from the device, the app includes a fallback mechanism that tries to derive the data at

run-time from an external database.

Derived performance data

To provide users with an assessment of their motor performance, the app computes

three measures that are shown at the end of each motor test and that correspond to

20



the three primary characteristic of motor control that each of the three groups of motor

tests were meant to measure, i.e., accuracy, speed, and reaction time:

• Accuracy is computed as the ratio between the distance covered by the index finger

on the ring (Circle-A) or the frame (Square) and the optimal distance (circumfer-

ence of the ring or perimeter of the square at their middle point), expressed as a

percentage.

• Speed is the ratio (in cm/s) between the distance covered on the ring (Circle-S)

and on the path (Path) and the total time spent in performing the movements.

• Reaction time is the mean of all the times (in seconds) elapsed between the appear-

ance of a target button on the screen and user’s tapping on that target, excluding

the first tap.

In addition to being computed and displayed to users at run-time, these measures

are also recorded for analysis.

2.5 Our research goals

The analysis of the dataset collected through MotorBrain is the subject of the first part

of this thesis. A dataset of this type could be used in principle to build a normative

reference of motor performance, which is currently unavailable in neurology and could

be effectively used for different purposes. It could allow neurologists to investigate the

physiological aspects that are involved in the aging of the population’s neuromuscular

system [33]. It could make it possible for neurologists to assess the evolution of a

movement disorder over time, to study how the motor skills of individuals change over

time during the rehabilitation process of a movement disorder, and to assess the effect

of pharmacological or physical therapies. It could offer neurologists the possibility to

carry out an early differential diagnosis of movement disorders, e.g. Parkinson’s disease,
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by comparing the motor performance data of a specific patient with normative data

for the same age group. As previously mentioned, early differential diagnosis is very

important because it allows neurologists to start clinical treatments in a timely fashion,

thus reducing the negative effects that degenerative disorders have on patients.

All these goals can be potentially reached if there is sufficient evidence that the

collected dataset is meaningful in the assessment of users’ motor performance. In par-

ticular, if it characterizes the normal motor behavior of the population and how it

changes with aging. The analysis we performed on the dataset was thus aimed at dis-

covering if the data was consistent with the expected motor performance patterns of

healthy subjects, and especially with the degradation of human motor performance that

is typical of aging [95, 149]. We also developed machine learning models that can be

used to classify performance results based on the age-based normative behavior iden-

tified in the analysis and thus help neurologist to identify neurological disorders at an

early stage by automatically comparing new data with the available normative data.
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3
The MotorBrain dataset:

overview and data cleaning

process

The MotorBrain app was designed to collect data remotely from users without any ex-

ternal supervision by experts who could guide users in carrying out the motor tests.

Even if the app includes simple textual and visual instructions, there is no guarantee

that users did not do the tests incorrectly, either voluntarily or because they did not

understand the instructions. In addition, technical issues related to the device ecosys-

tem, data transmission, and data storage could also affect the quality of the collected

data. This is why it is important to perform a data cleaning process before being able

to use the data for further analysis. In this chapter, we first provide an overview of

the MotorBrain dataset in terms of user demographics. We then describe the different

criteria we used to clean the data, removing incomplete, inconsistent and inaccurate
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records, and the results of the process.

3.1 Overview of the MotorBrain dataset

Overall, we received data from 12503 users. Since the app was available in Italian only

and was distributed in the Italian version of the app stores, all users are supposed to be

Italian. Demographic information about the users is summarized in Table 3.1.

Table 3.1: Demographics of MotorBrain users in the collected dataset.

The age of users ranges from 6 to 110 years with a mean of 26, showing that the app

attracted users from all age groups, including older adults, but that a large percentage

of users were younger, which is consistent with the typical demographic distribution of

mobile app users. This can be clearly seen in the histogram in Figure 3.1 which shows

the age distribution of users. If we group users in 20 years buckets, we have 5032 users
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in the 1 − 20 years range, 5535 in the 21 − 40 years range, 1656 users in the 41 − 60

years range, 250 users in the 61− 80 years range, and 30 users above 80 years.

As shown in Table 3.1, the number of male users is slightly higher than the number

of female users. This also appears to be consistent with studies on the use of mobile

health apps [87]. The number of users who declared that the right hand was their

dominant hand (11321) is largely higher than the number of users who declared the

left hand as their dominant hand (1182), which is in agreement with the prevalence of

right-handedness in humans [133].

Figure 3.1: Age distribution of users

If we consider the number of users who carried out the individual motor tests at
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least once, we obtain 12185 users for Circle-A, 11713 users for Square, 11000 users for

Path, 10300 users for Circle-S, 9453 users for Tapping-2, and 8194 users for Tapping-4.

There is a noticeable decline in the number of users as we move from accuracy tests to

speed tests to reaction time tests, with 1/3 of the users who completed Circle-A not

even reaching the Tapping-4 test. This is most likely a consequence of the fact that only

the accuracy tests are available when the user launches the app for the first time and

the other two categories unlock only when the user completes all tests in the previous

category. This design choice was made to have all users perform the motor tests in the

same order so that their initial motor performance in each test could be comparable

in terms of previous experience. Considering that most mobile app users interact with

apps in short time bursts and repeated usage is not common for most apps, users who

did not have the time, patience or interest to unlock all tests in one session may account

for the above effect.

3.2 The data cleaning process

The basic unit of interest for the data cleaning process is the individual record containing

touch event data for one repetition of a motor test. The different steps of the process

led to the removal of records based on criteria related to the quality of each record

itself, to the properties of other records in the same run of a motor test (consisting of 3

repetitions), to the user condition, and to the device characteristics. Overall, the initial

number of records in the dataset was 88108 for Circle-A, 82244 for Square, 73521 for

Path, 69143 for Circle-S, 62541 for Tapping-2, and 55230 for Tapping-4. These numbers

show that, on average, users did about 7 repetitions for each motor test, which is just

slightly higher than the 6 repetitions needed to complete a test with both hands.

The process consisted of 5 record removal activities, each one related to a different

type of issue with the data, the device, or the user: (a) small or erroneous screen size,
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(b) missing values, (c) incomplete runs, (d) anomalous psychophysical state of the user,

and (e) incorrect/incomplete performance. These types of issue have been identified by

directly looking at samples of the data or by analyzing visualizations of the data. While

the removal activities were carried out in a specific order, they are independent of each

other and could have been completed in any order.

3.2.1 Small or erroneous screen size

A significant amount of records was removed from the dataset because the screen of the

device was too small or was not recognized correctly.

MotorBrain uses information about device screen size and screen density (in dots per

inch) to determine how to properly display graphical elements in tests. For each motor

test, the application scales the graphical elements of the test to make sure they are

displayed with the same physical size, regardless of the specific model of mobile device

used. Such information is obtained directly from the device and is stored together with

test data in the recorded dataset.

To draw the graphical elements with the sizes reported in Chapter 3 and make user’s

performance comparable across different devices, the diagonal display size of the device

should be 4 inches or more (most smartphones and tablets in the last few years meet

this requirement). On devices with a screen size smaller than 4 inches, the app reduces

the size of graphical elements because the space available is insufficient. To properly

support comparisons of the motor tests results, we thus removed all records associated

to devices with small screen size (less than 4 inches).

Another issue appears when the screen information obtained from the device is in-

correct. In such case, the application displays targets with an incorrect size, making all

tests with those targets unusable for subsequent analysis. By manually comparing the

device data saved in the dataset with the technical specifications of the corresponding

devices available from device manufacturers, we found all instances of incorrectly rec-
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ognized screen sizes and screen densities. We then removed from the dataset all those

records associated to devices for which the difference between stored and actual device

information (in terms of derived screen size) was larger than ±0.075 inches. The thresh-

old was defined in collaboration with the neurologists who participated in the design of

MotorBrain.

These screen size issues led to the removal of 22318 records for Circle-A, 20365

records for Square, 20235 records for Path, 16183 records for Circle-S, 14938 records for

Tapping-2, and 14148 records for Tapping-4, including almost all data collected from

Apple iPad users.

3.2.2 Missing values

Missing values in the MotorBrain dataset are all those data values which are encoded as

nulls and can belong to any of the data categories that are collected by the application

(device data, user data, etc.). Null values are stored in the database when the received

data is not complete, typically because of technical failures related to data generation,

transmission and storage (most commonly, networking problems).

In the literature, different techniques have been proposed to deal with missing values

and these typically depend on the type of missing data mechanism. If the causes of the

missing data are unrelated to the data and occur entirely at random, the data are said

to be missing completely at random (MCAR). If the missingness is not random but can

be fully accounted for by variables where there is complete information, then the data

are missing at random (MAR). If neither MCAR nor MAR holds, then we speak of

missing not at random (MNAR).

The only possible events that led to missing values in our case are random technical

failures that are independent of the variables of interest, the approach we used to deal

with the missing data was to remove the records associated to the missing data. This

led to the removal of 1325 records for Circle-A, 1180 records for Square, 1159 records for

28



Path, 1035 records for Circle-S, 582 records for Tapping-2, and 452 records for Tapping-

4.

3.2.3 Incomplete runs

Each test required users to repeat the same task three times with their dominant hand

and then three times with their non-dominant hand. Some users performed the tests

only 1 or 2 times rather than 3, probably because they had to stop interacting with the

app for external factors (e.g., calls, notifications, interruptions, etc.) or because they got

bored with the tests. To keep consistency when comparing user performance, we only

considered full runs of 3 repetitions, removing all records related to partial runs from

the dataset. This led to the removal of 84 records for Circle-A, 81 records for Square,

43 records for Path, 77 records for Circle-S, 110 records for Tapping-2, and 89 records

for Tapping-4.

3.2.4 Anomalous psychophysical state of the user

As previously mentioned, the MotorBrain app asks users some questions to assess their

psychophysical state before starting a test session. The questions are meant to determine

if users suffer from conditions (headache, pain, drug or alcohol alteration) that would

affect their motor performance. We removed from the dataset all records of users who

answered positively to one or more of these questions. This led to the removal of 2097

records for Circle-A, 1947 records for Square, 1698 records for Path, 1578 records for

Circle-S, 905 records for Tapping-2, and 1245 records for Tapping-4.

3.2.5 Incorrect/incomplete performance

The final and most complex step in the cleaning process concerned all those cases where

the user did not properly follow the instructions of each test, leading to incorrect and/or
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incomplete results that are not considered representative of normal motor performance.

Possible motivations for these cases are that users did not read the instructions correctly

(misinterpreting what they had to do) or did voluntarily perform tests without following

the instructions. To identify these cases, we defined a set of exclusion criteria that differ

from test to test. The criteria were defined in collaboration with the neurologists who

co-designed the MotorBrain app. Figure 3.2 shows examples of complete/correct and

incomplete/incorrect performance for each test.

In the Circle-A test, a complete/correct result would correspond to a full circle. To

identify incomplete/incorrect results, we defined two exclusion criteria:

1. Divide the drawn trajectories based on four 90 degrees slices. The length of the

trajectory in each slice must be greater than zero. This loose constraint identifies

cases in which the user stopped the test before reaching the end of the circle.

2. Calculate the centroid of the shapes drawn by users:

Cx, Cy =

∑︁N
i=1 xi

N
,

∑︁N
i=1 yi
N

(3.1)

where (x, y) are the coordinates of the points of the shape as recorded by the app.

Use the adjusted box plot method to find minimum and maximum thresholds for

Cx and Cy. Any shape whose Cx or Cy are outside the bounds of these values is

considered incorrect.

For the Square and Path tests, a complete/correct result would correspond to

four interconnected lines. We considered the four lines separately. We then defined two

exclusion criteria based on the length of these lines (simplified as the crow-line distance

between the first and last point of each line):

1. The length of each line must be greater than zero. As in the Circle-A test, this is

a loose constraint to identify an incomplete trajectory.
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2. Compute the average line length for each repetition. Use the adjusted box-plot

method on these values to find the lower bound on length, outside of which a value

would be considered an outlier and identify an incorrect line.

Figure 3.2: Examples of complete/correct vs incomplete/incorrect performance in the six
motor tests. Each image shows all 3 repetitions of a test run with a different color.
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In the Circle-S test, users were asked to draw as many circles as possible within the

allotted time. In this case, the two exclusion criteria we considered were:

1. The total movement time must not be lower than 7 seconds. This identifies cases

in which the user stopped the test before time.

2. Use the adjusted box-plot method on the number of circles drawn by users to find

the lower bound on this number, outside of which a value would be considered

an outlier and identify an incorrect test. This identifies cases in which the user

completed too few circles with her finger in the allotted time.

For the Tapping-2 and Tapping-4 tests, we considered only one criterion based

on the number of taps:

1. The total number of taps outside the three concentric rings of a target must be

smaller than the number of taps inside the rings.

Overall, the application of these different criteria led to the removal of 2272 records

for Circle-A, 1686 records for Square, 1008 records for Path, 26976 records for Circle-S,

49 records for Tapping-2, and 79 records for Tapping-4. The high number of records

removed for Circle-S correspond to cases in which users did complete just one circle like

in Circle-A, probably because they misunderstood the instructions of the test.

3.3 Results

Figure 3.3 shows a flow diagram of the full data cleaning process with the results of

each cleaning activity and the final number of records. After the process, the number

of records left was 60012 for Circle-A, 56985 for Square, 23294 for Circle-S, 49378 for

Path, 45957 for Tapping-2, and 39217 for Tapping-4.

Overall, this shows the heterogeneity of issues that can affect the quality of health

data collected without expert supervision through a mobile application, even when the
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application is carefully designed to be as easy to use and self-explanatory as possible. A

proper multi-step data cleaning process is thus essential to obtain a final dataset that

could be used for analysis.

Figure 3.3: Flow diagram of the cleaning process showing the results of each activity in terms
of the number n of records removed in that step.
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4
Statistical analysis of the

MotorBrain dataset

Once we had a cleaned dataset to work with, we needed to understand whether user

performance as could be measured from the available data revealed expected patterns

such as the typical degradation which is common with aging [95, 149] and the marked

performance asymmetry between dominant and non-dominant hand [163]. This would

provide evidence that MotorBrain allows to collect meaningful data in an unsupervised

non-clinical setting, and could be used by neurologists to investigate normative behavior

patterns and support the diagnosis of motor impairments.

The approach we followed to investigate the characteristics of users’ motor perfor-

mance is based on statistical analysis and its results are presented in this chapter. We

first describe in detail the set of performance measures we derived for the motor tests

included in MotorBrain to support the detailed analysis of the collected data. Then,

we present the results of the two analyses we performed on the data. The first analysis

focused on users belonging to two specific groups of users: young adults in the 18-30

34



years range and old adults in the 50-75 years range. The second analysis was more

extensive and more fine-grained, including all users over 18 years old, divided in 5 age

groups.

4.1 Performance measures

MotorBrain provides users with an assessment of their motor performance based on three

primary measures (accuracy, speed, and reaction time) that characterize the three groups

of motor tests and that are computed internally as described in Chapter ??. While these

are important measures, they are not sufficient to fully capture the spatial and temporal

aspects of the tasks to better characterize the behavior of users. Before performing the

statistical analyses, we thus derived a more comprehensive set of measures for each of

the two main types of motor tests in MotorBrain (trail making and finger tapping). The

code for measure extraction was implemented in Python 3.6 and makes use of the points

(x, y) touched by users on the screen and the corresponding time stamps tn.

4.1.1 Trail making measures

Four of the motor tests included in MotorBrain (Circle-A, Square, Path, Circle-S) are

trail making tests that require users to draw or follow a path on the screen. To better

capture the motor performance of users in these tests, we computed three measures:

error, speed and movement smoothness.

Error

Error measures the deviation of the user trajectory from the expected template path

displayed on the screen. It is related to the accuracy measure provided by MotorBrain.

It is computed in a different way for motor tasks based on circular paths (Circle-A and

Circle-S) and for motor tasks based on linear paths (Square and Path).
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For the Circle-A and Circle-S motor tests, which are based on a circular path, we

first computed the average distance of each point of the trajectory followed by a user

from the center of the circular target path. The distance between a point touched by

the user (xi, yi) and the center of the target shape (xc, yc) is calculated as

ri =

√︂
(xi − xc)

2
+ (yi − yc)

2 (4.1)

The error is then computed using the following formula

Error =

n∑︂
i=1

(ri −R)
2

n
(4.2)

where R is the template radius (distance between the (x, y) points of ideal trajectory

to the center of the shape) and ri is the radius calculated from the user drawn trajectory.

If a user perfectly follows the required trajectory, the error would be zero.

For the Square and Path tests, the error is based on the length of the trajectory

followed by the user, based on the following formula

Error = (covered_distance− template_length)/template_length (4.3)

Here covered_distance is the total distance covered by the user while performing

the test and template_length is the perimeter of the template path in the case of the

Square test and the sum of the length of the four connected template lines for the Path

test.

Speed

Speed in a specific test is measured by considering the distance covered in the unit of

time and is calculated using the following formula
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speed =

∑︁N
i=1

√︂
(xi+1 − xi)

2
+ (yi+1 − yi)

2∑︁N
i=1 (ti+1 − ti)

(4.4)

where (xi, yi) and (xi+1, yi+1) are two consecutive points in the trajectory drawn by

the user and ti+1 − ti is the time taken by the user to move from one point to the next.

Speed is measured in cm/sec.

Movement smoothness

Smoothness is a measure of well-coordinated muscle movements, smooth coordination

of wrist and fingers. The smoothness of the discrete arm movements in accuracy and

speed derived tasks is an important characteristic of individuals healthy and well-trained

motor behavior. The literature shows that log dimensionless jerk is a valid measure to

quantify movement smoothness, especially for upper limb movements [65]. The log

dimensionless jerk can be measured with the following formula:

LDLJ = −ln |DLJ | (4.5)

with

DLJ = − (t2 − t1)
3

v2p

∫︂ t2

t1

⃓⃓⃓⃓
d2v (t)

dt2

⃓⃓⃓⃓
dt (4.6)

where v (t) is the movement speed, t1 and t2 are the movement start and end times,

vp is the maximum velocity between time t1 and t2.

4.1.2 Finger tapping measures

For tapping tests, the important measures that allow to describe the age-related effects

of human motor performance are the reaction time and the tap precision of each tap on

the screen.
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Reaction time

Reaction time, which captures the temporal aspect of a finger tapping task, is measured

by computing for each target i the difference between tap time tti, i.e. the time when

the user tapped on the active target after it appeared, and stimulus time sti, i.e. the

time when target button i became active

Ri = (sti − tti) (4.7)

and then taking the median value as a statistical measure of central tendency. Median

is used in studies about finger tapping tasks as a preferable measure over the mean

because it is a more robust measure for skewed data [74, 71].

Error

Error, which captures the spatial aspect of a finger tapping task, is measured by comput-

ing the distance between the coordinates (xi, yi) of the user’s tap on the screen and the

coordinates (xc, yc) of the center of the corresponding target, using the usual distance

formula

di =

√︂
(xi − xc)

2
+ (yi − yc)

2 (4.8)

and then taking the median value, as in the case of reaction time.

4.2 Young adults vs. old adults data analysis

Before MotorBrain was made publicly available in the stores, it was used in a controlled

lab-based study [167] to compare the motor performance of two groups of healthy sub-

jects, young adults in the 18− 30 years range and old adults in the 50− 75 years range.

The study involved 133 subjects and focused on the main characteristics of motor control
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(accuracy, speed and reaction time) computed by the application. Results showed that

young adults performed the trail making tests more accurately and quickly compared

to old adults and reacted more quickly in the tapping tests.

We focused our first analysis of the MotorBrain dataset on the same two groups of

users who were considered in the previous controlled study so that we could compare

the results. However, we also analyzed the effect of handedness, which was not explicitly

considered in the previous study, in addition to the effect of age. The number of subjects

involved in the analysis in the 18− 30 and 50− 75 age groups differs by motor test and

is reported in Table 4.1. These differences are a consequence of the different number of

users who completed the different motor tests and of the cleaning process that we did

on the data as described in Chapter 3.

Table 4.1: Number of users by group for the different motor tests.

After extracting the data about the two age groups from the dataset, we performed

an additional filtering step on it, keeping only the first run for each motor test, i.e., the

data about the first 3 repetitions of a test with each hand. This was done because a

user could do multiple runs of each test if she wanted but we only focused on first-time

performance to keep the comparison consistent across users.

The analysis focused on the performance measures presented in Chapter 3: error,

speed and movement smoothness for trail making tests (Circle-A, Square, Path, Circle-
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S), and reaction time and error for finger tapping tests (Tapping-2 and Tapping-4).

For the statistical analysis, we used a 2 × 2 mixed design ANOVA, with age group

as between subject variable (with levels "young" and "old") and hand(edness) as within

subject variable (with levels "dominant" and "non-dominant"). The significance level

p for the statistical analysis was set at 0.05. Post-hoc analysis was performed with the

Bonferroni test. The analysis was done with SPSS version 20.

4.2.1 Results

Table 4.2 and Table 4.3 show a summary of the descriptive statistics for the different

performance measures in the motor tests and the results of the analysis. In the following

sections, we report the results separately for the different test and for each performance

measure.

Circle-A

Error

The analysis of Error for the Circle-A motor test revealed a main effect for hand

(F (1, 4135) = 106.97 , p < 0.001), with both young adults and old adults making

larger errors with their non-dominant hand, a main effect for age group (F (1, 4135) =

112.13 , p < 0.001), with old adults making larger errors than young adults, and no

interaction effect (p = 0.088).

Speed

Speed analysis revealed a main effect for hand (F (1, 4135) = 100.92 , p < 0.001), with

users being faster with their dominant hand in both age groups, and a main effect for

age group (F (1, 4135) = 12.10 , p < 0.001), with old adults being faster than young

adults. We also found an interaction effect between hand and age group (F (1, 4135) =
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Table 4.2: Descriptive statistics (mean and standard deviation (sd)) of the performance mea-
sures for the two age groups (young adults (18-30) and old adults (50-75))

Measure AgeGroup Dominant Hand
(mean ± sd)

Non-Dominant hand
(mean ± sd)

Circle-A

Error Young 0.017 ± 0.022 0.022 ± 0.018
Old 0.027 ± 0.044 0.034 ± 0.045

Speed Young 3.79 ± 2.56 3.49 ± 2.04
Old 4.27 ± 2.39 3.8 ± 1.99

Movement
Smoothness

Young -14.44 ± 2.43 -14.64 ± 2.32
Old -14.36 ± 2.58 -14.82 ± 2.50

Square

Error Young 0.012 ± 0.01 0.009 ± 0.009
Old 0.013 ± 0.016 0.009 ± 0.011

Speed Young 4.41 ± 1.99 3.89 ± 1.76
Old 4.31 ± 1.92 3.92 ± 1.68

Movement
Smoothness

Young -14.10 ± 1.86 -14.59 ± 1.9
Old -14.64 ± 2.23 -14.99 ± 2.23

Circle-S

Error Young 0.18 ± 3.31 0.11 ± 0.073
Old 0.064 ± 0.039 0.09 ± 0.06

Speed Young 21.52 ± 9.17 16.3 ± 6.89
Old 17.79 ± 8.4 14.51 ± 6.08

Movement
Smoothness

Young -17.84 ± 0.92 -17.77 ± 0.89
Old -18.02 ± 1.65 -18.01 ± 1.6

Path

Error Young 0.11 ± 0.09 0.12 ± 0.09
Old 0.16 ± 0.15 0.15 ± 0.14

Speed Young 9.62 ± 3.75 9.09 ± 3.39
Old 7.97 ± 2.79 7.44 ± 2.40

Movement
Smoothness

Young -11.47 ± 1.12 -11.61 ± 1.08
Old -12.35 ± 1.84 -12.58 ± 1.84

Tapping- 2
Reaction
Time

Young 0.26 ± 0.11 0.27 ± 0.10
Old 0.27 ± 0.11 0.28 ± 0.10

Error Young 0.88 ± 0.96 0.91 ± 0.96
Old 1.36 ± 1.23 1.38 ± 1.23

Tapping-4
Reaction
Time

Young 0.46 ± 0.06 0.47 ± 0.07
Old 0.46 ± 0.06 0.47 ± 0.06

Error Young 0.96 ± 1.04 0.98 ± 1.02
Old 1.22 ± 1.1 1.23 ± 1.08
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Table 4.3: Main effects and interaction effects for age group and hand for the different perfor-
mance measures. (Significant differences (p<0.05) in bold)

Measure Age Group Hand Age Group
*Hand

F P F P F P
Circle-A
Error 112.13 0.00 106.97 0.00 2.92 0.08
Speed 12.10 0.001 100.92 0.00 4.36 0.04
Movement
Smoothness 0.17 0.68 104.76 0.00 16.27 0.00

Square
Error 4.0 0.04 106.47 0.00 5.77 0.02
Speed 0.09 0.76 245.01 0.00 5.09 0.02
Movement
Smoothness 23.19 0.00 269.45 0.00 6.33 0.01

Circle-S
Error 0.41 0.52 0.03 0.86 0.22 0.64
Speed 28.52 0.00 386.43 0.00 20.18 0.00
Movement
Smoothness 8.20 0.004 8.46 0.004 3.80 0.05

Path
Error 76.67 0.00 0.88 0.35 3.35 0.07
Speed 95.06 0.00 69.37 0.00 0.02 0.89
Movement
Smoothness 239.82 0.00 94.23 0.00 7.01 0.008

Tapping- 2
Reaction
Time 2.15 0.14 23.17 0.00 0.86 0.35

Error 76.64 0.00 109.84 0.00 3.18 0.07
Tapping-4
Reaction
Time 0.059 0.80 162.19 0.00 0.28 0.59

Error 19.62 0.00 37.45 0.00 0.68 0.41
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4.36 , p < 0.05). The post-hoc analysis revealed a statistically significant difference

between young adults and old adults for both dominant (p < 0.001) and non-dominant

hand (p < 0.005), confirming the main effect of age group. We also found a statistically

significant difference between dominant and non-dominant hand for both old adults and

young adults (p < 0.001), with speed being higher for tests made with the dominant

hand, confirming the main effect for hand.

Movement smoothness

The analysis of movement smoothness revealed a main effect for hand (F (1, 4135) =

104.76 , p < 0.001), with movement being less smooth with the non-dominant hand

for both age groups, and no main effect for age group (p = 0.68). We also found an

interaction effect between hand and age-group (F (1, 4135) = 16.26 , p < 0.001). The

post-hoc analysis revealed no statistically significant difference between young adults and

old adults for dominant (p = 0.51) and for non-dominant hand (p = 0.13). However,

there was a statistically significant difference between dominant and non-dominant hand

for both age groups (p < 0.001), with movement smoothness being higher for tests made

with the dominant hand, confirming the main effect for hand.

Square

Error

Error analysis for the Square motor test revealed a main effect for hand (F (1, 3892) =

106.47 , p < 0.001), with users making larger errors with their dominant hand, and

a main effect for age group (F (1, 3892) = 4.0 , p < 0.05), with old adults making

larger errors than young adults. We also found an interaction effect between hand

and age group (F (1, 3892) = 5.77 , p < 0.05). The post-hoc analysis revealed a

statistically significant difference between young adults and old adults for the dominant
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hand (p < 0.05), and no difference for the non-dominant hand (p = 0.57). Moreover,

there was a statistically significant difference between dominant and non-dominant hand

for both age groups (p < 0.001), confirming the main effect for hand.

Speed

Speed analysis revealed a main effect for hand (F (1, 3892) = 245.01 , p < 0.001), with

speed being lower with the non-dominant hand, and no main effect for age group (p =

0.76). We also found an interaction effect between hand and age group (F (1, 3892) =

5.09 , p < 0.05). The post-hoc analysis revealed no statistically significant difference

between young adults and old adults for both dominant (p = 0.36) and non-dominant

hand (p = 0.69). However, there was a statistically significant difference between dom-

inant and non-dominant hand for both age groups (p < 0.001), confirming the main

effect for hand.

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 3892) = 269.44 , p <

0.001), with users making smoother movements with their dominant hand, a main effect

for age group (F (1, 3892) = 23.19 , p < 0.001), with smoothness for young adults

being higher than for old adults. We also found an interaction effect between hand and

age group (F (1, 3892) = 6.33 , p < 0.05). The post-hoc analysis revealed a statistically

significant difference between young adults and old adults for both the dominant hand

(p < 0.001) and the non-dominant hand (p < 0.001), with smoothness being higher for

the young group, confirming the main effect for age group. We also found a statistically

significant difference between dominant and non-dominant hand for both age groups

(p < 0.001), with movement with the dominant hand being smoother than movement

with the non-dominant hand, confirming the main effect for hand.
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Circle-S

Error

The analysis of Error for the Circle-S motor test revealed no main effect for hand ( p <

0.86), no main effect for age group (p < 0.52), and no interaction effect (p = 0.639).

Speed

Speed analysis revealed a main effect for hand (F (1, 1340) = 386.43 , p < 0.001),

with speed being lower with the non-dominant hand, and a main effect for age group

(F (1, 1340) = 28.52 , p < 0.001), with speed for young adults being higher than for old

adults. We also found an interaction effect between hand and age group (F (1, 1340) =

20.18 , p < 0.001). The post-hoc analysis revealed a statistically significant difference

between young adults and old adults for both the dominant hand (p < 0.001) and the

non-dominant hand (p < 0.001), with speed being higher for young adults, confirming

the main effect for age. We also found a statistically significant difference between

dominant and non-dominant hand for both age groups (p < 0.001), with higher speed

for the dominant hand than for the non-dominant hand, confirming the main effect for

hand.

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 1340) = 8.46 , p <

0.005), with users making smoother movements with their dominant hand, a main effect

for age group (F (1, 1340) = 8.2 , p < 0.005), with smoothness for young adults being

higher than for old adults, and no interaction effect (p = 0.051).
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Path

Error

The analysis of Error for the Path motor test revealed no main effect for hand ( p =

0.355), a main effect for age group (F (1, 3835) = 76.67 , p < 0.001), with old adults

making larger errors, and no interaction effect (p = 0.07).

Speed

Speed analysis revealed a main effect for hand (F (1, 3835) = 69.37 , p < 0.001),

with speed being lower with the non-dominant hand, a main effect for age group

(F (1, 3835) = 95.06 , p < 0.001), with speed for young adults being higher than

for old adults, and no interaction effect (p = 0.89).

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 3835) = 94.23 , p <

0.001), with users making smoother movements with their dominant hand, and a main

effect for age group (F (1, 3835) = 239.82 , p < 0.001), with smoothness for young

adults being higher than for old adults. We also found an interaction effect between

hand and age-group (F (1, 3835) = 7.01 , p < 0.05). The post-hoc analysis revealed

a statistically significant difference between young adults and old adults for both the

dominant hand (p < 0.001) and the non-dominant hand (p < 0.001), with smoothness

being higher for the young group, confirming the main effect for age group. We also

found a statistically significant difference between dominant and non-dominant hand for

both age groups (p < 0.001), with movement with the dominant hand being smoother

than movement with the non-dominant hand, confirming the main effect for hand.
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Tapping-2

Reaction time

Analysis of the Reaction Time for the Tapping-2 motor test revealed a main effect for

hand (F (1, 3346) = 23.70 , p < 0.001), with reaction time being higher for the

non-dominant hand, no main effect for age group (p = 0.14), and no interaction effect

(p = 0.35).

Error

Analysis of Error revealed a main effect for hand (F (1, 3346) = 109.84 , p <

0.001), with error being larger with the non-dominant hand, a main effect for age group

(F (1, 3346) = 76.64 , p < 0.001), with error being larger for old adults, and no

interaction effect (p = 0.074).

Tapping-4

Reaction time

Analysis of the Reaction Time for the Tapping-4 motor test revealed a main effect for

hand (F (1, 2929) = 162.19 , p < 0.001), with reaction time being higher for the

non-dominant hand, no main effect for age group (p = 0.80), and no interaction effect

(p = 0.59).

Error

Analysis of Error revealed a main effect for hand (F (1, 2929) = 37.45 , p < 0.001),

with users making larger errors with their non-dominant hand, a main effect for age

group (F (1, 2929) = 19.62 , p < 0.001), with error being larger for old adults, and no

interaction effect (p = 0.41).
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4.2.2 Discussion

The goal of this analysis was to investigate the patterns of human motor performance

in the MotorBrain neuro-motor dataset, which was collected in an unsupervised way

from (supposedly) healthy subjects, and compare them with the related literature and

the previous controlled study.

As a whole, the results of the analysis seem to be consistent with the literature on

human motor performance of the upper limbs and in agreement with the findings of the

previous controlled study. In all motor tests, old adults were slower, made larger errors,

and made less smoother movements than young adults. Most of the performance mea-

sures revealed the degradation of the central and peripheral nervous and neuromuscular

systems that is typical of aging [18, 95, 149]. The age-related decline in motor per-

formance is related to several factors, including increasing muscle weakness, increased

musculoskeletal stiffness, decreased conduction velocity of nerve fibers, and decreased

muscle elasticity. All of these factors impair muscle activation and movement coor-

dination of finger and wrist, resulting in slower movements and longer reaction times

[18, 37, 96, 110, 149].

The other main result of the analysis is that both young adults and old adults

performed better with their dominant hand than with their non-dominant hand. Human

performance with the non-dominant hand is influenced by many factors and is typically

worse than performance with the dominant hand because of the different specializations

of the two arms and the need for more corrective movements [176, 86]. A common case

for human beings is for the left hand to be the non-dominant hand. Since the left hand

is controlled by the right hemisphere, which is also strongly involved in visuo-spatial

information processing, there is an additional conflict for resources that results in worse

motor performance.

Of the different performance measures we used, movement smoothness seemed to be
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particularly effective to reveal performance differences in trail making tests. Smoothness

is a characteristic of well-coordinated muscle movements that can be validly measured

by log dimensionless jerk [13]. The results we obtained for movement smoothness are

consistent with a study by Gulde and Hermsdorfer [65] in which the authors used log

dimensionless jerk, among other measures, to compare the smoothness of movements of

young and old users. The study revealed that healthy young users perform smoother

movements compared to healthy old users.

Speed and error were slightly less effective than movement smoothness in highlighting

performance differences and were involved in the only two results that were found to

be counterintuitive with respect to the literature on the age-related decline in motor

performance. In particular, in the Circle-A motor test, speed was higher for old adults

than for young adults. Users were instructed to perform the task as quickly as possible

with both hands, which led to more errors with the non-dominant hand. This result

might be justified by noting that it might be the effect of a speed-accuracy tradeoff,

as described by Fitt’s law, which states that there is an inverse relationship between

accuracy and speed of human motor performance [57, 169]. For example, in a study

by Barral et al. [16], the analysis of the movement patterns of 5-year-old boys and

girls revealed that speed was higher with the non-dominant hand but accuracy was

lower, which was likely due to the speed-accuracy trade off. Since accurate movements

require more concentration and more time, old adults achieved faster movements in the

test at the expense of higher error, which was indeed one of the results of the analysis.

Unfortunately, no supportive evidence for this effect could be obtained by the other trail

making test in the accuracy category, Square, for which speed analysis did not reveal

any effect for age group.

The other counterintuitive result we obtained concerned the analysis of error in the

Square motor test. Here, we found that both young and old adults made larger errors

with their dominant hand than with their non-dominant hand. In the literature [21, 141],
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it has been reported that the non-dominant hand, as a less skilled hand, shows better

performance in writing large letters or drawing shapes. In the case of a square, the

users have to rapidly change the direction of movement at the corners, which may cause

some hesitation. The smaller errors with the non-dominant hand could be due to the

fact that users made more adjustments when performing the square task, due to the

complexity of the trajectory to draw.

Another explanation for both counterintuitive results is to call into question the

design of the application itself: Circle-A and Square are the first two motor tests that

users interact with when using the app. Unfamiliarity might then have played a role

and negatively affected performance. A misunderstanding of the instructions for the

two tests, especially by old adults, might also be a possible concause.

Finally, reaction time did not appear to be effective in revealing expected age-related

performance differences in the two tapping tests. This is partially in agreement with

the results of the controlled study, where a similar result was found for Tapping-4

(but a difference in reaction time between young adults and old adults was found for

Tapping-2). In this case, it is possible that the specific designs of the two tests are not

ideal to reveal age-related performance differences and that different designs should be

investigated.

Overall, the analysis provided supporting evidence for the meaningfulness of the data

collected in an unsupervised non-clinical way thorugh the MotorBrain app and for the

appropriateness of the included motor tests and performance measures.

4.3 Fine-grained age-based data analysis

After the analysis on young adults vs old adults provided evidence that the MotorBrain

dataset contains representative data in terms of normative human motor performance,

we focused on a more fine-grained analysis based on age. We split the dataset in 5
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groups based on the following age ranges, which were chosen in collaboration with the

neurologists who worked in the MotorBrain project: 18−27 years old (Group-A), 28−37

years old (Group-B), 38−47 years old (Group-C), 48−57 years old (Group-D), and > 58

years old (Group-E). The goal was to investigate if such a finer granularity could lead

to the identification of more detailed information on the degradation of human motor

performance with aging.

As in the previous analysis, the number of subjects involved in this analysis in the 5

age groups differs by motor test and is reported in Table 4.4.

Table 4.4: Number of users by the group for the different motor tests.

As before, we performed an additional filtering step on the data, keeping only the

first run for each motor test, i.e., the data about the first 3 repetitions of a test with

each hand.

The analysis concerned the effects of handedness and age, and focused on the same

performance measures used previously: error, speed and movement smoothness for trail

making tests (Circle-A, Square, Path, Circle-S), and reaction time and error for finger

tapping tests (Tapping-2 and Tapping-4).

For the statistical analysis, we used a 2×5 mixed design ANOVA, with age group as

between subject variable (with levels "Group-A", "Group-B", "Group-C", "Group-D",

"Group-E") and hand(edness) as within subject variable (with levels "dominant" and
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"non-dominant"). The significance level p for the statistical analysis was set at 0.05.

Post-hoc analysis was performed with the Bonferroni test. The analysis was done with

SPSS version 20.

4.3.1 Results

Figures 4.1 to 4.6 show charts of the different performance measures for each age group

in the individual motor tests. Table 4.5 shows the results of the analysis in terms of

main and interaction effects while Table 4.6 and Table 4.7 show the post-hoc pairwise

comparison between groups and between dominant/non-dominant hand after significant

interaction effects. In the following sections, we report the results separately for the

different motor tests and for each performance measure.

Circle-A

Error

The analysis of Error for the Circle-A motor test revealed a main effect for hand

(F (1, 5635) = 107.49 , p < 0.001), with users making larger errors with their non-

dominant hand, a main effect for age group (F (4, 5635) = 39.18 , p < 0.001), and no

interaction effect (p = 0.25). The post-hoc analysis on age group revealed a statistically

significant difference between Group-A and Group-C (p < 0.05), Group-A and Group-D

(p < 0.05), Group-A and Group-E (p < 0.05), Group-B and Group-D (p < 0.001),

Group-B and Group-E (p < 0.001), Group-C and Group-D (p < 0.001), Group-C and

Group-E (p < 0.001), and Group-D and Group-E (p < 0.05), with error being larger for

the last group in each pair.
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Table 4.5: Main effects and interaction effects for age group and hand for the different perfor-
mance measures. (Significant differences (p<0.05) in bold)

Measure Age Group Hand Age Group
*Hand

F P F P F P
Circle-A
Error 39.18 0.00 107.49 0.00 1.35 0.25
Speed 11.38 0.00 154.28 0.00 2.92 0.02
Movement
Smoothness 13.94 0.00 177.18 0.00 7.41 0.00

Square
Error 2.03 0.09 164.28 0.00 3.11 0.01
Speed 2.82 0.02 400.83 0.00 1.53 0.19
Movement
Smoothness 13.70 0.00 438.24 0.00 2.06 0.08

Circle-S
Error 0.70 0.59 0.03 0.87 0.79 0.53
Speed 8.41 0.00 467.58 0.00 8.17 0.00
Movement
Smoothness 2.99 0.02 8.97 0.003 1.78 0.13

Path
Error 20.33 0.00 0.70 0.40 0.77 0.55
Speed 31.02 0.00 109.38 0.00 4.16 0.002
Movement
Smoothness 72.29 0.00 142.57 0.00 4.47 0.001

Tapping- 2
Reaction
Time 0.39 0.82 13.61 0.00 0.46 0.76

Error 4.26 0.002 5.67 0.02 7.14 0.00
Tapping-4
Reaction
Time 1.86 0.12 100.33 0.00 0.50 0.73

Error 0.67 0.61 16.79 0.00 10.45 0.00
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Table 4.6: Pairwise comparisons between groups after significant interaction effects. Significant
differences are highlighted in green.
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Table 4.7: Pairwise comparisons between dominant and non-dominant hand after significant
interaction effects. Significant differences are highlighted in green.

Speed

Speed analysis revealed a main effect for hand (F (1, 5635) = 154.28 , p < 0.001),

with users being faster with their dominant hand, and a main effect for age group
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(F (4, 5635) = 11.39 , p < 0.001). We also found an interaction effect between hand and

age-groups (F (4, 5635) = 2.92 , p < 0.05). The post-hoc analysis revealed a statistically

significant difference between Group-A and Group-B (p < 0.001), Group-A and Group-

C (p < 0.005), and Group-A and Group-D (p < 0.05) for both the dominant and

non-dominant hand. Moreover, there was a statistically significant difference between

dominant and non-dominant hand for each group (p < 0.001), confirming the main effect

for hand.

Movement smoothness

The analysis of movement smoothness revealed a main effect for hand (F (1, 5635) =

177.18 , p < 0.001), with movement being less smooth with the non-dominant hand,

and a main effect for age group (F (4, 5635) = 13.94 , p < 0.001). We also found

an interaction effect between hand and age-group (F (4, 5635) = 7.41 , p < 0.001).

The post-hoc analysis revealed a statistically significant difference between Group-A

and Group-B (p < 0.001), Group-A and Group-C (p < 0.001), Group-B and Group-E

(p < 0.05), and Group-C and Group-E (p < 0.05) for both the dominant and non-

dominant hand. We also found a statistically significant difference between dominant

and non-dominant hand for each group (p < 0.001), confirming the main effect for hand.

Square

Error

Error analysis for the Square motor test revealed a main effect for hand (F (1, 5302) =

164.28 , p < 0.001), with users making larger errors with their dominant hand, and

no main effect for age group (p < 0.088). We also found an interaction effect between

hand and age-group (F (4, 5302) = 3.11 , p < 0.05). The post-hoc analysis revealed

a statistically significant difference between dominant and non-dominant hand for each
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Figure 4.1: Mean values of performance measures in Circle-A task by age group

group (p < 0.001), confirming the main effect for hand.

Speed

Speed analysis revealed a main effect for hand (F (1, 5302) = 400.83 , p < 0.001),

with speed being lower with the non-dominant hand, a main effect for age group

(F (4, 5302) = 2.82 , p < 0.05), and no interaction effect between hand and age

group (p < 0.190). The post-hoc analysis on age group revealed a statistically signifi-

cant difference between Group-A and Group-B (p < 0.05).

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 5302) = 438.24 , p <

0.001), with users making smoother movements with their dominant hand, a main effect

for age group (F (4, 5302) = 13.7 , p < 0.001), and no interaction effect (p < 0.083).

The post-hoc analysis on the age group revealed a statistically significant difference be-
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tween Group-A and Group-B (p < 0.005), Group-A and Group-E (p < 0.001), Group-B

and Group-D (p < 0.001), Group-B and Group-E (p < 0.001), Group-C and Group-E

(p < 0.001), and Group-D and Group-E (p < 0.05).

Figure 4.2: Mean values of performance measures in the Square test by age group

Circle-S

Error

The analysis of Error for the Circle-S motor test revealed no main effect for hand ( p <

0.87), no main effect for age group (p < 0.59), and no interaction effect (p = 0.53).

Speed

Speed analysis revealed a main effect for hand (F (1, 2036) = 467.58 , p < 0.001),

with speed being lower with the non-dominant hand, and a main effect for age group

(F (4, 2036) = 8.4 , p < 0.001). We also found an interaction effect between hand

and age-group (F (4, 2036) = 8.17 , p < 0.001). The post-hoc analysis revealed a
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statistically significant difference in speed between Group-A and Group-D (p < 0.001),

Group-A and Group-E (p < 0.001), Group-B and Group-E (p < 0.001), and Group-C

and Group-E (p < 0.001) for the dominant hand, and between Group-A and Group-E

(p < 0.001), Group-B and Group-E (p < 0.001), Group-C and Group-E (p < 0.001), and

Group-D and Group-E (p < 0.05) for the non-dominant hand. In addition, we found

a statistically significant difference between dominant and non-dominant hand for each

group (p < 0.001), confirming the main effect for hand.

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 2036) = 8.97 , p <

0.005), with users making smoother movements with the dominant hand, a main effect

for age group (F (4, 2036) = 2.99 , p < 0.05), and no interaction effect (p = 0.130).

However, the post-hoc analysis on age group did not reveal any statistically significant

difference between groups.

Figure 4.3: Mean values of performance measures in the Circle-S test by age group
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Path

Error

The analysis of Error for the Path motor test revealed no main effect for hand ( p =

0.402), a main effect for age group (F (4, 5274) = 20.33 , p < 0.001), and no interaction

effect (p = 0.548). The post-hoc analysis on age group revealed a statistically significant

difference between Group-A and Group-D (p < 0.001), Group-A and Group-E (p <

0.001), Group-B and Group-D (p < 0.001), Group-B and Group-E (p < 0.001), Group-

C and Group-E (p < 0.001), and Group-D and Group-E (p < 0.005)

Speed

Speed analysis revealed a main effect for hand (F (1, 5274) = 109.38 , p < 0.001),

with speed being lower with the non-dominant hand, and a main effect for age group

(F (4, 5274) = 31.02 , p < 0.001). We also found an interaction effect between hand

and age-group (F (4, 5274) = 4.16 , p < 0.005). The post-hoc analysis revealed a

statistically significant difference in speed between Group-A and Group-C (p < 0.05),

Group-A and Group-D (p < 0.001), Group-A and Group-E (p < 0.001), Group-B and

Group-D (p < 0.001), Group-B and Group-E (p < 0.001), Group-C and Group-D (p <

0.005), and Group-C and Group-E (p < 0.001) for the dominant hand, and between

Group-A and Group-B (p < 0.001), Group-A and Group-C (p < 0.005), Group-A

and Group-D (p < 0.001), Group-A and Group-E (p < 0.001), Group-B and Group-D

(p < 0.001), Group-B and Group-E (p < 0.001), Group-C and Group-D (p < 0.001),

and Group-C and Group-E (p < 0.001) for the non-dominant hand. Moreover, there

was a statistically significant difference between dominant and non-dominant hand for

each group (p < 0.001), except for Group-E.
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Figure 4.4: Mean values of performance measures in the Path test by age group

Movement smoothness

Movement smoothness analysis revealed a main effect for hand (F (1, 5274) = 142.57 , p <

0.001), with users making smoother movements with their dominant hand, and a main ef-

fect for age group (F (4, 5274) = 72.29 , p < 0.001). We also found an interaction effect

between hand and age-group (F (4, 5274) = 4.47 , p < 0.005). The post-hoc analysis

revealed a statistically significant difference in movement smoothness between Group-A

and Group-D (p < 0.001), Group-A and Group-E (p < 0.001), Group-B and Group-D

(p < 0.001), Group-B and Group-E (p < 0.001), Group-C and Group-D (p < 0.001),

Group-C and Group-E (p < 0.001), and Group-D and Group-E (p < 0.001), for the

dominant hand, and between Group-A and Group-C (p < 0.005), Group-A and Group-

D (p < 0.001), Group-A and Group-E (p < 0.001), Group-B and Group-D (p < 0.001),

Group-B and Group-E (p < 0.001), Group-C and Group-D (p < 0.001), Group-C and

Group-E (p < 0.001), and Group-D and Group-E (p < 0.001) for the non-dominant

hand. We also found a statistically significant difference between dominant and non-
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dominant hand for each group (p < 0.001), confirming the main effect for hand.

Tapping-2

Reaction time

Analysis of the reaction time for the Tapping-2 motor test revealed a main effect for

hand (F (1, 4641) = 13.61 , p < 0.001), no main effect for age group (p = 0.818), and

no interaction effect (p = 0.764).

Figure 4.5: Mean values of performance measures in the Tapping-2 test by age group

Error

Analysis of the error revealed a main effect for hand (F (1, 4641) = 5.67 , p < 0.05)

and a main effect for age group (F (4, 4641) = 4.26 , p < 0.005). We also found an

interaction effect between hand and age-group (F (4, 4641) = 7.15 , p < 0.001). The

post-hoc analysis revealed a statistically significant difference in error between Group-A

and Group-C (p < 0.005), Group-A and Group-D (p < 0.005), Group-A and Group-E

(p < 0.001), Group-B and Group-C (p < 0.05), Group-B and Group-D (p < 0.01), and

Group-B and Group-E (p < 0.001) for the dominant hand. In addition, we found a

statistically significant difference between dominant and non-dominant hand for Group-

A (p < 0.001) and for Group-B (p < 0.05), both with error being higher with the

non-dominant hand, and for Group-D (p < 0.05) and Group-E (p < 0.005), both with
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error being higher with the dominant hand.

Tapping-4

Reaction time

Analysis of the reaction time for the Tapping-4 motor test revealed a main effect for

hand (F (1, 4089) = 100.33 , p < 0.001), with reaction time being higher for the

non-dominant hand, no main effect for age group (p = 0.115), and no interaction effect

(p = 0.731).

Error

Analysis of the error revealed a main effect for hand (F (1, 4089 = 16.79 , p < 0.001)

and no main effect for age group (p < 0.612). We also found an interaction effect

between hand and age-group (F (4, 4089) = 10.45 , p < 0.001). The post-hoc analysis

revealed a statistically significant difference in error between Group-A and Group-C

(p < 0.05), Group-A and Group-D (p < 0.05), and Group-A and Group-E (p < 0.05) for

the dominant hand. In addition, there was a statistically significant difference between

dominant and non-dominant hand for Group-A (p < 0.001), with error being higher

with the non-dominant hand, and for Group-C (p < 0.001), Group-D (p < 0.05) and

Group-E (p < 0.001), all with error being higher with the dominant hand.

Figure 4.6: Mean values of performance measures in the Tapping-4 test by age group

63



4.3.2 Discussion

Overall, the results of this fine-grained analysis are largely consistent with the results of

the previous analysis and with the literature on human motor performance of the upper

limbs. In all motor tests, user performance with the dominant hand was better than

performance with the non-dominant hand. This is in agreement with the asymmetry

in arm motor performance that humans exhibit, which is associated with specific motor

control specializations of each arm, with the dominant arm specialized for predictive

control of limb and task dynamics and the non-dominant arm specialized for stabilizing

performance [8, 9, 86]. The only major exception to this pattern was found in the Square

motor test, where users of all age groups made larger errors with their dominant hand.

This is exactly the same result we found in the young adults vs. old adults study. Like

before, possible motivations for it can be related to a combination of the speed-accuracy

trade-off and the complexity of the movements required by the task, as well as to the

design of the test and the application themselves. The dominant vs. non-dominant hand

performance pattern was found to be typically consistent across all age groups except

for the Tapping-4 test, where error performance of Group-A users was better with the

dominant hand but the opposite was true for Group-C, Group-D, and Group-E users.

Why performance in this test would become better with the non-dominant hand with

increasing age is hard to explain and requires further investigation.

As in the previous analysis, we found strong evidence of the decline of human motor

performance with aging, which is due to several factors that negatively affect muscle

activation and movement coordination [18, 37, 95, 149, 96, 110, 149]. This is especially

clear when comparing the performance of the youngest users (Group-A) with that of

the oldest users (Group-E), with the first group being typically faster, more accurate,

and making smoother movements than the second group in most tests. The same ev-

idence was often found for Group-B and Group-C with respect to Group-E, showing
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that performance degradation was not linear across the age groups. Performance of

users in Group-A, Group-B, and Group-C was mostly similar while degradation became

evident only for Group-D, typically reaching its maximum for Group-E. In several mea-

sures, Group-D showed better performance than Group-E. These results are interesting

because they give neurologists the opportunity to study the aging of the population’s

neuromuscular system [33] across the entire range of ages, while typical results of studies

on motor performance and aging are limited to young vs. old groups.

Movement smoothness and speed were slightly more frequently involved than error in

highlighting performance differences in trail making tests while error was more effective

than reaction time in finger tapping tests. A peculiar effect was revealed in the analysis

of movement smoothness in the two motor tests in the accuracy category (Circle-A

and Square). The performance curve for smoothness in both tests had a characteristic

U-shape, with performance for Group-A being worse than performance for Group-B

(and also Group-C for Circle-A). The motivation for this pattern is unclear and requires

further investigation. As before, reaction time did not appear to be effective in revealing

expected age-related performance differences in the two tapping tests. As reaction time

is the defining measure for tapping tests, a different implementation of the tests is

probably needed to obtain more useful results.

Overall, the analysis provided further information about age-related motor patterns

and additional evidence for the meaningfulness of the data collected by the MotorBrain

app and the appropriateness of the included motor tests and performance measures. The

dataset could then be used by neurologists as a reference to support the diagnosis of

disorders affecting motor control, making it possible to compare the motor performance

of new cases with the normative behavior revealed by the existing data. This could also

be done with automatic approaches based on machine learning, e.g., by classifying new

cases with algorithms trained on the performance patterns of the different age groups.
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5
Machine learning models for

age-based classification of

motor performance

The statistical analysis of the MotorBrain dataset revealed significant differences in

motor performance between age groups, with performance differences becoming larger

and more frequent the more groups differed in terms of (median) age. This result

motivated us to implement machine learning models for the age-based classification of

motor performance.

Most studies that employ machine learning in the literature on movement disorders

use a supervised approach that is based on training datasets consisting of both healthy

subjects and subjects with neurological disorders (see Section 2.3). This makes it pos-

sible to directly classify new cases as healthy or not-healthy but is typically based on

training data related to subjects with neurological disorders in an advanced stage. Con-

sidering that it would be crucial to diagnose a patient in the early stage of a movement

66



disorder, when symptoms are mild and often ignored, the approach used in current

machine learning solutions can result in sub-optimal outcomes. Since the (cleaned) Mo-

torBrain dataset contains only data about (presumably) healthy subjects, our approach

was to build machine learning models that classify subjects based on their age group.

The idea is that if a new case is misclassified with respect to her known age, such case

shows motor patterns that differ from the typical motor patterns of her age group, thus

requiring further manual investigation by a neurologist.

In this chapter, we present the machine learning process we followed to build the

models, starting with the extraction of appropriate features and continuing with feature

selection, training, and evaluation of the results.

5.1 Feature extraction

The set of features we used to support the learning process includes the same perfor-

mance measures we used in the statistical analysis, augmented with additional features

derived from the literature. Table 5.1 shows a complete list of the considered features.

In the following, we provide details about the additional features, divided by motor test

category.

5.1.1 Trail making features

Four of the motor tests included in MotorBrain (Circle-A, Square, Path, Circle-S) are

trail making tests that require users to draw or follow a path on the screen.

In addition to the previously discussed performance measures, we computed 5 new

features for each trail-making test: drawing velocity, normalized velocity variability,

Shannon entropy, skewness, and kurtosis.
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Drawing velocity

Velocity is defined as the rate of change in position while drawing with respect to time

and is calculated using the following formula:

V =

N−1∑︂
i=1

√︁
(xi+1 − xi)2 − (yi+1 − yi)2

ti+1 − ti
(5.1)

Velocity is also used as input in the computation of the other 4 derived features.

Normalized velocity variability (NVV)

Normalized velocity variability (NVV) describes the subject’s drawing velocity variabil-

ity and has been shown to be effective in identifying abnormal movement patterns. The

NVV was introduced by Kotsavasiloglou et al. [90], who used it as a way to capture the

balance, or lack thereof, of muscle tone between opposing muscle systems. Indeed, the

low-level control of muscle systems occurs on a time scale of the order of milliseconds,

whereas the conscious control of movement cannot occur at such a high frequency. The

NV V is lower for more regular or smoother movements than for irregular movements.

The following formula can be used to calculate this feature:

NV V =
1

T |MV |

N−1∑︂
i=1

|vi+1 − vi| (5.2)

Where MV = 1
N

∑︁N
i=1 vi, T is the total time, N is the number of data points, and

v is the magnitude of the respective velocity data point.

Shannon entropy

Entropy is a measure of a signal’s randomness or uncertainty [52]. Shannon entropy

reveals hidden complexities of physiological systems in trail making tests. Shannon

entropy for the velocity of each repetition is calculated as:
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ETPv = −
N∑︂
i=1

P (vi)log2(P (vi)) (5.3)

Where N is the number of data points, v is the velocity of data points, and P (v)

is the probability density function calculated by kernel density estimation. To compute

Shannon entropy, we used the Sklearn KernelDensity function with a bandwidth of 10

and a Gaussian kernel, with all other parameters using their default values.

Skewness and kurtosis

The use of skewness and kurtosis as features was proposed by Drotár et al [51] to

characterize the handwriting patterns of PD patients. Kurtosis measures whether a data

distribution is "heavily tailed" or "lightly tailed" compared to a normal distribution,

while skewness measures the degree of asymmetry in a data distribution. In the trail-

making testing, we calculated skewness and kurtosis of velocity.

5.1.2 Finger tapping features

For the 2 tapping tests, along with the previously defined measures (reaction time

and tap precision), we computed 2 new features: tap speed and integrated cognitive

assessment.

Tap speed

Tap speed is the number of taps a user makes in the unit of time. In MotorBrain tapping

tests, users have only 10 seconds to complete one repetition. Thus, if a user makes N

taps during a repetition, then the tap speed is N/10.
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Table 5.1: Description of features extracted from shapes where {TMT}: trial making tests,
{TT}: for tapping tests.

Shape Features Descriptiom
{TMT} mean(error) The mean error in three repetitions.
{TMT} SD (error) Standard deviation of error in three repetitions.
{TMT} COV (Error) The coefficient of variation in error
{TMT} mean (Drawing Velocity) The mean drawing velocity in three repetitions
{TMT} SD (Drawing Velocity) Standard deviation of drawing velocity in three repetitions.
{TMT} COV (Drawing Velocity) The coefficient of variation in Drawing Velocity
{TMT} mean (NVV) Characterize the variability of drawing velocity in three repetitions.
{TMT} Standard Deviation (NVV) Standard deviation of variability in drawing velocity in three repetitions
{TMT} Skew (v) Measures the symmetry of velocity distribution.
{TMT} Kurt (v) Measure of taildness of velocity distribution.
{TMT} mean (Movement Speed) The mean of movement speed in three repetitions.
{TMT} SD (Movement Speed) Standard deviation of movement speed in three repetitions.
{TMT} COV (Movement Speed) The coefficient of variation in movement speed
{TMT} mean (Movement Smoothness) The mean movement smoothness in three repetitions
{TMT} SD (Movement Smoothness) Standard deviation of movement smoothness in three repetitions.
{TMT} Entropy (velocity1) Measures the disorder or hidden complexities at repetition 1 using the entropy formula.
{TMT} Entropy (velocity2) Measures the disorder or hidden complexities at repetition 2 using the entropy formula.
{TMT} Entropy (velocity3) Measures the disorder or hidden complexities at repetition 3 using the entropy formula.
{TT} Mean (rt) The mean of reaction time in three repetitions.
{TT} SD (rt) Standard deviation of reaction time in three repetitions.
{TT} Skew (rt) Measures the symmetry of reaction time
{TT} Kurt (rt) Measures the taildnes of reaction time distribution
{TT} COV (rt) The coefficient of variation in reaction time.
{TT} Mean (Tapping Speed) Mean of (No. of taps in 10 seconds) in three repetitions
{TT} SD (Tapping Speed) Standard deviation of tapping speed in three repetitions.
{TT} Mean (Error) The mean error in three repetitions.
{TT} SD (Error) Standard deviation of error in three repetitions.
{TT} COV (Error) The coefficient of variation in error
{TT} Mean (ICA) Mean of Integrated cognitive assessment while tapping.
{TT} SD (ICA) Standard deviation of ICA.

Integrated cognitive assessment

Tapping tests involve both the visual and motor cortex, which are affected in the early

stages of neurodegenerative diseases. The integrated cognitive assessment (ICA) mea-

sures the speed and accuracy of visual and motor processing [85]. ICA is calculated as

follows, making use of tap speed and error (one of the previously available measures):

ICA =

(︃
tapspeed

100
∗ (1− error)

100

)︃
∗ 100 (5.4)
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5.2 Feature selection

In total, the number of features we have is 18 for trail making tests and 12 for tapping

tests. In the feature selection stage, we identified the optimal set of features for the

machine-learning classification problem, using two steps to remove any redundant or

irrelevant features that could cause a classification error. First, we eliminated non-

informative features that had a median absolute deviation (MAD) of zero. Second,

a subset of discriminatory features was selected using two different feature selection

methods: Minimum Redundancy, Maximum Relevance (MRMR) and Recursive Feature

Elimination with SVM (RFE-SVM). In both methods, the size of the optimal subset of

features was controlled by specifying the number of features (N) in advance.

5.2.1 MRMR

MRMR is a filtering method based on mutual information [98] that aims to identify

a small set of features that have the maximum possible predictive power (when used

together). It is an efficient approach to select features that are strongly associated with

the class labels (response variable). This strong association is captured by the mutual

information between the class labels and the feature vector. In the end, the features

that are weakly associated with the other features but strongly associated with the class

labels are selected. The method is based on the following formula:

JMRMR(Xi) = I(Y,Xi))−
1

|S|
∑︂
XjεS

I(Xi, Xj) (5.5)

where Xi is a feature that is not in the selected set yet, JMRMR(Xi) is the importance

of feature Xi, Y is the response variable (class label), S is the set of currently selected

features, |S| is the cardinality of set S, XjεS is one of the features in set S. The function

I(Y,Xi)) is the mutual information between class label Y and feature Xi and measures
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the strength of the association between the two variables. Similarly, I(Xi, Xj) is the

mutual information between variables Xi and Xj . The second part of the formula thus

measures the redundancy of feature Xi. At each step of the MRMR process, the feature

with the highest importance score is added to the selected feature set S.

5.2.2 RFE-SVM

The recursive feature elimination (RFE) method is used to find the features that can

optimize the performance of a pre-chosen model, e.g. SVM [137]. It explicitly models

the correlation between features, resulting in robust classifier performance. It starts

with the complete set of features, fitting the model and removing the weakest feature(s)

(in terms of scores such as feature importance). The process is repeated until the desired

number of features is reached.

Since the desired number of features to keep is not known in advance, cross-validation

is used with RFE to score different feature subsets and select the best scoring collection

of features. In our case, we tested the effect of using different numbers of features on the

predictive power of the two classifiers we employed, Random Forest (RF) and Logistic

Regression (LR), finally selecting the features that optimized the predictive power.

5.3 Synthetic data generation

Table 4.1 shows that the number of samples for the young age group is higher than the

number of samples for the old age group. Similarly table 4.4 shows that the number of

samples in the 5 age groups differ significantly. Classification results can be inaccurate

if we train a classifier with imbalanced datasets. To mitigate this problem, we used the

Synthetic Minority Oversampling technique (SMOTE), developed by Chawla et al [30],

to decrease the imbalance in our datasets. The SMOTE algorithm has been used in a

variety of domains, such as breast cancer detection [53], speech recognition [103], and
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network intrusion detection systems [34], to solve the problem of imbalanced data.

The technique balances a dataset by synthetically augmenting the minority class (the

class with the lowest number of samples) using the k-nearest neighbors approach. More

specifically, the following equation is used to synthetically add samples to the minority

class:

xsyn = xi + (xknn − xi) ∗ t (5.6)

where xsyn is a new sample that is generated by the algorithm using the following

steps:

1. Identify the k-nearest neighbor xknn of feature vector xi.

2. Calculate the difference between the feature vector and its k-nearest neighbor.

3. Generate a random number t between 0 and 1 and multiply it by the difference.

4. Generate the new sample by adding the output in step 3 to the feature vector xi.

5.4 Classification

For classification purposes, we used the Random Forest and Logistic Regression classi-

fiers.

5.4.1 Random Forest

The Random Forest classifier is an ensemble of decision trees [23]. Each decision tree is

trained with a different feature set and a different data subset (bootstrapping). Each tree

returns a predicted class and RF then returns the class with the majority of votes. This

classifier is suitable for our task because it is robust to outliers and its hyperparameter

class_weight is suitable for unbalance data.
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5.4.2 Logistic Regression

Logistic regression is mostly used for binary classification in machine learning. It uses the

sigmoid function to classify the data samples. The hypothesis used in logistic regression

is as follows

hΘ(x) = g(Θ0 +Θ1x1 +Θ2x2......Θnxn) (5.7)

where xn and Θn are the features and parameters used in the sigmoid or logistic

function g(y) to predict the class. g(y) is defined as:

g(y) =
1

1 + e−y
(5.8)

The output of the sigmoid function is always between 0 and 1. The output of the

hypothesis is positive if the output of the sigmoid function is > 0.5. Again, a loss

function is used to see how well the algorithm performs with the weights, represented

here as θ. The output of the loss function is a large value if the value predicted by hθ(x)

is far from the true class label y, and its output is small if the predicted output is close

to the true class.

The loss function is defined as

J(Θ) = − 1

m
.

m∑︂
i=1

(yilog(hΘ(x
i))(1y)ilog(1hΘ(x

i))) (5.9)

5.5 Experimental setup

To begin, we divided the entire dataset into a training dataset and a test dataset with a

stratified split of (60−40%) in order to have a good representation of the minority class

in the test set. The training dataset was used to build the model, and the test dataset

was used to evaluate the model.
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In the training data set, each feature vector was normalized by subtracting the mean

and dividing by the standard deviation. The features in the test data set were normalized

using the mean and standard deviation of the training set. The optimal set of features

was selected using the MRMR and RFE feature selection methods. Since the dataset

was unbalanced, the SMOTE oversampling technique was used to augment the training

data. In the SMOTE method, the 3 nearest neighbors of each sample in the minority

class were used to train the model. Samples were generated only for the minority class,

while the majority class remained unchanged. Grid search and 5-fold cross-validation

were used to train the model. Grid search was used to estimate the number of estimators

= 100 − 300 in the Random Forest classifier and the ranges of C = 0.001 − 100 in the

Logistic Regression classifier. All other parameters were set to default values.

Then we applied each trained classifier to the test set. The whole process was

repeated 10 times, each time using a different set of training and test splits by specifying

randomstate = None in a stratified train test split. In this way, we obtained a better-

generalized model for the entire dataset. The 5-fold cross-validation was repeated 10

times, so we obtained a total of 50 trained classifiers. For performance evaluation,

we computed the mean accuracy where accuracy = #correctpredictions
#testsubjects and mean Area

Under the Curve measures over the 50 classifiers to compare their results. For each test,

an independent classifier was trained.

The process was repeated two times, the first for the binary classification of young

vs. old adults, and the second for the multiclass classification of our 5 age groups.

5.6 Results

5.6.1 Feature selection

We initially extracted a total number of 18 features for each trail making test and 12

features for the tapping tests (as listed in Table 5.1).
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For the trail making tests, the MRMR feature selection method selected a total of

12 features out of the possible 18. The RFE-SVM selection method identified 8 features

that led to optimal performance of the LR classifier and 12 features for the RF classifier.

For the tapping test, both MRMR and RFE-SVM identified 6 optimal features out

of the initial 12 features.

Table 5.2 shows the features selected by MRMR for trail making and tapping tests

in each iteration (as we repeat the whole process 10 times with 5-fold cross-validation).

No similar list of unique features can be provided for RFE-SVM as the features changed

for each iteration of the classification process.

Table 5.2: Top features selected by MRMR: 12 features for trail making tests and 6 for tapping
tests ({TMT}: trial making tests, {TT}: for tapping tests).

Shape Features Descriptiom
{TMT} mean (NVV) Characterize the variability of drawing velocity in three repetitions.
{TMT} Standard Deviation (NVV) Standard deviation of variability in drawing velocity in three repetitions
{TMT} Skew (v) Measures the symmetry of velocity distribution.
{TMT} Kurt (v) Measure of taildness of velocity distribution.
{TMT} mean (Movement Speed) The mean of movement speed in three repetitions.
{TMT} SD (Movement Speed) Standard deviation of movement speed in three repetitions.
{TMT} COV (Movement Speed) The coefficient of variation in movement speed
{TMT} mean (Movement Smoothness) The mean movement smoothness in three repetitions
{TMT} SD (Movement Smoothness) Standard deviation of movement smoothness in three repetitions.
{TMT} Entropy (velocity1) Measures the disorder or hidden complexities at repetition 1 using the entropy formula.
{TMT} Entropy (velocity2) Measures the disorder or hidden complexities at repetition 2 using the entropy formula.
{TMT} Entropy (velocity3) Measures the disorder or hidden complexities at repetition 3 using the entropy formula.
{TT} Skew (rt) Measures the symmetry of reaction time
{TT} Kurt (rt) Measures the taildnes of reaction time distribution
{TT} SD (Tapping Speed) Standard deviation of tapping speed in three repetitions.
{TT} Mean (ICA) Mean of Integrated cognitive assessment while tapping.
{TT} SD (ICA) Standard deviation of ICA.
{TT} Mean (Error) Mean of Error.

5.6.2 Classification results

Table 5.3, Table 5.4, and Table 5.5 summarize the results of the RF and LR classifiers

trained with the optimal features selected by MRMR and RFE-SVM, for the binary

classification problem (young vs old adults) and the multi-class problem (5 age groups),

respectively. Results in the following sections highlight the best classifier for each motor

test and are grouped by hand.
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Table 5.3: Classification accuracy (%) and AUCs of the RF and LR classifiers with the MRMR
and RFE-SVM feature selection methods for motor performance classification (young vs. old
adults)

Task Name Classifier Feature Selection Dominant Hand Non-Dominant Hand
Accuracy AUC Accuracy AUC

Circle A

RandomForest RFE_SVM 86.0 0.70 86.4 0.67
MRMR 85.4 0.65 85.7 0.63

Logistic Regression RFE_SVM 70.8 0.71 72.6 0.73
MRMR 62.9 0.66 66.2 0.67

Square

RandomForest RFE_SVM 85.5 0.65 85.9 0.66
MRMR 85.6 0.69 85.9 0.67

Logistic Regression RFE_SVM 68.4 0.69 69.5 0.71
MRMR 64.2 0.67 63.7 0.69

Circle- S

RandomForest RFE_SVM 76.2 0.68 77.2 0.72
MRMR 77.2 0.69 77.0 0.72

Logistic Regression RFE_SVM 68.6 0.71 70.4 0.74
MRMR 69.0 0.73 71.5 0.73

Path

RandomForest RFE_SVM 84.6 0.68 84.9 0.69
MRMR 84.2 0.68 85.6 0.69

Logistic Regression RFE_SVM 66.4 0.72 67.9 0.73
MRMR 66.8 0.70 68.8 0.72

Tapping-2

RandomForest RFE_SVM 80.2 0.55 81.0 0.58
MRMR 80.9 0.57 81.6 0.56

Logistic Regression RFE_SVM 60.4 0.56 69.9 0.60
MRMR 68.2 0.56 69.8 0.63

Tapping-4

RandomForest RFE_SVM 80.2 0.56 80.7 0.55
MRMR 79.3 0.57 79.6 0.55

Logistic Regression RFE_SVM 61.9 0.58 65.9 0.56
MRMR 64.0 0.56 68.1 0.59

Young vs. old adults classification (dominant hand)

For the Circle-A motor test, the best-performing model was the RF classifier trained

with 12 features selected from RFE-SVM, which achieved an accuracy of 86% and an

AUC of 0.7.

For Square, the best-performing model was the RF classifier trained with 12 features

selected from MRMR, which achieved an accuracy of 86% and an AUC of 0.69.

For Circle-S, the best model was the RF classifier trained with 12 features selected

from MRMR, which achieved 77.2% accuracy, while the best AUC (0.73) was found for

the LR classifier.

For Path, the best model was the RF classifier trained with 12 features from RFE-

SVM, which achieved 84.6% accuracy, while the best AUC (0.72) was found for LR.

For Tapping-2, the best model was the RF classifier trained with 6 features from

MRMR, which achieved an accuracy of 80.9% with an AUC of 0.57.

For Tapping-4, the best model was the RF classifier trained with 6 features from

RFE-SVM, which achieved an accuracy of 80.2%, while the best AUC was obtained for
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LR with 0.58.

Young vs. old adults classification (non-dominant hand)

For Circle-A, the best-performing model was the RF classifier trained with 12 features

selected from RFE-SVM, which achieved an accuracy of 86.4% while the best AUC was

achieved by LR (0.73).

For Square, the best-performing model was the RF classifier trained with 12 features

selected from RFE-SVM, which achieved an accuracy of 85.9% while the best AUC was

achieved by LR (0.71).

For Circle-S, the best-performing model was the RF classifier trained with 12 features

selected from RFE-SVM, which achieved an accuracy of 77.2% while the best AUC was

achieved by LR (0.74).

For Path, the best model was the RF classifier trained with 12 features selected from

MRMR, which achieved 85.6% accuracy, while the best AUC of LR was 0.73.

For Tapping-2, the best model was the RF classifier trained with 6 features from

MRMR, which achieved an accuracy of 81.6%, while the best AUC was achieved by LR

(0.63).

For Tapping-4, the best model was the RF classifier trained with 6 features from

RFE-SVM, which achieved an accuracy of 80.7%, while the best AUC was obtained by

LR (0.59).

5 age groups classification

For Circle-A, the mean AUC of the two feature selection methods are 0.78 and 0.775 with

RF and 0.64 and 0.645 with LR, for the dominant and non-dominant hands, respectively.

For Square, the mean AUC of the two feature selection methods are 0.78 and 0.79

with RF and 0.64 and 0.645 with LR, for the dominant and non-dominant hands, re-

spectively.
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For Circle-S, the mean AUC of the two feature selection methods are 0.7 and 0.715

with RF and 0.635 and 0.64 with LR, for the dominant and non-dominant hands, re-

spectively.

For Path, the mean AUC of the two feature selection methods are 0.78 and 0.78

with RF and 0.645 and 0.655 with LR, for the dominant and non-dominant hands,

respectively.

For Tapping-2, the mean AUC of the two feature selection methods are 0.72 and

0.72 with RF and 0.555 and 0.58 with LR, for the dominant and non-dominant hands,

respectively.

For Tapping-4, the mean AUC of the two feature selection methods are: 0.72 and

0.71 with RF and 0.55 and 0.51 with LR, for the dominant and non-dominant hands,

respectively.

Table 5.4: AUCs of the RF and LR classifiers with the MRMR and RFE-SVM feature selection
methods for Circle-A, Square, and Circle-S motor performance classification (5 Age groups): a
and b refer to dominant and non-dominant hand results.

(a) Feature Selection Circle-A Square Circle-S

Random Forest MRMR 0.78
(0.60, 0.52, 0.53, 0.60, 0.62)

0.78
(0.62, 0.51, 0.54, 0.60, 0.65)

0.70
(0.63, 0.52, 0.51, 0.55, 0.64)

RFE_SVM 0.78
(0.59, 0.51, 0.51, 0.59, 0.68)

0.78
(0.61, 0.53, 0.52, 0.59, 0.64)

0.70
(0.61, 0.51, 0.49, 0.56, 0.63)

Logistic Regression MRMR 0.61
(0.59, 0.53, 0.53, 0.59, 0.63)

0.62
(0.62, 0.52, 0.55, 0.58, 0.63)

0.64
(0.66, 0.50, 0.50, 0.63, 0.69)

RFE_SVM 0.66
(0.62, 0.50, 0.51, 0.63, 0.69)

0.66
(0.64, 0.51, 0.56, 0.63, 0.67)

0.63
(0.65, 0.50, 0.52, 0.63, 0.70)

(b)

Random Forest MRMR 0.77
(0.58, 0.51, 0.53, 0.57, 0.60)

0.79
(0.63, 0.53, 0.57, 0.60, 0.63)

0.72
(0.66, 0.51, 0.55, 0.62, 0.65)

RFE_SVM 0.78
(0.60, 0.52, 0.54, 0.58, 0.60)

0.79
(0.64, 0.50, 0.58, 0.61, 0.63)

0.71
(0.65, 0.51, 0.56, 0.61, 0.64)

Logistic Regression MRMR 0.63
(0.61, 0.52, 0.51, 0.58, 0.66)

0.63
(0.64, 0.53, 0.59, 0.59, 0.62)

0.65
(0.68, 0.48, 0.54, 0.61, 0.70)

RFE_SVM 0.66
(0.62, 0.51, 0.52, 0.62, 0.67)

0.66
(0.65, 0.52, 0.59, 0.64, 0.69)

0.63
(0.65, 0.47, 0.54, 0.62, 0.68)

Note: microAUCs of five age groups is displayed in an order (Group-A, B, C, D, and E) below the weighted average AUC.
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Table 5.5: AUCs of the RF and LR classifiers with the MRMR and RFE-SVM feature selec-
tion methods for for Path, Tapping-2, and Tapping-4 motor performance classification (5 Age
groups): a and b refer to dominant and non-dominant hand results.

(a) Feature Selection Path Tapping-2 Tapping-4

Random Forest MRMR 0.78
(0.62, 0.53, 0.53, 0.58, 0.72)

0.72
(0.53, 0.50, 0.52, 0.54, 0.53)

0.73
(0.54, 0.50, 0.51, 0.53, 0.53)

RFE_SVM 0.78
(0.61, 0.52, 0.51, 0.57, 0.70)

0.72
(0.51, 0.51, 0.53, 0.54, 0.56)

0.71
(0.53, 0.52, 0.51, 0.52, 0.57)

Logistic Regression MRMR 0.64
(0.61, 0.52, 0.51, 0.61, 0.73)

0.56
(0.53, 0.50, 0.49, 0.53, 0.56)

0.55
(0.53, 0.49, 0.51, 0.51, 0.53)

RFE_SVM 0.65
(0.63, 0.52, 0.52, 0.61, 0.73)

0.55
(0.53, 0.50, 0.48, 0.52, 0.52)

0.55
(0.53, 0.49, 0.50, 0.51, 0.55)

(b)

Random Forest MRMR 0.78
(0.64, 0.53, 0.55, 0.59, 0.67)

0.72
(0.52, 0.48, 0.52, 0.53, 0.50)

0.72
(0.51, 0.50, 0.49, 0.50, 0.47)

RFE_SVM 0.78
(0.63, 0.53, 0.54, 0.59, 0.68)

0.72
(0.52, 0.51, 0.51, 0.52, 0.54)

0.7
(0.52, 0.50, 0.49, 0.49, 0.48)

Logistic Regression MRMR 0.66
(0.65, 0.50, 0.51, 0.61, 0.73)

0.58
(0.55, 0.48, 0.51, 0.57, 0.55)

0.5
(0.52, 0.49, 0.48, 0.50, 0.48)

RFE_SVM 0.65
(0.64, 0.50, 0.49, 0.63, 0.74)

0.58
(0.54, 0.49, 0.50, 0.57, 0.53)

0.52
(0.52, 0.52, 0.48, 0.47, 0.55)

Note: microAUCs of five age groups is displayed in an order (Group-A, B, C, D, and E) below the weighted average AUC.

5.7 Discussion

The results of feature selection show that all the additional features we extracted from

the data besides the performance measures we used in the statistical analysis were always

included in the selected set, highlighting their usefulness in characterizing motor patterns

[90, 51, 52, 85]. The overall number of features we considered was limited with respect

to other studies in the literature and this could have affected the performance of our

models. In the future, it would be interesting to identify more features, either manually

or through automatic processes, that could add more discriminatory information to the

process, such as features related to the shape of trajectories.

The results of the binary (young vs old) classification task, summarized in Table

5.3, show that the RF and LR classifiers achieved a good degree of predictability with

both MRMR and RFE-SVM selected features, as the AUC values are always above 0.5

for all combinations, ranging from 0.55 to 0.74. The accuracy and AUCs values for the

non-dominant hand data were often found to be higher than those for the dominant

hand, especially with the LR classifier. In particular, the non-dominant hand models

showed improvements in AUC values from 0.1 to 0.2 for the trial making tests and from
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0.1 to 0.6 for the tapping tests, while accuracy values showed significant improvement

for tapping tests (almost 10% for Tapping-2 with RFE-SVM selected features and the

LR classifier). This shows that motor tests that are carried out with the non-dominant

hand can provide more discriminative data compared to tests with the dominant hand.

In terms of accuracy, the Random Forest classifier almost always showed significantly

better results compared to the Logistic Regression classifier, for both the dominant and

non-dominant hand. The difference between the two classifiers was on average around

20%, regardless of the feature selection method employed. The accuracy of the RF

classifier was typically over 80%, except for the Circle-S test, where it reached 76%.

Circle-A, Square, and Path were the motor test that achieved better results (around

85% accuracy and 0.7 AUC). Overall, performance of the RF classifier was good, both

in terms of accuracy and AUC, even if it did not reach the performance of models

available in the literature for the discrimination between healthy subjects and subjects

with neurological disorders ([93, 183, 5, 116]). Further optimizations of the process

and the inclusion of a larger set of initial features would probably lead to even better

performance.

The results of the multiclass (5 age groups) classification task, summarized in Table

5.4 and Table 5.5, show mixed results, as was expected from the statistical analysis.

AUC values for the different age groups were typically lower than what we found in

the binary classification task, with values for some of the motor tasks being lower than

0.5. AUC values of Group E (the oldest group) are always the highest, followed by

Group A (the youngest group) and Group D (the second oldest group) with similar

results. Both Group-B and Group-C have the lowest AUCs. There are also significant

differences among motor tests, with tapping tests showing significantly lower AUC values

compared to the other tests, especially for Group A and Group E. The impact of the

two feature selection methods seem to be minimal. Performance of the two classifiers

does not seem to differ much in terms of group-based AUCs while the weighted average
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AUC values are better for the RF classifier than the LR classifier. Overall, these results

show that classification of the extreme age groups is much easier than classification of

the middles age groups.

The inaccuracies in age group recognition may have different reasons. For example,

results may be distorted by the fact that we collected the data remotely and users

could have consciously or unconsciously provided an incorrect age. In the future, we

will explore different features, classification algorithms (e.g., ensemble methods), and

classification parameters to reach improved classification results.
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PART II
Computer-aided analysis of MRI datasets for

brain tumor survival prediction
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6
Background: brain tumor

survival prediction with

radiomics analysis

Predicting the survival of brain tumor patients is an important task for their treatment

and surgical planning. One of the approaches that can be used to obtain such prediction

is radiomics analysis of medical images of the tumors. The radiomics process consists of

different stages that are applied in sequence to the input images and their derived data.

In this part of the thesis, we specifically focus on two of the radiomics process stages:

segmentation and feature selection. More specifically, we focus on evaluating the impact

of different segmentation algorithms and of feature robustness on the prediction of the

survival of patients affected by one specific type of brain tumors, High Grade Gliomas

(HGGs).

In this chapter, we introduce gliomas, one of the most common types of brain tu-
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mors, and describe the stages of the radiomics process that can be used to automatically

analyze medical images of brain tumors. We then survey related work on segmentation

algorithms and feature robustness, before presenting the state-of-the-art on the appli-

cation of the full radiomics process to brain tumor survival prediction. We conclude the

chapter by summarizing our research goals.

6.1 Gliomas

A brain tumor is a benign or malignant mass of abnormal cells that grows in the brain.

Among the many types of brain tumors, gliomas are the most common. They arise from

the glial cells that surround neurons [29]. Based on the classification scheme introduced

by the World Health Organization (WHO) in 2016, gliomas can be divided into four

classes [105]: grade I and grade II gliomas are called Low-Grade Gliomas (LGGs), are

less aggressive, have a better prognosis, and are more common in children and young

adults; grade III and grade IV gliomas are considered High-Grade Gliomas (HGGs), are

malignant, have a worse prognosis, and are more common in older adults.

To give an idea of the impact of brain tumors in a western country, 23 out of 100, 000

people were diagnosed with a brain tumor each year between 2011 and 2015 in the United

States (See Figure 6.1) [122]. HGGs account for about 80% of malignant brain tumors.

The prevalence of HGGs is 0.59 to 5 out of 100, 000 people and the number of people

diagnosed with this type of glioma is rising continually [64]. Different motivations have

been identified for the increase in glioma diagnoses including the aging of the population,

exposure to ionizing radiation, air pollution, but also the fact that there is now a wider

access to medical imaging that makes discovery more frequent [64].
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Figure 6.1: Distribution of brain tumors in 2011-2015 in the United States [122].

6.2 Medical imaging for brain tumor diagnosis and

evaluation

Different types of medical imaging, such as Magnetic Resonance Imaging (MRI), Com-

puted Tomography (CT), Digital Pathology Images (DPI), and X-rays techniques, can

be employed to perform diagnostic and prognostic evaluations of brain tumors. In the

early stages of brain tumors, CT images can provide good diagnosis [173]. In later stages,

3D Multi-parametric MRI is a better solution for brain tumor detection and segmenta-

tion [115, 12, 129]. MRI is a non-invasive imaging modality that is routinely used for

three-dimensional spatial localization of brain tumors. Unlike X-ray and CT imaging,

MRI provides high resolution images, with superior soft tissue contrast without em-

ploying ionizing radiation [14]. For the diagnosis of brain gliomas, four MRI sequences

are routinely acquired, which are called T1-weighted (T1), T1-weighted contrast en-

hanced (T1ce), T2 weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR).
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These multi-parametric scans provide useful additional information for proper tumour

sub-region delineation. Whole tumor and tumor core regions are highlighted by T2 and

FLAIR MRI scans while enhancing tumor region and necrotic component of tumor core

are highlighted by T1 and T1ce MRI scans.

6.3 Overall survival prediction

Overall survival (OS) is defined as the number of days a patient survives post-surgery

[109]. Patient survival is strongly related to tumor grade. LGGs are less aggressive and

have a survival time of several years, while HGGs are more aggressive and malignant

with a median survival time of 12−16 months, even after good treatment [20]. With the

passage of time, LGG gliomas can grow and change into HGG. HGGs are heterogeneous

in nature and lead to shorter survival time due to rapid tumor growth and tumor invasion

into surrounding brain tissues [83]. In the management of HGGs, OS plays an important

role for treatment and surgical planning [147, 55, 136].

Different approaches can be used to estimate OS. In the clinical approach, survival

of HGGs patients is predicted with clinical characteristics such as patient’s age, gender,

performance, and resection status and with pathological characteristics of the tumor

such as WHO grade and morphology [153]. However, this approach has limitations

because gliomas are heterogeneous in nature and may have different locations, sizes,

and tumor-affected regions that make prediction more difficult.

Another approach that has become increasingly common in recent years is to predict

OS of brain gliomas by directly using information extracted from the medical images of

the tumors through radiomics analysis. Radiomics is an emerging method that extracts

meaningful high-dimensional data from medical images into meaningful and quantitative

predictive data with high precision and throughput. Extracted features have the ability

to exhibit the distinct phenotypic characteristics of tumor patterns that would not be
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noticed by the human eye, thus enhancing the clinical significance and the prognostic

and predictive power for HGG patients. Various imaging modalities such as MRI, PET

and CT can be used for radiomics analysis. At the beginning of the analysis, the

most appropriate imaging modalities for the specific clinical questions to answer must

be identified [123]. Because of its advantages over other modalities in the context of

brain tumor diagnosis and evaluation, MRI is often the source of choice for radiomics

analysis aimed at addressing different clinical questions, such as treatment response [38],

tumor classification [171], disease progression [140], tumor grading [128], and survival

prediction [178, 55].

In the radiomics-based approach, OS prediction for HGGs can be formulated as a

classification task. The Brain Tumor Segmentation (BraTS) challenge, which focuses

on the evaluation of state-of-the-art methods for the segmentation of brain tumors in

multimodal MRI scans and on the prediction of patient overall survival, defines three

survival classes: short-term survival (< 10 months), medium-term survival (10 − 15

months), and long-term (> 15 months) survival. Because of its impact on the field,

the publicly available BraTS dataset [115, 11, 10, 12] has become a de-facto standard

for brain tumor segmentation and OS classification, facilitating rigorous comparison of

available methods and leading to substantial advances in the field.

6.4 The radiomics process

The radiomics process consists of several sub-processes with defined inputs and outputs:

1. Preprocessing of the medical images prior to analysis

2. Segmentation of the Region Of Interest (ROI) in the images into different subre-

gions

3. Extraction of radiomic features from the segmented regions
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4. Selection of the most predictive set of features

5. Development of a machine learning model based on the selected radiomic features

and use of the model for the target task

6. Evaluation of the results based on performance metrics

6.4.1 Preprocessing

The medical images to analyze are often acquired by different institutions using differ-

ent imaging protocols. To standardize the images, some preprocessing steps must be

performed before any analysis can be done. Bias field correction is a recommended pre-

processing step to compensate for low-frequency changes in the images caused by field

inhomogeneities [164]. In addition, intensity normalization is used to convert the image

signal intensity to a standard intensity range. The intensity distribution is adjusted by

z-score normalization (zero mean and unit variance). To benefit from multi-parametric

MRI sequences, all sequences must be registered (aligned). The registration step involves

co-registration of all modalities or registration to an atlas space. MRI registration to an

atlas with linear registration creates a common reference frame. The MRI scans are also

skull-stripped and resampled to an isotropic resolution of 1×1×1 mm3 voxels. The pre-

processing of multi-parametric MRI scans before using them for automatic segmentation

can reduce the machine learning training time and increase model performance.

6.4.2 Segmentation

Segmentation of the region of interest (ROI) in the medical images is a necessary step

for feature extraction. Precise and accurate tumor segmentation is critical for treat-

ment and surgical planning, tumor characterization and patient survival prediction [59].

Manual segmentation of the ROI is considered the gold standard, but it is not a viable

solution for large datasets because it is subject to some degree of bias. Radiomics-based
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approaches thus often use automatic segmentation algorithms. Many automatic seg-

mentation algorithms have been developed for segmenting the ROI. Among these, Deep

Learning (DL) algorithms based on Convolutional Neural Networks (CNNs) have re-

cently emerged as a promising solution for automatic segmentation of tumor subregions

based on multi-parametric MRI scans. A recent review by Liu et.al. [104] provides a

comprehensive review of DL-based segmentation algorithms for brain tumors and re-

ports that accurate segmentation of tumor regions from MRI is still a challenging task.

A variety of tools are also available to support the segmentation task, such as GLISTR

[63], BraTuMIA [114, 134], 3D Slicer [54] and ITK-SNAP1.

6.4.3 Feature extraction

Based on the segmentation results, features are extracted from the segmented regions.

Radiomic features can be divided into agnostic features and semantic features [62].

Semantic features used by radiologists include lesion volume, diameter, and morphology.

Agnostic features are mathematically-derived quantitative features.

These features capture imaging patterns such as:

• First-order statistical features calculated from the voxels within the ROI, including

mean, median, standard deviation, range, and entropy.

• Shape-based features that describe the geometric shape of the tumor in the 3D

surface, including volume, diameter, and surface area of the tumor, as well as

some derived values such as sphericity, compactness, spherical disproportion, and

flatness.

• Texture features that account for image contrast between voxels in spatial rela-

tionships, including the grey-level run-length matrix, the grey-level co-occurrence

matrix, and the grey-level size zone matrix.
1http://www.itksnap.org.
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Many different tools and libraries exist to support feature extraction. Examples

include CaPTk [41], PyRadiomics [165], simple ITK filters [107] and some MATLAB

based tools (The Mathworks, Natick, MA). The implementation of these features may

vary, but the standard definitions for all of them are provided by the Image biomarker

standardisation initiative (IBSI) [187].

6.4.4 Feature selection

Radiomics projects usually extract a larger number of features than the number of

samples. A machine learning model built with such a number of features will result in

overfitting. The extracted set of radiomics features may also contain some redundant and

non-informative features. Therefore, dimension reduction and selection of the k most

robust, task-specific, and discriminatory features are important steps before training a

machine learning model. The possible stages for feature selection are outlined in Figure

6.2.

Figure 6.2: Feature selection is a multi-stage process consisting of removing unstable features,
removing features with zero or near zero variance (non-informative features), removing highly
correlated features (redundant features), selecting the optimal set of feature by using wrapper
methods like maximum relevance minimum redundancy (mRMR) or recursive feature elimina-
tion (RFE) [123].
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Feature selection involves two main steps: feature set reduction and feature subset

selection. In feature set reduction, a reasonable set of features is selected from a large pool

of features using statistical approaches. Feature stability can be achieved by avoiding

features that are sensitive to scanner, acquisition parameters, reconstruction algorithm,

and segmentation variability [91]. Features with low dynamic range are not informative

and are eliminated with a mean absolute deviation (MAD) of zero. Highly correlated

features increase the likelihood of overfitting and are therefore removed using task-

specific reduction methods such as the Spearman correlation coefficient and concordance

index. At the end of the feature reduction step, we obtain a set of informative, stable,

and non-redundant features. However, this set may still contain too many features for

training the machine learning model.

The optimal and most predictive set of features is then identified by the feature subset

selection step. Feature subset selection methods can be grouped into three categories

[158]:

1. Filtering methods select the most informative set of features using statistical prop-

erties of the data such as feature correlation, feature consistency, and information

theoretic measures. These methods are computationally efficient because they do

not use a learning algorithm.

2. Embedded methods use an optimization approach for feature selection that works

in combination with machine learning models such as LASSO [58], Ridge Regres-

sion [179], and Elastic Net [159]. These methods are computationally intensive as

they depend on the trained classifier.

3. Wrapper methods search for a subset of relevant and non-redundant features and

then evaluate these subsets based on the performance of the already selected clas-

sifier until an optimal set of features is determined. Examples include brute force,

where all possible feature combinations are tested using a machine learning model,
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and Recursive feature elimination with cross-validation (RFE-CV).

6.4.5 Machine learning model development

A machine learning model is built with the most predictive features for a given clinical

question. Depending on the nature of the clinical question, regression or classification

methods are used and the result will be in discrete or continuous form. The available

data will ideally be divided into a training, validation, and testing cohort. One large

cohort will be used for training the model and fine-tuning the hyperparameters, and a

smaller validation cohort will be used for validating the model performance. Finally,

the trained model is applied to the test cohort.

In the case of a small data set, the K-fold cross-validation technique can be used.

The original data set is divided into k subsets, one of which is used for validation while

the other k-1 subsets are used for training the model. The recommended value of k, as

found in various studies, is 5 or 10 [147, 88].

As is common in other contexts, machine-learning methods for radiomics analysis can

be supervised, where the available data consists of labelled examples, or unsupervised,

where patterns are learned automatically from untagged data.

6.4.6 Evaluation

The final step in the radiomics process is to evaluate the performance of the process.

Different performance measures are used based on the target application. In most cases,

regression and classification tasks are evaluated using an accuracy metric. Classification

performance has been evaluated using various metrics such as accuracy, sensitivity,

specificity, and precision. To determine the overall classification performance, the area

under the receiver operating curve (ROC-AUC), balanced accuracy, F1 score, and Area

Under the precision recall curves (AUPRC) can be used. For unbalanced data sets, the
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AUC and AUPRC are more important than other measures. Confusion matrices help

to understand the classifier’s per class performance.

6.5 State of the art on brain tumor segmentation

Brain tumor volume can be partitioned into three non-overlapping or three overlapping

subregions. The three non-overlapping subregions of brain tumor volume are called

peritumoral edema (PTE), non-enhancing core (NEC), and enhancing core (ENC) (see

Figure 6.3). These non-overlapping subregions can be combined in various ways to

generate three overlapping subregions of brain tumor volume called Whole Tumor (WT),

Tumor Core (TC), and Enhancing Tumor (EC). WT is a combination of the PTE, NEC,

and ENC subregions. TC is a combination of NEC and ENC. ET only contains the

enhancing core (ENC).

Figure 6.3: Example input dataset with four MRI modalities and corresponding ground truth
segmentation map. The last frame on the right is the ground truth with corresponding manual
segmentation annotation. Label legend: enhancing tumor (green), peritumoral edema (yellow)
and necrotic and non-enhancing tumor (red) [104].

While manual segmentation by experienced radiologists is the gold standard for

segmenting a volume of interest, such approach suffers from inter-reader variability of
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74% − 85% when large datasets are taken into consideration [115]. Moreover, manual

segmentation has very low reproducibility. The use of automatic segmentation algo-

rithms does not suffer from these problems. However, automatic segmentation of brain

tumors and their subregions is a challenging task for a number of reasons including

heterogeneity of tumor shape and appearance, ambiguous tumour boundaries, lack of

high-quality imaging data, unbalanced tumor tissue, presence of artifacts, and high

computational and storage requirements due to the volumetric nature of the data and

processing requirements.

Various automatic segmentation approaches have been proposed in the literature.

These include the thresholding method [182], in which voxels above a threshold are

classified as belonging to the tumor, the edge-based method [6], in which changes in the

intensity between edges of voxels are used as boundaries of tumors, the region growing

method [101], in which voxels that are similar to a seed voxel are classified as belonging

to the tumor, Convolutional Neural Networks (CNNs) [32, 46, 157, 108, 75, 170], which

are based on the structure of the human visual cortex, and the Atlas method [17], in

which a tumor-free reference MRI is used to segment the MRI containing the tumor

volume.

Many of these automatic segmentation methods have demonstrated their effective-

ness in segmenting brain tumors and their sub-regions. However, the results of each

method are different and there is no single method that provides precise segmenta-

tion. Each segmentation algorithm works differently, and even the same algorithm gives

different results with different parameters.

In the following sections, we provide details on notable segmentation algorithms

that have been proposed in the literature and that have been found to perform well in

segmenting tumor subregions on the BraTS datasets.
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6.5.1 CNN-based segmentation of brain tumor volume

In recent years, CNNs have shown promising performance in segmenting medical images.

Among the various CNN architectures, U-Net [143] and its variants [32, 46, 157, 108,

75, 170] proved their efficiency for medical image segmentation. A typical U-Net is

an encoder-decoder architecture. The encoder is used to map the input image into

latent space, followed by a decoder path. Encoder-decoder branches at the same depth

level are connected by skip connections to obtain the high level spatial information.

Each layer consists of convolutions followed by rectified linear units (ReLUs) and max-

pooling operations only for the down-sampling path. This network does not have a

fully connected layer since it is a fully convolutional network. At the end, a softmax

activation layer is used to map the input to the target segmentation labels.

DeepMedicRes 3D CNN

Kamnitsas et al [81] have proposed a carefully designed 3D CNN called DeepMedic

that not only uses small kernels, but also modifies the receptive field of the network

to enable dense inference. The architecture includes two paths that process segments

at two different scales, allowing the use of additional contextual information. They

proposed to sample training segments centered on a foreground voxel (voxel representing

the tumor region) and a background voxel (voxel representing the healthy brain region)

with a probability of 50% to correct the class imbalance inherent in the dataset, and

they showed that this corrects the true class distribution of the dataset. Finally, to

refine the boundary between the whole tumor and the background and reduce isolated

false positives, the probability maps obtained at the output were post-processed with

a 3D Conditional Random Field. DeepMedicRes 3D CNN provides non-overlapping

subregions (PTE, NEC, and ENC) of brain tumor volume.
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Dong 2D U-Net

Dong et al. [46] proposed a slice-based 2D U-Net to segment tumor sub-regions on vol-

umetric MRI scans. Instead of four available MRI sequences, it uses only two sequences

highlighting different tumor subregions. The authors suggested using FLAIR images

to delineate the whole tumor and tumor core regions and T1ce images to segment the

enhanced core region. Using a minimal number of MRI scans per patient also reduces

computational costs. To account for variations in tumor size and appearance, they used

an extensive data augmentation pipeline. Dong 2D U-Net provides non-overlapping

subregions (PTE, NEC, and ENC) of brain tumor volume.

Wang 2.5D CNN

Wang et al. [170] developed a hierarchical region-based approach to tumor segmenta-

tion, in which the multiclass segmentation problem is split into a hierarchical three-stage

binary segmentation task. First, the whole tumor is segmented by a 2.5D CNN, the re-

sult of which is forwarded to another 2.5D CNN network that segments the tumor core

within the whole tumor. The third 2.5D CNN receives the segmentation of the tumor

core and segments enhancing tumor core within the tumor core. The outputs of the

three 2.5D CNNs are combined to produce the final segmentation map. The three net-

works are trained independently and form a cascade during segmentation, a technique

called region-based prediction. Each CNN uses anisotropic pseudo-3D convolutional ker-

nels with multiscale prediction and uses fusion of multiple views (in axial, coronal, and

sagittal directions) to create the segmentation of a tumor subregion. Three such seg-

mentation frameworks, namely W-Net, T-Net, and E-Net, were combined in a cascade

where one framework operates on the output of the previous one to create a multiclass

segmentation map. Wang 2.5D U-Net yields overlapping subregions (WT, TC, and EC)

of a brain tumor.
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Isensee 3D U-Net

Isensee et al. [75] made the argument that instead of proposing different architectures,

one should focus on the training procedure, hence the title of their paper ‘No New-

Net’. Their premise is that a carefully tuned and well-trained U-Net is hard to beat in

segmentation performance and, hence, instead of focusing on architectural modifications,

one should emphasize the training and testing procedures. Their approach differed

from other previously proposed methods in several ways. Instead of the more prevalent

Batch Normalization, they employed Instance Normalization which was more consistent

with their small batch size. An un-weighted combination (sum) of Cross Entropy and

Dice loss was used to address poorly calibrated softmax probabilities, and occasional

convergence issues due to high variance in using Dice loss alone. They introduced co-

training with two combinations of three datasets which is equivalent to training on an

augmented dataset. Lastly, they make use of region-based prediction inspired by Wang

et al. [170]. The networks are trained with 5-fold cross-validation and each network in

the hierarchical cascade is an ensemble of five network models, one from each fold. This

amounts to employing thirty different networks to segment a patient scan. Isensee 3D

U-Net yields overlapping subregions (WT, TC, and EC) of a brain tumor.

Pereira 2D U-Net

In their patch wise segmentation, Pereira et al. [131] propose a 2D network that pre-

dicts the class for the central voxel in a 33x33 patch. They investigated small 3x3

kernels, which allow to design a deeper architecture with few weights and act as an

implicit regularizer against overfitting. They also proposed two different networks: a

shallow design for LGG segmentation and a deeper architecture for HGG segmentation.

The entire segmentation task is divided into three steps: preprocessing multiparamet-

ric MRI scans, training a CNN, and postprocessing the predicted segmentation maps.

98



Preprocessing includes N4 bias correction, Nyul intensity normalization, and z-score

normalization. Using a data augmentation technique that accounts for the anatomical

heterogeneity of brain tumors and provides better generalization performance, network

training is performed for the extracted patches. A morphological closure and cluster

thresholding were used as post-processing steps for the segmentations generated by the

trained network at the test time. By removing erroneous segmented clusters, this step

improves the segmentation performance. Pereira 2D U-Net provides non-overlapping

subregions (PTE, NEC, and ENC) of brain tumor volume.

HDC-Net

Luo et al. [108] proposed a hierarchically decoupled CNN (HDC-Net) by replacing

standard convolution blocks in a 3D U-Net with new lightweight HDC blocks composed

of carefully arranged 2D convolutions. HDC blocks have low computational complexity

and work simultaneously for the channel and spatial dimensions. For the spatial domain,

view decoupled works in three views (i.e. axial, coronal, sagittal). For the channel

domain, 2D convolution is only applied on the axial view, its view is applied on other

feature channels. HDC-Net provides non-overlapping subregions (PTE, NEC, and ENC)

of brain tumor volume.

E1D3 3D U-Net

Talha Bukhari and Mohy-ud-Din [157] proposed a modification of the 3D U-Net in-

spired by the concept of TreeNets and region-based prediction. The proposal, named

E1D3, is a single-encoder-multi-decoder architecture in which each decoder segments

one of the three hierarchical tumor subregions: WT, TC, and EC. The three binary seg-

mentation maps are then merged through a combination of morphological processing,

cluster thresholding, and hierarchical operations to create a multi-class segmentation

map. E1D3 3D U-Net yields overlapping subregions (WT, TC, and EC) of the brain
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tumor volume.

Comparison of segmentation algorithms

When comparing the effectiveness of the above-mentioned algorithms in segmenting

brain tumors and their sub-regions, it is clear that no single method provides precise

segmentation in all contexts. For example, Pereira 2D U-Net has shown superior per-

formance on the BraTS 2013 dataset, Dong 2D U-Net has been found to have superior

performance on the BraTS 2015 dataset, DeepMedicRes on the BraTS 2016 dataset,

Wang 2.5D CNN on the BraTS 2017 and 2018 datasets, Isensee 3D U-Net on the BraTS

2018 dataset, HDC-Net on the BraTS 2017 dataset, and E1D3 3D U-Net on the BraTS

2018 and 2021 datasets. For comparison purposes, Table 6.1 shows performance results

of several state-of-the-art algorithms in segmenting tumor subregions on the BraTS

validation dataset from 2018 to 2021.

6.5.2 Atlas-based segmentation

Image registration is a process used to align multimodal MR images to a common

frame of reference. Each tumor is located at a different site in the brain, which can be

determined by registering the patient’s MR image with a predefined anatomical atlas.

In medical image analysis, registration is an essential step for image fusion, voxel-based

analysis and image segmentation. In atlas based segmentation, an atlas with predefined

labels is registered into a target image, and segmentation is obtained by overlaying the

expert annotated region of interest with the registered atlas. Registration of glioma MR

images suffers from two main problems. First, tumor components produce an alteration

of the contrast of normal tissue. Second, the shape and volume of normal tissue change

due to surgery and tumor volume [168].

There are several approaches to image registration that differ in terms of degrees of

freedom, optimization choices, and similarity metrics. Two types of registration schemes
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Table 6.1: Comparison of the state-of-the-art methods on the BraTS validation dataset (years
2018-2021).

Segmentation
Network

Dice Similarity
Coefficient (%)

Hausdorff
Distance (mm)

WT TC EC WT TC EC
Self Ensembled

U-Net [186] 91.0 84.0 75.0 4.57 5.58 3.84

Scale Attention
Network [181] 91.0 85.0 79.0 4.09 5.88 18.19

Self-ensembled
3D U-Net [68] 91.0 85.0 80.0 4.30 5.69 20.56

Patch based
N-Net [84] 90.5 81.3 78.8 4.32 7.56 3.81

Cascaded
V-Net [70] 90.5 83.6 77.7 5.18 6.28 3.51

3D-SE
Inception [180] 90.1 81.3 79.8 6.37 8.84 4.16

Cross-Modality
GAN [184] 90.3 83.6 79.1 5.00 6.37 3.99

Cascaded-
Attention-Net [175] 90.1 82.6 78.5 6.39 6.28 3.81

E1D3 3D
U-Net [157] 91.2 85.7 80.7 6.11 5.54 3.12

Isensee 3D
U-Net [75] 90.9 85.2 80.7 5.83 7.20 2.74

HDC-Net [108] 89.7 84.7 80.9 4.12 6.12 2.43

are possible, linear and non-linear. Linear registration is a simple and most commonly

used type of registration. It is based on a rigid transformation with 6 parameters

(rotation and translation on the x, y and z axis) and an affine transformation with 12

parameters (rotation, translation, scaling and shear on the x, y and z axis ). This type

of registration works globally. Non-linear registration provides local matching of tissues

in the brain to the template. Generally, non-linear registration is initialized with the

result of linear registration.

Registration of gliomas is challenging, as it requires to register the brain image with

gliomas into a healthy template image. Therefore, it is important to ensure that intensity
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differences within tumor regions are excluded when calculating the cost function for good

quality registration.

6.6 State-of-the-art on robustness of radiomic features

Radiomic approaches extract quantitative features from radiological images and enable

diagnostic and prognostic evaluation of various diseases. However, these radiological im-

ages are acquired under different acquisition protocols and preprocessed using different

algorithms. The features extracted from these images are susceptible to these variations.

The proper translation of radiomic models into clinical setting requires fully automated

and generalized models that must include features that are robust, i.e. stable, with

respect to these variations.

The reliability of radiomic features can vary depending on the uncertainty of tumor

segmentation, as features are extracted from the obtained tumor segmentation maps.

Most studies have focused on semi-automatic and inter-rater segmentation variability,

but fully automatic segmentation variability has not yet been demonstrated in radiomics.

Tixier et al [161] investigated brain tumor segmentation variability between semi-

automatic and inter-rater manual segmentations by two raters for MR images. They

reported that GLCM texture features were robust and the subset of GLSZM features

was robust for interactive manual segmentation. They found that variations in most

radiomic features were greater between two consecutive scans than between segmenta-

tions.

Haarburger et al [67] analyzed the reproducibility of radiomic features extracted

from manual segmentations confirmed by four experienced raters and from probabilistic

segmentations obtained by probabilistic U-Net. They found that first-order and shape

features are robust to segmentation variability.

Kalpathy-cramer et al [80] evaluated variations in radiomic features in automatic

102



segmentation of lung nodules and different feature implementations. They reported

that 68% of 830 features had an overall correlation coefficient (OCCC) ≥ 0.75.

Suter et al. [156] studied the robustness of various feature categories using 125 per-

turbations including varying image resolution, k-space subsampling, additive noise, and

bin width for gray values. The study showed that, for the OS classification task, shape

features are most robust, with intra-class correlation coefficient (ICC) ∈ [0.97, 0.99],

followed by first order features, with ICC ∈ [0.48, 0.92], texture features such as

GLSZM with ICC ∈ [0.28, 0.83], GLCM with ICC ∈ [0.32, 0.82], GLRLM with ICC ∈

[0.30, 0.80], GLDM with ICC ∈ [0.31, 0.78], and deep features with ICC ∈ [0.48, 0.86].

6.7 State of the art on radiomics-based OS prediction

Many different radiomics-based solutions have been proposed in the literature for OS

prediction, mostly in connection with the BraTS challenge. In the following, we will

present the most significant works that have been published in recent years.

Puybareau et al. [136] used a 2D fully convolutional neural network (FCNN), based

on the VGG-16 architecture, for segmentation of brain tumors into three non-overlapping

subregions: peritumoral edema (PTE), non-enhancing core (NEC), and enhancing core

(ENC). Ten volumetric features were extracted from scans of subjects with Gross Tumor

Resection (GTR) status, using ground truth segmentation maps on the training cohort

and the obtained multi-regional segmentation maps on the validation and challenge

cohorts. The extracted features were normalized with principal component analysis and

used to train 50 Random Forest classifiers. The final prediction (of survival class) was

obtained by a majority voting on the 50 predictions from trained classifiers. The authors

reported an accuracy of 37.9% on the validation cohort and 61% on the challenge cohort.

Kao et al. [84] utilized an ensemble of twenty-six neural network architectures (nine-

teen variants of Deep-Medic [82] and seven variants of 3D U-Net [32] with random
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initialization, data augmentation, normalization, and loss function) for segmentation of

brain tumor into three non-overlapping subregions (PTE, NEC, and ENC). From the

obtained multi-regional segmentation maps they extracted 19 morphological, 19 volu-

metric, 78 volumetric spatial and 116 tractography features from 59 subjects with Gross

Tumor Resection (GTR) status. Discriminatory features were selected by recursive fea-

ture elimination and used to train a SVM classifier with a linear kernel. Compared to

morphological, spatial, and volumetric features, tractography features achieved a high

accuracy of 69.7% on the training cohort but a low accuracy of 35.7% on the validation

cohort and 41.6% on the challenge cohort.

Islam et al. [76] employed PixelNet [77] for segmentation of brain tumor into three

non-overlapping subregions followed by extraction of radiomic features including shape,

volumetric, and first order features. A subset of 50 most predictive features was selected

using cross validation and used to train an artificial neural network for prediction. The

authors reported an accuracy of 46.8% on the challenge cohort.

Agravat et al. [1] were the winning team of the BraTS challenge in 2019. They used

a 2D encoder-decoder architecture to segment brain tumors into three non-overlapping

regions. A Random Forest regressor was trained with shape, volumetric and age features.

Shape features were extracted only for the necrosis region. Volumetric features included

the ratio of whole tumor volume to brain volume and the ratio of enhancing tumor,

edema, and necrosis to whole tumor volume. The study reported an accuracy of 58.6%

on the validation cohort and 57.9% on the challenge cohort.

Wang et al. [170] used an ensemble of 6 variants of U-Nets with loss function and

postprocessing for segmentation of brain tumors into three non-overlapping subregions

(PTE, NEC, and ENC). From the obtained segmentation maps, 13 shape and location,

and 68 texture features were extracted. In addition to the radiomic features, the ra-

tio of the second semi-axis of the tumor core to the second semi-axis of whole tumor

was calculated and referred to as the relative invasiveness coefficient (RIC). Predictive
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features were selected by recursive feature elimination with a random forest regressor.

Three models were created to predict OS: (1) linear regressor with age only, (2) Ran-

dom Forest with the 5 predictive radiomics features and age, and (3) Epsilon Support

Vector Regressor with RIC and age. The authors reported an accuracy of 59.0% on the

validation cohort and 56.0% on the challenge cohort with the third model.

Feng et al. [55] used an ensemble of six 3D U-Net architectures for segmentation

of brain tumor into three non-overlapping subregions (PTE, NEC, and ENC). A linear

regression model was trained with 6 volumetric features, extracted using multi-regional

segmentation maps, and clinical features. The study reported an accuracy of 32.1% on

the validation cohort and 61% on challenge cohort.

Pei et al. [130] proposed a 3D self-ensemble ResU-Net architecture for segmentation

of brain tumor into three non-overlapping subregions (PTE, NEC, and ENC). 34 shape-

features were extracted from the obtained multi-regional segmentation maps and ranked

based on the feature importance attribute of a Random Forest classifier. The most

predictive features were used to train a Random Forest regressor. The authors reported

an accuracy of 55.2% on validation cohort and 43% on challenge cohort.

McKinley et al. [112] utilized a 3D-to-2D FCNN for overlapping segmentation of

brain tumor volume i.e., Whole Tumor (WT), Tumor Core (TC), and active tumor

(EC). Three features – number of distinct tumor components, number of tumor cores,

and age – were used to train a fusion of linear regression and Random Forest classifiers.

The study reported an accuracy of 61.7% on the challenge cohort.

Bommineni [22] used an ensemble of four 3D U-Nets, called Piece-Net, for non-

overlapping segmentation of brain tumor volume. Radiomic and clinical features includ-

ing volume, surface area, spatial location, and age were used to train a linear regression

model. The study reported an accuracy of 37.9% on the validation cohort and 58.9%

on the challenge cohort.

Asenjo and Solís [111] used an ensemble of four U-Net networks (three 2D U-Nets and
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one 3D U-Net) for segmentation of brain tumor into three non-overlapping regions. The

obtained multi-regional segmentation maps were used to extract a diverse set of radiomic

features including first-order, shape, texture, and spatial features. Three models were

independently learned for the OS classification task: (1) a RUSboosted decision tree

classifier was trained using a subset of 24 predictive features obtained with chi-square

test, (2) an SVM classifier with a quadratic kernel was trained using a subset of 10

predictive features obtained with MRMR method, and (3) a regression tree was trained

using a subset of 29 predictive features obtained with F-test. Discrete label predictions

were replaced with (continuous) survival days as follows: 150 days for short-term sur-

vivors, 376 days for medium-term survivors, and 796 days for long-term survivors. The

final prediction was obtained by taking mean of the continuous values (survival days)

of the three trained models. The study reported an accuracy of 61.7% on the challenge

cohort.

Numerous studies have shown that, in comparison to classification models trained

with handcrafted (radiomic) features, DL models reported poor predictive performance

on BraTS validation and challenge cohorts [155, 66, 152, 3]. For instance, Akbar et

al. [3] extracted deep features from 2D multi-parametric MRI scans by employing the

modified versions of MobileNet V1 [69] and MobileNet V2 [146] architectures. Deep

features, augmented with a clinical feature (age in years), were subsequently fed to

a deep learning prediction module called survival prediction model (SPM). The study

reported an accuracy of 31% on the validation cohort and 40.2% on the challenge cohort.

Two recent studies demonstrated instead strong performance of deep models for the

OS classification task. Zhao et al. [185] used a deep learning framework, called Segmen-

tation then Prediction (STP), based on 3D U-Net. The STP framework is composed of

a segmentation module, which segments the brain tumor volume into overlapping sub-

regions (i.e., WT, TC, EC), a local branch, which extracts features from whole tumor

only, and a global branch which extracts features from the last layer of the segmenta-
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tion module. Features from global and local branches are fused together to generate

survival prediction. The study reported an accuracy of 65.5% on the validation cohort

and 44.9% on the challenge cohort. Carmo et al. [25] employed a 3D U-Net with self-

attention blocks for segmentation of brain tumor volume into overlapping subregions

followed by prediction of OS class. The study reported an accuracy of 55.2% on the

validation cohort and 46.7% on challenge cohort. It is important to note that the gener-

alizability of deep models varied significantly between validation and challenge cohorts.

6.8 Our research goals

Radiomics-based approaches to OS prediction are impacted by choices made at each

step of the radiomics process. These include the image acquisition and pre-processing

parameters, the algorithms used for segmentation of tumor regions, the methods used

to extract features and perform the analysis.

Our focus in this work is on the critical segmentation sub-process and on the eval-

uation of feature robustness. Radiomic features that are extracted from 3D Multi-

parametric MRI and that are used to predict OS are sensitive to the variability in tu-

mor subregions segmentation algorithms. While many algorithms have been proposed

for automatic segmentation of brain tumor sub-regions, no evidence is available about

which algorithm is more appropriate in terms of radiomic performance. Additionally, all

studies of feature robustness evaluated robustness with respect to manual or semiauto-

matic segmentation but did not assess the ultimate utility of these features for outcome

prediction. One of our research goals is thus to identify MRI-based radiomic features

that are robust to fully automated tumor segmentation and can be used to predict

overall survival in HGGs.

In particular, we used the standard BraTS dataset of MR images provided by the

Brain Tumor Segmentation Challenge (BraTS) [115, 11, 10, 12] and the shape, volumet-
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ric, and spatial features commonly used by BraTS winning teams to reach the following

research goals:

• Quantitatively evaluate the impact of state-of-the-art DL segmentation algorithms

on radiomics-based prediction of OS in HGGs.

• Quantitatively evaluate the efficacy of multi-region segmentation maps, obtained

using the STAPLE label fusion method [142], on radiomics-based prediction of OS

in HGGs.

• Explore the efficacy of 6-subregions and 21-subregions radiomic models obtained

using an anatomy-guided multi-regional segmentation of the brain tumor volume

for the OS classification task.

• Provide a failure analysis of the considered multi-regional radiomic models for the

OS classification task.

• Evaluate the robustness in terms of stability of radiomic features extracted from

state-of-the-art DL algorithms.

• Compare the performance of stable and discriminatory features with the perfor-

mance of discriminatory features alone for the OS classification task.

In the next chapter, we will describe the complete radiomics process we followed to

evaluate the impact of selected state-of-the-art segmentation algorithms on radiomics-

based prediction of OS in HGGs.
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7
Evaluation of the impact of

segmentation algorithms on OS

prediction with multiregional

radiomics

As discussed in the previous chapter, tumor subregion segmentation is a fundamental

stage in the radiomics process. While many algorithms have been proposed for automatic

segmentation of brain tumor sub-regions, there has been no significant analysis of their

effect on radiomic performance. OS prediction is notoriously sensitive to the variability

in tumor subregions segmentation algorithms so exploring their impact is an important

goal.

In this chapter, we present the experimental methodology we followed to evaluate

the robustness of OS prediction to variations in the automatic segmentation of brain
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tumor volume in radiomics analysis. We compared five state-of-the-art Deep Learning

(DL) algorithms (Dong 2D U-Net, Wang 2.5D CNN, Isensee 3D U-Net, HDC-Net, and

E1D3 3D U-Net) as well as the STAPLE label fusion method [142], which is used

to fuse the segmentation labels obtained from the five DL segmentation algorithms.

All the implementation work was done in Python 3.6 using the following open-source

packages: scikit-learn [127], N4ITK bias field correction [164], ANTs [7], PyRadiomics1

[165], Pandas [113], Nibabel2 , and STAPLE fusion3 [142].

7.1 Experimental methodology

7.1.1 Data

As input to the radiomics process, we made use of the publicly available BraTS 2020

dataset of 3D multiparametric MRI scans [115, 11, 10, 12]. The training cohort consists

of 369 subjects with preoperative 3D multiparametric MRI scans (including T1, T2,

T1ce, and FLAIR sequences). Manual segmentation of tumor subregions (including

peritumoral edema, non-enhancing core, and enhancing core) is included and confirmed

by expert neuroradiologists [115]. Out of 369 subjects, 76 are low-grade gliomas (LGGs)

cases and 293 are high-grade gliomas (HGGs) cases. Out of 293 HGGs, complete survival

information was provided for 236 subjects and Gross Tumor Resection (GTR) status

was provided only for 118 subjects. Of the 118 subjects, 42 are classified as short-

term survivors, 30 are medium-term survivors, and 46 are long-term survivors. The

validation cohort consists of 125 subjects and GTR status is provided for 29 subjects

only. Unlike the training cohort, the validation cohort only contained preoperative 3D

multiparametric MRI scans (including T1, T2, T1ce, and FLAIR sequences), and did not

include manual segmentation of tumor subregions or survival information. Predictions
1https://pyradiomics.readthedocs.io
2https://github.com/nipy/nibabel
3https://github.com/FETS-AI/LabelFusion
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on the validation cohort can only be evaluated online on the CBICA4 portal. The

challenge cohort consists of 166 subjects and is not publicly available for experiments

and evaluation. The BraTS 2020 dataset also includes subjects from the The Cancer

Imaging Archive (TCIA) [35, 148] and provides a name mapping file that matches the

BraTS 2020 subject IDs with the TCIA subject IDs. With the help of matched TCIA

subject IDs, we managed to extract survival information and clinical variables of an

additional 31 HGGs from the validation cohort of the BraTS 2020 dataset. Of the 31

subjects, 16 are short-term survivors, 3 are medium-term survivors, and 12 are long-term

survivors.

To summarize, we used the 3 following data cohorts in our work:

• Training cohort (118 subjects)

• Testing cohort A (31 subjects)

• Testing cohort B (29 subjects)

Manual segmentation of tumor subregions is only available for the training cohort.

Survival information is only available for the training cohort and testing cohort A.

Table 7.1 summarizes demographic and clinical characteristics of the training and testing

cohorts.

7.1.2 Preprocessing

The 3D MRI scans for each subject were already skull-stripped, registered to T1ce

scan, and resampled to an isotropic 1 × 1 × 1 mm3 resolution [11]. The 3D MRI T1

scan for each subject was preprocessed using the N4ITK bias field correction algorithm

[164], which is a recommended pre-processing step before performing any medical image

processing task such as image registration [118].
4CBICA Image Processing Portal: https://ipp.cbica.upenn.edu/
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Table 7.1: Overview of the training and testing cohorts (A and B) used in the overall survival
classification task

Characteristics Training Cohort Testing Cohort A Testing Cohort B
Patient demographic
No. of patients 118 31 29
Patient distribution

CBICA UPenn 94 - 15
TCIA 17 31 -

Others1
(NA, MDA, UAB, WashU) 7 - 14

Imaging data
3D multiparametric MRI scans
(T1, T1ce, T2, and FLAIR) ✓ ✓ ✓

Ground truth Segmentation masks ✓ ✗ ✗

Clinical Information
Age (years) (p = 0.252)2 (p = 0.115)3

Range 27.8-86.6 17.0 - 80.0 21.7 - 85.6
Mean 61.9 58.4 57.3
Median 63.5 58 58
1 Standard deviation 12.0 15.5 14.3
Survival groups (p = 0.40)4

Range (days) 12-1767 16-1215 -
Mean (days) 446.4 390.8 -
Median (days) 374.5 293.7 -
1 Standard deviation (days) 343.8 314.4 -
Short-term [ <10 days] 42 16 -
Medium-term [10 - 15 months] 30 3 -
Long-term [>15 months] 46 12 -
Notes:
1 Information is not shared by the BraTS 2020 organizers
2 p-value for statistical comparison of age between training cohort and testing cohort A
3 p-value for statistical comparison of age between training cohort and testing cohort B
4 p-value for statistical comparison of survival between training cohort and testing cohort A

7.1.3 Brain tumor segmentation

Manual segmentations of tumor subregions are already provided for the training cohort

by BraTS challenge organizers. For testing cohorts (A and B), we automatically gen-

erated the segmentation of the brain tumor volume using five state-of-the-art CNNs

discussed in detail in the previous chapter (Dong 2D U-Net, Wang 2.5D CNN, Isensee

3D U-Net, HDC-Net, and E1D3 3D U-Net) after training them on the BraTS 2020

training data.

We also employed the STAPLE fusion method [142] to fuse the segmentation labels
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obtained from the CNNs algorithms.

The segmentations were performed on a system with 64 GB RAM, and an NVIDIA

RTX 2080Ti 11 GB GPU using the Tensorflow framework. Configuration and hyperpa-

rameters for the five segmentation architectures are presented in Table 7.2.

Table 7.2: Configuration and hyperparameters of the five CNNs used for automatic segmen-
tation of brain tumor volume (data provided by Syed. Talha Bukhari).

Network Dong 2D U-Net Wang 2.5D CNN Isensee 3D U-Net HDC-Net ED3DU-Net

Architecture 2D U-Net

Three 2.5D
Anisotropic CNNs

(W-Net, T-Net, and
E-Net) in cascade

3D U-Net with
Deep supervision 2.5D U-Net 3D U-Net

Activation ReLU P-ReLU Leaky-ReLU (0.01) ReLU Leaky-ReLU
(0.01)

Batch size 10
5

(Same for three CNNs
in cascade)

2 8 2

Initialization He-normal Truncated Normal He-normal He-normal He-normal

Input size/
Output size 2402/2402

W-Net: 19 x 1442/11x
1442

T-Net: 19 x 642/11x642
E-Net: 19 x 642/11x642

1283/1283 1283/1283 963/963

Learning Rate
policy1

Polynomial decay
(batch-wise)
η0 = 10−4

ηend = 10−7

γ =1.2

Constant (10−3)

Polynomial decay
(epoch-wise)
η0 = 0.01
γ = 0.9

Polynomial decay
(epoch-wise)
η0 = 10−3

γ = 0.9

Polynomial decay
(epoch-wise)
η0 = 10−2

γ = 0.9

Optimizer Adam Adam SGD + Nesterov
(0.99)

Adam
(AMSGrad

variant)

SGD+Nesterov
(0.99)

Loss Soft Dice Soft Dice Soft Dice + Cross
Entropy

Generalized
Soft Dice

Soft Dice + Cross
Entropy

Regularization - L2(10
−7) L2(3x10−5) L2(10

−5) L2(10
−6)

Total Training
iterations

(Gradient-decent
updates)

50k
(100 epochs) 20k (per network) 250k

(1000 epochs)
37.35k

(900 epochs)
125k

(500 epochs)

# Parameters 34.5 million

W-Net:
0.21 million

T-Net: 0.21 million
E-Net: 0.20 million

31.2 million 0.29 million 34.9 million

Training
Time2 ∼110 hours

W-Net (single-view): ∼84 hours
T-Net (single-view): ∼84 hours
E-Net (single-view): ∼20 hours

∼101 hours ∼110 hours ∼48 hours

Test-time
Augmentation ✓ ✗ ✓ ✓ ✓

Morphological
Post-processing

Morphological
closing, cluster
thresholding

✗ ✗ ✗ ✓

Notes:
1 For definition of variables consult Table 1 in [24].
2 Please note that training time also depends on the GPU system used for training. HDC-Net was trained on a dual-GPU
system whereas remaining CNNs were trained on a single-GPU system.
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7.1.4 Tumor subregion segmentation models

We used the results of the segmentation algorithms to build 4 different tumor subregion

segmentation models that could be used in the successive feature extraction stage of

the radiomics process. The four resulting segmentation models are called Whole Tumor

(WT) model, 3-subregions model, 6-subregions model, and 21-subregions model.

The four segmentation models belong to two main categories of brain tumor seg-

mentation models: (1) physiology-based models and (2) anatomy-based models.

Physiology-based segmentation model

In physiology-based models, the brain tumor is divided into three non-overlapping sub-

regions (PTE, NEC, and ENC), which are obtained directly as the results of the seg-

mentation algorithms. These tumor subregions can potentially provide better features

that are consistent with the prognosis of the tumor. In this work, the physiology-guided

segmentation model based on the use of the three separate non-overlapping subregions

is referred as a 3-subregions model. In addition, we defined the Whole Tumor (WT)

model as the combination of the three non-overlapping subregions, which we also used

in the process needed to create the anatomy-based segmentation models.

Anatomy-based segmentation models

In anatomy-based models, the brain tumor is subdivided into anatomical regions with

the help of a pre-defined Harvard-Oxford subcortical atlas with 21 labeled anatomical

regions [43]. Anatomy-based segmentation is obtained in four steps:

1. The Harvard-Oxford subcortical atlas is registered into subject space using diffeo-

morphic registration. To do this we used the SyNOnly algorithm as implemented

in the ANTs (Advanced Normalization Tools) package [7]. SyNOnly was initial-

ized with the output of affine registration and used mutual information as a cost
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function.

2. The Whole Tumor (WT) mask is overlaid with the registered atlas to extract the

tumor-affected anatomical regions.

3. Volumes of tumor-affected anatomical regions are computed and then ranked in

descending order.

4. Finally, the top-K anatomical subregions that combine to occupy more than 85%

of WT volume are retained.

In this work, we refer to the resulting segmentation model as 6-subregions segmenta-

tion model where 6 (= K) is the number of subregions selected in step 4. For comparison,

we also used the 21-subregions segmentation model obtained in step 2.

Given a segmentation model, i.e., WT, 3-subregions, 6-subregions, or 21-subregions,

one can extract region-specific radiomic features for classification. Figure 7.1 shows the

two segmentation models: physiology based segmentation, and anatomy based segmen-

tation with 6 subregions.
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7.1.5 Radiomic feature extraction

To compare the power of the different segmentation algorithms and models, we ex-

tracted radiomic features, using the PyRadiomics software package [165], from WT only

(WT radiomics model), from the three non-overlapping subregions PTE, NEC, and

ENC (3-subregions radiomics model), from the left and right cerebral cortex, left and

right cerebral white matter, and left and right lateral ventricle (6-subregions radiomics

model), and from 21 anatomical subregions provided by the registered Harvard-Oxford

subcortical atlas (21-subregions radiomics model). We extracted the following set of

(radiomic) features:

• Shape features include volume and surface area of each subregion. For instance,

in the 3-subregions radiomics model, we extracted volume and surface area of

peritumoral edema, non-enhancing core and enhancing core. In the OS classifica-

tion task, shape features have been shown to provide insight in tumor behavior

[136, 2, 22, 4, 130, 124]. Several studies report that tumor volume and surface area

are strong predictors of survival in patients with glioblastoma [115, 170, 22, 55].

A large tumor volume reflects severity of tumor and is associated to poor prog-

nosis and shorter survival times [115, 55]. We extracted 2 shape features for the

WT radiomics model, 6 shape features for the 3-subregions radiomics model, 12

shape features for the 6-subregions radiomics model, and 42 shape features for the

21-subregions radiomics model.

• Spatial features capture the location of the tumor within the brain. More specif-

ically, we extracted (a) coordinates (in 3D) of the centroid of the WT with respect

to the brain mask and (b) the Euclidean distance between the centroid of the WT

and the centroid of the brain mask. Brain mask is defined as the non-zero region

in the 3D FLAIR sequence. Spatial features have been shown to be predictive for

survival prediction task [27, 136, 22].
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• Demographic features consist of the age (in years) of the subject, which is

provided in the BraTS 2020 dataset.

Overall, a total of 7 features were obtained for the WT radiomics model, 11 features

for the 3-subregions radiomics model, 17 features for the 6-subregions radiomics model,

and 47 features for the 21-subregions radiomics model. A summary of the considered

radiomic features is provided in Table 7.3.

For the training cohort, radiomic features were extracted from 3D mpMRI scans

using manual segmentations provided with the BraTS 2020 dataset. For testing cohorts

(A and B), radiomic features were obtained using the six segmentation networks (five

CNNs and one STAPLE-fused segmentation) presented in Section 6.5.

Every feature vector from the training cohort was independently normalized (i.e.,

transformed to z-scores) by subtracting the mean and dividing by the standard deviation.

Features from testing cohorts A and B were normalized using the mean and standard

deviation of the training cohort. No feature selection was performed for the 4 considered

radiomic models, i.e. all features were used in the successive stage of the radiomics

process.

Table 7.3: Summary of radiomic features extracted for four radiomic models, namely, WT ra-
diomics model, 3-subregions radiomics model, 6-subregions radiomics model, and 21-subregions
radiomics model

Feature Types Feature Names No of Features
Clinical features Age 1

Spatial features
Centroid of the WT, (Euclidean)
Distance between the (centroid of)
WT and the (centroid of) the brain

4

Shape features
(WT radiomics model)

Volume and Surface Area of
Whole Tumor 2

Shape features
(3-subregions radiomics model)

Volume and Surface Area of
Peritumoral Edema (PTE)
Enhancing Core (ENC) and
Non-Enhancing Core (NEC)

6
(2 features * 3 subregions)

Shape features
(6-subregions radiomics model)

Volume and Surface Area of Right
Cerebral Cortex (RCC), Left Cerebral
Cortex (LCC), Left Lateral Ventricle
(LLV), Right Lateral Ventricle (RLV),
Left Cerebral White Matter (LCWM) ,
Right Cerebral White Matter (RCWM)

12
(2 features * 6 subregions)

Shape features
(21-subregions radiomics model)

Volume and Surface Area of 21 Subcortical Regions
defined by a registered Harvard-Oxford subcortical atlas Regions

42
(2 features * 21 subregions)
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7.1.6 OS prediction: model training and inference

We used a Random Forest (RF) classifier to predict the survival class of patients based

on the extracted radiomic features. In general, a RF is an ensemble of decision trees

that can be used for different tasks such as classification, regression, and others [100].

Ensemble models like RF are preferable to individual models because they provide higher

accuracy and better generalizability. Using a RF for classification tasks in medical

image analysis is a good choice because it is an effective method in handling multi-class

problems. Indeed, there is evidence in the literature that RF is the most effective and

stable method for predicting overall survival in glioma patients [125, 174].

For the training phase, random forest classifiers (N = 100) were trained on the train-

ing cohort comprising of 118 subjects with GTR status. Hyperparameters of each ran-

dom forest classifier were set as follows: (no_of_estimators = 200,max_features =

auto, class_weight = balanced, criterion = gini).

For the inference phase, a soft voting method was adopted to unify the outputs

of N random forest classifiers (with uniform weighting scheme) and generate a single

prediction of OS class for each subject.

7.1.7 Evaluation

Metrics for segmentation performance

Performance of the six segmentation algorithms (the five CNNs and the STAPLE-fusion

method) was quantified using Dice Similarity Coefficient (DSC) [44] and Hausdorff dis-

tance metric (HD-95) [73]. DSC quantifies the overlap between predicted and reference

segmentation maps while HD-95 measures the degree of mismatch between the predicted

and reference segmentation maps.

Consider a predicted binary segmentation map x = [x1, . . . . . . xN ]
T and a binary

reference segmentation map y = [y1, . . . . . . yN ]
T , with (xi, yi) = 0, 1. The DSC and
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HD-95 metrics for i = 1, ....., N , are computed as

DSC (x, y) =
2 |x ∩ y|
|x|+ |y|

=
2
∑︁N

i=1 xiyi∑︁N
i=1 xi +

∑︁N
i=1 yi

(7.1)

HD(x, y) = max

(︄
max
i∈x

(︃
min
j∈y

d(i, j)

)︃
,max

j∈y

(︃
min
i∈x

d(i, j)

)︃)︄

where DSC ∈ [0, 1] and HD ∈ [0,∞).

The six segmentation algorithms were ranked based on the Final Ranking Score

(FRS) and statistical significance (of ranking) was calculated using a random permuta-

tion test [24]. A lower FRS value means a higher ranking. FRS is calculated in three

steps:

1. Rank each subject segmentation with respect to others by using the HD and DSC

of three subregions (WT, TC and EC) in the six segmentation networks. This

results in 36 different rankings (3 subregions x 2 metrics x 6 networks).

2. Take the mean of the 6 rankings of each segmentation network obtaining a cumu-

lative rank for the 6 segmentation networks for each subject.

3. Compute the FRS via averaging of cumulative ranks of all subjects.

Metrics for radiomics performance

On testing cohort A (31 subjects), predictive performance of radiomic models was quan-

tified using area under the receiver operating curve (AUC) and area under the precision-

recall curve (AUPRC). On testing cohort B (29 subjects), predictive performance of

radiomic models could only be quantified with the accuracy (acc) metric on the CBICA

online portal. Accuracy measures the correctly classified and misclassified cases for each

class:

Accuracy =
tp + tn

tp + fp + tn + fn
(7.2)
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Classification performance in case of an imbalanced dataset is measured by the Area

Under the Curve (AUC) and Area Under the Precision Recall Curve (AUPRC). AUC

plots the True Positives Rate (TPR) vs False Positive Rate (FPR). TPR is defined as

TPR =
tp

tp+fn
while FPR is defined as FPR =

fp
fp+tn

.

AUPRC is the curve between precision and recall, with precision defined as precision =

tp
tp+fp

and recall defined as recall =
tp

tp+fn
.

Stability of the radiomic models was quantified with relative standard deviation

(RSD) calculated as a ratio of standard deviation to the mean of AUC. A lower value

of RSD corresponds to higher stability of the radiomic models.

RSD =
σ_AUC

µ_AUC
∗ 100 (7.3)

Statistical analysis of demographic data (in Table 7.1) was performed using the

student t-test. A p < 0.05 was considered statistically significant and a p < 0.001 was

considered statistically highly significant.

7.2 Results

7.2.1 Clinical characteristics

Table 7.1 displays clinical characteristics of the training cohort and testing cohorts.

The median age of the training cohort, testing cohort A, and testing cohort B were

63.5, 58, and 58 years respectively. No statistical difference was found in age between

the training cohort and testing cohort A (p = 0.252) and the training cohort and testing

cohort B (p = 0.115). The median overall survival (in days) for the training cohort and

testing cohort A were 375 days and 294 days respectively. While the training cohort was

balanced across three survival groups, i.e., short-term (42 subjects), medium-term (30

subjects), and long-term (46 subjects) survivors, testing cohort A had a sparse presence
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of medium-term survivors – only 3 subjects out of 31. No statistical difference was found

in overall survival days between the training cohort and testing cohort A (p = 0.40).

Survival information was not made publicly available for testing cohort B by the BraTS

2020 organizers.

7.2.2 Segmentation algorithm performance

Performance of the six considered segmentation algorithms, for testing cohorts A and

B combined (60 subjects), is summarized in Table 7.4. We used Final Ranking Score

(FRS) to unify the 6 segmentation performance metrics (i.e., DSC and HD-95 scores for

three subregions each) for each subject in testing cohorts A and B.

In terms of FRS, Isensee 3D U-Net was ranked significantly higher (p < 0.001) in

comparison to the remaining CNNs for brain tumor segmentation. Isensee 3D U-Net

obtained the highest DSC scores for WT (DSC = 91.5), TC (DSC = 90.9), and EN

(DSC = 87.0) subregions which quantifies overlap with manual segmentation maps. In

terms of the HD-95 metric, Isensee 3D U-Net was quite close in performance to HDC-

Net (∆HDavg = 0.07) and much better than E1D3 3D U-Net (∆HDavg = 1.2), Wang

2.5D CNN (∆HDavg = 1.43), and Dong 2D U-Net (∆HDavg = 1.53).

The STAPLE-fusion method ranked second, in terms of FRS, but not significantly

lower than Isensee 3D U-Net (p = 0.205). However, the STAPLE-fusion method was

ranked significantly higher than Dong 2D U-Net (p < 0.001), Wang 2.5D CNN (p <

0.001), HDC-Net (p < 0.001), and E1D3 3D U-Net (p < 0.001). Compared to the

five CNNs (individually), the STAPLE-fusion method reported the lowest HD-95 scores

which measure the degree of mismatch between manual and predicted segmentation

maps. Figure 7.1 shows the predicted multi-class segmentation maps obtained with six

segmentation networks for three subjects, one from each survival class, in testing cohort

A.
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Figure 7.1: Automatically segmented tumor subregions from the five CNNs-based segmen-
tation networks and the STAPLE fusion method. Label legend: Peritumoral Edema (green),
Enhancing Core (yellow), Non-enhancing Core (orange).
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Table 7.4: Performance of the five CNNs-based segmentation networks and the STAPLE-
fusion method on testing cohorts A and B (60 subjects). Bold font indicates best scores for
overlapping subregions (WT, TC, and EC)

Segmentation
Network

Dice Similarity Coefficient (%) Hausdorff Distance Final Ranking
Score (FRS)WT TC EC WT TC EC

Dong 2D
U-Net 90.4 ± 6.5 87.3 ± 9.9 84.1 ± 9.4 5.8 ± 9.0 6.5 ± 8.6 3.2 ± 5.5 6**

Wang 2.5D
CNN 90.6 ± 5.5 89.3 ± 8.7 85.2 ± 10.0 6.6 ± 10.0 5.7 ± 8.7 2.9 ± 4.8 5**

Isensee
3D U-Net 91.5 ± 5.5 90.9 ± 6.7 87.0 ± 7.3 4.4 ± 5.6 4.4 ± 8.5 2.1 ± 1.9 1

HDC-Net 90.8 ± 5.4 90.1 ± 7.3 85.9 ± 8.4 4.3 ± 4.4 4.5 ± 8.0 2.1 ± 1.3 3**
E1D3

3D U-Net 91.4 ± 4.9 89.7 ± 9.0 85.9 ± 9.1 5.5 ± 7.8 5.6 ± 10.0 3.4 ± 6.3 4**

STAPLE
Fusion 91.4 ± 4.8 90.6 ± 7.6 86.7 ± 7.7 4.1 ± 3.4 4.4 ± 8.1 2.0 ± 1.3 2

7.2.3 Radiomics models evaluation on Testing Cohort A (31 sub-

jects)

Performance measures (AUC, AUPRC, and RSD) for the four considered radiomic mod-

els are summarized in Table 7.5.

Table 7.5: Performance of the 4 radiomic models on testing cohort A (31 subjects). Bold
font indicates best performance achieved for each radiomic model.

Segmentation
Network

Performance
Metric

WT radiomic
model

3-subregions
radiomic model

6-subregions
radiomic model

21-subregions
radiomic model

Dong 2D
U-Net

AUC 0.70
(0.71, 0.66, 0.69)

0.75
(0.75, 0.46, 0.77)

0.71
(0.77, 0.48, 0.70)

0.70
(0.68, 0.43, 0.78)

AUPRC 0.58 0.66 0.51 0.57

Wang 2.5D
CNN

AUC 0.68
(0.68, 0.44, 0.7)

0.75
(0.66, 0.48, 0.87)

0.70
(0.71, 0.42, 0.74)

0.70
(0.65, 0.43, 0.78)

AUPRC 0.53 0.68 0.51 0.56

Isensee
3D U-Net

AUC 0.70
(0.72, 0.38, 0.72)

0.71
(0.7, 0.31, 0.75)

0.73
(0.75, 0.44, 0.78)

0.72
(0.69, 0.45, 0.72)

AUPRC 0.57 0.62 0.56 0.61

HDC-Net AUC 0.69
(0.68, 0.45, 0.72)

0.73
(0.67, 0.53, 0.82)

0.71
(0.71, 0.45, 0.75)

0.71
(0.67, 0.45, 0.78)

AUPRC 0.54 0.61 0.53 0.58

E1D3 3D
U-Net

AUC 0.67
(0.68, 0.36, 0.69)

0.72
(0.71, 0.35, 0.8)

0.71
(0.73, 0.42, 0.76)

0.72
(0.69, 0.51, 0.79)

AUPRC 0.54 0.64 0.57 0.60

STAPLE
Fusion

AUC 0.68
(0.69, 0.42, 0.71)

0.74
(0.7, 0.45, 0.82)

0.70
(0.75, 0.40, 0.74)

0.71
(0.69, 0.43, 0.77)

AUPRC 0.55 0.64 0.51 0.59
Note: The micro-AUC of the three classes is displayed as an ordered triplet, (short-term survivor, medium-term survivor, and
long-term survivor) below the weighted average AUC value.
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WT radiomics model

For the WT model, results showed that Dong 2D U-Net and Isensee 3D U-Net reported

highest predictive performance (AUC = 0.70 and AUPRC = 0.58) and E1D3 3D U-Net

showed lowest predictive performance (AUC = 0.67 and AUPRC = 0.54). While Isensee

3D U-Net showed strong predictive power for short-term survivors (AUC = 0.72) and

long-term survivors (AUC = 0.72), its performance dropped considerably for medium-

term survivors (AUC = 0.38). Dong 2D U-Net displayed best predictive performance for

medium-term survivors (AUC = 0.66) while maintaining high predictive performance on

short-term survivors (AUC = 0.71) and long-term survivors (AUC = 0.69). The stability

of the WT radiomics model was 1.52 as measured with RSD, across the six segmentation

methods. The STAPLE-fusion method marginally exceeded the predictive performance

of E1D3 3D U-Net and was inferior to the remaining segmentation networks.

3-subregions radiomics model

For the 3-subregions model, results showed that Wang 2.5D CNN and Dong 2D U-Net

reported highest predictive performance (AUC = 0.75 and AUPRC = 0.68) and Isensee

3D U-Net showed lowest predictive performance (AUC = 0.71 and AUPRC = 0.62).

While Dong 2D U-Net showed strong predictive power for short-term survivors (AUC

= 0.75) and long-term survivors (AUC = 0.77), its performance dropped considerably for

medium-term survivors (AUC = 0.46). HDC-Net displayed best predictive performance

for medium-term survivors (AUC = 0.53) while maintaining high predictive performance

on long-term survivors (AUC = 0.82) and short-term survivors (AUC = 0.67). The

stability of the 3-subregions radiomics model was 1.99 as measured with RSD, across the

six segmentation methods. STAPLE-fusion method exceeded the predictive performance

of E1D3 3D U-Net, HDC-Net, and Isensee 3D U-Net and was inferior to the remaining

segmentation networks.
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6-subregions radiomics model

For the 6-subregions model, results showed that Isensee 3D U-Net reported highest

predictive performance (AUC = 0.73 and AUPRC = 0.56) and Wang 2.5D CNN showed

lowest predictive performance (AUC = 0.70 and AUPRC = 0.51). Dong 2D U-Net

showed best predictive performance for medium-term survivors (AUC = 0.48) while

maintaining strong performance on short-term survivors (AUC = 0.77) and long-term

survivors (AUC = 0.70). The stability of the 6-subregions radiomics model, across the

six segmentation methods, was 1.48. The predictive performance of STAPLE-fusion

method was similar to Wang 2.5D U-Net and inferior to the remaining segmentation

networks.

21-subregions radiomics model

For the 21-subregions model, results showed that Isensee 3D U-Net and E1D3 3D U-

Net reported highest predictive performance (AUC = 0.72 and AUPRC = 0.61) and

Dong 2D U-Net and Wang 2.5D CNN showed lowest predictive performance (AUC

= 0.70 and AUPRC = 0.57). E1D3 3D U-Net showed best predictive performance for

medium-term survivors (AUC = 0.51) while maintaining strong performance on short-

term survivors (AUC = 0.69) and long-term survivors (AUC = 0.79). The stability

of the 21-subregions radiomics model, across the six segmentation methods, was 1.39.

STAPLE-fusion method marginally exceeded the predictive performance of Dong 2D

U-Net and Wang 2.5D U-Net and was inferior to the remaining segmentation networks.

7.2.4 Failure analysis

Finally, we performed failure analysis on the radiomics models by studying subjects

which were misclassified by a majority of segmentation schemes. More specifically, for

each radiomics model, we identified subjects misclassified with (a) all six segmentation
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schemes (0-6), (b) five segmentation schemes (1-5), and (c) four segmentation schemes

(2-4).

The analysis for the WT radiomics model, 3-subregions radiomics model, and 6-

subregions radiomics model revealed that 16 (distinct) subjects were misclassified for

at least one radiomics model. Out of 16 subjects, 8 were short-term survivors, 3 were

medium-term survivors, and 5 were long-term survivors. Figure 7.2(A) shows a Venn

diagram which distributes the 16 misclassified subjects across three radiomic models. 8

out of 16 subjects were misclassified by all three radiomic models.

Figure 7.2: Distribution of misclassified subjects in (A) WT radiomics model, 3-subregions
radiomics model, and 6-subregions radiomics model (B) WT radiomics model, 3-subregions
radiomics model, and 21-subregions radiomics model (C) WT radiomics model, 6-subregions
radiomics model, and 21-subregions radiomics model, on testing cohort A (31 subjects)

The analysis for the WT radiomics model, 3-subregions radiomics model, and 21-

subregions radiomics model revealed that 17 (distinct) subjects were misclassified for

at least one radiomics model. Out of 17 subjects, 9 were short-term survivors, 3 were

medium-term survivors, and 5 were long-term survivors. Figure 7.2(B) shows a Venn

diagram which distributes the 17 misclassified subjects across three radiomic models. 8

out of 17 subjects were misclassified by all three radiomic models.

The analysis for the 6-subregions radiomics model and 21-subregions radiomics model

revealed that 16 (distinct) subjects were misclassified for at least one radiomics model.

Out of 16 subjects, 9 were short-term survivors, 2 were medium-term survivors, and 5

were long-term survivors. Figure 7.2(C) shows a Venn diagram which distributes the

misclassified subjects across WT radiomics model, 6-subregions radiomics model, and
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21-subregions radiomics model. Most subjects (11 out of 12) misclassified by the WT

radiomics model also failed with the 6-subregions radiomics model and 21-subregions

radiomics model.

7.2.5 Radiomics models evaluation on Testing Cohort B (29 sub-

jects)

Classification accuracy for the four radiomic models on Testing Cohort B is summarized

in Table 7.6. Testing cohort B could only be evaluated online on the CBICA portal which

only reports classification accuracy. In terms of accuracy, the four radiomics models

reported superior (and matched) performance with multiple segmentation schemes. For

the WT radiomics model, HDC-Net, E1D3 3D U-Net, and STAPLE-fusion obtained the

highest accuracy (48.3%). For the 3-subregions radiomics model, the highest accuracy

(44.8%) was obtained with E1D3 3D U-Net. For the 6-subregions radiomics model, the

highest accuracy of 48.3% was obtained with Dong 2D U-Net, Isensee 3D U-Net, E1D3

3D U-Net, and STAPLE-fusion. For the 21-subregions radiomics model, the highest

accuracy of 51.7% was obtained with Dong 2D U-Net, and E1D3 3D U-Net. Amongst

the six segmentation schemes, E1D3 3D U-Net obtained the highest accuracy for the WT

radiomics model (48.3%), the 3-subregions radiomics model (44.8%), the 6-subregions

radiomics model (48.3%), and the 21-subregions radiomics model (51.7%).

Table 7.6: Classification accuracy of the four radiomics models on testing cohort B (29 sub-
jects)

Segmentation
Network

Accuracy (%)
WT

radiomic model
3-subregions
Radiomic Model

6-subregions
radiomic model

21-subregions
radiomic model

Dong 2D U-Net 44.8 41.4 48.3 51.7
Wang 2.5D CNN 44.8 41.4 41.4 37.9
Isensee 3D U-Net 44.8 41.4 48.3 44.8
HDC-Net 48.3 37.9 44.8 44.8
E1D3 3D U-Net 48.3 44.8 48.3 51.7
STAPLE Fusion 48.3 41.4 48.3 41.4
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7.3 Discussion

In this work, we explored the efficacy of four radiomic models – WT radiomics model, 3-

subregions radiomics model, 6-subregions radiomics model, and 21-subregions radiomics

model – for overall survival (OS) classification task in brain gliomas. The WT radiomics

model extracts features from the WT region only. The 3-subregions radiomics model

extracts features from three non-overlapping subregions of WT i.e., PTE, NEC, and

ENC. The 6-subregions radiomics model extracts features from six anatomical regions

overlapping with WT volume including left and right cerebral cortex, the left and right

cerebral white matter, and the left and right lateral ventricle subregions. The 21-

subregions radiomics model extracts features from 21 anatomical regions provided with

Harvard-Oxford subcortical atlas (Table 7.7 for 21 anatomical regions). We also quan-

tified the stability of radiomic models across six segmentation networks – five CNNs

and one STAPLE-fusion method. The five CNNs include three 3D CNNs – Isensee 3D

U-Net, E1D3 3D U-Net, and HDC-Net– one 2.5D CNN Wang 2.5D CNN, and one 2D

CNN, Dong 2D U-Net. For each subject in testing cohorts A and B, the predicted

segmentation maps from five CNNs were fused using the STAPLE-fusion method.

We benefitted from the publicly available BraTS 2020 and TCIA datasets and ex-

tracted three data cohorts – training cohort (118 subjects), testing cohort A (31 sub-

jects), and testing cohort B (29 subjects). The training cohort comprised of HGGs with

3D multiparametric MRI scans and manual segmentation of brain tumor volume into

three non-overlapping subregions i.e., PTE, NEC, and ENC. Testing cohorts A and B

also comprised of HGGs but only included 3D multiparametric MRI scans. While the

training cohort was reasonably balanced for the three survival classes – short-term sur-

vivors (42), medium-term survivors (30), and long-term survivors (46) – testing cohort

A had sparse representation of medium-term survivors with only 3 subjects out of 31.

Overall survival information for testing cohort B was not available offline.
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Table 7.7: The 21 subregions defined by the Harvard-Oxford subcortical atlas

Segmentation of brain tumor volume is the penultimate step in any radiomics frame-

work for brain gliomas. For each subject in testing cohorts A and B, the brain tumor

volume was segmented into three non-overlapping regions (PTE, NEC, and ENC) us-

ing the aforementioned six segmentation networks. Our results showed that 3D CNNs,

including Isensee 3D U-Net, HDC-Net, and E1D3 3D U-Net, provided superior segmen-

tation of brain tumor subregions by utilizing 3D contextual information in volumetric

scans. Amongst the five CNNs employed for brain tumor segmentation, E1D3 3D U-Net

had a large memory footprint (35 million trainable parameters) and shortest training

time (48 hours) and HDC-Net had the fewest trainable parameter (0.29 million train-

able parameters) with long training time (110 hours). The STAPLE fusion method

significantly outperformed four (of the five) CNNs (p < 0.001) except for Isensee 3D
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U-Net which was ranked higher (p = 0.205). Moreover, the STAPLE fusion method

reported the lowest HD-95 scores which has been observed previously with ensemble

methods [56, 61, 119, 177]. Isensee 3D U-Net superior performance is attributed to the

fact that the underlying 3D U-Net architecture was carefully optimized by empirically

tuning network and training parameters on the BraTS dataset.

Automatic segmentation of brain tumors and their subregions is a challenging task

for several reasons, including heterogeneity of tumor shape and appearance, unclear

tumor boundaries, lack of high-quality imaging data, unbalanced tumor tissue, and

the presence of artifacts [102, 31, 104]. The WT radiomics model, the 6-subregions

radiomics model, and the 21-subregions radiomics model required accurate segmentation

of WT volume which, in terms of Dice score, was performed quite similarly by the

six segmentation networks (DSC : 90.4 − 91.5%). However, in terms of Hausdorff

distance – which measures the largest segmentation error – segmentation of WT volume

had a large variability across six segmentation networks (HD − 95 : 4.1 − 6.6mm).

The 3-subregions radiomics model required accurate delineation of additional subregions

including Tumor Core (TC) and Active Tumor (EC). The segmentation of TC subregion

varied substantially across the six segmentation networks, in terms of DSC (87.3−90.9%)

and HD-95 (4.4 − 6.5mm) metrics. The segmentation of EC subregion is increasingly

difficult because of poor contrast, fragmented (physiologic) structure and low-contrast

MR images as reflected by uncertainty information associated with the segmentation

results [170]. This was exhibited by reduced segmentation accuracy (DSC : 84.1−87.0%)

across the six segmentation networks.

The four radiomic models were obtained by training Random Forest classifiers (N =

100 for each radiomics model) using shape, volumetric, spatial, and demographic fea-

tures. Our results showed that the 3-subregions radiomics model reported superior

predictive performance (mean AUC = 0.73), across the six segmentation networks,

compared to the WT radiomics model (mean AUC = 0.69), the 6-subregions radiomics
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model (mean AUC = 0.71), and the 21-subregions radiomics model (mean AUC =

0.71). This implied that a physiological segmentation of brain tumor volume into three

subregions (WT, TC, and EC) played a pivotal role in the overall survival classification

of brain gliomas. The 21-subregions radiomics model reported most stable predictions

(RSD = 1.39), across six segmentation schemes, compared to the 6-subregions radiomics

model (RSD = 1.48), the WT radiomics model (RSD = 1.52), and the 3-subregions

radiomics model (RSD = 1.99). The stability of the 21-subregions radiomics model

and 6-subregions radiomics model, over the 3-subregions radiomics model, is attributed

to the sole dependence on the segmentation of WT volume which is more accurately

generated by CNNs compared to TC and EC subregions.

Our failure analysis with the WT radiomics model, the 3-subregions radiomics model,

the 6-subregions radiomics model, and the 21-subregions radiomics model revealed that

18 (distinct) subjects were misclassified by at least one radiomic model for a majority

of segmentation networks. We found that the Hausdorff distance metric could be used

to explain the afore-mentioned phenomena. More specifically, we focused on the HD-95

metric for WT segmentation which is common to the three radiomic models. Our analy-

sis showed that the mean HD-95 metric (for WT segmentation), across six segmentation

networks, for 13 correctly classified subjects (by majority of segmentation schemes) was

HDWT
avg = 2.52± 0.22 and for 18 misclassified subjects was HDWT

avg = 5.92± 1.17. More-

over, 8 (out of 16) subjects which were misclassified by all radiomic models had large

segmentation errors (HDWT
avg = 7.09± 1.32). This empirically demonstrated that strong

predictive performance on overall survival classification of brain gliomas requires accu-

rate segmentation of brain tumor volume with small segmentation errors.

We also found that most subjects that failed on at least one radiomics model were

short-term survivors (8 subjects). Short-term survivors are typically associated with

aggressive and heterogeneous tumor expressions [19] and, hence, one needs to augment

the current feature set with appropriate measures of tumor heterogeneity for improved
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classification. Our analysis also revealed that the WT radiomics model, the 6-subregions

radiomics model, and the 21-subregions radiomics model simultaneously misclassified

11 (out of 12) subjects. This is attributed to the common requirement of an accurate

segmentation of WT volume for feature extraction and classification.
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8
Identification of robust features

and evaluation of their impact

on OS prediction

Identifying stable radiomic features is an important step for the translation of radiomics

based approaches into clinical setting, because radiomic features are affected by several

factors such as differences in image acqusition protocol, image reconstruction, and tu-

mor segmentation. In this chapter, we present the experimental methodology followed

to evaluate the robustness (in terms of stability) of radiomic features extracted from au-

tomatic segmentation algorithms and evaluate the impact of stable features on survival

prediction, using the standard BraTS dataset of MRI scans as input data. Unlike in the

previous study, we extracted a significantly larger number of features and performed fea-

ture selection on subset of radiomics features stable to variations in segmentations. For

the segmentation, we used the same set of segmentation algorithms we used in Chapter
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7, augmented with two additional segmentation networks: DMRes 3D CNN [81] and

Pereira 2D U-Net [131].

All the implementation work was done in Python 3.6 using the following open-source

packages: scikit-learn [127], N3 bias field correction [164], ANTs [7], PyRadiomics1 [165],

Pandas [113], ICC2 , OCCC3 and STAPLE fusion4 [142].

8.1 Experimental methodology

8.1.1 Data

As in the previous experiment, we made use of the publicly available BraTS 2020 dataset

of 3D multiparametric MRI scans [115, 11, 10, 12]. A detailed description of the data

is available in section 7.1.1. In this experiment, we used 2 of the data cohorts we used

in the previous experiment: the Training cohort of 118 subjects, and Testing cohort A,

comprising of 31 subjects.

8.1.2 Preprocessing

Preprocessing of the 3D MRI scans for each subject included skull-stripping, affine

registration to the SRI24 template, resampling to an isotropic 1×1×1 mm3 resolution,

N3 bias correction, and mean-variance normalization [11, 151, 26].

8.1.3 Brain tumor segmentation

Manual segmentations of tumor subregions are already provided for the training cohort

by BraTS challenge organizers. For the testing cohort, we automatically generated the

segmentation of the brain tumor volume using the seven state-of-the-art CNNs discussed
1https://pyradiomics.readthedocs.io
2https://github.com/Mind-the-Pineapple/ICC
3https://rdrr.io/cran/epiR/src/R/epi.occc.R
4https://github.com/FETS-AI/LabelFusion
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Table 8.1: Configuration and hyperparameters of the seven CNNs used for automatic segmen-
tation of brain tumor volume (data provided by Syed. Talha Bukhari).

in detail in section 6.5 (DeepMedicRes, Dong 2D U-Net, Wang 2.5D CNN, Isensee 3D

U-Net, Pereira 2D U-Net, HDC-Net, and E1D3 3D U-Net) after having trained them

on the BraTS 2020 training data.

We also employed the STAPLE fusion method [142] to fuse the segmentation la-

bels obtained from DeepMEdicRes, Dong 2D U-Net, Wang 2.5D CNN, Isensee 3D U-
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Net,Pereira 2D U-Net HDC-Net, and E1D3 3D U-Net.

The segmentations were performed on a system with 64 GB RAM, and an NVIDIA

RTX 2080Ti 11 GB GPU using the Tensorflow framework. Configuration and hyperpa-

rameters for the seven segmentation architectures are presented in Table 8.1.

8.1.4 Radiomic feature extraction

We extracted multi-regional and multi-modal radiomic features using the publicly avail-

able PyRadiomics software package [165]. More specifically, features were extracted

for three overlapping tumor subregions (i.e., WT, TC, and EC) across four 3D MRI

sequences (i.e., T1, T1-ce, T2, and FLAIR). For each tumor subregion and 3D MRI

sequence, 98 features were extracted including 13 shape, 17 first-order, and 67 texture

features. Moreover, first-order and texture features were extracted from the original

3D MRI image, wavelet filtered images (8 wavelet bands), and Laplacian of Gaussian

filtered images (σ = 1, 3). Two additional shape features (volume and surface area) were

extracted from the whole brain. In total, 11, 129 radiomic features were extracted for

each subject: 13 shape features × 3 tumor subregions + 2 whole brain features + 84

first-order and texture features × 4 channels × 11 image filtering schemes (including

original images) × 3 tumor subregions. Table 8.2 lists the names of all radiomic fea-

tures extracted for this study. For the training cohort, radiomic features were extracted

from 3D mpMRI scans using manual segmentation of (overlapping) tumor subregions

provided with the BraTS 2020 cohort. For the testing cohort, radiomic features were

extracted using predicted segmentation maps from eight segmentation schemes (seven

CNNs and the STAPLE-fusion method) discussed in in Section 6.5.

Radiomic features from the training cohort were inspected for outliers and NaNs.

Outliers were identified with a scaled version of MAD as follows: MADscaled(fi) =

cmedian(|fi − f−|) where c = − 1

{√2θ−13/2} and θ−1 is the inverse complementary error

function [97]. Every feature value fk
i > 3MADscaled(fi) was labeled as an outlier and
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replaced by the mean of the remaining feature values. The NaNs in each feature vector

(fi) were also replaced by the same mean value. Finally, z-score normalization was

performed for each feature vector (fi) by subtracting the mean and dividing by the

standard deviation. Radiomic features from the testing cohort were also corrected for

NaNs followed by z-score normalization. For each feature vector in the testing cohort,

NaNs were replaced by the mean values used (to replace outliers and NaNs) in the

training cohort and z-score normalization was performed using the mean and standard

deviation computed on the training cohort.

Table 8.2: The list of radiomic features extracted for each subject in the training and testing
cohorts.

Feature Type Feature Name Total

First order features
Energy, Entropy, Minimum, Maximum, 10th percentile, 90th percentile,
Mean, Median, Interquartile Range, Range, MAD, rMAD, RMS, Skewness,
Kurtosis, Variance, Uniformity.

17

Shape features

Multi-regional features

Mesh Volume, Surface Area, Surface Area to Volume Ratio, Sphericity, Maximum
3D Diameter, Maximum 2D Diameter (Slice), Maximum 2D Diameter (Column),
Maximum 2D Diameter (Row), Major Axis Length, Minor Axis Length, Least Axis
Length, Elongation, Flatness.

13

Total Brain features Mesh Volume, Surface Area 2
Texture features

GLCM

Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency,
Contrast, Correlation, Difference Average, Difference Entropy, Difference Variance,
Joint Energy, Joint Entropy, IMC1, IMC2, MCC, IDMN, IDN, Inverse Variance,
Maximum Probability, Sum Entropy, Sum of Squares.

21

GLRLM

Short Run Emphasis, Long Run Emphasis, Gray Level Non-Uniformity Normalized,
Run Length Non-Uniformity Normalized, Run Percentage, Gray Level Variance,
Run Variance, Run Entropy, Low Gray Level Run Emphasis, High Gray Level Run
Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis,
Long Run Low Gray Level Emphasis, Long Run High Gray Level Emphasis

14

GLSZM

Small Area Emphasis, Large Area Emphasis,Gray Level Non-Uniformity,Size-Zone,
Non-Uniformity Normalized, Zone Percentage, Gray Level Variance, Zone Variance,
Zone Entropy, Low Gray Level Zone Emphasis,High Gray Level Zone Emphasis,
Small Area Low Gray Level Emphasis, Small Area High Gray Level Emphasis, Large
Area Low Gray Level Emphasis, Large Area High Gray Level Emphasis.

14

GLDM

Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-Uniformity,
Dependence Non-Uniformity Normalized, Gray Level Variance, Dependence Variance,
Dependence Entropy, Low Gray Level Emphasis, High Gray Level Emphasis, Small
Dependence Low Gray Level Emphasis, Small Dependence High Gray Level Emphasis,
Large Dependence Low Gray Level Emphasis, Large Dependence High Gray Level Emphasis.

13

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength 5
Total Features 99
NOTES: GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM,
gray-level size zone matrix; NGTDM, neighborhood gray-tone difference matrix; MAD, Mean Absolute
Deviation; rMAD, Robust Mean Absolute Deviation; RMS, Root Mean Squared; IMC, Informational
Measure of Correlation; IDMN, Inverse Difference Moment Normalized; MCC, Maximal Correlation
Coefficient; ID, Inverse Difference.

137



8.1.5 Stability analysis

We used the intra-class correlation coefficient (ICC) [150] and the overall concordance

correlation coefficient (OCCC) [15] to quantitatively measure the robustness of radiomic

features across the seven (independent) segmentation schemes we used. ICC is widely

used to measure reliability of radiomic features across multiple raters [99, 67, 156].

In our study, we used ICC(2,1), which assumes that the seven state-of-the-art CNNs

are sampled from a wider pool of deep segmentation networks reporting strong perfor-

mance on brain tumor segmentation [150]. This is a reasonable assumption since the

top performing methods are variants of an encoder-decoder architecture with distinct

architectural and training hyperparameters. OCCC is another frequently used measure

of agreement of radiomic features across multiple raters [99, 80] and is computed as a

weighted average of all pairwise concordance correlation coefficients [94]. Unlike ICC,

OCCC incorporates both the degree of agreement and disagreement by assigning higher

weights to pairs of raters whose measurements have higher variances and larger mean

differences [15]. In the spirit of domain adaptation, we selected a subset of radiomic

features for training which are robust to variations in segmentations on the testing co-

hort. More specifically, the automatically generated brain tumor segmentations were

considered as seven independent raters for reliability analysis. We synergistically used

ICC and OCCC to select a subset of robust features from the original pool of 11129

radiomic features. A radiomic feature was considered to be robust if ICC ≥ 0.95 and

OCCC ≥ 0.95. Reliability scores (ICC and OCCC) computed on the external testing

cohort were only used to identify a pool of robust features for training a radiomic model,

on the training cohort, which exhibits strong generalizability on the novel dataset.
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8.1.6 Feature selection

To select an optimal subset of informative and discriminatory radiomic features, we

employed a two-stage process. In stage 1, noninformative features with median absolute

deviation (MAD) of zero were eliminated. In stage 2, a subset of discriminatory features

was selected using one of the following feature selection methods:

Minimum Redundancy, Maximum Relevance (MRMR) [45]: MRMR is an

information-theoretic approach of selecting a subset of minimally redundant features, Fi,

quantified by a small average pairwise Pearson correlation c(Fi, Fj) for all 1 ≤ i,j ≤ |F |,

which are strongly associated with response variables (Y), quantified by a large F-

statistic F (Fi, Y ).

Recursive Feature Elimination with SVM (RFE-SVM) [137]: RFE starts

by training an SVM classifier with the complete set of features and eliminates the one

with the lowest feature importance score. This process is repeated on the reduced set

of features until the required number of features are reached. RFE is superior to the

forward feature selection approach as every feature is considered in the selection process.

8.1.7 OS prediction: model training and inference

Since this study aimed to determine whether stability analysis for the identification of

robust features would lead to improved OS prediction performance compared to classi-

fication without stability analysis, we performed model training both with and without

taking into consideration the results of stability analysis.

In the first case (with stability analysis), the original set of features was first reduced

to a subset of robust features (via stability filtering as outlined in Section 8.1.5) followed

by further reduction to a subset of informative and discriminatory features. The ob-

tained subset of stable and discriminatory features was used to train fifty (n = 50)

random forest classifiers with random initialization.
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In the second case (without stability analysis), the original set of features was reduced

to a subset of informative features (via MAD filtering) and discriminatory features (via

one of the two feature selection methods outlined in section 8.1.6). The obtained subset

of discriminatory features was used to train fifty (n = 50) random forest classifiers with

random initialization.

Our hypothesis is that incorporating robust features in model training will enhance

generalizability of the models on novel datasets. The original set of radiomic features

(11,129 features) was augmented with a clinical feature, Age, before model training.

Hyperparameters of the random forest classifier were set as follows:

• RF classifier: no_of_estimators = 200, max_features = auto, class_weight =

balanced, criterion = gini

Hyperparameters for the feature selection methods were set as follows:

• MRMR: n_selected_features = N

• RFE-SVM: n_selected_features = N , kernel = linear, step = 1

For model training, we explored using an optimal subset of features of varying car-

dinality including Nε{10, 15, 20, 25, 30, 40, 50, 70, 100}.

For the inference phase, a soft voting method was adopted to unify the outputs

of 50 random forest classifiers (with uniform weighting scheme) and generate a single

prediction (OS: short-term vs medium-term vs long-term).

To compute the predictive power of each radiomic feature, a single feature at a time

was used to train a random forest classifier for classification. The uAUC of each feature

was an average over 100 iterations of randomized and stratified splitting of the training

cohort (70%-30% split).
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8.1.8 Feature set reduction using prior information

In addition to the previously described feature selection approach, we explored an al-

ternative feature selection approach based on exploiting prior information on feature

robustness available in the literature.

Many studies in the literature report that shape features are the most predictive

features for the OS classification task [132, 136, 2, 22, 55, 130, 124]. In particular,

Suter et al. [156] investigated the robustness of different feature categories using 125

perturbations and reported that shape and location features are the most robust features

for the OS classification task.

The first subset of features we selected was thus based on the list of robust features

identified by Suter et al. [156]. We extracted these shape features from the overlapping

whole tumor (WT) and tumor core (TC) subregions and from the non-overlapping

peritumoral edema (PTE), non-enhancing core (NEC), and enhancing core (ENC) tumor

subregions.

A second subset of features consisted in the spatial features discussed in section 7.1.5.

The third subset of features was based on the work of Pérez-Beteta et al. [132],

who identified two contrast enhancement geometry (CEG) features that showed good

predictive power for tumor geometry.

Finally, two additional shape features that are extracted from the whole brain (vol-

ume and surface area) were added to our set.

In total, using prior information for feature selection, we obtained 73 features for each

subject: 13 shape features × 5 tumor subregions, 4 spatial features, 2 CEG features,

and 2 whole brain features.
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8.1.9 Evaluation

Performance of the eight considered segmentation schemes was quantified using Dice

Similarity Coefficient (DSC) [44] and Hausdorff distance metric (HD-95) [73]. The

eight segmentation schemes were ranked based on the Final Ranking Score (FRS) and

statistical significance (of ranking) was calculated using random permutation test [24].

Predictive performance of the radiomic models was quantified using area under the

receiver operating curve (AUC). Stability of the radiomic models was quantified with

relative standard deviation (RSD) calculated as a ratio of standard deviation to the

mean of AUC. A lower value of RSD corresponds to higher stability of the radiomic

model.

8.2 Results

8.2.1 Clinical characteristics

Clinical characteristics of the training and testing cohort are presented in table 7.1.

8.2.2 Segmentation algorithm performance

Table 8.3 summarizes the performance of the eight segmentation schemes for the testing

dataset (125 subjects). The best overall segmentation performance for each tumor

subregion corresponds to the highest Dice score (DSC) and lowest Hausdorff distance

(HD-95). A high DSC implies that the predicted segmentation map has a high degree

of overlap with the (ground truth) manual segmentation map. Low HD-95 implies that

the predicted segmentation map has a low amount of voxel-wise segmentation error. We

used Final Ranking Score (FRS) to unify the 7 segmentation performance metrics (i.e.,

DSC and HD-95 scores for three overlapping subregions each) for each subject in the

testing dataset [24].
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Table 8.3: Performance of the considered segmentation schemes on testing cohort (125 sub-
jects).

Segmentation
Network

Dice Similarity Coefficient % Hausdroff Distance (mm) FRS
WT TC ENC WT TC ENC

DMRes 3D CNN 88.7 ± 12.3 78.1 ± 25.8 71.6 ± 31.6 8.97 ± 17.0 17.7 ± 57.3 32.3 ± 96.0 5∗∗

Dong 2D U-Net 89.6± 7.2 77.7 ± 23.7 71.0 ± 29.4 5.45 ± 7.7 11.4 ± 34.5 37.3 ± 105.0 7∗∗

Wang 2.5D CNN 88.1 ± 13.0 77.4 ± 25.3 75.2 ± 28.3 11.1 ± 20.8 13.67 ± 36.4 29.0 ± 91.2 6∗∗

Isensee 3D U-Net 90.5± 8.1 84.5 ± 16.4 76.9 ± 27.9 4.41 ± 5.99 8.65 ± 34.4 32.6 ± 100.9 1
Pereira 2D U-Net 87.7± 11.9 69.5 ± 30.2 67.0 ± 32.1 13.9 ± 23.3 22.85 ± 51.0 45.5 ± 108.8 8∗∗

HDC-Net 89.6 ± 10.3 93.1 ± 18.5 77.5 ± 27.2 7.5 ± 33.5 12.4 ± 47.5 32.3± 100.9 3∗∗

E1D33D U- Net 90.6 ± 6.4 82.7 ± 19.9 76.4 ± 27.6 5.8 ± 10.2 10.8 ± 35.9 22.96 ± 79.9 4∗∗

STAPLE Fusion 90.4 ± 7.4 82.9 ± 19.3 74.8 ± 28.8 5.3 ± 9.4 12.3 ± 47.4 30.6 ± 96.1 2
Note: ** indicates that the segmentation network is ranked significantly lower () in comparison to the top ranked method
Isensee 3D U-Net (FRS = 1)

In terms of FRS, Isensee 3D U-Net and STAPLE fusion method were ranked first and

second, respectively, with no significant difference between them (p = 0.49). However,

the STAPLE fusion method and Isensee 3D U-Net were ranked significantly higher

(p0.001) in comparison to the remaining six CNNs for brain tumor segmentation. Best

overall segmentation performance for the WT and TC subregions were reported by

E1D3 3D U-Net (DSC = 90.6 ± 6.4% and HD = 5.8 ± 10.2mm) and (DSC = 82.7 ±

19.9% and HD = 10.8± 35.9mm) respectively. No segmentation scheme reported best

overall segmentation performance for the EC subregion. Predicted segmentation maps

from HDC-Net maximally overlapped with the (ground-truth) manual segmentations

(DSC = 77.5 ± 27.2%) but with large voxel-wise segmentation errors (HD = 32.3 ±

100.9mm). On the contrary, E1D3 3D U-Net yielded predicted segmentation maps with

(relatively) lowest voxel-wise segmentation errors (HD = 22.9± 79.9mm).

8.2.3 Stability analysis results

From the original set of 11, 129 features, extracted from the testing cohort, we first

removed noninformative features (identified with MAD=0) and features not influenced

by automatic segmentation, which includes Total Brain features (see feature list table)

and Age. This reduced the original set to 11045 radiomic features.

From the pool of 11045 features, we then extracted the subset of radiomic features
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that were stable to variations in the considered segmentations, by synergistically using

the ICC and OCCC. More specifically, the subset consisted of radiomic features with

an ICC ≥ 0.95 and OCCC ≥ 0.95 across the seven segmentation schemes. Figure 8.1

summarizes the number of stable features obtained for each feature category by stability

filtering using ICC and OCCC independently.

Figure 8.1: Distribution of stable features across different feature categories.

Stability filtering with ICC only (τ ≥ 0.95) yielded 830 stable features with the

following statistics: Feature Category – 172 first-order features, 658 texture features,

MRI Sequence – 153 features from FLAIR sequence, 299 features from T1ce sequence,

233 features from T1 sequence, and 145 features from T2 sequence, and Tumor Subregion

– 801 features from WT region and 29 features from TC and zero feature from ENC

subregions. Stability filtering with OCCC only (τ ≥ 0.95) yielded 820 stable features

with the following statistics: Feature Category – 171 first-order features, 649 texture

features, MRI Sequence – 151 features from FLAIR sequence, 294 features from T1ce

sequence, 230 features from T1 sequence, and 145 features from T2 sequence, and Tumor

Subregion – 791 features from WT region and 29 features from TC and zero feature from

ENC subregions.
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Stability filtering with both ICC and OCCC (τ ≥ 0.95) resulted in a subset of 820

stable radiomic features with the following statistics: Feature Category – 171 first-order

features, 649 texture features, and zero shape feature, MRI Sequence – 151 features

from FLAIR sequence, 249 features from T1ce sequence, 230 features from T1 sequence,

and 145 features from T2 sequence, and Tumor Subregion – 791 features (96.5%) from

WT region and 29 features (3.5%) from TC and zero feature from ENC subregions.

Our results from stability filtering revealed that the 820 highly stable radiomic fea-

tures were: (1) predominantly texture features (79.1%), (2) mainly extracted from the

WT region (96.5%), and (3) largely representing the FLAIR and T1ce sequences (58.4%).

The resulting set of highly stable radiomic features was augmented with Total Brain

features (2) and Age to yield a subset of 823 features for prospective feature selection.

8.2.4 Overall survival classification

Feature selection

We employed one of the two feature selection methods – MRMR, and RFE-SVM – to

obtain an optimal subset of discriminatory features for the underlying radiomic task.

The size (or cardinality) of the optimal subset of features was controlled by prior setting

the number of features (N), in MRMR and RFE-SVM. After feature selection, ten

features were selected as shown in Table 8.4

Without stability filtering : the original set of radiomic and clinical features (11130)

from the training cohort was first reduced to an informative subset of features via MAD

filtering (11058 features) followed by a further reduction to a subset of discriminatory

features:

(a) MRMR: We found that superior predictive power was obtained for an optimal

subset of 10 features including Age, 2 first-order, and 7 texture features. Shape features

were not selected. The statistics of the selected features were: mean OCCC 0.66± 0.3,
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and mean uAUC 0.56± 0.04. No stable features (ICC and OCCC ≥ 0.95) were selected

with MRMR.

Table 8.4: A summary of features selected to build the model for the overall survival classifi-
cation task.
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(b) RFE-SVM: We found that superior predictive power was obtained for an optimal

subset of 10 features including 3 first-order, and 7 texture features. Shape features were

not selected. The statistics of the selected features were: mean OCCC 0.66 ± 0.2, and

mean uAUC 0.54±0.02. No stable features (ICC and OCCC ≥ 0.95) were selected with

RFE-SVM.

With stability filtering : Post identification of an augmented subset of 823 stable

radiomic features on the testing cohort, the corresponding feature labels were used to

extract radiomic features from the training cohort. The resulting augmented subset

of stable radiomic features (including Total Brain features and Age) was reduced to

an informative subset of features via MAD filtering followed by further reduction to a

subset of discriminatory features:

(a) MRMR: We found that superior predictive power was obtained for an optimal

subset of 10 features including Age, 2 first-order, and 7 texture features. The statistics

of the selected features were: mean OCCC 0.97± 0.02, and mean AUC 0.52± 0.03.

(b) RFE-SVM: We found that superior predictive power was obtained for an optimal

subset of 10 features including Age, 1 first-order, and 8 texture features. The statistics

of the selected features were: mean OCCC 0.97± 0.01, and mean AUC 0.5± 0.05.

Performance evaluation

Table 8.5 summarizes the predictive performance of the MRMR and RFE-SVM feature

selection methods, with and without stability filtering, across the eight considered seg-

mentation schemes (seven CNNs and STAPLE-fusion) using AUROC as quantitative

measures. The robustness of radiomic models was quantified with Relative Standard

Deviation (RSD) of AUROCs. To reiterate, learning a radiomic model requires a seg-

mentation scheme (for volume of interest), feature reduction and selection pipeline, and

a classifier.

Without stability filtering : The average predictive performance of the two feature
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selection methods, across eight segmentation schemes, were as follows: MRMR – AUC

0.55±0.06 and RFE-SVM – AUC 0.47±0.04. Isensee 3D U-Net showed strong predictive

power for short-term survivors (AUC = 0.7) with features selected by MRMR and for

long-term survivors (AUC = 0.74) with features selected by RFE-SVM feature selection

method. The stability of the model was 10.4 with MRMR and 9.4 with RFE-SVM as

measured with RSD, across the eight segmentation methods.

With stability filtering : The average predictive performance of the two feature se-

lection methods, across eight segmentation schemes, were as follows: MRMR – AUC

0.91±0.01 and RFE-SVM – AUC 0.91±0.02. Short-term and long-term predictive per-

formance greatly improved for the seven segmentation schemes (CNNs), across two fea-

ture selection methods. Pereira 2D U-Net showed strong predictive power for short-term

survivors (AUC = 0.78), and Wang 2.5D CNN for long-term survivors (AUC = 0.79),

with features selected by the MRMR feature selection method. The stability of the

model was 2.4 with MRMR and 2.2 with RFE-SVM as measured with RSD, across the

eight segmentation methods.

Table 8.5: Model performance on the eight considered segmentation schemes on the testing
cohort (31 subjects)

.

Feature Selection
Method

Stability filter
status

Number of
features

DeepMedicRes
3D CNN

Dong
2D U-Net

Wang
2.5D U-Net

Isensee
3D U-Net

Pereira 2D
U-Net HDC-Net E1D3

3D U-Net
STAPLE
Fusion

FCQ based
MRMR

True 10 0.69
(0.74, 0.32, 0.75)

0.66
(0.72,0.31,0.74)

0.72
(0.76,0.32,0.79)

0.68
(0.72,0.32,0.75)

0.70
(0.78,0.31,0.75)

0.69
(0.75,0.35,0.75)

0.69
(0.72,0.32,0.77)

0.71
(0.75,0.35,0.76)

False 10 0.48
(0.56, 0.49, 0.51)

0.57
(0.61,0.52,0.55)

0.46
(0.62,0.48,0.51)

0.56
(0.7,0.44,0.58)

0.59
(0.61,0.45,0.54)

0.59
(0.68,0.44,0.53)

0.65
(0.64,0.54,0.64)

0.53
(0.66,0.45,0.58)

RFE-SVM True 10 0.59
(0.62,0.38, 0.63)

0.56
(0.63,0.3,0.59)

0.57
(0.61,0.33,0.61)

0.58
(0.63,0.27,0.63)

0.58
(0.64,0.24,0.61)

0.59
(0.65,0.45,0.59)

0.57
(0.63, 0.35,0.62)

0.61
(0.65,0.67,0.61)

False 10 0.42
(0.56, 0.6, 0.7)

0.43
(0.58,0.4,0.64)

0.41
(0.55,0.6,0.64)

0.49
(0.59,0.49,0.74)

0.52
(0.64, 0.44, 0.6)

0.51
(0.55,0.62,0.63)

0.54
(0.51,0.55,0.49)

0.47
(0.56,0.52,0.72)

8.2.5 Effect of feature selection based on prior information

Stability analysis

From the original set of 73 features selected based on prior information, we first removed

non-informative features (identified with MAD=0) and features not influenced by au-

tomatic segmentation, which includes Total Brain features and Age. This reduced the
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original set to 71 radiomic features.

We then extracted a subset of radiomic features (from the pool of 71 features) which

were stable to variations in segmentation. More specifically, highly stable radiomic

features were identified with an ICC ≥ 0.90 and OCCC ≥ 0.90 across the seven seg-

mentation schemes.

Stability filtering with ICC only (τ ≥ 0.90) yielded the following stable features: 3

PTE features (PTE_MeshVolume, PTE_surfaceArea, PTE_LeastAxisLength), 2 ENC

(ENC_MeshVolume, ENC_SurfaceArea), 1 WT (WT_MeshVolume) and 3 spatial fea-

tures (WT Centroid Coordinates (x, y, z)).

The obtained set of 9 highly stable radiomic features were finally augmented with

the 2 Total Brain features and Age to yield a subset of 12 features for prospective feature

selection.

Feature selection

We employed the two previously mentioned feature selection methods (MRMR and

RFE-SVM) to obtain an optimal subset of discriminatory features for the overall sur-

vival classification task.

Without stability filtering : The original set of radiomic and clinical features (74),

from the training cohort, was first reduced to an informative subset of features via

MAD filtering (74 features) followed by further reduction to a subset of discriminatory

features:

(a) MRMR: We found that superior predictive power was obtained for an optimal

subset of 5 features including Age, 3 shape features (2 PTE and 1 WT) and 1 spatial

feature. The statistics of the selected features were: mean OCCC 0.797 ± 0.13, and

mean uAUC 0.55 ± 0.006. No stable features (ICC and OCCC ≥ 0.90) were selected

with MRMR.
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(b) RFE-SVM: We found that superior predictive power was obtained for an optimal

subset of 5 features including Age, 3 shape features (1 PTE, 1 TC, 1 NEC feature), and

1 spatial feature. The statistics of the selected features were: mean OCCC 0.79± 0.14,

and mean uAUC 0.55±0.009. No stable features (ICC and OCCC ≥ 0.90) were selected

with RFE-SVM.

With stability filtering : Post identification of an augmented subset of 12 stable ra-

diomic features on the testing cohort, the corresponding feature labels were used to

extract radiomic features from the training cohort. The resulting augmented subset of

stable radiomic features (including Total Brain features and Age) was reduced to an

informative subset of features via MAD filtering followed by a further reduction to a

subset of discriminatory features:

(a) MRMR: We found that superior predictive power was obtained for an optimal

subset of 5 features including Age, 2 shape features (2 PTE), and 1 spatial and 1 total

brain feature. The statistics of the selected features were: mean OCCC 0.96±0.04, and

mean AUC 0.54± 0.02.

(b) RFE-SVM: We found that superior predictive power was obtained for an optimal

subset of 5 features including Age, 1 shape feature (PTE), and 2 spatial and 1 total brain

feature. The statistics of the selected features were: mean OCCC 0.97±0.03, and mean

AUC 0.54± 0.02.

Performance evaluation

Table 8.6 summarizes the predictive performance of the two feature selection methods,

with and without stability filtering, across the eight considered segmentation schemes

using AUROC as quantitative measures. The robustness of radiomic models was quan-

tified with Relative Standard Deviation (RSD) of AUROCs.
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Without stability filtering : The average predictive performance of the two feature

selection methods, across eight segmentation schemes, were as follows: MRMR – AUC

0.55± 0.01 and RFE-SVM – AUC 0.68± 0.02. The stability of the model was 2.2 with

MRMR and 2.9 with RFE-SVM as measured with RSD, across the eight segmentation

methods.

With stability filtering : The average predictive performance of the two feature se-

lection methods, across eight segmentation schemes, were as follows: MRMR – AUC

0.78± 0.01 and RFE-SVM – AUC 0.79± 0.009. The stability of the model was 1.7 with

MRMR and 1.2 with RFE-SVM as measured with RSD, across the eight segmentation

methods.

Table 8.6: Model performance with the eight considered segmentation schemes on testing
cohort (31 subjects) with priori selected features

Feature Selection
Method

Stability filter
status

Number of
features

DeepMedicRes
3D CNN

Dong
2D U-Net

Wang
2.5D U-Net

Isensee
3D U-Net

Pereira 2D
U-Net HDC-Net E1D3

3D U-Net
STAPLE
Fusion

FCQ based
MRMR

True 5 0.77
(0.76,0.60,0.75)

0.79
(0.79,0.51,0.79)

0.80
(0.76,0.58,0.82)

0.76
(0.72,0.46,0.80)

0.80
(0.78,0.50,0.79)

0.79
(0.75,0.55,0.80)

0.77
(0.72,0.51,0.80)

0.79
(0.75,0.57,0.79)

False 5 0.56
(0.51, 0.63, 0.60)

0.57
0.56,0.68,0.54)

0.54
(0.51,0.57,0.59)

0.56
(0.55,0.51,0.63)

0.54
(0.5,0.76,0.54)

0.53
(0.45,0.56,0.56)

0.54
(0.50,0.64,0.57)

0.56
(0.55,0.57,0.59)

RFE-SVM True 5 0.79
(0.84,0.50, 0.78)

0.80
(0.86,0.48,0.68)

0.80
(0.82,0.50,0.79)

0.78
(0.81,0.45,0.80)

0.81
(0.88,0.48,0.78)

0.80
(0.82,0.50,0.80)

0.78
(0.83, 0.45,0.81)

0.79
(0.82,0.5,0.80)

False 5 0.71
(0.67, 0.77, 0.68)

0.70
(0.70,0.54,0.65)

0.72
(0.66,0.62,0.70)

0.67
(0.69,0.38,0.69)

0.67
(0.69, 0.49, 0.63)

0.66
(0.65,0.52,0.65)

0.66
(0.65,0.47,0.63)

0.68
(0.66,0.57,0.63)

8.3 Discussion

The translation of radiomics features into the clinical setting suffers from problems of

reproducibility. Potential sources of variation in radiomics features such as image ac-

quisition parameters, reconstruction algorithms, and software framework have already

been evaluated by [156, 67, 166]. However, another source of variation is segmentation of

ROI. Segmentation-induced variability due to CNN segmentation methods has not been

explored in the literature. In this study, we quantified the stability of radiomic features

across eight segmentation methods-seven CNNs and one STAPLE -fusion method. The

seven CNNs include three 3D CNNs - Isensee 3D U-Net, E1D3 3D U-Net and DeepMedi-
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cRes - two 2.5D CNNs - Wang 2.5D CNN and HDC-Net, two 2D CNNs, Dong 2D U-Net

and Pereira 2D U-Net. Feature stability was calculated using segmentations generated

for 125 subjects of BraTS 2020 testing cohort. In addition, we investigated whether the

stability information could be used to improve the predictive performance of the random

forest classifier for the prediction of overall survival. For comparison, the random forest

classifier was trained with discriminatory features (via RFE-SVM, MRMR) alone and

with both the stable and discriminatory features.

We used ICC and OCCC as measures of stability to evaluate the robustness of

radiomic features in different segmentation networks. A few studies in the lietarture have

used ICC [161, 67, 166] and OCCC [80] for radiomic feature reproducibility. We found

no insight into the choice of stability measure. In our study, we used the intersection

of ICC and OCCC. We found 820 stable features where (ICC and OCCC ≥ 0.95), the

choice of threshold is random because we did not find a standard method for threshold

selection in the literature.

Feature reproducibility differed between feature categories and for tumor subregions.

We found that texture and first-order features were highly stable features. Shape fea-

tures were the least stable features. The robustness of each feature reflects how much a

small change in segmentation affects the feature value. One possible reason for this is

that the intensity differences between tumor region and background are not very large

and are less affected by tumor region segmentation. However, for shape features, a slight

change in volume also has a strong effect on other features because they are derived from

the volume feature. For different segmentation networks, we have different tumor sizes

and thus different volumes. The results of our stability filtering show that the features

most affected by segmentation are shape features. Overall, 80% of the stable features

are from the WT region, which could be due to the fact that WT is a large contiguous

region and is less affected by the segmentation algorithms.

We found that the predictive performance of the random forest model with the stable
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and discriminatory features for predicting OS is much higher than that of the model

trained with discriminatory features only. The stability-based AUCs outperformed the

discriminatory AUCs in the eight segmentation schemes with two feature selection meth-

ods. Stable features and the MRMR method improved AUC ranges from 3.5% to 25.5%,

while stable features and the RFE-SVM method improved AUC ranges from 3.8% to

16.3%. Models trained with both discriminatory and stable features increased the gen-

eralizability of the model. The E1D3 3D U-Net showed minimal improvement in AUC

values of 3.5% and 3.8% (MRMR and RFE-SVM) as the WT volume segmentation

achieved the highest Dice score (DSC = 88.1 ± 13.0%). However, we observed a large

improvement in AUC values from 16% to 25.5% (MRMR and RFE-SVM) for Wang 2.5D

CNN, with a large segmentation error of (HD = 11.1± 20.8mm) for the WT region, so

stable features bring more value.

In order to focus only on the shape features, we reduced the feature set (shape

features, contrast enhancement geometry, spatial features, and clinical features). We

performed another experiment by repeating the stability analysis, feature selection and

then trained a classifier. The result shows higher AUC values by focusing only on the

robust shape features.
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9
Thesis conclusion and

future work

Digital medical data collected through many different sources can effectively be used to

investigate different medical conditions with the final aim of improving diagnosis and

treatment of a condition and ultimately improve the life of affected patients. In this

thesis, we worked with two medical datasets related to two different types of neuro-

logical disorders, motor control disorders (e.g., Parkinson’s disease) and brain tumors,

performing different types of analysis on the data to reach different goals.

In the first part of the thesis, we presented our work with a dataset containing

the results of thousands of digital motor tests of the upper limbs taken by users of

MotorBrain, a free and publicly available mobile application. Motor tests are used by

neurologists to assess human motor performance and support the diagnosis of disorders

affecting motor control. The first task we carried out on the data was to clean it using

various criteria and solutions to remove incomplete and incorrect records. This is a

necessary step when data is collected in the large using an unsupervised approach and
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highlights the different types of issues that can occur in such a situation and their

impact on the data. After identifying a set of measures that could best characterize

the performance of users in the motor tests, we proceeded to analyze the data with

a statistical approach with the goal of determining whether the data revealed typical

patterns of human motor control performance such as the degradation of human motor

performance that is typical of aging [95, 149]. The analysis focused on comparing

motor performance across different age groups. Results show that the collected data

reveal the expected patterns of human motor performance, thus providing evidence of

the meaningfulness of the data and the appropriateness of the considered approach to

motor performance data collection. At the same time, the results highlight potential

problems that can emerge when data collection is performed in an unsupervised non-

clinical setting. We then used machine learning techniques to automatically classify

users based on their motor performance. Being limited to performance data of healthy

individuals, we framed the classification problem as an age group identification problem.

This could help neurologist to identify suspect cases at an early stage if a case does not

behave in accordance with her age group normative behavior.

Future work on human motor performance assessment based on the MotorBrain

dataset could move in different directions: (i) additional analysis can be performed on

the data to explore other aspects of human motor performance such as gender differences,

(ii) new measures can be identified that can better characterize the spatio-temporal

behavior of users, e.g., based on a subdivision of trajectories into different parts, (iii)

visualization tools can be developed that may support the visual exploration of the

available data and complement the use of automatic analysis methods (e.g., by making

it possible to quickly check the results of data cleaning activities), (iv) optimizations of

the considered machine learning approaches and new approaches can be used to improve

classification performance.

In the second part of the thesis, we focused on radiomics-based methods for overall
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survival (OS) prediction of High Grade Glioma patients, using a standard dataset of

3D Multi-parametric Magnetic Resonance Imaging (MRI) scans. Our research goals

were specifically related to two of the steps of the radiomic process: segmentation and

feature selection. We first investigated the impact of different segmentation algorithms,

five well-known Convolutional Neural Networks and the STAPLE-fusion method, on

OS prediction based on four multiregional segmentation models, two physiology-based

models (Whole Tumor (WT) and 3-subregions) and two atlas-guided anatomy-based

models (6-subregions model and 21-subregions model). To do this, we applied the full

radiomics process from preprocessing of the MRI scans to evaluation of the segmentation

and prediction performance. In terms of segmentation performance, the Isensee 3D

U-Net significantly outperformed the other CNNs based on dice similarity while the

STAPLE fusion method was the best solution based on Hausdorff distance and second

best for similarity. For OS prediction performance, the 3-subregions radiomic model

proved to be the most predictive, but the 21-subregions and the 6-subregions model

were the most stable across the six segmentation algorithms. Overall, we observed that

good segmentation performance does not guarantee good radiomic performance and that

short-term survivors are the most difficult to predict.

In a different experiment, we then evaluated the impact on OS prediction of se-

lecting radiomic features based on stability analysis. To this end, we first measured the

robustness of radiomic features across seven state-of-the-art (independent) segmentation

methods based on Convoluted Neural Networks (CNNs), using the intra-class correla-

tion coefficient (ICC) and the overall correlation coefficient (OCCC). We then employed

two feature selection techniques, Minimum Redundancy, Maximum Relevance (MRMR)

and Recursive Feature Elimination with SVM (RFE-SVM), to identify discriminatory

features. Finally, we evaluated the effect of using robust radiomic features for OS classifi-

cation by incorporating stability into feature selection methods, considering both stable

features (via ICC and OCCC) and discriminatory features (via MRMR and RFE-SVM).
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One limitation of our work, which is an often-encountered problem in clinical and

translational imaging research, is that it is based on a small, even if standard, dataset.

A large and balanced dataset would ideally help generalize the findings of our studies to

diverse tumor manifestations and patient demographics. Different types of MRI datasets

would also be useful. For example, Cepeda et al. [28] argue that perfusion and diffusion

MRIs, along with structural MRIs, have the potential to improve outcome prediction

for short-term survivors. While we employed different shape, volumetric, and spatial

features for radiomics-based prediction of OS in brain gliomas, augmenting the current

feature set with more stable and predictive features, capturing tumor heterogeneity and

aggressiveness, may improve classification of short-term survivors in brain gliomas. Tu-

mor heterogeneity is known to contribute to poor survival in high-grade gliomas [135].

To capture this heterogeneity, specific molecular markers and clinical information (gen-

der, performance score, resection status) could be included for better performance [28].

Combining the radiomics-based prediction of OS with explainable artificial intelligence

(XAI) would be interesting as well. The CNNs we used were trained using various com-

binations of Soft Dice and Cross Entropy loss functions. It would be interesting to see

the impact of other loss functions, optimization schemes, and architectural engineering

on segmentation accuracy and associated radiomics performance for OS classification in

brain gliomas. Since our robustness study is based only on MR images, further studies

with PET and CT may also add more value to the calculated results.
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