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Editorial

Preface to the Special Issue on “Hypergroup Theory and
Algebrization of Incidence Structures”

Dario Fasino * and Domenico Freni *

Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, 33100 Udine, Italy
* Correspondence: dario.fasino@uniud.it (D.F.); domenico.freni@uniud.it (D.F.)

This work contains the accepted papers of a Special Issue of the MDPI journal Mathe-
matics entitled “Hypergroup Theory and Algebrization of Incidence Structure”. As Guest
Editors of this Special Issue, we have invited significant and original contributions dealing
with algebraic hyperstructures in a broad sense, of which hypergroups and adjacency
structures are two prominent representatives.

Algebraic hyperstructures are natural generalizations of ordinary algebraic structures
when the composition operator is multivalued. For this reason, the study of algebraic
hyperstructures is also called hypercompositional algebra. The first results of this theory
appeared in the 1940s. Since then, it has undergone a lively development, beginning in the
1970s with the work of various research groups in France, Greece, and Italy on the theory
of hypergroups, hyperrings, and hyperfields. At present, hypercompositional algebra is
being studied by many researchers on almost all continents, and is characterized by a
great diversity of style and subject matter, as evidenced by the contributions collected in
this work.

Since its origin, hypercompositional algebra has had a close relationship with classical
algebra, borrowing concepts and methods from it. For example, an important class of
hypergroups is constructed from the quotient structure of a classical group with respect
to a non-normal subgroup. As studies progressed, the theory found new and profound
relationships with Galois theory, geometry, and, in particular, incidence structures. To-
day, hypercompositional algebra has a fruitful variety of connections with other areas of
mathematics, such as fuzzy set theory, combinatorics, and probability, with applications in
various other sciences such as computer science, artificial intelligence and physics, as well
as other natural and social sciences.

The Special Issue received 24 distinct submissions of which 10 (42%) were published
after peer review; 13 contributions (54%) were rejected by the MDPI Editorial Board and only
one (4%) after peer review. The published papers were written by 24 different authors from
10 different countries, with an average number of 2.9 authors per paper, and address theo-
retical aspects, applications, and related computational issues of algebraic hyperstructures.
The names of the authors in alphabetical order are: Jan Chvalina, Irina Cristea, Bijan Davvaz,
Henri De Boutray, Mario De Salvo, Dario Fasino, Domenico Freni, Alain Giorgetti, Frédéric
Holweck, Šárka Hošková-Mayerová, Stefano Innamorati, Milica Kankaraš, Osman Kazancı,
Sorasak Leeratanavalee, Giovanni Lo Faro, Christos Massouros, Gerasimos Massouros,
Salvatore Milici, Anak Nongmanee, Metod Saniga, Bedrich Smetana, Antoinette Tripodi,
Jana Vyroubalová, and Fulvio Zuanni. We provide hereafter a brief overview of their contri-
butions. The reader will find here a plethora of different problems, focuses and methods
that provide insight into the variegated features of hypercompositional algebra.

In [1], the authors define new classes of hyperfields and hyperrings. They classify finite
hyperfields as quotient hyperfields or non-quotient hyperfields, and analyze structures
resulting from the subtraction of a multiplicative subgroup from a field. This paper includes
an extensive bibliography on the subject, which not only provides the interested reader
with a detailed roadmap of hyperfield theory but also opens up further investigation into
the boundary between classical and hypercompositional algebra.

Mathematics 2023, 11, 3424. https://doi.org/10.3390/math11153424 https://www.mdpi.com/journal/mathematics
1



Mathematics 2023, 11, 3424

The authors of [2] analyze the relations between multi-fuzzy soft sets and polygroups.
Moreover, they extend some algebraic properties of fuzzy soft polygroups and soft poly-
groups to multi-fuzzy soft polygroups. Finally, they define new operations on a multi-fuzzy
soft set and present some of their algebraic properties.

The main result in [3] is the establishment of a novel combinatorial characterization
of H(4, q2), a Hermitian variety embedded in the projective space PG(4, q2). This char-
acterization makes it possible to remove an unnecessary hypothesis that is present in a
previously known analogous characterization, except for a few small cases.

The authors of [4] consider a class of linear differential operators with time-dependent
coefficients inspired by artificial neurons, called differential neurons. With these objects,
they first define an infinite cyclic group isomorphic to (Z,+), extending the monoid of
differential neurons with their negative powers. This construction is then extended by
successive steps until a non-commutative join space is defined.

The paper [5] introduces a family of hypergroups, here called weakly complete, that
generalizes the construction of complete hypergroups. Furthermore, the authors define the
degree of completeness of finite hypergroups which, in some sense, quantifies the extent to
which the hypergroup is close to being complete. For weakly complete hypergroups, this
degree can be computed by explicit formulas.

In the context of graph factorizations, the paper [6] provides a complete solution to
an unsolved existence problem for uniform factorizations of complete simple graphs in
terms of cycles and paths with certain specified sizes. The solution crucially relies on two
constructions that allow to derive factorizations of larger graphs from the knowledge of
simpler cases.

The objective of [7] is to take the first step in the classification of G-hypergroups,
that is, hypergroups whose heart is a non-trivial group. This research has an emphasis
on G-hypergroups whose heart is a torsion group. In particular, the authors characterize
G-hypergroups which are of type U on the right or right cogroups. The paper also includes
the hyperproduct tables of all G-hypergroups with sizes up to 5, up to isomorphisms.

In [8], the authors introduce the notion of v-regular ternary Menger algebras, which
generalizes the notion of regular ternary semigroups. Furthermore, they consider a spe-
cial class of n-ary functions, the so-called left translations, and prove that the set of left
translations can be endowed with the structure of a ternary Menger algebra.

The authors of [9] consider certain physically relevant finite geometries of binary
symplectic polar spaces of small rank, when the points of these spaces canonically encode
multi-qubit observables. In particular, they present a complete taxonomy of polar subspaces
of W(2N − 1, 2) for 2 ≤ N ≤ 4, whose rank is N − 1. The results required extensive
computer-aided proofs.

The aim of [10] is to extend the concept of reducibility to hyperrings, which is a
well-known concept in hypergroup theory. The authors define this extension in general
hyperrings, where addition and multiplication are both multivalued operations, and then
apply this novel definition to particular classes of hyperrings, e.g., hyperrings of formal
series, hyperrings with P-hyperoperations, and complete hyperrings. The main results
provide conditions under which these hyperrings are or are not reduced.

We are grateful to all authors who contributed their manuscripts. We would also like
to thank all the reviewers for their valuable comments, which improved the quality of
the submissions. Finally, we express our warmest gratitude to the MDPI Editor, Dr Syna
Mu, who assisted us at every stage of the editorial process with excellent timeliness
and professionalism.

The aim of this Special Issue was to attract high-quality, novel papers in the field of
hypercompositional algebra. The response from the international scientific community
and the number of manuscripts submitted for consideration exceeded our expectations.
We would like to mention that the MDPI publishing house has already issued two books
from Special Issues that have dealt explicitly with algebraic hyperstructures, namely that
edited by C. Massouros in 2021, Hypercompositional Algebra and Applications, and Symmetry
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in Classical and Fuzzy Algebraic Hypercompositional Structures edited by I. Cristea in 2020.
We hope that the papers included in all these collections will be influential for the scien-
tific community and will motivate further research in this exciting, active, and engaging
research area.

Author Contributions: Conceptualization, investigation, project administration, writing—original
draft, D.F. (Dario Fasino) and D.F. (Domenico Freni); Writing—review and editing, D.F. (Dario Fasino).
All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

On the Borderline of Fields and Hyperfields

Christos G. Massouros 1,* and Gerasimos G. Massouros 2,*

1 Core Department, Euripus Campus, National and Kapodistrian University of Athens,
GR 34400 Euboia, Greece

2 School of Social Sciences, Hellenic Open University, GR 26335 Patra, Greece
* Correspondence: chrmas@uoa.gr or ch.massouros@gmail.com (C.G.M.); germasouros@gmail.com (G.G.M.)

Abstract: The hyperfield came into being due to a mathematical necessity that appeared during the
study of the valuation theory of the fields by M. Krasner, who also defined the hyperring, which
is related to the hyperfield in the same way as the ring is related to the field. The fields and the
hyperfields, as well as the rings and the hyperrings, border on each other, and it is natural that
problems and open questions arise in their boundary areas. This paper presents such occasions,
and more specifically, it introduces a new class of non-finite hyperfields and hyperrings that is
not isomorphic to the existing ones; it also classifies finite hyperfields as quotient hyperfields or
non-quotient hyperfields, and it gives answers to the question that was raised from the isomorphic
problems of the hyperfields: when can the subtraction of a field F’s multiplicative subgroup G from
itself generate F? Furthermore, it presents a construction of a new class of hyperfields, and with
regard to the problem of the isomorphism of its members to the quotient hyperfields, it raises a new
question in field theory: when can the subtraction of a field F’s multiplicative subgroup G from itself
give all the elements of the field F, except the ones of its multiplicative subgroup G?

Keywords: fields; hyperfields; rings; hyperrings; multiplicative subgroups; hypergroups; canonical
hypergroups

MSC: 12-11; 12K99; 12E20; 16Y20; 20N20

1. Introduction

The hypergroup is the very first hypercompositional structure that appeared in Al-
gebra. It was introduced in 1934 by F. Marty while he was studying problems in non-
commutative algebra, such as cosets determined by non-invariant subgroups. Unfortu-
nately, Marty was killed in 1940, at the age of 29, during World War II, while he was serving
in the French Air Force as a lieutenant and hence his mathematical heritage on hypergroups
was only three papers [1–3]. Nevertheless, his ideas did not remain in France only. They
spread quickly throughout Europe and across the pond. Already, by the end of the 1930s
and in the 1940s, both in Europe and in the USA, important mathematicians such as M.
Krasner [4–8], J. Kuntzmann [8–10], H. Wall [11], O. Ore [12–14], M. Dresher [13], E. J.
Eaton [14,15], L. W. Griffiths [16], W. Prenowitz [17–19], and A.P. Dietzman [20], studied the
general form of the hypergroup as well as other, special forms of this algebraic structure,
resulting to its enrichment with additional axioms. The basic concept behind the hyper-
group is the hypercomposition. A hypercomposition or hyperoperation over a non-empty set E
is a mapping from the cartesian product E×E into the power set P(E) of E. A hypergroup
is a non-empty set E enriched with a hypercomposition “·”, which satisfies the following
two axioms:

(i) The axiom of associativity:

a·(b·c) = (a·b)·c, for all a,b,c ∈ E

Mathematics 2023, 11, 1289. https://doi.org/10.3390/math11061289 https://www.mdpi.com/journal/mathematics
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(ii) The axiom of reproductivity:

a·E = E·a = E, for all a ∈ E

Papers [21,22] present in detail that the group is defined with exactly the same axioms.
Namely, a group is a non-empty set E that is enriched with a composition (i.e., a mapping
from the cartesian product E×E into the set E) that satisfies the axioms (i) and (ii).

If “·” is an internal composition on a set E and A, B are subsets of H, then A·B signifies
the set {a · b|(a, b) ∈ A× B}, while if “·” is a hypercomposition then A·B is the union
∪

(a,b)∈A×B
a · b. Ab and aB have the same meaning as A{b} and {a}B respectively. In general,

the singleton {a} is identified with its member a.

Theorem 1. If either A = ∅ or B = ∅, then AB = ∅ and vice versa.

Proof. The proof will be given with the use of symbolic logic. So, it must be proved that:

A×B = ∅⇔ (A = ∅) ∨ (B = ∅)

or equivalently that:
A×∅ = ∅ = ∅×B

To this end, we have the following equivalent statements:

A×B �= ∅⇔
⇔ ∃ (s,t) ∈ A×B (definition of the Empty Set)
⇔ ∃ s∈A ∧ ∃ t∈B (definition of the Cartesian Product)
⇔ A �= ∅ ∧ B �= ∅ (definition of the Empty Set)
⇔ ¬ (A = ∅ ∨ B = ∅) (De Morgan’s Laws)

Hence, by the law of contraposition:

(A = ∅) ∨ (B = ∅)⇔ A×B = ∅ �

Theorem 2. Refs. [21,22] The result of the hypercomposition of any two elements in a hypergroup
H is always non-void.

Proof. Suppose that ab = ∅, for some a, b ∈ H. By the reproductive axiom, aH = H and
bH = H. Hence:

H = aH = a(bH) = (ab)H = ∅H = ∅

which is absurd. �

The second hypercompositional structure that appeared in Algebra was the hyper-field.
It was introduced by M. Krasner in 1956 for the purpose of defining a certain approximation
of a complete valued field by a sequence of such fields [23]. Its construction is as follows:

Let K be a valued field and let |··| be its valuation. Let ρ be a real number such that
0≤ρ<1 and let πρ be the equivalence relation in K, which is defined as follows:

a ≡ 0⇔ 0 ≡ a , if a = 0
b ≡ a⇔

∣∣∣ b
a − 1

∣∣∣ ≤ ρ⇔ | b− a | ≤ ρ| a | , if a �= 0

The classes mod πρ are circles Cξ = C(ξ, ρ|ξ|) of center ξ∈K and radius ρ|ξ|. It turns
out that the element-wise (pointwise) multiplication of any two classes (i.e., each element
of one class with all elements of the other) is a class, while their element-wise sum is a
union of classes. Certain properties apply in the set K/πρ of these equivalence classes.
These properties were the defining axioms of the hyperfield. So, a hyperfield is an algebraic

6
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structure (H,+,·) where H is a non-empty set, “·” is an internal composition on H, and “+” is a
hypercomposition on H, which satisfies the axioms:

I. Multiplicative axiom
H = H*∪{0}, where (H*,·) is a multiplicative group and 0 is a bilaterally absorbing
element of H, i.e., 0x = x0 = 0, for all x∈H

II. Additive axioms

i. associativity:
a·(b·c) = (a·b)·c, for all a,b,c ∈ H

ii. commutativity:
a·b = b·a, for all a,b ∈ H

iii. for every a∈H there exists one and only one a’∈H such that 0∈a+a’. a’ is written
–a and called the opposite of a; moreover, instead of a+(–b) we write a–b.

iv. reversibility:
if a∈b+c, then c∈a-b

III. Distributive axiom

a·(b+c) = a·b+a·c, (b+c)·a = b·a+c·a, for all a,b,c ∈ H

By virtue of axioms II.iii and II.iv it holds that a+0=a for all a∈H. Indeed, 0∈a–a;
therefore, a∈a+0. Next, if for any x∈H, it is true that x∈a+0, then 0∈a–x, consequently, x=a.

If the multiplicative axiom I is replaced by the axiom:

I′. H* is a multiplicative semigroup having a bilaterally absorbing element 0,

then, a more general structure is obtained which is called hyperring [24].
It is easy to see that a non-empty set H enriched with the additive axioms II is a

hypergroup. This special hypergroup was named canonical hypergroup by Jean Mittas,
who studied it in depth and presented his research results through a multitude of pa-
pers, e.g., [25–28].

Apparently, fields and rings satisfy the above axioms, and hence, they are also called
trivial hyperfields and trivial hyperrings, respectively. It is worth mentioning, though, that
several algebraic properties which are valid for the rings and the fields are not transferred
in the hyperrings and hyperfields. The following proposition is such an example.

Proposition 1. Let P be a hyperring. Then,

(a + b)(c + d) ⊆ ac + ac + ad + bd

for any a,b,c,d ∈ P.

Proof.

(a + b)(c + d) = ∪
x∈a+b

x(c + d) = ∪
x∈a+b

(xc + xd) ⊆ ∪
z∈a+b

zc + ∪
w∈a+b

wc =

= (a + b)c + (a + b)d = ac + ac + ad + bd

(see also [29]) �

Another example is the polynomials over a hyperring P. As in the case of rings, a
polynomial p over a hyperring P is defined as an ordered set (a0, a1, . . .) where all the a′is
after a certain one (say after an) are zero. The elements ai are the coefficients of p and n is
the degree of p. If p = (ai) and q =

(
bj
)

then

p + q = { (ci)|ci ∈ ai + bi} and pq =

{
(ci)|ci ∈ ∑

j+k = i
ajbk

}

7
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The set of the polynomials over P is not a hyperring since its multiplicative part is not
a semigroup, but it is a semihypergroup. This algebraic structure was named superring by
J. Mittas [30,31]. In [32], R. Ameri, M. Eyvazi, and S. Hoskova-Mayerova proved that the
distributive axiom is not valid for the multiplication of the polynomials over a hyperring.
More precisely, it is indicated that the weak distributive axiom holds, i.e.,

r · (p + q) ⊆ r · p + r · q, (p + q) · r ⊆ p · r + q · r

Moreover, as it is proved in [33] (Theorem 16), the direct sum of hypermodules is not
a hypermodule but a weak hypermodule in the sense that it satisfies the weak distributive
axiom. Unfortunately, there are numerous published papers that contain incorrect results
as they are based on the erroneous assumption that the direct sum of hypermodules
is a hypermodule or that the distributivity holds for the multiplication of polynomials
over a hyperring.

Krasner named the hyperfields, which he used for the approximation of the com-
plete valued field, residual hyperfields. Next, while working on the question of how rich
the class of the hyperrings and hyperfields is, he was led to the construction of a more
general class of hyperrings and hyperfields, i.e., the class of the quotient hyperfields and the
quotient hyperrings [24].

Note on the notation: In the following pages, in addition to the typical algebraic nota-
tions, we are using Krasner’s notation for the complement and the difference [34]. So, we
denote by A··B the set of elements that are in the set A but not in the set B. If K is a field or
a hyperfield, then K* denotes the set K··{0}.

2. The Quotient Hyperfield/Hyperring

The construction of the quotient hyperfield or hyperring is based on a field or ring,
respectively. Let F be a field and G a subgroup of F’s multiplicative group F*. Then, the
multiplicative classes modulo G in F form a partition of F. Krasner observed that the
product of two such classes, considered as subsets of F, is also a class modulo G, while
their sum is a union of such classes. Next, he proved that the set F/G of the classes of this
partition becomes a hyperfield if the multiplication and the addition are defined as follows:

xG · yG = xyG

xG † yG = {(xp + yq)G | p, q ∈ G}

for all xG, yG ∈ F/G.
Moreover, Krasner proved that if R is a ring and G is a normal subgroup of its

multiplicative group, then the above construction gives a hyperring [24].
From the proof that R/G is a hyperring, it derives that the definition of the addition

in R/G as well as the proof of the additive axioms do not require the normality of G. On
the other hand, the definition of the multiplication and the proof of the multiplicative and
distributive axioms require only that the equality:

xG · yG = {xg1yg2 | g1, g2 ∈ G} = {xyg | g ∈ G } = xyG

holds. But the validity of this equality is equivalent to the normality of G only when G
is a subgroup of a group and not when G is a subgroup of a semigroup, which is the
case when R is a ring. This was proved by Ch. Massouros [35] via an example, which is
generalized below.

Example 1. Let Robe a unitary ring such that 2 �=0. Let us consider the cartesian product R = Ro
n.

R is enriched with the following addition and multiplication:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)
(a1, . . . , an)(b1, . . . , bn) = (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))

8
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It is well known that (R,+) is a group. Next, observe that the multiplication is not commutative. Indeed:

(a1, . . . , an)(b1, . . . , bn) = (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))

while:
(b1, . . . , bn)(a1, . . . , an) = (b1(a1 + . . . + an), . . . , bn(a1 + . . . + an))

On the contrary, the multiplication is associative:

(a1, . . . , an)[(b1, . . . , bn)(c1, . . . , cn)] =
= (a1, . . . , an)(b1(c1 + . . . + cn), . . . , bn(c1 + . . . + cn)) =

=

(
a1(b1(c1 + . . . + cn) + . . . + bn(c1 + . . . + cn)), . . .
. . . , an(b1(c1 + . . . + cn) + . . . + bn(c1 + . . . + cn))

)
=

= (a1(b1 + . . . + bn)(c1 + . . . + cn), . . . , an(b1 + . . . + bn)(c1 + . . . + cn)) =
= (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn))(c1, . . . , cn) =
= [(a1, . . . , an)(b1, . . . , bn)](c1, . . . , cn)

and distributive:

(a1, . . . , an)[(b1, . . . , bn) + (c1, . . . , cn)] =
= (a1, . . . , an)(b1 + c1, . . . , bn + cn) =
= (a1(b1 + c1 + . . . bn + cn), . . . , an(b1 + c1 + . . . bn + cn)) =
= (a1(b1 + . . . + bn) + a1(c1 + . . . + cn), . . . , an(b1 + . . . + bn) + an(c1 + . . . + cn)) =
= (a1(b1 + . . . + bn), . . . , an(b1 + . . . + bn)) + (a1(c1 + . . . + cn), . . . , an(c1 + . . . + cn)) =
= (a1, . . . , an)(b1, . . . , bn) + (a1, . . . , an)(c1, . . . , cn)

Thus (R,+, ·) is a ring. A non-zero element (a1, . . . , an) of R is idempotent if a1 + . . . + an = 1.
Indeed:

(a1, . . . , an)
2 = (a1(a1 + . . . + an), . . . , an(a1 + . . . + an)) = (a1 · 1, . . . , an · 1) = (a1, . . . , an)

Thus, the elements e1 = (1, . . . , 0), . . . , en = (0, . . . , 1) are idempotent. Moreover, the opposite of
the ei = (0, . . . , 1, . . . , 0), i = 1, . . . , n is −ei = (0, . . . ,−1, . . . , 0), which is different from the
ei because 2ei = (0, . . . , 2, . . . , 0) �= (0, . . . , 0) = 0. Since (−ei)

2 = ei
2 = ei, the 2-element sets

Gi = {−ei, ei}, i = 1, . . . , n are multiplicative subgroups of R. Next, if a = (a1, . . . , an) is an
element in R, then:

aGi = (a1, . . . , an){−ei, ei} =
= {(a1, . . . , an)(0, . . . ,−1, . . . , 0), (a1, . . . , an)(0, . . . ,−1, . . . , 0)} =
= {(−a1, . . . ,−an), (a1, . . . , an)} = {−a, a}

while

Gia = {−ei, ei}(a1, . . . , an) =
= {(0, . . . ,−1, . . . , 0)(a1, . . . , an), (0, . . . ,−1, . . . , 0)(a1, . . . , an)} =
= {(0, . . . ,−a1 − . . .− an, . . . , 0), (0, . . . , a1 + . . . + an, . . . , 0)}

Consequently, the multiplicative subgroups Gi, i = 1, . . . , n are not normal. Nevertheless, they
satisfy the condition:

(aGi)(bGi) = abGi

Indeed,

(aGi)(bGi) = {−a, a}{−b, b} = {(−a)(−b), (−a)b, a(−b), ab} = {−ab, ab} = abGi

Therefore, the quotients R/Gi, i = 1, . . . , n are hyperrings. Observe that Gi is a right neutral
element for multiplication in R/Gi, but it is not a left one as well. In contrast, when the quotient

9
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hyperring is constructed via a normal subgroup G of the ring’s multiplicative semigroup, then G is
a bilateral neutral element for the multiplication in the quotient hyperring.

The aforementioned hyperrings, although they are not quotient hyperrings of a ring by
a normal subgroup of its multiplicative semigroup, they are still embeddable in such quotient
hyperrings [35,36].

A large number of papers has been published on the hyperfields and hyperrings,
starting from the pioneer work of J. Mittas [37–44] and continuing with a plenitude of
researchers, such as Ch. Massouros [29,35,45–51], A. Nakassis [36], G. Massouros [50–54],
R. Rota [55,56], S. Jančic-Rašović [57–59], I. Cristea [58–64], H. Bordbar [59–61], M. Kankaraš [62],
V. Vahedi et al. [63–65], M. Jafarpour et al. [63–66], A. Connes and C. Consani [67,68],
O. Viro [69,70], R. Ameri, M. Eyvazi and S. Hoskova-Mayerova [32,71], M. Baker et al. [72–74],
J. Jun [75], O. Lorscheid [76], Z. Liu [77], H. Shojaei and D. Fasino [78], K. Das et al. [79],
K. Roberto et al. [80–82], P. Corsini [83], B. Davvaz, V. Leoreanu-Fotea [84], C. Yatras [85–87],
S. Atamewoue Tsafack, S. Wen, B.O. Onasanya, et al. [88], A. Linz, and P. Touchard [89],
S. Creech [90], T. Gunn [91], etc. In the recent years, several hyperfields which belong to the
class of quotient hyperfields have appeared, a fact that is not mentioned or even noticed,
while, sometimes, an unsuccessful terminology is used for them. More specifically:

(a) In the papers [67,68] by A. Connes and C. Consani and afterward in many subsequent
papers (e.g. [69,72,75,76]), the name «Krasner’s hyperfield» is used for the hyperfield,
which is constructed over the set {0, 1} via the hypercomposition:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = {0, 1}

Oleg Viro, in his paper [69], justifiably states about this hyperfield: «To the best of my
knowledge, K did not appear in Krasner’s papers». His remark is absolutely correct. Actu-
ally, the above is a special case of a quotient hyperfield, and in this sense, it belongs
to a special class of Krasner hyperfields. Indeed, for a field F and its multiplicative
subgroup F*, the quotient hyperfield F/F* = {0,F*} is isomorphic to the hyperfield
considered by A. Connes and C. Consani. More precisely, in the case of hyperfields
with cardinality 2, the following theorem holds:

Theorem 3. The two-element non-trivial hyperfield is isomorphic to a quotient hyperfield.

(b) In the papers [67,68] by A. Connes and C. Consani, a hyperfield is considered over
the set {−1, 0, 1} with the following hypercomposition:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 1, −1− 1 = −1, 1− 1 = −1 + 1 = {−1, 0, 1}

This hyperfield is now called «sign hyperfield» by some authors. Nevertheless, this
hyperfield is a quotient hyperfield as well. Indeed, let F be an ordered field and let F+

be its positive cone. Then the quotient hyperfield F/F+ = {–F+,0,F+} is isomorphic to
the sign hyperfield.

(c) The «phase hyperfield» that appeared recently in the bibliography (see, e.g., [69,72]) is
just the quotient hyperfield C/R+, where C is the field of complex numbers and R+

is the set of positive real numbers. The elements of this hyperfield are the rays of the
complex field with origin at the point (0,0). The sum of two elements zR+, wR+ of
C/R+ is the set {(zp + wq)R+ | p, q ∈ R+}. When zR+ �= wR+, this sum consists
of all the interior rays xR+ of the convex angle which is created from zR+ and wR+,
while if wR+ = −zR+ then, the sum of the two opposite rays zR+, −zR+ is the set
{ 0, −zR+, zR+}. This hyperfield is presented in detail in [46].

Note on the notation: In the following theorems, new hyperfields are constructed
via other hyperfields or fields. To avoid any confusion between the new and the old
hypercomposition we use + as the sign for the initial addition and symbols such as �, +̂,
+̃, etc., to denote the new one.

10
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Theorem 4. Let (F, +, ·) be a field. If we define the hypercomposition � on F as follows:

x � y = { x, y, x, + y }, i f y �= −x and x, y �= 0,
x � (−x) = F, f or all x ∈ F∗,
x � 0 = 0 � x = x, f or all x ∈ F,

then (F, �, ·) is a hyperfield isomorphic to a quotient hyperfield.

Proof. From the verification of the axioms, it follows that (F, �, ·) is a hyperfield (see
also [46]). Next, since (F,+,·) is a field, the polynomial ring F[x] is an integral domain, and
so the field F(x) of the rational functions over F can be defined. We can then assume that in
all rational functions, the coefficient of the highest power of the denominator’s polynomial
is 1 since, if this is not the case, we can make it via the appropriate division. Now, let G be
the set

G = { π(x) ∈ F(x) | am = 1 }
where am is the coefficient of the numerator’s highest power. G is a multiplicative subgroup
of the multiplicative group of F(x). Therefore, we can consider the quotient hyperfield
(F(x)/G, �, ·). The function ϕ : F → F(x)/G , with ϕ(a) = aG, for each a∈F, is one-to-one,
since if a, b are distinct elements in F, then

aG = {π(x) ∈ F(x) with am = a } and bG = {π(x) ∈ F(x) with am = b }

are distinct elements of F(x)/G. Moreover, ϕ is a surjection since every element aG of
F(x)/G is the image of the corresponding element a of F. Next, let

π1(x) =

k
∑

i=1
aitai

l
∑

j=1
bjt

bj

, ak = 1, bl = 1 and π2(x) =

n
∑

i=1
a′i t

ai

l
∑

j=1
bjt

bj

, a′n = 1, bl = 1

be two elements in G. We assume that π1(x) and π2(x) have the same denominator because
if they are rational expressions with unlike denominators, we can convert them into rational
expressions with common denominators. Let us consider the sum:

aG � bG = { [aπ1(x) + bπ2(x)]G | π1(x), π2(x) ∈ G } with bG �= −aG

Then:

(i) If k > n, then the coefficient of the highest power of the polynomial aπ1(x) + bπ2(x)
is a, thus aπ1(x) + bπ2(x) ∈ aG, and therefore aG ∈ aG � bG. On the other hand,
the coefficient of the highest power of the polynomial bπ1(x) + aπ2(x) is b, thus
bπ1(x) + aπ2(x) ∈ bG and therefore bG ∈ aG � bG.

(ii) If k = n, then the coefficient of the highest power of the polynomial aπ1(x) + bπ2(x)
is a + b, thus aπ1(x) + bπ2(x) ∈ (a + b)G, and therefore (a + b)G ∈ aG � bG.

Consequently, ϕ is an isomorphism, and thus the Theorem. �

It needs to be clarified here that the definition of the hypercomposition for the non-
opposite elements, in combination with the axioms of the hyperfield, allows no different
way for the definition of the hypercomposition of two opposite elements. More precisely,
we have the following two Propositions (for their proofs see [46]):

Proposition 2. In a hyperfield K, with cardK > 3, the sum x+y of any two elements x,y �=0 contains
these two elements if and only if the difference x−x equals K for all x �=0.
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Proposition 3. In a hyperfield K, with cardK > 3, the sum x+y of any two non-opposite elements
x,y �=0 does not contain the participating elements if and only if the difference x−x equals to {−x,0,x},
for all x �=0.

The hypercomposition that appears in Proposition 2 is called closed (or containing;
sometimes it is also called extensive [92]), while the hypercomposition that appears in
Proposition 3 is called open [93]. In particular, a hypercomposition in a hypergroupoid
(E,+) is called right closed if a∈b+a for all a,b∈E, left closed if a∈a+b for all a,b∈E, and closed if
{a,b}⊆a+b for all a,b∈E. A hypercomposition is called right open if a/∈b+a for all a,b∈E with
b �=a while it is called left open if a/∈a+b for all a,b∈E with b �=a. A hypercomposition is called
open if it is both right and left open. Right closed hypercompositions are left open, and left
closed compositions are right open. If the commutativity is valid, then the right/left closed
and the closed (resp. the right/left open and the open) hypercompositions coincide.

The following Theorem presents the construction of a hyperfield that is equipped
with a closed hypercomposition, and therefore, the definition of the sum of two opposite
elements in it is restricted by the provisions of Proposition 2.

Theorem 5. Ref. [46] Let (H, +, ·) be a hyperfield. If we define a new hypercomposition «�» on H
as follows:

x � y = {x, y} ∪ x + y, f or all x, y ∈ H*, with y �= −x,
x � (−x) = H, f or all x ∈ H*,
x � 0 = 0 � x = x, f or all x ∈ H,

then, (H, �, ·) is a hyperfield and when (H, +, ·) is a quotient hyperfield, then (H, �, ·) is also a
quotient hyperfield.

The proof of this theorem can be found in [46].
The hyperfield, which is constructed by the above Theorems 4 and 5, will be termed

augmented hyperfield because the composition or the hypercomposition is augmented to
contain the two addends. The augmented hyperfield of a field or a hyperfield F is denoted
by [F]. The augmented hyperfield’s distinctive feature is that it always provides the in-
formation (the elements) that produced the result. As shown in the following sections,
different hyperfields can have the same augmented hyperfield.

Theorems 4 and 5 ensure that the augmented hyperfield of a field or a quotient hyper-
field is a quotient hyperfield, but it is not known yet whether all the members of a family of
hyperfields whose augmented hyperfield is a quotient hyperfield are quotient hyperfields.

In the following construction Theorems, Proposition 2 is used to define the sum of two
opposite elements:

Theorem 6. Ref [46] Let G be a non-unitary multiplicative group and let (H*,·) be its direct
product with the multiplicative group {−1,1}. Consider the set H = H*∪{0}, where 0 is a bilaterally
absorbing element in H, i.e., 0w=w0=0, for all w∈H. The following hypercomposition is introduced
on H:

(x, i) +̂ (y, j) = {(x, i), (y, j)}, i f (y, j) �= (x,−i),
(x, i)+̂(x,−i) = H, f or all (x, i) ∈ H*,
(x, i) +̂ 0 = 0 +̂ (x, i) = (x, i) and 0+̂0 = 0 f or all (x, i) ∈ H*.

Then, (H,+̂,·) is a hyperfield.

12



Mathematics 2023, 11, 1289

Theorem 7. Ref. [46] Let (G, ·) be a non-unitary multiplicative group and 0 a bilaterally absorbing
element. If we define a hypercomposition +̂ on H = G∪{0} as follows:

x +̂ y = {x, y}, f or all x, y ∈ G, with y �= x,
x +̂ x = H, f or all x, y ∈ G,
x +̂ 0 = 0 +̂ x = x, f or all x ∈ H,

then, the triplet (H, +̂, ·) becomes a hyperfield.

In [46], it is proved that the above Theorem constructs a family of hyperfields, which
contains quotient hyperfields, but it is not known yet whether this family contains non-
quotient hyperfields as well.

Theorem 8. Let Q be a multiplicative group that has more than two elements and let 0 be a
multiplicatively bilaterally absorbing element. If we define a hypercomposition +̃ on H = Q∪{0}
as follows:

x +̃ y = Q, f or all x, y ∈ Q, with y �= x,
x +̃ x = H · ·{x}, f or all x ∈ Q,
x +̃ 0 = 0 +̃ x = x, f or all x ∈ H,

then, the triplet H(Q) = (Q∪{0}, +̃, ·) is a hyperfield.

The following example proves the existence of quotient hyperfields which are con-
structed according to the above Theorem.

Example 2. (i) Consider the field Z41. This field’s multiplicative subgroup of order 4

G = {1, 4, 10, 16, 18, 23, 25, 31, 37, 40}

has the property G–G=G+G=Z41··G and xG+yG=Z41··{0} when x �=y with
x, y ∈

{
3k
∣∣∣ k = 0, 1, 2, 3

}
. Therefore, the quotient hyperfield

Z41/G =
{

0, G, 3G, 32G, 33G
}

is of the type of hyperfields of Theorem 8.

(ii) Consider the field Z71. Its multiplicative subgroup of order 5 is

G = {1, 20, 23, 26, 30, 32, 34, 37, 39, 41, 45, 48, 51, 70}

and it has the property G–G=G+G=Z71··G and xG+yG=Z71··{0} when x �=y with
x, y ∈

{
2k
∣∣∣ k = 0, 1, 2, 3, 4

}
. Therefore, the quotient hyperfield

Z71/G =
{

0, G, 2G, 22G, 23G, 24G
}

is of the type of hyperfields of Theorem 8.
(iii) Consider the field Z101. This field’s multiplicative subgroup of order 5

G = {1, 6, 10, 14, 17, 32, 36, 39, 41, 44, 57, 60, 62, 65, 69, 84, 87, 91, 95, 100}

has the property G–G=G+G=Z101··G and xG+yG=Z101··{0} when x �=y with
x, y ∈

{
2k
∣∣∣ k = 0, 1, 2, 3, 4

}
. Therefore, the quotient hyperfield

Z101/G =
{

0, G, 2G, 22G, 23G, 24G
}

13
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is of the type of hyperfields of Theorem 8.

The hyperfields of Theorems 6 and 7 are called b-hyperfields due to the binary result
of the hypercomposition, which consists of the two addends when they are different
elements. Moreover, the hyperfields of Theorems 4, 5, 6, and 7 were termed monogenic
(monogène) because they are generated by just a single element of the hyperfield [46].
Additionally, the hyperfield which is constructed by Theorem 8 is monogenic (monogène)
because H=x+̃x+̃x+̃x. The monogenic (monogène) canonical hypergroup was introduced and
studied in depth by J. Mittas [26]. The set of the canonical subhypergroups of a canonical
hypergroup H is a complete lattice, thus for a given subset X of H there always exists the
least (in the sense of inclusion) canonical subhypergroup X of H which contains X. Now,
if X is the singleton {x}, then the canonical subhypergroup that is generated from it, is
called monogenic (monogène). If H = {x}, then H itself is called monogenic (monogène). The
study of the monogenic (monogène) hypergroups led to the definition of the order of a
canonical hypergroup’s elements [26] and sequentially to the order of the elements of a
hyperfield [41]. Since:

mx + nx =

{
(m + n)x, if mn > 0
(m + n)x + min{ |m|, |n| } (x− x), if mn < 0

for the monogenic (monogène) hypergroup it holds:

{x} = mx + n(x− x), m, n ∈ Z

and as it is true that –(x–x)=x–x, we can assume that (m,n)∈Z×N instead of Z×Z.
Thus, two mutually exclusive cases can appear:

(I) For every (m,n)∈Z×N, with m �=0, 0/∈mx+n(x–x), in which case x, as well as {x} are
said to be of infinite order denoted by ω(x)=+∞.

Proposition 4. Ref. [26] ω(x)=+∞ if and only if m′x∩m”x=∅, for every m′,m”∈Z with m′ �=m”.

(II) There exists (m,n)∈Z×N, with m �=0, such that 0∈mx+n(x–x). In the following, p
will denote the minimum positive integer for which there exists n∈N, such that
0∈px+n(x–x).

Proposition 5. Ref. [26] For a given m∈Z there exists n∈N such that 0∈mx+n(x–x), if and only
if m is divided by p.

For m=kp, k∈Z*, let q(k) be the minimum nonnegative integer such that 0∈kpx+q(k)(x–x).
Then q is a function from Z to N. Mittas called the pair ω(x)=(p,q) order of both x and {x}.
Also, he named p the principal order of x and q the associative order of x [26,41]. Therefore, the
order of all the elements of the hyperfields which are constructed by the Theorems 4, 5 and
6 is (1,1) because 0∈x+(x–x), while the order of the elements of the monogenic (monogène)
hyperfield of Theorem 7 is (2,0), since 0∈x+x=2x+0(x–x) and of the hyperfield of Theorem 8
is (4,0), since 0∈x+x+x+x=4x+0(x–x).

These definitions were later used in other hypercompositional structures, such as the
fortified transposition hypergroups [22], the hyperringoids [52], the M-polysymmetrical
hyperrings [86] etc.

3. The Non-Quotient Hyperfields/Hyperrings

M. Krasner realized that the existence of non-quotient hyperfields and hyperrings was
an essential question for the self-sufficiency of the theory of hyperfields and hyperrings vis-
à-vis that of fields and rings, since if all hyperrings and hyperfields could be isomorphically
embedded into the quotient hyperrings, then several conclusions of their theory could
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have been obtained in a direct and straightforward way, through the use of the ring, field
and modules theories, instead of developing new techniques and proof methodologies.
Therefore, in his paper [24], he raised the relevant question. The answer to this question led
to the construction of two classes of hyperfields and hyperrings, which contain elements
that are not isomorphic to the quotient ones. The following Theorems 9 and 10 which were
proved by Ch. Massouros, refer to hyperfields with closed hypercompositions and they
prove the existence of finite and infinite non-quotient hyperfields. The subsequent Theorem
11 was proved by A. Nakassis, it is on hyperfields with open hypercompositions and it
reveals another class of finite non-quotient hyperfields. Moreover, Theorem 12 gives a new
class of infinite non-quotient hyperfields which do not belong to the previous two classes,
and Theorem 13 uncovers a new class of infinite non-quotient hyperrings.

Theorem 9. Ref. [35] Let Θ be a multiplicative group that has more than two elements and let (K*, ·)
be its direct product with the multiplicative group {−1, 1}. Consider the set K = K*∪{0}, where 0 is
a bilaterally absorbing element in K, i.e., 0w=w0=0, for all w∈K. The following hypercomposition is
introduced on K:

(x, i)  (y, j) = {(x, i), (y, j), (x,−i), (y,−j)}, i f (y, j) �= (x, i), (x,−i)
(x, i)  (x, i) = K · ·{(x, i), (x,−i), 0}
(x, i)  (x,−i) = K · ·{(x, i), (x,−i)}
(x, i)  0 = 0  (x, i) = (x, i) and 0  0 = 0

Then, the triplet K(Θ) = (K,  , ·) is a hyperfield that does not belong to the class of quotient
hyperfields when Θ is a periodic group.

For the proof of the above Theorem, see [35].

Theorem 10. Refs. [29,47] Let Θ be a multiplicative group which has more than two elements
and let 0 be a multiplicatively bilaterally absorbing element. If we define a hypercomposition  

on H = Θ∪{0} as follows:

x  y = {x, y}, for all x, y ∈ Θ, withy �= x,
x  x = H · ·{x}, for all x ∈ Θ,
x  0 = 0  x = x, for all x ∈ H,

then, the triplet H(Θ) = (Θ∪{0},  , ·) is a hyperfield which is not isomorphic to a quotient hyperfield
when Θ is a periodic group.

For the proof of the above Theorem, see [29,47].

Proposition 6. Ref. [36] Let (T,·) be a multiplicative group of order m, with m > 3. Addi-
tionally, let H = T∪{0} where 0 is a multiplicatively absorbing element. If H is equipped with
the hypercomposition:

x  y = H · ·{0, x, y} f or all x, y ∈ T, with y �= x,
x  x = {0, x}, f or all x ∈ T,
x  0 = 0  x = x, f or all x ∈ H,

then, H(T) = (T∪{0},  , ·) is a hyperfield.

It is worth noting here that the elements of the above hyperfield are self-opposite, and
since the hypercomposition is open, Proposition 3 imposes the definition of the sum of the
self-opposite elements so that H(T) fulfills the axioms of the hyperfield.
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Theorem 11. Ref. [36] If T is a finite multiplicative group of m, m>3 elements and if the hyperfield
H(T) is isomorphic to a quotient hyperfield F/Q, then Q∪{0} is a field of m−1 elements while F is a
field of (m−1)2 elements.

Obviously, the cardinality of T can be chosen in such a way that H(T) cannot be
isomorphic to a quotient hyperfield.

For the proof of Theorem 11, the following important counting lemma was introduced
and used by A. Nakassis.

Lemma 1. Ref. [36] Let H be a hyperfield equipped with a hypercomposition such that the differences
x−x, x∈H have only 0 in common. If H is isomorphic to a quotient hyperfield F/Q, then the
cardinality of the sum of any two non-opposite elements is equal to the cardinality of Q.

Proof. Suppose that H is a hyperfield equipped with a hypercomposition such that
(x− x) ∩ (y− y) = {0} for all x,y∈H with x �=y. Assume that H is isomorphic to a quotient
hyperfield F/Q. Let a′,b′ with a′ �=b′ be two elements in H and let aQ, bQ be their homomorphic
images in F/Q. Then a′+b′ has the same cardinality with aQ + bQ = {(a + bq)Q | q ∈ Q}.
Next, if (a + bq)Q = (a + bp)Q, then

a + bq = (a + bp)r ⇔ a− ar = bq− bpr ⇒ (aQ− aQ) ∩ (bQ− bQ) �= ∅

However, since the equality (aQ − aQ) ∩ (bQ − bQ) = {0} is valid, it follows that a−ar=0.
Therefore r=1 and consequently bq−bp=0 or equivalently q=p. Hence card(aQ+bQ)=cardQ
and so the lemma. �

A direct consequence of Nakassis’ lemma is that if a hyperfield H is isomorphic to a
quotient hyperfield and the differences x−x, x∈H have only 0 in common, then the sums
of the non-opposite elements have the same cardinality. This result is very useful to the
classification of hyperfields which is presented in Section 5.

In the following, the class of non-quotient hyperrings and hyperfields will be enriched
with another family of such structures.

J. Mittas in the first section of [41], constructed the following hyperfield, which is
called tropical hyperfield nowadays (see, e.g., [69,70,72,75,76]) because it is proved to be a
suitable and effective algebraic tool for the study of tropical geometry:

Example 3. Ref. [41] Let (E,·) be a totally ordered multiplicative semigroup, having a mini-
mum element 0, which is bilaterally absorbing with regard to the multiplication. The following
hypercomposition is defined on E:

x y =

{
max{x, y} i f x �= y
{z ∈ E | z ≤ x} i f x = y

Then (E, , ·) is a hyperring. If E · ·{0} is a multiplicative group, then (E, , ·) is a hyperfield.

A slight modification of the definition of the above hypercomposition, when x is equal
to y, gives the following Theorem:

Theorem 12. Let (E,·) be a totally ordered multiplicative semigroup, having a minimum element 0,
which is bilaterally absorbing with regard to the multiplication. The following hypercomposition is
defined on E:

x y =

{
max{x, y} i f x �= y
{z ∈ E | z < x} i f x = y

Then (E, , ·) is a non-quotient hyperring. If E · ·{0} is a multiplicative group, then (E, , ·) is a
non-quotient hyperfield.
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Proof. The verification of the axioms of the hyperring and the hyperfield proves that
(E, , ·) is such a structure. Next suppose that (E, , ·) is isomorphic to a quotient hyperring
(R/Q,+, ·). As x/∈x+x, for all x∈E and because 2 = 1 + 1 ∈ Q + Q, it follows that 2 /∈ Q.
Hence 2Q is a class different from Q which belongs to Q + Q, therefore 2Q < Q and so
2Q + Q = Q. Next:

3 = 2 + 1 ∈ 2Q + Q = Q
4 = 3 + 1 ∈ Q + Q, thus 4 /∈ Q
4 = 2 + 2 ∈ 2Q + 2Q, thus 4 /∈ 2Q
Consequently 4Q is a new class different from Q and 2Q and furthermore, since it

belongs to Q + Q, it holds that 4Q < Q. Therefore:
4Q + Q = Q
5 = 4 + 1 ∈ 4Q + Q = Q
6 = 2 · 3 ∈ 2Q ·Q = 2Q

Hence, for 7, we have:
on the one hand 7 = 6 + 1 ∈ 2Q + Q = Q
while, on the other hand, 7 = 4 + 3 ∈ Q + Q, subsequently 7 /∈ Q.
This is a contradiction and therefore (E, , ·) does not belong to the class of quotient

hyperrings or hyperfields. �

Note that Theorem 12′s hypercomposition is neither open nor closed. Also, note that
the above Theorem enriches the class of non-quotient hyperrings with many new members
in addition to the ones it is constructing. Indeed, [35] gives a method of constructing
non-quotient hyperrings when at least one non-quotient hyperfield is known. In particular,
the following Theorem is valid:

Theorem 13. Ref. [35] The direct sum of the hyperrings Si, i∈I is not isomorphic to a sub-hyperring
of a quotient hyperring if at least one of the Si is not a quotient hyperfield.

Thus, for example, if R is the field of the real numbers and R̆+ the hyperfield of
Theorem 12 which is constructed over the set of the non-negative real numbers, then
R⊕ R̆+ is a non-quotient hyperring.

Another class of non-quotient hyperrings was constructed by Nakassis in [36]. Nakas-
sis’ hyperrings are endowed with open hypercompositions.

4. Problems in the Theory of Fields that arose from a Question in the Theory
of Hyperfields

The constructions of specific monogenic (monogène) hyperfields in the early 1980s,
led directly to the hitherto open question of whether these constructions can produce
non-quotient hyperfields as well [35,49,94]. It should be noted that to date they have given
several hyperfields all of which are quotient [46,47,49]. Theorem 4 gives a family of such
monogenic quotient hyperfields. If x−x=H, x∈H* is valid in a monogenic (monogène)
hyperfield H which is isomorphic to a quotient hyperfield F/G, then G−G = F. Hence, the
problem of the isomorphism of monogenic hyperfields to quotient hyperfields, simultane-
ously brought into being the following problem in the theory of fields:

When can a subgroup G of the multiplicative group of a field F generate F via the
subtraction of G from itself?

The answer to this question for subgroups of finite fields of index 2 and 3 was given
in [49]. The following Theorem presents the results of papers [47,49,95,96] collectively:
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Theorem 14. Refs. [33,48] Let F be a finite field and G be a subgroup of its multiplicative group of
index n and order m. Then, G–G=F, if and only if:

n = 2 and m > 2,
n = 3 and m > 5,
n = 4, −1 ∈ G and m > 11,
n = 4, −1 /∈ G and m > 3,
n = 5, charF = 2 and m > 8,
n = 5, charF = 3 and m > 9,
n = 5, charF �= 2, 3 and m > 23

Remark 1. From the above Theorem, it becomes apparent that the validity of the equality
G–G=F depends on the cardinality of G. However, this does not mean that any subset S of
the field F with the same cardinality as G has the property S–S=F. For example, if F=Z19,
then its multiplicative subgroup of index 3, G={1,7,8,11,13,17} satisfies the equality G–G=F,
while its subset S={1,6,8,11,13,17}, which has the same cardinality as G, does not. It must
also be noted that G’s cosets have the same property as G.

Working with the subgroups of index 6, in light of the above Theorem, we have the
following Proposition:

Proposition 7. If G is a subgroup of index 6 of the multiplicative group of a finite field F such that
G−G=F and −1/∈G, then G has more than 10 elements.

Proof.−G and G have the same number of elements and−G∩G=∅. Moreover, (−G)(−G)=G.
Consequently W=−G∪G is a subgroup of index 3 of the multiplicative group of F. Thus, by
Theorem 14, cardW>5 and therefore cardG>10. �

Proposition 7 provides a very accurate result. Indeed, the field with the fewest
elements which has a multiplicative subgroup of index 6 that satisfies the assumptions
of the above Proposition is Z67 and this field’s multiplicative subgroup of index 6 is
G = {1,9,14,15,22,24,25,40,59,62,64}. As shown in Cayley Table 1, G–G=Z67 is valid.

Table 1. The Cayley table of the subtraction G–G.

 1 9 14 15 22 24 25 40 59 62 64 

1 0 8 13 14 21 23 24 39 58 61 63 

9 59 0 5 6 13 15 16 31 50 53 55 

14 54 62 0 1 8 10 11 26 45 48 50 

15 53 61 66 0 7 9 10 25 44 47 49 

22 46 54 59 60 0 2 3 18 37 40 42 

24 44 52 57 58 65 0 1 16 35 38 40 

25 43 51 56 57 64 66 0 15 34 37 39 

40 28 36 41 42 49 51 52 0 19 22 24 

59 9 17 22 23 30 32 33 48 0 3 5 

62 6 14 19 20 27 29 30 45 64 0 2 

64 4 12 17 18 25 27 28 43 62 65 0 
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Lemma 1. Fields of characteristic 2 have no multiplicative subgroups of index 6.

Proof. The multiplicative subgroup of a field of characteristic 2 has 2k − 1 elements.
Therefore, it is not divisible by 6, because it has an odd number of elements. �

Lemma 2. Fields of characteristic 3 have no multiplicative subgroups of index 6.

Proof. The multiplicative subgroup of a field of characteristic 3 has 3k − 1 elements, which
is a non-multiple of number 3 and hence non-divisible by 6. �

Taking into consideration Proposition 7, Lemmas 1, 2 and applying techniques that
are similar to the ones developed in [47,49,95,96], we have the Theorem:

Theorem 15. Let F be a finite field and G be a subgroup of its multiplicative group of index 6 and
order m. Then, G–G=F, if and only if:

−1 /∈ G, and m ≥ 11,
−1 ∈ G, charF = 11 and m ≥ 20,
−1 ∈ G, charF = 13 and m ≥ 28,
−1 ∈ G, charF �= 11, 13 and m ≥ 30.

The conclusions of the above Theorem are sharp. The examples that follow are
indicative of this fact.

Example 4. The field GF[112] consists of all the linear polynomials with coefficients in the field of
residues modulo 11. In GF[112], the polynomial x2 +1 is irreducible. Thus, in the multiplication
the polynomials are combined according to the ordinary rules, setting x2 = −1 = 10, and working
modulo 11. GF [112] has the following multiplicative subgroup of index 6,

G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x}

which has 20 elements. It can be verified that G–G=GF[112].

Example 5. The field GF[132] consists of all the linear polynomials with coefficients in the field of
residues modulo 13. The addition and the multiplication are defined in the usual way, replacing x2

by 11, since the polynomial x2 + 2 is irreducible. GF[132] has the following multiplicative subgroup
of index 6,

G =

⎧⎪⎪⎨⎪⎪⎩
1, 5, 8, 12,
5x + 1, 8x + 1, 2x + 2, 11x + 2, 3x + 3, 10x + 3, 5x + 4, 8x + 4, x + 5, 12x + 5,
x + 6, 12x + 6, x + 7, 12x + 7, x + 8, 12x + 8, 5x + 9, 8x + 9,
3x + 10, 10x + 10, 2x + 11, 11x + 11, 5x + 12, 8x + 12

⎫⎪⎪⎬⎪⎪⎭
which has 28 elements. It can be verified that G–G=GF[132].

Example 6. The field Z181of residues modulo 181 has the following multiplicative subgroup of
index 6,

G =

{
1, 5, 25, 27, 29, 36, 42, 46, 48, 49, 56, 59, 64, 67, 82, 99,
114, 117, 122, 125, 132, 133, 135, 139, 145, 152, 154, 156, 176, 180

}
which has 30 elements. It can be verified that G− G = Z181.

Similar conclusions to those of Theorem 14 for the multiplicative subgroups of index
3 have been published in [97] without however mentioning the mathematical necessity
that led to this problem. The papers [98–100] also deal with this problem without proving
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though the clear and accurate results that are given by Theorems 14 and 15. On the other
hand, in [98–100], the following Theorem is proved:

Theorem 16. Refs. [98–100] If G is a subgroup of finite index in the multiplicative group of an
infinite field F, then G−G=F.

The above Theorem leads to an extension of Theorems 9 and 10. Indeed, since all finite
groups are periodic, while there also exists infinite periodic groups, Theorems 9 and 10
generate finite and infinite non-quotient hyperfields. However, according to Theorem 16, if
a hyperfield H is the quotient of an infinite field with a multiplicative subgroup of finite
index, then x−x=H for all x∈H. Thus, the following Theorem holds:

Theorem 17. There do not exist finite quotient hyperfields with the hypercompositions which are
defined in Theorems 9 and 10.

Furthermore, Theorem 8 sets a new question in the theory of fields:

When can a subgroup G of the multiplicative group of a field F generate F··G via its
subtraction from itself?

Example 2 presents three finite fields which have a multiplicative subgroup G pos-
sessing the above property, while the sum of any two of its cosets gives all the non-zero
elements of the field F. It is worth mentioning that the rather old paper [101] investigates
conditions under which the sum of two cosets of a multiplicative subgroup G of a finite
field has a nonempty intersection with at least 3 cosets of G.

5. Classification of Finite Hyperfields into Quotient and Non-Quotient Hyperfields

The enumeration of certain finite hyperfields has been conducted in several
papers [66,71,73,77]. Paper [66] deals with hyperfields of order less than or equal to
4, [73,77] deals with hyperfields of order less than or equal to 5, and [71] deals with
hyperfields of order less than or equal to 6. In [71], R. Ameri, M. Eyvazi, and S. Hoskova-
Mayerova make a thorough check of the isomorphism of these hyperfields to the quotient
hyperfields using conclusions from the papers [46–48,95–97]. This section addresses the
isomorphism problems with the use of the techniques which were developed from the
above study, while it covers some of the gaps that appear in [71].

5.1. Hyperfields of Order 2

According to Theorem 3 there is one two-element non-trivial hyperfield, which is
isomorphic to the quotient hyperfield F/F*, where F is any field with cardF>2 and F* is its
multiplicative group. Hence, there exist two hyperfields of order 2, the above and Z2

5.2. Hyperfields of Order 3

Hyperfields of order 3 have two non-zero elements. There are five isomorphism classes
of these hyperfields [66,71,73,77]. The trivial hyperfield Z3 is the first of them. Next, there
are three hyperfields of order 3, which derive as quotients of a finite field F by an index
2 multiplicative subgroup G of its multiplicative group. According to Theorem 14, the
following three cases can be valid for the subgroup G:

i. G–G �= F, which applies only when F = Z5 and G = {1,4}
ii. −1 /∈ G (i.e., {−1, 1} �⊆ G) and G–G = F, which applies when

cardF = 2(cardG) + 1 = 2(2k + 1) + 1 = 4k + 3

iii. −1∈G (i.e., {−1, 1} ⊆ G) and G–G = G + G = F, which applies when

cardF = 2(cardG) + 1 = 2(2k) + 1 = 4k + 1, k > 2
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Therefore, there exist the corresponding three isomorphism classes of quotient hyper-
fields of order 3 constructed from finite fields:

i. Z5/{1,4}
ii. GF[pq]/G, pq=3(mod4)
iii. GF[pq]/G, pq=1(mod4)

The above classification can also derive as follows:
The first two classes are the field Z3 and its augmented hyperfield. The Cayley tables

of their additive parts are shown in the following Table 2:

Table 2. The Cayley tables of the additive group of Z3 and of the additive canonical hypergroup of
its augmented hyperfield [Z3].

3   0 1 2  
3  0 1 2 

0 0 1 2  0 0 1 2 

1 1 2 0   1 1 {1,2}   {0 ,1 ,2}   

2 2 0 1  2 2 {0,1 ,2}  {1,2}  

By Theorem 4, the augmented hyperfield of Z3 is a quotient hyperfield. Observe that [Z3] is
isomorphic to the quotient hyperfield Z7/{1,2,4}. More generally, the augmented hyperfield
of Z3 is isomorphic to the quotient hyperfield GF[pq]/G, pq = 3(mod4), G being an index
2 multiplicative subgroup of the field’s multiplicative group.

The next two classes are the quotient hyperfield Z5/{1,4} and its augmented hyperfield
[Z5/{1,4}]. Denoting by 1 the group G={1,4} and by a its coset 2G={2,3}, we have the
following Cayley tables (Table 3) for the additive canonical hypergroups of Z5/{1,4} and of
its augmented hyperfield:

Table 3. The Cayley tables of the additive canonical hypergroups of the hyperfield Z5/{1,4} and its
augmented hyperfield [Z5/{1,4}].

5 / {1,4} 0 1 a  5 / {1,4}  0 1 a 

0 0 1 a  0 0 1 a 

1 1 {0,a}  {1,a}    1 1 {0,1 ,a }   {1 ,a}    

a a {1 ,a}  {0,1}   a a {1 ,a}  {0,1 ,a }  

According to Theorem 5, the augmented hyperfield of a quotient hyperfield is a quo-
tient hyperfield. Therefore, [Z5/{1,4}] is a quotient hyperfield which is isomorphic to
Z13/{1,3,4,9,10,12}. More generally, [Z5/{1,4}] is isomorphic to the quotient hyperfield
GF[pq]/G, pq = 1(mod4), G being an index 2 multiplicative subgroup of the field’s multi-
plicative group.

The fifth and final class of the order 3 hyperfields is the quotient of an infinite field,
and in particular, it is the quotient of an ordered field F by its positive cone F+. This is
the so-called «sign hyperfield» and the Cayley table of its canonical hypergroup is shown
in Table 4:
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Table 4. The Cayley table of the canonical hypergroup of the hyperfield F/F+.

 0 −1 1 

0 0 −1 1 

−1 −1 −1 {−1,0 ,1}   

1 1 {−1,0 ,1}  1 

The above conclusions are summed up in the following Theorem:

Theorem 18. All the hyperfields of order 3 are quotient hyperfields which are classified into 5
isomorphism classes having the following representatives:

i. Z3 and its augmented hyperfield [Z3].
ii. Z5/{1,4} and its augmented hyperfield [Z5/{1,4}].
iii. The quotient hyperfield of an ordered field F by its positive cone F+.

Hence, the next Theorem holds:

Theorem 19. All the hyperfields of order 2 and 3 are quotient hyperfields.

5.3. Hyperfields of Order 4

There are 7 isomorphism classes of hyperfields of order 4, as they have been enu-
merated in [66,71,73,77]. These consist of the Galois field GF[22], 4 classes of quotient
hyperfields, and 2 classes of non-quotient hyperfields.

Note on the notation: In the subsequent paragraphs, we denote the quotient hyperfields
by QHFj

i and the non-quotient hyperfields by NQHFj
i . The subscript i denotes the order of

the hyperfield, while the superscript j lists the classes.

5.3.i. Quotient Hyperfields of Order 4

The first two classes are the field GF[22] and its augmented hyperfield. Recall that,
according to Theorem 4, the augmented hyperfield of GF[22] is a quotient hyperfield. The
Cayley tables of their additive parts are presented in Table 5:

Table 5. The Cayley tables of the additive group of GF[22] and of the additive canonical hypergroup
of its augmented hyperfield [GF[22]], which is also denoted by QFH1

4 .

0 1 x x + 1 

0 0 1 x x + 1 

1 1 0 x + 1 x 

x x x + 1 0 1 

x + 1 x + 1 x 1 0 
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Table 5. Cont.

 0 1 x x+1 

0 0 1 x x+1 

1 1 {0 ,1,x ,x + 1} {1 ,x ,x + 1} {1 ,x ,x + 1} 

x x {1 ,x ,x + 1} {0 ,1,x ,x + 1} {1 ,x ,x + 1} 

x+1 x+1 {1 ,x ,x + 1} {1 ,x ,x + 1} {0 ,1,x ,x + 1} 

Regarding their multiplicative part, the four elements are combined according to the usual
rules, working modulo 2 and writing x2 as x+1 since x2+x+1 is the irreducible polynomial
of degree 2. Therefore, Table 6 is the Cayley table of the multiplicative group of the field
GF[22] and its augmented hyperfield:

Table 6. The Cayley table of the multiplicative group of the field GF[22] and of its augmented
hyperfield [GF[22]].

 1 x x + 1 

1 1 x x + 1 

x x x + 1 1  

x + 1 x + 1 1 x 

We keep using Theorem 14 to examine the next two classes. So, according to Theorem 14,
for the fields F with cardinality less than or equal to 16, it holds G—G �=F, when G is a
multiplicative subgroup of index 3. These fields are Z7, Z13, and GF[24]. GF[24] is the field
of all the polynomials of degree ≤3, with coefficients in Z2.

The multiplicative subgroup of index 3 in the field Z7 is G={1,6}, and 2G, 22G are
its cosets. Denoting by 1, a, a2 the group G and its two cosets, respectively, we have the
following Cayley table (Table 7) for the additive canonical hypergroup of the quotient
hyperfield Z7/{1,6}.

Table 7. The Cayley table of the additive canonical hypergroup of the quotient hyperfield Z7/{1,6}.

 0 1 a a2 

0 0 1 a a2 

1 1 {0 ,a}  {1 ,a 2}  {a ,a 2}  

a a {1 ,a 2}  {0,a 2}  {1 ,a}  

a2 a2 {a ,a 2}  {1 ,a}  {0 ,1} 

The multiplicative subgroup of index 3 in the field Z13 is G={1,5,8,12} and 2G, 22G are
its cosets. Denoting by 1, a, a2 the group G and its two cosets, respectively, we have the
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following Cayley Table 8 for the additive canonical hypergroups of the quotient hyperfield
Z13/{1,5,8,12}.

Table 8. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z13/{1,5,8,12}.

 0 1 a a2 

0 0 1 a a2 

1 1 {0 ,a ,a 2}   {1 ,a ,a 2}  {1 ,a ,a 2}  

a a {1 ,a ,a 2}  {0 ,1 ,a2}   {1 ,a ,a 2}  

a2 a2 {1 ,a ,a 2}  {1 ,a ,a 2}  {0 ,1 ,a}    

In the field GF[24] of all polynomials of degree ≤3 with coefficients in Z2, the addition
and the multiplication of the polynomials are defined in the usual way, by replacing x4 with
x+1, since x4+x+1 is the irreducible polynomial of degree 4. The multiplicative subgroup of
index 3 in the field GF[24] is

G =
{

1, x3 + x2, x3 + x2 + x + 1, x3, x3 + x
}

and xG, x2G are its cosets. Observe that the quotient hyperfield

GF
[
24
]/{

1, x3 + x2, x3 + x2 + x + 1, x3, x3 + x
}

is isomorphic to Z13/{1,5,8,12}.
Notice that QHF1

4 is the augmented hyperfield of both QHF2
4 and QHF3

4 . Moreover,
according to Theorem 14, the hyperfield QHF1

4 is isomorphic to the quotient hyperfield of
a finite field F by a subgroup of its multiplicative group of index 3, when card F > 3·5 + 1.
The hyperfield Z19/{1,7,8,11,12,18} is a representative of this class of quotient hyperfields.

All the above classes of quotient hyperfields derive from the quotient of finite fields
with their multiplicative subgroups, but the last one derives from an infinite field. The
Cayley table of the canonical hypergroup of this hyperfield appears in Table 9:

Table 9. The Cayley table of the canonical hypergroup of the quotient hyperfield of an infinite field
by a multiplicative subgroup of index 3.

 0 1 a a2 

0 0 1 a a2 

1 1 {0 ,1,a ,a2}  {1 ,a}  {1 ,a 2}  

a a {1 ,a}  {0 ,1 ,a ,a2}  {a ,a 2}  

a2 a2 {1 ,a 2}  {a ,a 2}  {0 ,1 ,a ,a2}  

Observe that the hyperfield QHF4
4 is a monogenic b-hyperfield. In [46], it is proved that

there exist monogenic b-hyperfields, which are quotient hyperfields. The above monogenic
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b-hyperfield is such a hyperfield. Indeed, as it is shown in [97], the multiplicative subgroup
G=v−1(3Z)={p3kv | k∈Z and v is a p-adic unit} of the field Qp of the p-adic numbers with
p-adic valuation v, is of index 3 and G⊆G+aG, while a2G �⊂G+aG. Therefore, because of
Proposition 2, for the quotient hyperfield Qp/G it holds that xG—xG=Qp, x=1,a,a2, and so
QHF4

4 is a quotient hyperfield.

Remark 2. In [71], it is inaccurately stated that the hyperfield QHF4
4 is isomorphic to

GF
[
24]/{1, x3, x3 + x, x3 + x2, x3 + x2 + x + 1

}
. This is not true because, as it is shown

above, this is isomorphic to QHF3
4 .

5.3.ii. Non-Quotient Hyperfields of Order 4

The non-quotient hyperfields of order 4 are presented next. Since the multiplicative
group of the hyperfields of order 4 has 3 elements, Theorem 10 can be applied to construct
a non-quotient hyperfield. The Cayley table of the canonical hypergroup of this hyperfield
is presented in Table 10:

Table 10. The Cayley table of the additive canonical hypergroup of the non-quotient b-hyperfield
with 4 elements.

 0 1 a a2 

0 0 1 a a2 

1 1 {0 ,a ,a 2}  {1 ,a}  {1 ,a 2}  

a a {1 ,a}  {0 ,1 ,a2}  {a ,a 2}  

a2 a2 {1 ,a 2}  {a ,a 2}  {0 ,1 ,a}  

Table 11 shows the additive canonical hypergroup of the seventh hyperfield of order 4:

Table 11. The Cayley table of the additive canonical hypergroup of the non-quotient hyperfield
NQHF2

4 .

 0 1 a a2 

0 0 1 a a2 

1 1 {0 ,1 ,a}  {1 ,a 2}  {a ,a 2}  

a a {1 ,a 2}  {0 ,a ,a 2}  {1 ,a}  

a2 a2 {a ,a 2}  {1 ,a}  {0 ,1 ,a2}  

NQHF2
4 is a non-quotient hyperfield. Indeed, having analyzed above all the cases of

quotient hyperfields that derive from finite fields, we conclude that if NQHF2
4 belongs to

the quotient hyperfields it must originate from a quotient of an infinite field F by some
multiplicative subgroup G of index 3. But in this case, G is a subgroup of finite index
in the multiplicative group of the infinite field F. Therefore, by Theorem 16, the equality
G – G = F must hold. However, this is not true in NQHF2

4 . Consequently, NQHF2
4 is not a

quotient hyperfield.

25



Mathematics 2023, 11, 1289

5.4. Hyperfields of Order 5

Since the multiplicative group of finite fields is cyclic, the multiplicative group of the
quotient hyperfields resulting from finite fields is cyclic as well. Therefore,

Proposition 8. Finite hyperfields whose multiplicative part is a non-cyclic group cannot be derived
from quotients of finite fields.

Thus, the finite hyperfields whose multiplicative part is a non-cyclic group derive
only from quotients of infinite fields. On the other hand, because of Theorem 14, if G is a
subgroup of finite index in the multiplicative group of an infinite field F, then G−G = F,
and therefore, if H is a finite hyperfield isomorphic to a quotient hyperfield of an infinite
field F by a subgroup G of its multiplicative group, then x−x = H must hold for all x∈H*.
Consequently, the next Theorem holds:

Theorem 20. If the multiplicative group of a finite hyperfield H is not cyclic and x-x �= H, x∈H*,
then H is not isomorphic to a quotient hyperfield.

There exist two groups of order 4, both of which are Abelian. One is the cyclic
group C4 (∼=Z/4Z), and the other is F. Klein’s Vierergruppe V (∼=C2 ×C2), which is not
cyclic. Moreover, it is known that the multiplicative group of the finite fields is cyclic.
However, this is not valid for non-trivial hyperfields. Papers [29,35,46] show how to
construct hyperfields from any abelian multiplicative group. Therefore, hyperfields can
be constructed from the Vierergruppe as well, and thus, the smallest hyperfield with a
non-cyclic multiplicative group has 5 elements.

5.4.1. Hyperfields with the Vierergruppe as Their Multiplicative Group

In [71], it has been shown that there exist 11 hyperfields whose multiplicative group is
the Vierergruppe. Recall that the Cayley table of the Vierergruppe is the following Table 12:

Table 12. The Cayley table of the Vierergruppe.

 1 a b c 

1 1 a b c 

a a 1 c b 

b b c 1 a 

c c b a 1 

As the Vierergruppe is not a cyclic group, the next Corollary follows from the above
Theorem 20:

Corollary 1. If the multiplicative part of a hyperfield H is the Vierergruppe and if x−x �=H, x∈H*,
then H is a non-quotient hyperfield.

By Corollary 1, among the 11 hyperfields whose multiplicative part is the Vierergruppe,
the following 4, which are shown in Table 13, are non-quotient hyperfields.
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Table 13. The Cayley tables of the additive canonical hypergroups of the non-quotient hyperfields
whose multiplicative group is the Vierergruppe.

 0 1 a b c 

0 0 1 a b c 

1 1 {0, 1} {b, c} {a, c} {a, b} 

a a {b, c} {0, a} {1, c} {1, b} 

b b {a, c} {1, c} {0, b} {1, a} 

c c {a, b} {1, b} {1, a} {0, c} 

      

 0 1 a b c 

0 0 1 a b c 

1 1 {a, b, c} {1, a, b, c} {1, a, b, c} {0, a, b} 

a a {1, a, b, c} {1, b, c} {0, 1, c} {1, a, b, c} 

b b {1, a, b, c} {0, 1, c} {1, a, c} {1, a, b, c} 

c c {0, a, b} {1, a, b, c} {1, a, b, c} {1, a, b} 

      

 0 1 a b c 

0 0 1 a b c 

1 1 {0, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c} 

a a {1, a, b, c} {0, 1, b, c} {1, a, b, c} {1, a, b, c} 

b b {1, a, b, c} {1, a, b, c} {0, 1, a, c} {1, a, b, c} 

c c {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b} 

      

 0 1 a b c 

0 0 1 a b c 

1 1 {0, a, b, c} {1, a} {1, b} {1, c} 

a a {1, a} {0, 1, b, c} {a, b} {a, c} 

b b {1, b} {a, b} {0, 1, a, c} {b, c} 

c c {1, c} {a, c} {b, c} {0, 1, a, b} 
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The following is an alternative proof that the hyperfields NQHF2
5 and NQHF4

5 are
non-quotient hyperfields, which is not based on Corollary 1. Indeed:

(α) For NQHF2
5 observe that the opposite of 1 is c, the opposite of a is b and more-

over that:
(1 + c) ∩ (a + b) = {0, a, b} ∩ {0, 1, c} = {0}

Therefore, according to Lemma 1, if NQHF2
5 were isomorphic to a quotient hyperfield, then

the sums of any two non-opposite elements should have the same cardinality. However,
this is not the case because, for example:

card(1+a)=4 while card(1+1)=3.

(β) For NQHF4
5 observe that it is the hyperfield constructed via Theorem 10, when

the Vierergruppe is used. Since the Vierergruppe is periodic, Theorem 10 implies that the
hyperfield NQHF4

5 cannot be isomorphic to a quotient hyperfield.
The classification of the remaining 7 hyperfields that appear in [71] is a hitherto open

problem, and it also raises the question of whether there exist quotient hyperfields that
have the Vierergruppe as their multiplicative group. It is worth mentioning here that the
hypercompositions in all 7 unclassified hyperfields are closed, and so x − x contains all the
elements of the hyperfield for each x in the Vierergruppe.

5.4.2. Hyperfields Having as Multiplicative Group the Cyclic Group C4

In [71], it is shown that there exist 16 hyperfields whose multiplicative group is
the cyclic group C4. Some of them have been identified as quotient hyperfields. Their
classification is completed in the following, starting with the quotient hyperfields.

5.4.2.i. Quotient Hyperfields with Multiplicative Group Being the Cyclic Group C4

We begin with the field Z5 and then we continue with the quotient hyperfields of finite
fields, along with their augmented hyperfields which, according to Theorems 4 and 5, are
quotient hyperfields as well (Table 14).

Table 14. The Cayley tables of the additive group of Z5 and of the canonical hypergroup of its
augmented hyperfield [Z5], which is also denoted by QHF1

5 .

5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 
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Table 14. Cont.

 0 1 2 3 4 

0 0 1 2 3 4 

1 1 {2, 1} {1, 2, 3} {1, 3, 4} {0, 1, 2, 3, 4} 

2 2 {1, 2, 3} {2, 4} {0, 1, 2, 3, 
4} {2, 4, 1} 

3 3 {1, 3, 4} {0, 1, 2, 3, 4} {1, 3} {3, 4, 2} 

4 4 {0, 1, 2, 3, 4} {2, 4, 1} {3, 4, 2} {4, 3} 

Next, G = {1,3,9} is the multiplicative subgroup of order 4 of the field Z13 and 2G,
22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its cosets, respectively,
Table 15 gives the Cayley tables for the additive canonical hypergroups of Z13/G and of its
augmented hyperfield:

Table 15. The Cayley tables of the additive canonical hypergroup of the hyperfield Z13/G, which is
also denoted by QHF2

5 and of its augmented hyperfield [Z13/G], which is also denoted by QHF3
5 .

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {a,a2} {1,a,a3} {0,a,a3} {1,a2,a3} 

a a {1,a,a3} {a2,a3} {1,a,a2} {0,1,a2} 

a2 a2 {0,a,a3} {1,a,a2} {1,a3} {a,a2,a3} 

a3 a3 {1,a2,a3} {0,1,a2} {a,a2,a3} {1,a} 

      

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {1, a, a2} {1, a, a3} {0,1, a, a2, a3} {1, a2, a3} 

a a {1, a, a3} {a, a2, a3} {1, a, a2} {0, 1, a, a2, a3} 

a2 a2 {0,1,a,a2,a3} {1, a, a2} {1, a2, a3} {a, a2, a3} 

a3 a3 {1, a2, a3} {0, 1, a, a2, a3} {a, a2, a3} {1, a, a3} 
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Theorem 14 will continue to be used for the classification of the next classes of quotient
hyperfields of order 5. Thus, in addition to the above, the fields with cardinality less than
or equal to 4·11+1=45 are the following ones:

GF[32], GF[52], Z17, Z29, Z37, and Z41.

GF[32] consists of the 9 polynomials in x of degree 0 or 1 with coefficients in the field
Z3 and writing x2 as 2 whenever it occurs. G = {1,2} is the multiplicative subgroup of index
4 in the field GF[32]. The hyperfield GF[32]/G is the following one:

GF
[
32
]/

G = {G, xG, (x + 1)G, (x + 2)G} =
{
(x + 1)kG

∣∣∣ k = 0, 1, 2, 3
}

Denoting the coset (x+1)G by a and G by 1, the additive canonical hypergroup of the
GF[32]/G is shown in Table 16:

Table 16. The Cayley table of the additive canonical hypergroup of the quotient hyperfield GF[32]/G,
which is also denoted by QHF4

5 .

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 0 , 1 }   { a2, a3}  { a, a3}  { a,a2}  

a a { a2, a3}  { 0 , a }  { 1 , a3}  { 1 , a }  

a2 a2 { a, a3}  { 1 , a3}  { 0 , a2}  { 1 , a }   

a3 a3 { a,a2}  { 1 , a2}  { 1 , a }  { 0 , a3}  

GF[52] consists of the 25 polynomials in x of degree 0 or 1 with coefficients in the
field Z5. Since x2+3x+4 is the irreducible polynomial of degree 2 we are writing x2 as
− 3x− 4 = 2x + 1 whenever it occurs. G = {1, 4, 2x, 3x+4, 3x, 2x+1} is the multiplicative
subgroup of index 4 in the field GF[52]. The hyperfield GF[52]/G is the following:

GF
[
52
]/

G = {G, 2G, (x + 1)G, (2x + 2)G} =
{
(x + 1)kG

∣∣∣ k = 0, 1, 2, 3
}

Denoting the coset (x+1)G by a and G by 1, the Cayley table for the additive canonical
hypergroup of the GF[52]/G is presented in Table 17:
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Table 17. The Cayley table of the additive canonical hypergroup of the quotient hyperfield GF[52]/G,
which is also denoted by QHF5

5 .

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 0 , 1 , a2, a3 }  { a , a2, a3 }  { 1 , a , a2, a3 }  { 1 , a , a2}  

a a { a , a2, a3 }  { 0 , 1 , a, a3 }  { 1 , a2, a3 }  { 1 , a , a2, a3 }  

a2 a2 { 1 , a , a2, a3 }  { 1 , a2, a3 }  { 0 , 1 , a, a2 }  { 1 , a, a3}  

a3 a3 { 1 , a , a2}  { 1 , a , a2, a3 }  { 1 , a, a3}  { 0 , a , a2, a3 }  

The multiplicative subgroup of index 4 in the field Z17 is G = {1,4,13,16} and 5G, 52G,
53G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets, respectively, we
have the following Cayley Table 18 for the additive canonical hypergroups of the quotient
hyperfield Z17/G:

Table 18. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z17/{1,4,13,16}, which is also denoted by QHF6

5 .

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 0 , a, a2 }   { 1 , a2, a3 }  { 1 , a , a2, a3 }  { a , a2, a3 }  

a a { 1 , a2, a3 }  { 0 , a2, a3 }  { 1 , a , a3 }  { 1 , a , a2, a3 }  

a2 a2 { 1 , a , a2, a3 }  { 1 , a , a3 }  { 0 , 1 , a3 }   { 1 , a , a2}   

a3 a3 { a , a2, a3 }  { 1 , a , a2, a3 }  { 1 , a , a2}  { 0 , 1 , a}   

Notice that the hyperfields QHF4
5 , QHF5

5 and QHF6
5 have the same augmented hy-

perfield QHF7
5 . Because of Theorem 4, this hyperfield is a quotient hyperfield. Fur-

thermore, it can be verified that this hyperfield is isomorphic to the quotient hyperfield
Z53/{1,10,13,15,16,24,28,36,42,44,46,47,49}. The Cayley table of the additive canonical hy-
pergroup of this hyperfield appears in Table 19:
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Table 19. The Cayley table of the additive canonical hypergroup of the augmented hyperfield of
QHF4

5 , QHF5
5 and QHF6

5 which is simultaneously the additive hypergroup of the quotient hyperfield
Z53/{1,10,13,15,16,24,28,36,42,44,46,47,49}.

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }  

a a { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  2 31, , ,a a a  

a2 a2 { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  2 31, , ,a a a  

a3 a3 { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  

The multiplicative subgroup of index 4 in the field Z29 is G = {1,7,16,20,23,24,25} and
2G, 22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 20 for the additive canonical hypergroups
of the quotient hyperfield Z29/G:

Table 20. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z29/{1,7,16,20,23,24,25}.

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 1, a, a3 }  { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  

a a { 1, a, a2, a3 }  { 1, a, a2}  { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  

a2 a2 { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  { a, a2, a3 }  { 1, a, a2, a3 }  

a3 a3 { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a2, a3 }  

G={1,7,9,10,12,16,26,33,34} is the multiplicative subgroup of index 4 in the field Z37
and 2G, 22G, 23G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 21 for the additive canonical hypergroups
of the quotient hyperfield Z37/G:
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Table 21. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z37/{1,7,9,10,12,16,26,33,34}.

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 { 1, a, a2, a3 }   { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  

a a { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  

a2 a2 { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }   { 1, a, a2, a3 }   

a3 a3 { 1, a, a2, a3 }  { 0 , 1, a, a2, a3 }  { 1, a, a2, a3 }  { 1, a, a2, a3 }   

G={1,4,10,16,18,23,25,31,37,40} is the multiplicative subgroup of index 4 in the field
Z41 and 3G, 32G, 33G, are its cosets. Denoting by 1, a, a2, a3 the group G and its three cosets,
respectively, we have the following Cayley Table 22 for the additive canonical hypergroup
of the quotient hyperfield Z41/G:

Table 22. The Cayley table of the additive canonical hypergroup of the quotient hyperfield
Z41/{1,4,10,16,18,23,25,31,37,40}.

 0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {0, a, a2, a3 }  {1, a, a2, a3 }  {1, a, a2, a3 }  {1, a, a2, a3 }  

a a {1, a, a2, a3 }  {0, 1, a2, a3 }  {1, a, a2, a3 }  {1, a, a2, a3 }  

a2 a2 {1, a, a2, a3 }  {1, a, a2, a3 }  {0, 1, a, a3 }  {1, a, a2, a3 }  

a3 a3 {1, a, a2, a3 }  {1, a, a2, a3 }  {1, a, a2, a3 }  {0, 1, a, a2 }  

5.4.2.ii. Non-Quotient Hyperfields with Multiplicative Group Being the Cyclic Group C4

The first non-quotient hyperfield can be constructed via Theorem 10. The Cayley
Table 23 presents its additive canonical hypergroup:
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Table 23. The Cayley table of the additive canonical hypergroup of the non-quotient hyperfield
constructed via Theorem 10.

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {0, a, a2, a3 }   {1, a}  {1, a2 }  {1, a3 }  

a a {1, a}  {0, 1, a2, a3 }  {a, a2 }  {a, a3 }  

a2 a2 {1, a2 }  {a, a2 }  {0, 1, a, a3 }   {a2, a3 }   

a3 a3 {1, a3 }  {a, a3 }  {a2, a3 }  {0, 1, a, a2 }   

Cayley Table 24 presents the additive canonical hypergroup of the second non-
quotient hyperfield:

Table 24. The Cayley table of the additive canonical hypergroup of the second non-quotient hyperfield.

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {a, a2, a3 }   {1, a, a2, a3 }  {0, a, a3 }  {1, a, a2, a3 }  

a a {1, a, a2, a3 }  {1, a2, a3 }  {1, a, a2, a3 }  {0, 1, a2 }  

a2 a2 {0, a, a3 }  {1, a, a2, a3 }  {1, a, a3 }   {1, a, a2, a3 }   

a3 a3 {1, a, a2, a3 }  {0, 1, a2 }  {1, a, a2, a3 }  {1, a, a2 }   

We will prove that NQHF2
5 is a non-quotient hyperfield. Note that the opposite of 1 is

a2, the opposite of a is a3 and that:(
1 + a2

)
∩
(

a + a3
)
=
{

0, a, a3
}
∩
{

0, 1, a2
}
= {0}

Therefore, according to Lemma 1, if NQHF2
5 were isomorphic to a quotient hyperfield,

then the sums of any two non-opposite elements should have had the same cardinality.
However, this is not the case because, for example,

card(1+a)=4 while card(1+1)=3.

5.4.2.iii. Non-Classified Hyperfields Having as Multiplicative Group the Cyclic Group C4

There remain three hyperfields whose multiplicative group is the cyclic group C4. For
these hyperfields the hypercompositions are defined as shown in Table 25:
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Table 25. The Cayley tables of the additive canonical hypergroup of the three non-classified hyper-
fields with multiplicative group C4.

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {0,1,a,a2,a3} {1,a} {1,a2} {1,a3} 

a a {1,a} {0,1,a,a2,a3} {a,a2} {a,a3} 

a2 a2 {1,a2} {a,a2} {0,1,a,a2,a3} {a,a2,a3} 

a3 a3 {1,a3} {a,a3} {a,a2,a3} {0,1,a,a2,a3} 

      

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 1 {1,a} {0,1,a,a2,a3} {1,a3} 

a a {1,a} a {a,a2} {0,1,a,a2,a3} 

a2 a2 {0,1,a,a2,a3} {a,a2} a2 {a2,a3} 

a3 a3 {1,a3} {0,1,a,a2,a3} {a2,a3} a3 

      

  0 1 a a2 a3 

0 0 1 a a2 a3 

1 1 {1,a2} {1,a} {0,1,a,a2,a3} {1,a3} 

a a {1,a} {a,a3} {a,a2} {0,1,a,a2,a3} 

a2 a2 {0,1,a,a2,a3} {a,a2} {1,a2} {a2,a3} 

a3 a3 {1,a3} {0,1,a,a2,a3} {a2,a3} {a,a3} 

From the analysis and conclusions of the previous section, it follows that the above
three hyperfields cannot be derived as a quotient of finite fields by subgroups of their
multiplicative group. Thus, the question of whether they are isomorphic or not to quotient
hyperfields of non-finite fields by multiplicative subgroups of index 4, still remains open.

6. Discussion

Marc Krasner introduced the hyperfield in 1956, and until 1983, no hyperfields other
than the residuals ones were known in the wider mathematical society, regardless of the fact
that Krasner had made his associates aware of the construction of the quotient hyperfields
and hyperrings, which generalize the residual hyperfields. The criticism that he received
was that if all hyperrings and hyperfields could be isomorphically embedded into the
quotient hyperrings, then several conclusions of their theory would have been reached in a
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very straightforward manner, with the use of the theories of rings, fields, and modules, and
it wouldn’t have been necessary to develop new techniques, methods and methodologies
for their proofs. Thus, in 1983, M. Krasner published the construction of the quotient
hyperfields and hyperrings and raised the questions [24]:

Are all hyperrings which are not rings isomorphic to the subhyperrings of quotient
hyperrings R/G of some ring R by some of its normal multiplicative subgroups G when
they are not rings? Are all hyperfields isomorphic to a quotient K/G of a field K by some
of its multiplicative subgroups G?

Negative answers to these questions first came from the works in [29,35] and then
from [36,47], while Theorem 12 also constructs a new class of non-quotient hyperrings and
hyperfields. The constructions thought of certain hyperfields which were introduced for
answering Krasner’s questions gave rise to the following problem in field theory:

When does a subgroup G of the multiplicative group of a field F possess the ability to
generate F via the subtraction of G from itself?

So far, we do not have a clear and complete general solution to this problem. In the
finite fields, we have sharp conclusions for the subgroups of indexes 2,3,4,5,6, as described
in Theorems 14 and 15. Moreover, the construction of new hyperfields (Theorem 8) and the
research on whether they belong to the quotient hyperfields introduced a new problem in
the theory of fields:

Under what conditions can a field F’s multiplicative subgroup G generate F··G via the
subtraction of G from itself?

The question of the classification of hyperfields arose naturally as a follow-up to
Krasner’s question, and the Table 26 below summarizes the results of the classification of
finite hyperfields with 2, 3, 4, 5 elements.

Table 26. Classification of the hyperfields of order 2,3,4,5.

Order of
Hyperfields

Number of
Hyperfields
with Cyclic

Multiplicative
Subgroup

Number of
Hyperfields

with
Non-Cyclic

Multiplicative
Subgroup

Fields
Quotient

Hyperfields

Non-
Quotient

Hyperfields

Unclassified
Hyperfields

2 2 – 1 1 – –

3 5 – 1 4 – –

4 7 – 1 4 2 –

– 11 – – 4 7
5

16 – 1 10 2 3

Evidently, the classification of the 10 unclassified finite hyperfields remains an open
problem. For the infinite non-quotient hyperfields, note that besides the construction of
finite non-quotient hyperfields, Theorems 9 and 10 give the construction of infinite non-
quotient hyperfields as well. Additionally, Theorem 12 presents the construction of a class
of such hyperfields. Evident examples of infinite quotient hyperfields are R/Q*, R/Q+,
C/Q*, C/Q+, C/R*, C/R+ etc.
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Abstract: The combination of two elements in a group structure is an element, while, in a hypergroup,
the combination of two elements is a non-empty set. The use of hypergroups appears mainly in
certain subclasses. For instance, polygroups, which are a special subcategory of hypergroups, are
used in many branches of mathematics and basic sciences. On the other hand, in a multi-fuzzy
set, an element of a universal set may occur more than once with possibly the same or different
membership values. A soft set over a universal set is a mapping from parameters to the family of
subsets of the universal set. If we substitute the set of all fuzzy subsets of the universal set instead of
crisp subsets, then we obtain fuzzy soft sets. Similarly, multi-fuzzy soft sets can be obtained. In this
paper, we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new
soft structure called the multi-fuzzy soft polygroup. We analyze the relation between multi-fuzzy
soft sets and polygroups. Some algebraic properties of fuzzy soft polygroups and soft polygroups are
extended to multi-fuzzy soft polygroups. Some new operations on a multi-fuzzy soft set are defined.
In addition to this, we investigate normal multi-fuzzy soft polygroups and present some of their
algebraic properties.

Keywords: multi-fuzzy soft set; multi-fuzzy soft polygroup; normal multi-fuzzy soft polygroup

MSC: 20N20; 20N25; 08A72

1. Introduction

The concept of a hyperstructure was first introduced by Marty [1], at the 8th Congress
of Scandinavian Mathematicians in 1934, when he defined hypergroups and started to
analyze their properties. Indeed, the notion of hypergroups is a generalization of groups.
Let H be a non-empty set and ◦ be a function (hyperoperation) from H × H to the family
of non-empty subsets of H. Then, (H, ◦) is a hypergroup, if ◦ is associative and a ◦ H =
H ◦ a = H, for all a ∈ H. The hypergroup is a very general structure. Some researchers
considered hypergroups with additional axioms. One of the axioms is the transposition axiom.
This axiom is considered by Prenowitz [2–4], and then Jantosciak introduced the notion of
transposition hypergroups [5]. A transposition hypergroup that has a scalar identity is called
a quasicanonical hypergroup [6,7] or polygroup [8–11]. One can consider the quasicanonical
hypergroups as a generalization of canonical hypergroups, introduced in [12]. Examples of
polygroups, such as double set algebras, Prenowitz algebras, conjugacy class polygroups
and character polygroups, can be found in [11]. This book contains the principal definitions,
illustrated with examples and basic results of the theory. The category of polygroups is a
category between the category of groups and transposition hypergroups; see Figure 1. More
precisely, each group is a polygroup, and each polygroup is a transposition hypergroup.
Recently, in [13], an excellent review of the several types of hypergroups was presented.
Interesting results can be also found in [14]. The theory of algebraic hyperstructures has
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become a well-established branch in algebraic theory and it has extensive applications in
many branches of mathematics and applied sciences; see [15–19].

Groups

Polygroups

Transposition

Hypergroups

Hypergroups

Figure 1. Each group is a polygroup, each polygroup is a transposition hypergroup, and each
transposition hypergroup is a hypergroup.

The theory of fuzzy sets proposed by Zadeh [20] has achieved great success in many
fields. Many researchers have applied the theory of fuzzy sets to hyperstructures. Firstly,
Zahedi [21] discussed the subject of polygroups and fuzzy subpolygroups, and then
Davvaz [22] presented the fuzzy subhypergroup concept, which is a generalization of
Rosenfeld’s fuzzy subgroup [23]. There are many articles dealing with the link between
fuzzy sets and hyperstructures; see [24–26].

Soft set theory, introduced by Molodtsov [27], has been considered as an effective
mathematical tool for modeling uncertainties. After Molodsov’s work, different appli-
cations of soft sets were investigated in [28,29]. The idea of a fuzzy soft set, which is
more general than fuzzy sets and soft sets, was first introduced by Maji et al. [30], and
the algebraic properties of this concept were examined. Both of these theories have been
applied to algebraic structures and algebraic hyperstructures—for instance, see [31,32].

Sebastian et al. in [33] proposed the concept of the multi-fuzzy set, which is a more
general fuzzy set using ordinary fuzzy sets as building blocks; its membership function
is an ordered sequence of ordinary fuzzy membership functions. Later, Yang et al. [34]
introduced the concept of the multi-fuzzy soft set, which is a combination of the multi-fuzzy
set and soft set, and studied its basic operations. They also introduced the application of
this concept in decision making. In recent years, multi-fuzzy sets have become a subject of
great interest to researchers and have been widely applied to algebraic structures. Some
researchers—for instance, Onasanya and Hoskova-Mayerova [35]—studied the concept of
multi-fuzzy groups, while Hoskova-Mayerova et al. [36] studied fuzzy multi-hypergroups
and also fuzzy multi-polygroups in [37]. Akın [38] studied the concept of multi-fuzzy
soft groups as a generalization of fuzzy soft groups, and Kazancı et al. [39] introduced
a novel soft hyperstructure called the multi-fuzzy soft hyperstructure and investigated
the notion of multi-fuzzy soft hypermodules and some of their structural properties on a
hypermodule.

In a multi-fuzzy set, an element of a universal set U may occur more than once with pos-
sibly the same or different membership values. For example, if U = {x1, x2, x3, x4, x5, x6},
then the set A = {< x1, (0.3, 0.8) >,< x2, (0.5, 0.7) >,< x3, (0.1, 0.3) >,< x4, (0.5, 0.4) >,
< x5, (0.8, 0.6) >,< x6, (0.4, 0.7) >} is a multi-fuzzy set. A soft set over a universe U is
a mapping F from parameters to P(U). For example, let U = {x1, x2, x3, x4, x5, x6} be a
set of apartments under consideration, and A = {e1, e2, e3, e4} be a set of parameters such
that e1 = beautiful, e2 = expensive, e3 = a good view, and e4 = near to the city center.
If F(e1) = {x1, x3}, F(e2) = {x1, x2, x5}, F(e3) = {x4, x6} and F(e4) = {x2, x3, x6}, then
(F, A) is a soft set. If we substitute the set of all fuzzy subsets of U instead of crisp subsets
of U, then we obtain fuzzy soft sets. Similarly, we can define multi-fuzzy soft sets.

In this paper, we combine three separated concepts: polygroups (or quasicanonical
hypergroups), soft sets and multi-fuzzy sets (as a generalization of fuzzy sets). Previously,
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the authors have worked only on the one of these subjects or at most two of them. Indeed,
we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new
soft structure called the multi-fuzzy soft polygroup. The relation between the generalization
of polygroups is indicated in Figure 2. To facilitate our discussion, we first review some
basic concepts of the soft set, fuzzy soft set, multi-fuzzy set and polygroup in Section 2. In
Section 3, we apply these to the notion of multi-fuzzy soft sets and polygroups and introduce
multi-fuzzy soft polygroups. Then, we study some of their structural characterizations in
Sections 4 and 5. Finally, we give the concept of a normal multi-fuzzy soft polygroup and
discuss some of their structural characteristics. Finally, some conclusions are pointed out in
Section 6.

Polygroups

Fuzzy polygroups

Multi-fuzzy polygroups Soft polygroups

Fuzzy soft polygroups

Multi-fuzzy soft polygroups

Figure 2. The relation between generalizations of polygroups.

2. Preliminaries

In this section, we provide some definitions and results of soft set theory that will help
in understanding the content of the article [27,28,31,32,40]. Let P(U) denote the power set
of U, where U is an initial universe set, E is a set of parameters and A ⊆ E.

43



Mathematics 2022, 10, 2178

Definition 1 ([27]). Let A ⊆ E and F : A → P(U) be a set-valued function. Then, the pair
(F, A) is called a soft set over U. For all x ∈ A F(x) = {y ∈ U | (x, y) ∈ R} and R stand for an
arbitrary binary relation between an element of A and an element of U—that is, R ⊆ A×U. In
fact, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2 ([30,31]). Let A ⊆ E and f : A → FS(U) be a mapping. Then, the pair ( f , A) is
called a fuzzy soft set over U, where FS(U) is the collection of all fuzzy subsets of U. That is, for
each a ∈ A, f (a) is a fuzzy set on U.

Definition 3 ([33]). A multi-fuzzy set (MF-set) Ã in U is a set of ordered sequences

Ã = {< u, (μi(u)) >: u ∈ U, μi ∈ FS(U), i = 1, 2, ..., k} and k is a positive integer.

The function μÃ = (μi(u)) is said to be the multi membership function of Ã denoted by MFÃ,
and k is called dimension of Ã. The set of all MF-sets of dimension k in U is denoted by MkFS(U).

It is obvious that the one-dimensional MF-set is Zadeh’s fuzzy set, and Atanassov’s
intuotionistic fuzzy set is a two-dimensional MF-set with μ1(u) + μ2(u) ≤ 1.

Definition 4 ([33]). Let Ã ∈ MkFS(U). If Ã = {u/(0, 0, ..., 0) : u ∈ U}, then Ã is said to be
the null MF-set, defined by Φ̃k. If Ã = {u/(1, 1, ..., 1) : u ∈ U}, then Ã is said to be the absolute
MF-set, denoted by 1̃k.

Definition 5 ([33]). Let

Ã = {< u, (μi(u)) >: i = 1, 2, ..., k} and B̃ = {< u, (νi(u)) >: i = 1, 2, ..., k} ∈ MkFS(U).

Then

(i) Ã � B̃ if and only if MFÃ ≤ MFB̃, i.e μi(u) ≤ νi(u),∀u ∈ U and 1 ≤ i ≤ k.
(ii) Ã = B̃ if and only if MFÃ = MFB̃, i.e μi(u) = νi(u),∀u ∈ U and 1 ≤ i ≤ k.
(iii) Ã � B̃ = {< u, (μi(u) ∨ νi(u)) >: i = 1, 2, ..., k}. That is MFÃ�B̃ = MFÃ ∨MFB̃.
(iv) Ã � B̃ = {< u, (μi(u) ∧ νi(u)) >: i = 1, 2, ..., k}. That is MFÃ�B̃ = MFÃ ∧MFB̃.

Definition 6 ([34]). Let f̃ : A → MkFS(U). Then, we call a pair ( f̃ , A) a multi-fuzzy soft set
(MFS-set) of dimension k over U. That is, for every a ∈ A, f̃ (a) = MFf̃ (a) ∈ MkFS(U). Here,

f̃ (a) may be considered a set of a-approximate elements of the multi-fuzzy soft set ( f̃ , A) for a ∈ A.

Let A ⊆ E. Denote the set of all MFS-sets of dimension k over U by MkFS
S (U, E)

Definition 7 ([34]). Let A, B ⊆ E and ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E). Then, ( f̃ , A) � (g̃, B) if

and only if A ⊆ B and MFf̃ (a) � MFg̃(a) for all a ∈ A.

Definition 8 ([34]). Let ( f̃ , A) ∈ MkFS
S (U, E). Then, ( f̃ , A) is said to be a null MFS-set, denoted

by Φ̃k
A, if MFf̃ (a) = Φ̃k for all a ∈ A.

( f̃ , A) is said to be an absolute MFS-set defined by Ũk
A if MFf̃ (a) = 1̃k for each a ∈ A.

Definition 9 ([34]). Let ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E).

(i) The ∧̃ -intersection ( f̃ , A)∧̃(g̃, B) is defined as (h̃, A× B), where h̃(a, b) = f̃ (a) � g̃(b), for
all (a, b) ∈ A× B.

(ii) The ∨̃ -union ( f̃ , A)∨̃(g̃, B) is defined as (h̃, A× B), where h̃(a, b) = f̃ (a) � g̃(b), for all
(a, b) ∈ A× B.
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(iii) The union ( f̃ , A)�̃(g̃, B) is defined as (h̃, C), where C = A∪ B and for all c ∈ C h̃(c) = f̃ (c)
if c ∈ A− B, h̃(c) = g̃(c) if c ∈ B− A and h̃(c) = f̃ (c) � g̃(c) if c ∈ A ∩ B.

Definition 10. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E).

(i) The restricted intersection of ( f̃ , A) and (g̃, B) is the MFS-set (h̃, C) with A ∩ B �= ∅
where C = A ∩ B, and for all c ∈ C, h̃(c) = f̃ (c) � g̃(c). The situation is denoted by
( f̃ , A) �� (g̃, B) = (h̃, C).

(ii) The extended intersection of ( f̃ , A) and (g̃, B) is the MFS-set (h̃, C), where C = A ∪ B and
for all c ∈ C, h̃(c) = f̃ (c) if c ∈ A− B, h̃(c) = g̃(c) if c ∈ B− A and h̃(c) = f̃ (c) � g̃(c)
if c ∈ A ∩ B. In this case, we write ( f̃ , A) �� (g̃, B) = (h̃, C).

Definition 11. Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H. A
hyperoperation on H is a map ◦ : H × H → P∗(H) and the pair (H, ◦) is called a hypergroupoid.

Definition 12 ([11,21]). A multi-valued system P =< P, ◦, e,−1 > is called a polygroup where
e ∈ P, −1 : P −→ P, ◦ : P× P −→ P∗(P) if the following axioms hold for all x, y, z in P.

(i) x ◦ (y ◦ z) = (x ◦ y) ◦ z,
(ii) x ◦ e = e ◦ x = x,
(iii) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

The following elementary properties follow from the axioms:

e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1,

where A−1 = {a−1 | a ∈ A}.

Let P be a polygroup and K a non-empty subset of P; then, K is called a subpoly-
group of P if e ∈ K and < K, ◦, e,−1 > is a polygroup.

A subhypergroup N of a hypergroup is normal if aN = Na [5]. According to [7], a
quasicanonical subhypergroup N of a quasicanonical hypergroup H is called normal if and
only if it is a member of an appreciated quotient system of H by some congruence relation.

Example 1. Suppose that H is a subgroup of a group G. Define a system G//H =< {HgH | g ∈ G},
∗, H,−I >, where (HgH)−I = Hg−1H and

(Hg1H) ∗ (Hg2H) = {Hg1hg2H |h ∈ H}.

The algebra of double cosets G//H is a polygroup introduced in (Dresher and Ore [41]).

Example 2. Consider P = {0, 1, 2, a, b} and define ◦ on P by the following table:.

◦ 0 1 2 a b
0 0 1 2 a b
1 1 {0, 2} {1, 2} a b
2 2 {1, 2} {0, 1} a b
a a a a {0, 1, 2, b} {a, b}
b b b b {a, b} {0, 1, 2, a}

Then, P is a canonical hypergroup. Suppose that S3 is the symmetric group on a set with three
elements. We consider

P× S3 = {(p, x) | p ∈ P and x ∈ S3},
with the usual hyperoperation

(p1, x1)� (p2, x2) | p ∈ p1 ◦ p2 and x = x1 · x2},
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for all (p1, x1), (p2, x2) ∈ P × S3. Then, P × S3 is a non-commutative polygroup or
quasicanonical hypergroup.

3. Multi-Fuzzy Soft Polygroups

The concept of the MF-set was introduced by Sebastian et al. in [33]. By combining the
MF-set and soft set, Yang et al. introduced the concept of the MFS-set [34]. Both of these
theories have been applied to algebraic structures. At this point, we give a new type of
polygroup named the multi-fuzzy soft polygroup (MFS-polygroup). Since the concepts
of uncertainty and fuzziness can be better expressed with MFS-sets, their applications in
hyperalgebraic structures are extremely important. Thus, in this section, we provide a new
connection between the polygroup structure and MFS-set.

Definition 13. Let P be a polygroup and ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is said to be an

MFS-polygroup of dimension k over P if and only if, for all a ∈ A and x, y ∈ P,

(i) min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ inf
z∈x◦y

{MFf̃ (a)(z)},
(ii) MFf̃ (a)(x) ≤ MFf̃ (a)(x−1).

That is, for each a ∈ A, MFf̃ (a) is a multi-fuzzy subpolygroup.

The first condition requires that the polygroup is closed under multi-fuzzy soft hyperop-
eration ◦ and the second condition is a generalization of the inverse element under ◦.

To better understand this new algebraic structure, consider the following examples.

Example 3. Let P = {e, a, b, c} be a polygroup with the Cayley table:

◦ e a b c
e e a b c
a a a {e,a,b,c} c
b b {e,a,b} b {b,c}
c c {a,c} c {e,a,b,c}

Let A = {e1, e2, e3} be the set of parameters.
Consider the MF-set f̃ : A→ M3FS(P) defined as follows. f̃ : A→ M3FS(P) as follows.

MFf̃ (e1)
= {e/(0.9, 0.8, 0.7), a/(0.6, 0.5, 0.6), b/(0.4, 0.1, 0.2), c/(0.4, 0.1, 0.2)},

MFf̃ (e2)
= {e/(0.8, 0.5, 0.6), a/(0.7, 0.4, 0.5), b/(0.6, 0.3, 0.1), c/(0.6, 0.3, 0.1)},

MFf̃ (e3)
= {e/(0.8, 0.8, 0.7), a/(0.5, 0.6, 0.3), b/(0.3, 0.6, 0.2), c/(0.2, 0.5, 0.1)}.

Then, ( f̃ , A) is not an MFS-polygroup of dimension 3 over P since

inf
c∈c◦b
{MFf̃ (e3)

(c)} �≥ min{MFf̃ (e3)
(c), MFf̃ (e3)

(b)}.

Example 4. Consider the polygroup given in Example 3 and define the MF-set f̃ : A→ M3FS(P)
as follows.

MFf̃ (e1)
= {e/(0.8, 0.6, 0.7), a/(0.4, 0.5, 0.6), b/(0.3, 0.4, 0.2), c/(0.3, 0.4, 0.2)},

MFf̃ (e2)
= {e/(0.8, 0.5, 0.6), a/(0.6, 0.4, 0.5), b/(0.4, 0.3, 0.4), c/(0.4, 0.3, 0.4)},

MFf̃ (e3)
= {e/(0.8, 0.8, 0.7), a/(0.5, 0.6, 0.3), b/(0.3, 0.6, 0.2), c/(0.3, 0.6, 0.2)}.

Then, for all a ∈ A, MFf̃ (a) is an MF-subpolygroup of P. By Definition 13, ( f̃ , A) is an
MFS-polygroup of dimension 3 over P.
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Example 5. Consider the polygroup given in Example 3 and define the MF-set f̃ : A→ M3FS(P)
as follows.

MFf̃ (e1)
= {e/(0.9, 0.8, 0.6), a/(0.8, 0.7, 0.6), b/(0.7, 0.6, 0.5), c/(0.7, 0.6, 0.5)},

MFf̃ (e2)
= {e/(0.8, 0.8, 0.6), a/(0.7, 0.6, 0.5), b/(0.4, 0.5, 0.2), c/(0.4, 0.5, 0.2)},

MFf̃ (e3)
= {e/(0.6, 0.7, 0.5), a/(0.5, 0.6, 0.4), b/(0.4, 0.3, 0.1), c/(0.3, 0.4, 0.1)}.

Then, it is clear to see that MFf̃ (e1)
and MFf̃ (e2)

are MF-subpolygroups of P. However,
MFf̃ (e3)

is not an MF-subpolygroup of P since

inf
b∈c◦c
{MFf̃ (e3)

(b)} �≥ min{MFf̃ (e3)
(c), MFf̃ (e3)

(c)} = MFf̃ (e3)
(c).

By Definition 13 ( f̃ , A) is not an MFS-polygroup of dimension 3 over P.

The following example shows that every soft set (F, A) over P can be seen as an
MFS-set of dimension k over P.

Example 6. Let A ⊂ E and (F, A) be a soft set over P. For all a ∈ A, the MF-set χ̃F(a) : A →
MkFS(P) defined by

MFχ̃F(a)
(b) =

{
1̃k if b ∈ F(a)
Φ̃k, otherwise

for all b ∈ A. Then, (χ̃F(a), A) ∈ MkFS
S (P, E).

Proposition 1. Let ( f̃ , A) ∈ MkFS
S (P, E). If ( f̃ , A) is an MFS-polygroups, then, for all a ∈ A

and x, y ∈ P,

(i) MFf̃ (a)(x−1) = MFf̃ (a)(x),

(ii) inf
e∈x◦x−1

{MFf̃ (a)(e)} ≥ MFf̃ (a)(x).

Proof. (i) By Definition 13, MFf̃ (a)(x) ≤ MFf̃ (a)(x−1) for all a ∈ A and x ∈ P. Moreover,

MFf̃ (a)(x) = MFf̃ (a)(x−1)−1 ≤ MFf̃ (a)(x−1). This completes the proof of (i).

(ii) Suppose that x ∈ P. Since e ∈ x ◦ x−1 and ( f̃ , A) is an MFS-polygroup, then, for all
a ∈ A, we obtain

inf
e∈x◦x−1

{MFf̃ (a)(e)} ≥ min{MFf̃ (a)(x), MFf̃ (a)(x−1)}

= MFf̃ (a)(x).

The relationship between soft polygroups and MFS-polygroups is given in the follow-
ing theorem.

Theorem 1. Let F : A → P∗(P) be a soft set over P. Then, (F, A) is a soft polygroup over P if
and only if (χ̃F(a), A) ∈ MkFS

S (P, E) is an MFS-polygroup.

Proof. The proof follows by Example 6.

In Theorem 2, we show that the restricted intersection and the extended intersection
of two MFS-polygroups are also an MFS-polygroup.
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Theorem 2. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups.

(i) ( f̃ , A) �� (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) ( f̃ , A) �� (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. (i) By Definition 10 (i), let ( f̃ , A) �� (g̃, B) = (h̃, C), where C = A ∩ B and for
all c ∈ C, h̃(c) = f̃ (c) � g̃(c). Since ( f̃ , A) and (g̃, B) are MFS-polygroups, we have for
arbitrary c ∈ C and for all x, y ∈ P

inf
z∈x◦y

{MFf̃ (c)(z)} ≥ min{MFf̃ (c)(x), MFf̃ (c)(y)},

MFf̃ (c)(x) ≤ MFf̃ (c)(x−1)and

inf
z∈x◦y

{MFg̃(c)(z)} ≥ min{MFg̃(c)(x), MFg̃(c)(y)},

MFg̃(c)(x) ≤ MFg̃(c)(x−1).

For arbitrary c ∈ C and for all x, y ∈ P,

inf
z∈x◦y

{MF̃h(c)(z)} = inf
z∈x◦y

{MFf̃ (c)�g̃(c)(z)}

= inf
z∈x◦y

{MFf̃ (c)(z) ∧MFg̃(c)(z)}

= inf
z∈x◦y

{MFf̃ (c)(z)} ∧ inf
z∈x◦y

{MFg̃(c)(z)}

≥ min{MFf̃ (c)(x), MFf̃ (c)(y)} ∧min{MFg̃(c)(x), MFg̃(c)(y)}
= min{MFf̃ (c)(x), MFg̃(c)(x)} ∧min{MFf̃ (c)(y), MFg̃(c)(y)}
= min{MFf̃ (c)�g̃(c)(x), MFf̃ (c)�g̃(c)(y)}
= min{MF̃h(c)(x), MF̃h(c)(y)}.

Moreover,

MF̃h(c)(x) = MFf̃ (c)�g̃(c)(x)

= min{MFf̃ (c)(x), MFg̃(c)(x)}
≤ min{MFf̃ (c)(x−1), MFg̃(c)(x−1)}
= MFf̃ (c)�g̃(c)(x−1)

= MF̃h(c)(x−1).

Therefore, ( f̃ , A) �� (g̃, B) is an MFS-polygroup of dimension k over P.
(ii) According to Definition 10 (ii), we can write ( f̃ , A)�� (g̃, B) = (h̃, C), C = A∪ B. If

c ∈ A− B, then h̃(c) = f̃ (c) is an MF-subpolygroup of P, since ( f̃ , A) is an MFS-polygroup
over P; if c ∈ B − A, then h̃(c) = g̃(c) is an MF-subpolygroup of P, since (g̃, B) is an
MFS-polygroup over P; if c ∈ A ∩ B, then h̃(c) = f̃ (c) � g̃(c) is an MF-subpolygroup of P
by (i). Therefore, ( f̃ , A) �� (g̃, B) is an MFS-polygroup of dimension k over P.

The following corollary follows from Theorem 2.

Corollary 1. Let {( f̃i, Ai) | i ∈ I} ∈ MkFS
S (P, E) be a family of MFS-polygroups. If ∩i∈I Ai �=

∅. Then,

(i) (��)i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) (��)i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.
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The union of two MFS-polygroups is not an MFS-polygroup. In Theorem 3, we provide
a condition for the union to be an MFS-polygroup as well.

Theorem 3. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If A ∩ B = ∅, then

( f̃ , A)�̃(g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. By Definition 9(iii), we can write ( f̃ , A)�̃(g̃, B) = (h̃, C), where C = A ∪ B. Since
A ∩ B = ∅, it follows that either c ∈ A− B or c ∈ B− A for all c ∈ C. If c ∈ A− B, then
h̃(c) = f̃ (c) is an MF-subpolygroup of P and if c ∈ B − A, then h̃(c) = g̃(c) is an MF-
subpolygroup of P. Therefore, ( f̃ , A)�̃(g̃, B) is an MFS-polygroup of dimension k over P.

Theorem 4. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. Then, ( f̃ , A)∧̃(g̃, B) ∈

MkFS
S (P, E) is an MFS-polygroup.

Proof. By Definition 9(i), let ( f̃ A)∧̃(g̃, B) = (h̃, A× B). We know that for all a ∈ A, f̃ (a)
is an MF-subpolygroup of P and for all b ∈ B, g̃(b) is an MF-subpolygroup of P and so is
h̃(a, b) = MF̃h(a,b) = MFf̃ (a)�g̃(b) for all (a, b) ∈ A× B, because the intersection of two multi-

fuzzy subpolygroups is also an MF-subpolygroup. Hence, ( f̃ , A)∧̃(g̃, B) is an MFS-polygroup
of dimension k over P.

By Theorems 3 and 4, we obtain the following corollary.

Corollary 2. Let {( f̃i, Ai) | i ∈ I} ∈ MkFS
S (P, E) be a family of MFS-polygroups.

(i) If Ai ∩Aj = ∅ for all i, j ∈ I and i �= j, then �̃i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) ∧̃i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an

MFS-polygroup.

The following theorem gives a condition for the ∨̃-union of two MFS-polygroups to
be an MFS-polygroup.

Theorem 5. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If ( f̃ , A) � (g̃, B) or

(g̃, B) � ( f̃ , A), then ( f̃ , A)∨̃(g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. Suppose that ( f̃ , A) and (g̃, B) are MFS-polygroups of dimension k over P. By
Definition 9 (ii), we can write ( f̃ , A)∨̃(g̃, B) = (h̃, C), where C = A × B, and h̃(a, b) =
f̃ (a) � g̃(b) for all (a, b) ∈ C. Since ( f̃ , A) and (g̃, B) are MFS-polygroups of dimension k
over P, we obtain that for all a ∈ A, f̃ (a) is an MF-subpolygroup of P and for all b ∈ B, g̃(b)
is an MF-subpolygroup of P. By assumption, h̃(a, b) = f̃ (a) � g̃(b) is an MF-subpolygroup
of P for all (a, b) ∈ C. Hence, ( f̃ , A)∨̃(g̃, B) is an MFS-polygroup.

Definition 14. The sum of two MFS-sets ( f̃ , A) and (g̃, B) of dimension k over P, denoted by
( f̃ , A)⊕ (g̃, B), is the MFS-set (h̃, C), where C = A ∪ B and for all c ∈ C,

h̃(c) =

⎧⎨⎩
f̃ (c) if c ∈ A\B
g̃(c) if c ∈ B\A
f̃ (c)⊕ g̃(c) if c ∈ A ∩ B

For every z ∈ P,

( f̃ (c)⊕ g̃(c))(z) =
∨
{MFf̃ (c)(x) ∧MFg̃(c)(y), x, y ∈ P, z ∈ x ◦ y}.

The next theorem gives a condition for the sum of two MFS-polygroups to be an
MFS-polygroup.
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Theorem 6. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If ( f̃ , A) ⊕ (g̃, B) =

(g̃, B)⊕ ( f̃ , A), then ( f̃ , A)⊕ (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. The proof is straightforward.

Definition 15. Let ( f̃ , A) ∈ MkFS
S (P, E). The soft set

( f̃ , A)t = {(MFf̃ (a))t
| a ∈ A} where (MFf̃ (a))t

= {x ∈ P | MFS f̃ (a)(x) ≥ t},

for all t = (t1, t2, ..., tk), ti ∈ (0, 1]1 ≤ i ≤ k, is called a t-level soft set of the MFS-set ( f̃ , A),
where (MFf̃ (a))t

is a t-level subset of the MF-set MFf̃ (a).

The following theorem explores the relation between MFS-polygroups and t-level soft sets.

Theorem 7. Let ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is an MFS-polygroup if and only, if for

all a ∈ A and for arbitrary t ∈ (0, 1] with (MFf̃ (a))t
�= ∅, the t-level soft set ( f̃ , A)t is a soft

polygroup over P in Wanga’s sense [40].

Proof. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, for each a ∈ A, MFf̃ (a) is an

MF-subpolygroup of P. Suppose that t ∈ (0, 1] with (MFf̃ (a))t
�= ∅ and x, y ∈ (MFf̃ (a))t

.

Then, MFf̃ (a)(x) ≥ t, MFf̃ (a)(y) ≥ t. Thus,

t ≤ min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ inf
z∈x◦y

{MFf̃ (a)(z)}.

which implies MFf̃ (a)(z) ≥ t for all z ∈ x ◦ y. Therefore, x ◦ y ⊆ (MFf̃ (a))t
. Moreover, for

x ∈ (MFf̃ (a))t
, we have MFf̃ (a)(x−1) ≥ MFf̃ (a)(x) ≥ t. It follows that x−1 ∈ (MFf̃ (a))t

.

we obtain that (MFf̃ (a))t
is a subpolygroup of P for all a ∈ A. Consequently, ( f̃ , A)t is a

soft polygroup over P. Conversely, let ( f̃ , A)t be a soft polygroup over P for all t ∈ (0, 1].
Let t0 = min{MFf̃ (a)(x), MFf̃ (a)(y)} for some x, y ∈ P. Then, obviously, x, y ∈ (MFf̃ (a))t0

;

consequently, x ◦ y ⊆ (MFf̃ (a))t0
. Thus,

min{MFf̃ (a)(x), MFS f̃ (a)(y)} = t0 ≤ inf
z∈x◦y

{MFf̃ (a)(z)}.

Now, t0 = MFf̃ (a)(x) for some x ∈ P. Since, by the assumption, every non-empty

t-level soft set ( f̃ , A)t is a soft polygroup over P, x−1 ∈ (MFf̃ (a))t0
. Hence, MFf̃ (a)(x−1) ≥

t0 = MFf̃ (a)(x). As a result, we obtain that MFf̃ (a) is an MF-subpolygroup of P for all

a ∈ A. Consequently, ( f̃ , A) is an MFS-polygroup of dimension k over P.

4. The Behavior Image and Inverse Image of MFS-Polygroups

Definition 16. A pair (ϕ, ψ) is called an MF-soft function from P1 to P2, where ϕ : P1 → P2 and
ψ : E1 → E2 are functions.

Definition 17. Let ( f̃ , A) ∈ MkFS
S (P1, E1),(g̃, B) ∈ MkFS

S (P2, E2) and (ϕ, ψ) be an MF- soft
function from P1 to P2.
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(i) The image of ( f̃ , A) under the MF-soft function (ϕ, ψ), denoted by (ϕ, ψ)( f̃ , A), is the MFS-
set (ϕ( f̃ ), ψ(A)) such that the MF-set ϕ( f̃ )(t) for any t ∈ ψ(A) is characterized by the
following MF-membership function:

MF
ϕ( f̃ )(t)(y) =

⎧⎨⎩
∨

ϕ(x)=y

∨
ψ(a)=t

MFf̃ (a)(x) if ∃x ∈ ϕ−1(y)

0, otherwise

for all y ∈ P2.
(ii) The pre-image of (g̃, B) under the MF-soft function (ϕ, ψ), denoted by (ϕ, ψ)−1(g̃, B), is the

MFS-set (ϕ−1(g̃), ψ−1(B)) such that the MF-set ϕ−1(g̃)(a) is characterized by the following
MF-membership function:

MFϕ−1(g̃)(a)(x) = MFg̃(ψ(a))(ϕ(x))

for all a ∈ ψ−1(B) and x ∈ P1.

If ϕ and ψ are injective (surjective), then (ϕ, ψ) is said to be injective (surjective).

Definition 18. Let P1, P2, be two polygroups and (ϕ, ψ) be an MF-soft function from P1 to P2. If ϕ
is a strong homomorphism of polygroups, then the pair (ϕ, ψ) is called an MF-soft homomorphism.
If ϕ is an isomorphism and ψ is a one-to-one mapping, then (ϕ, ψ) is said to be an MF-soft
isomorphism.

Theorem 8. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to
P2. If ( f̃ , A) ∈ MkFS

S (P1, E1) is an MFS-polygroup, then (ϕ, ψ)( f̃ , A) ∈ MkFS
S (P2, E2) is an

MFS-polygroup.

Proof. Let k ∈ ψ(A), u, v ∈ P2. If ϕ−1(u) = ∅ or ϕ−1(v) = ∅, the proof is straightforward.
Assume that there exists x, y ∈ P1, such that ϕ(x) = u and ϕ(y) = v. Since ( f̃ , A) ∈
MkFS

S (P1, E1) is an MFS-polygroup, it follows that for each a ∈ A

min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ MFf̃ (a)(z)

for all z ∈ x ◦ y. Let z∗ ∈ u ◦ v = ϕ(x ◦ y). We obtain z∗ = ϕ(z). Then, we have

min{
∨

ϕ(x)=u

MFf̃ (a)(x),
∨

ϕ(y)=v

MFf̃ (a)(y)} ≤
∨

ϕ(x)=u

∨
ϕ(y)=v

MFf̃ (a)(z).

Hence,

min{MF
ϕ( f̃ )(t)(u), MF

ϕ( f̃ )(t)(v)} ≤
∨

ψ(a)=t

∨
ϕ(x)=u

∨
ϕ(y)=v

MFf̃ (a)(z)

=
∨

ψ(a)=t

∨
ϕ(z)=z∗

MF
ϕ( f̃ )(t)(z)

for all z∗ ∈ u ◦ v. Then, we have

inf
z∗∈u◦v

{MF
ϕ( f̃ )(t)(z

∗)} ≥ min{MF
ϕ( f̃ )(t)(u), MF

ϕ( f̃ )(t)(v)}
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Moreover, for all u ∈ P2 where ϕ(x) = u and x ∈ P1, we have

MF
ϕ( f̃ )(t)(u

−1) =
∨

ϕ(x−1)=u−1

∨
ψ(a)=k

MFf̃ (a)(x−1)

≥
∨

ϕ(x)=u

∨
ψ(a)=t

MFf̃ (a)(x)

= MF
ϕ( f̃ )(t)(u)

Consequently, (ϕ, ψ)( f̃ , A) ∈ MkFS
S (P2, E2) is an MFS-polygroup.

Theorem 9. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to P2.
If (g̃, B) ∈ MkFS

S (P2, E2) is an MFS-polygroup, then (ϕ−1(g̃), ψ−1(B)) ∈ MkFS
S (P1, E1) is an

MFS-polygroup.

Proof. Let a ∈ ψ−1(B), x, y ∈ P1. For all z ∈ x ◦ y, we have

inf
z∈x◦y

{MFϕ−1(g̃)(a)(z)} = inf
z∈x◦y

{MFg̃(ψ(a))(ϕ(z))}

≥ min{MFg̃(ψ(a))(ϕ(x)), MFg̃(ψ(a))(ϕ(y))}
= min{MF(ϕ−1 g̃)(a)(x), MF(ϕ−1 g̃)(a)(y)}

Similarly, we obtain MF(ϕ−1 g̃)(a)(x−1) ≥ MF(ϕ−1 g̃)(a)(x). Therefore, we conclude that
(ϕ−1(g̃), ψ−1(B)) ∈ MkFS

S (P1, E1) is an MFS-polygroup.

5. Normal MFS-Polygroups

In this section, we define normal MFS-polygroups and study some of their basic
properties. We proved that the images of normal MFS-polygroups are the normal MFS-
polygroups under some conditions.

Definition 19. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, ( f̃ , A) is said to be normal

if and only if

inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

It is obvious that if ( f̃ , A) is a normal MFS-polygroup, then

inf
z∈x◦y

{MFf̃ (a)(z) = inf
z′∈x◦y

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

Theorem 10. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, the following conditions are

equivalent:

(i) ( f̃ , A) is a normal MFS-polygroup,
(ii) inf

z∈x◦y◦x−1
{MFf̃ (a)(z)} = MFf̃ (a)(y), for all a ∈ A and x, y ∈ P,

(iii) inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y), for all a ∈ A and x, y ∈ P,

(iv) inf
z∈y−1◦x−1◦y◦x

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y), for all a ∈ A and x, y ∈ P.
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Proof. (i)⇒ (ii): For any a ∈ A, suppose that x, y ∈ P and z ∈ x ◦ y ◦ x−1. Then, z ∈ x ◦ s,
where s ∈ y ◦ x−1. Since s ∈ y ◦ x−1, then y ∈ s ◦ (x−1)−1 = s ◦ x. Thus, by hypothesis,
we obtain

inf
z∈x◦s
{MFf̃ (a)(z)} = inf

y∈s◦x
{MFf̃ (a)(y)} = MFf̃ (a)(y).

That is, inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} = MFf̃ (a)(y).

(ii)⇒ (iii): The proof is trivial.
(iii) ⇒ (iv): For any a ∈ A, suppose that x, y ∈ P and z ∈ y−1 ◦ x−1 ◦ y ◦ x. Then,

z ∈ y−1 ◦ s, where s ∈ x−1 ◦ y ◦ x. By (iii), we obtain inf
s∈x−1◦y◦x

{MFf̃ (a)(s)} ≥ MFf̃ (a)(y).

Since z ∈ y−1 ◦ s and letting ( f̃ , A) ∈ MkFS(P) be a MFS-polygroup, then we have

inf
z∈y−1◦s

{MFf̃ (a)(z)} ≥ min{MFf̃ (a)(y
−1), MFf̃ (a)(s)} = MFf̃ (a)(y).

That is, inf
z∈y−1◦x−1◦y◦x

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y) for all a ∈ A and x, y ∈ P.

(iv) ⇒ (i): For any a ∈ A, suppose that x, y ∈ P and u ∈ x−1 ◦ y ◦ x. Then, u ∈
x−1 ◦ y ◦ x ⊂ y ◦ y−1 ◦ x−1 ◦ y ◦ x. Thus, u ∈ y ◦ s, where s ∈ y−1 ◦ x−1 ◦ y ◦ x. By (iv), we
obtain inf

s∈y−1◦x−1◦y◦x
{MFf̃ (a)(s)} ≥ MFf̃ (a)(y). On the other hand,

inf
u∈y◦s

{MFf̃ (a)(u)} ≥ min{MFf̃ (a)(y), MFf̃ (a)(s)} = MFf̃ (a)(y).

Now, let ω ∈ x ◦ y and v ∈ y ◦ x. Then, y ∈ v ◦ x−1 and so ω ∈ x ◦ y ⊂ x ◦ v ◦ x−1.
By the above result, MFf̃ (a)(ω) ≥ MFf̃ (a)(v). Similarly, we obtain MFf̃ (a)(v) ≥ MFf̃ (a)(ω).
Therefore,

inf
ω∈x◦y

{MFf̃ (a)(ω)} = inf
v∈y◦x

{MFf̃ (a)(v)},

for all a ∈ A and x, y ∈ P. Hence, ( f̃ , A) is a normal MFS-polygroup.

Lemma 1. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. If MFf̃ (a)(x) < MFf̃ (a)(y) for all

a ∈ A and x, y ∈ P, then

inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFS f̃ (a)(z
′)} = MFf̃ (a)(x).

Proof. Let x, y ∈ P and z ∈ x ◦ y. Then,

MFf̃ (a)(z) ≥ min{MFf̃ (a)(x), MFf̃ (a)(y)} = MFf̃ (a)(x)

for all a ∈ A. Since z ∈ x ◦ y, then x ∈ z ◦ y−1. Thus,

inf
x∈z◦y−1

{MFf̃ (a)(x)} ≥ min{MFf̃ (a)(z), MFf̃ (a)(y
−1)}

= min{MFf̃ (a)(z), MFf̃ (a)(y)}.

If min{MFf̃ (a)(z), MFf̃ (a)(y)} = MFf̃ (a)(y), then MFf̃ (a)(x) ≥ MFf̃ (a)(y), a contra-
diction. Thus, min{MFf̃ (a)(z), MFf̃ (a)(y)} = MFf̃ (a)(z). Hence, MFf̃ (a)(x) ≥ MFf̃ (a)(z).
Consequently, inf

z∈x◦y
{MFf̃ (a)(z)} = MFf̃ (a)(x) for all a ∈ A and x, y ∈ P. Similarly, we

obtain inf
z′∈y◦x

{MFf̃ (a)(z
′)} = MFf̃ (a)(x) for all a ∈ A and x, y ∈ P.
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Theorem 11. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, ( f̃ , A) is normal if and

only if

MFf̃ (a)(x) = MFf̃ (a)(y)⇒ inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

Proof. The proof of Theorem 11 follows from Lemma 1.

Theorem 12. Let ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is a normal MFS-polygroup if and only if

each of its non-empty level subsets is a normal soft polygroup over P.

Proof. Let ( f̃ , A) ∈ MkFS
S (P, E) be a normal MFS-polygroup. By Theorem 7, (MFf̃ (a))t

is a

soft polygroup over P for all a ∈ A. Now, we will show that (MFf̃ (a))t
is normal. Suppose

that y ∈ (MFf̃ (a))t
and x ∈ P. Then, we have

inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y) ≥ t.

It follows that MFf̃ (a)(z) ≥ t for all z ∈ x ◦ y ◦ x−1. That is, x ◦ y ◦ x−1 ⊂ (MFf̃ (a))t
. We

obtain that (MFf̃ (a))t
is a normal subpolygroup of P for all a ∈ A. Consequently, ( f̃ , A)t is

a normal soft polygroup over P. Conversely, let ( f̃ , A)t be a normal soft polygroup over P
for all t ∈ [0, 1]. By Theorem 7, ( f̃ , A) ∈ MkFS

S (P, E) is an MFS-polygroup. That is, MFf̃ (a)
is an MF-subpolygroup of P for all a ∈ A. We will show that MFf̃ (a) is normal. Assume

that x, y ∈ P, t0 = MFf̃ (a)(y). Then, MFf̃ (a)(y) ≥ t0. Since ( f̃ , A)t0
is normal, we have

x ◦ y ◦ x−1 ⊂ (MFS f̃ (a))t0
. Thus, z ∈ (MFf̃ (a))t0

for all z ∈ x ◦ y ◦ x−1. Therefore,

inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ t0 = MFf̃ (a)(y).

We obtain that MFf̃ (a) is a normal MF-subpolygroup of P for all a ∈ A. Consequently,

( f̃ , A) is a normal MFS-polygroup.

Theorem 13. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two normal MFS-polygroups. Then,

(i) ( f̃ , A) �� (g̃, B) is a normal MFS-polygroup.
(ii) ( f̃ , A) �� (g̃, B) is a normal MFS-polygroup.
(iii) If A ∩ B = ∅, then ( f̃ , A) � (g̃, B) is a normal MFS-polygroup.
(iv) ( f̃ , A)∧̃(g̃, B) is a normal MFS-polygroup.

Theorem 14. Let P1, P2 be two polygroups and (ϕ, ψ) be a surjective multi-fuzzy soft homomor-
phism from P1 to P2. If ( f̃ , A) ∈ MkFS

S (P1, E1) is a normal MFS-polygroup, then (ϕ, ψ)( f̃ , A) ∈
MkFS

S (P2, E2) is a normal MFS-polygroup.

Proof. For each t ∈ ψ(A) and u, v ∈ P2, there exists x, y ∈ P1, such that ϕ(x) = u and
ϕ(y) = v. Since ( f̃ , A) ∈ MkFS

S (P, E) is a normal MFS-polygroup, it follows that for each
a ∈ A

MFf̃ (a)(y) ≤ MFf̃ (a)(z)
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for all z ∈ x ◦ y ◦ x−1. Let z∗ ∈ u ◦ v ◦ u−1 = ϕ(x ◦ y ◦ x−1). We obtain z∗ = ϕ(z).
Then, we have ∨

ϕ(y)=v

MFf̃ (a)(y) ≤
∨

ϕ(x)=u

∨
ϕ(y)=v

∨
ϕ(x−1)=u−1

MFf̃ (a)(z).

Hence,

MF
ϕ( f̃ )(t)(v) ≤

∨
ψ(a)=t

∨
ϕ(x)=u

∨
ϕ(y)=v

∨
ϕ(x−1)=u−1

MFf̃ (a)(z)

=
∨

ψ(a)=t

∨
ϕ(z)=z∗

MF
ϕ( f̃ )(t)(z)

for all z∗ ∈ u ◦ v ◦ u−1. Then, we have

inf
z∗∈u◦v◦u−1

{MF
ϕ( f̃ )(t)(z

∗)} ≥ MF
ϕ( f̃ )(t)(v)}

Consequently, (ϕ, ψ)( f̃ , A) is a normal MFS-polygroup.

Theorem 15. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to P2.
If (g̃, B) ∈ MkFS

S (P2, E2) is a normal MFS-polygroup, then (ϕ−1(g̃), ψ−1(B)) ∈ MkFS
S (P1, E1)

is a normal MFS-polygroup.

Proof. Let a ∈ ψ−1(B), x, y ∈ P1. For all z ∈ x ◦ y ◦ x−1, we have

inf
z∈x◦y◦x−1

{MF(ϕ−1(g̃))(a)(z)} = inf
z∈x◦y◦x−1

{MFg̃(ψ(a))(ϕ(z))}

≥ MFg̃(ψ(a))(ϕ(y))

= MF(ϕ−1(g̃))(a)(y).

Therefore, (ϕ−1(g̃), ψ−1(B)) is a normal MFS-polygroup.

6. Conclusions

In real life, many problems often involve uncertainties that are difficult to describe
and solve with traditional mathematical tools. To investigate these uncertainties, many
researchers have proposed mathematical theory to address the problem of uncertainty.
Currently, mathematical theories dealing with the problem of uncertainty include fuzzy set
theory, soft set theory, multi-fuzzy set theory, probability theory and so on. The purpose
of this paper is to apply the MFS-set theory to algebraic hyperstructures, motivated by
the study of the algebraic structures of MF-sets. We generalized the concept of fuzzy
polygroups and studied the algebraic properties of MFS-sets in polygroup structures. Thus,
this paper provides a new connection between polygroup structures and MFS-sets. We
hope that our work enhances the understanding of MFS-polygroups for future researchers.
To extend this work, one should study the MFS-sets related to various hyperrings, which
can be researched further. A solution to a decision-making problem can be investigated
using a different algorithm in the future as well.
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Abstract: In this paper, we remove the solid incidence assumption in a characterization of H(4, q2)

by J. Schillewaert and J. A. Thasby proving that Hermitian plane incidence numbers imply Hermitian
solid incidence numbers, except for a few possible small cases.
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1. Introduction and Motivation

Let q denote a prime power ph with exponent h ≥ 1. In PG(r, q), the projective space
of dimension r and order q, let K denote a k-set, i.e., a set of k points. For each integer i
such that 0 ≤ i ≤ θd := ∑d

j=0 qj, let us denote by td
i = td

i (K) the number of d-subspaces of
PG(r, q) meeting K in exactly i points. The nonnegative integers td

i are called the characters
of K with respect to the dimension d, as can be seen in [1–3]. Let m1, m2, . . . , ms be s integers
such that 0 ≤ m1 < m2 < · · · < ms ≤ θd. A set K is said to be of class [m1, m2, . . . , ms]d
if td

i > 0 only if i ∈ {m1, m2, . . . , ms}. Moreover, K is said to be of type (m1, m2, . . . , ms)d
if td

i > 0 if and only if i ∈ {m1, m2, . . . , ms}. The nonnegative integers m1, m2, . . . , ms
are called intersection numbers with respect to the dimension d. Intersection numbers
with respect to dimensions 2 and 3 will be called plane and solid intersection numbers,
respectively. A full swing research topic is to recognize algebraic varieties by intersection
numbers, as can be seen in [4–6]. The Hermitian variety H(4, q2) is the set of all absolute
points of a non-degenerate unitary polarity in PG(4, q2); it is a non-singular algebraic
hypersurface of degree q + 1 in PG(4, q2) with three plane intersection numbers and two
solid intersection numbers (for more details, we refer the reader to Chapter 23 of [1]).
The size and the solid intersection numbers are generally not sufficient to characterize
Hermitian varieties due to the existence of quasi-Hermitian varieties, as can be seen in [7,8].
In [9], Theorem 4.2, J. Schillewaert and J. A. Thas proved the following

Result 1. In PG(4, q2), any set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 and of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3 is the Hermitian variety H(4, q2).

In this paper, we remove the solid incidence assumption of Result 1 by proving
the following

Theorem 1. In PG(4, q2), apart from possible cases with q ∈ {2, 3, 5}, any set of class [q2 +
1, q3 + 1, q3 + q2 + 1]2 is the Hermitian variety H(4, q2).

In order to remove the solid incidence assumption, we have to calculate the solid
intersection numbers of a set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(4, q2). To do this,
in Section 2, we analyze the possible sizes of a set that have the same plane intersection
numbers in PG(3, q2).
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2. Sets of Class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(3, q2)

We start by recalling the following

Result 2 (see [10] Lemma 2.2). In PG(r, q) with r ≥ 2, let K be a k-set of class [m1, m2, . . . , ms]d
and of class [n1, n2, . . . , nu]d+1 with 1 ≤ d < d + 1 ≤ r. If there is an integer x such that for any
mi ∈ {m1, m2, . . . , ms}, we have mi ≡ x mod q; then, for any nj ∈ {n1, n2, . . . , nu}, we have
nj ≡ x mod q. Thus, k ≡ x mod q as well, since K is of type (k)r.

In this section, we will prove the following:

Theorem 2. In PG(3, q2), with q = ph a prime power, let K be a k-set of class [q2 + 1, q3 +
1, q3 + q2 + 1]2. Then, there is an integer a such that k = aq2 + 1 with either a ≡ 0 (mod q) or
a ≡ 1 (mod q). Furthermore:

1. t2
q2+1 = 0 if and only if k = q5 + q3 + q2 + 1;

furthermore, K is of type (q3 + 1, q3 + q2 + 1)2;
2. If t2

q2+1 ≥ 1, then

• q = 2 and k ∈ {25, 33, 49}; furthermore:

– If k = 25, then K is a set of type (5, 9)2 of PG(3, 4);
– If k ∈ {33, 49}, then K is a set of type (5, 9, 13)2 of PG(3, 4);
– If k = 49, then a line meets K in at most 4 points and therefore K contains no line;

• q = 3 and k = 244; furthermore:

– K is a set of type (10, 28, 37)2 of PG(3, 9);
– A line meets K in at most 8 points and therefore K contains no line;

• q = 5 and k = 3126; furthermore:

– K is a set of type (26, 126, 151)2 of PG(3, 25);
– A line meets K in at most 12 points and therefore K contains no line;

• k = q5 + q2 + 1 for any q ≥ 2;
furthermore, K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;

• k = q5 + q3 + 1 for any q ≥ 2; furthermore:

– K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
– If α is a (q2 + 1)-plane, then α ∩ K is not a line;

• k = q5 + q4 − q3 + q2 + 1 for any q ≥ 3; furthermore:

– K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
– A line meets K in at most 2q + 1 points and therefore K contains no line.

Theorem 2 will be a consequence of Lemmas 2–5.
Now let K be a k-set of PG(3, q2) of class [l, m, n]2. Thus, by definition, l < m < n. By

double counting the number of planes, the number of pairs (P, α) where P ∈ K and α is a
plane through P, and the number of pairs ((P, Q), α) where P and Q are two distinct points
of K and α is a plane through P and Q, we obtain the following equations on the integers
ti = t2

i (K)
tl + tm + tn = (q2 + 1)(q4 + 1) (1)

ltl + mtm + ntn = k(q4 + q2 + 1) (2)

l(l − 1)tl + m(m− 1)tm + n(n− 1)tn = k(k− 1)(q2 + 1) (3)

Lemma 1. Let K be a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(3, q2) and let rh be a line
meeting K in exactly h points. Then:

1. k ≡ 1 (mod q2);
2. h ≤ q3 + q2 + q + 2− k−1

q2 = [q3 + q + 1− k−1
q2 ] + q2 + 1;
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3. h ≤ [q3 + q + 1− k−1
q2 ] + tq3+q2+1;

4. If tq2+1 ≥ 2, then k ≤ q5 + q4 − q3 + 2q2 + 1.

Proof. By Result 2, we immediately have that k ≡ 1 (mod q2).
Now let rh be a line meeting K in exactly h points and let us denote by uh

i the number
of i-planes passing through rh with i ∈ {q2 + 1, q3 + 1, q3 + q2 + 1}. Counting the number
of points of K \ rh via the planes through rh, we obtain

k− h = (q2 + 1− h)uh
q2+1 + (q3 + 1− h)uh

q3+1 + (q3 + q2 + 1− h)uh
q3+q2+1 (4)

Since uh
q2+1 + uh

q3+1 + uh
q3+q2+1 = q2 + 1, we have that

h + uh
q3+1 + quh

q2+1 = q3 + q2 + q + 2− k− 1
q2 (5)

h + (q− 1)uh
q2+1 = q3 + q + 1− k− 1

q2 + uh
q3+q2+1 (6)

By (5), we immediately have that h ≤ q3 + q2 + q + 2− k−1
q2 . Since uh

q3+q2+1 ≤ tq3+q2+1,

by (6), we have that h ≤ q3 + q + 1− k−1
q2 + tq3+q2+1.

Now let us suppose that tq2+1 ≥ 2. Let α and β be two (q2 + 1)-planes and let rh be
the line α ∩ β. Equation (5) can be rewritten in the following way

q3 + q2 − q + 2− k− 1
q2 = h + q(uh

q2+1 − 2) + uh
q3+1 (7)

Since uh
q2+1 − 2 ≥ 0, by (7), we have that q3 + q2 − q + 2− k−1

q2 ≥ 0 from which it

immediately follows that k ≤ q5 + q4 − q3 + 2q2 + 1.

Lemma 2. If K is a k-set of PG(3, q2) of class [q3 + 1, q3 + q2 + 1]2, then k = q5 + q3 + q2 + 1.

Proof. A set of class [m, n]2 is a set of class [l, m, n]2 having tl = 0. Putting tl = 0, m = q3 + 1
and n = q3 + q2 + 1 in Equations (1)–(3), we obtain

[k− (q5 + q3 + q2 + 1)][k− (q5 + q4 − q3 + 2q + 1− 2q
q2 + 1

)] = 0 (8)

Therefore, k = q5 + q3 + q2 + 1 necessarily, since q ≥ 2 and k is an integer.

From now on, K will ever be a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 having tq2+1 ≥ 1.
By Lemma 1, there is an integer a such that k = aq2 + 1.

Lemma 3. We have that either a ≡ 0 (mod q) or a ≡ 1 (mod q).

Proof. Putting l = q2 + 1, m = q3 + 1, n = q3 + q2 + 1 and k = aq2 + 1 into Equations (1)–(3),
we obtain

tq2+1 = H + 3q4 + (6− 2a)q3 − 3aq2 − 7a− α + β (9)

tq3+1 = −H + (a− 4)q4 + (3a− 7)q3 + 4aq2 − (a− 1)2q + 8a− β (10)

tq3+q2+1 = q6 + (2− a)q4 + (1− a)q3 + (1− a)q2 + (a− 1)2q− a + 1 + α (11)

with H = q6 + 2q5 + 8q2 + (9− 5a)q + a2 + 11, α = a(a−1)
q and β = 2(a−2)(a−3)

q−1 . Since

α = a(a−1)
q an integer, we have that a(a− 1) ≡ 0 (mod q) and hence either a ≡ 0 (mod q) or

a ≡ 1 (mod q), since a and a− 1 are coprime and q is a prime power.
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Lemma 4. If a ≡ 0 (mod q), then:

1. q = 2 and k ∈ {25, 33, 49}; furthermore:

• If k = 25, then K is a set of type (5, 9)2 of PG(3, 4);
• If k ∈ {33, 49}, then K is a set of type (5, 9, 13)2 of PG(3, 4);
• If k = 49, then a line meets K in at most 4 points and therefore K contains no line;

2. q = 3 and k = 244; furthermore:

• K is a set of type (10, 28, 37)2 of PG(3, 9);
• A line meets K in at most 8 points and therefore K contains no line;

3. q = 5 and k = 3126; furthermore:

• K is a set of type (26, 126, 151)2 of PG(3, 25);
• A line meets K in at most 12 points and therefore K contains no line;

4. k = q5 + q3 + 1 for any q ≥ 2; furthermore:

• K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
• If α is a (q2 + 1)-plane, then α ∩ K is not a line.

Proof. Putting a = bq into Equations (9)–(11) we obtain

(q− 1)tq2+1 = q(q2 + 1)b2 − (2θ5 − q4 − 1)b + θ7 + 2q4 + q3 + q (12)

(q− 1)tq3+1 = −q2(q2 + 1)b2 + (θ5 + q4 + 2q2 + 1)qb− (θ7 + q5 + 2q4 + q2) (13)

tq3+q2+1 = q(q2 + 1)b2 − (θ5 + q2)b + θ6 − q5 + q4 (14)

where θd := ∑d
i=0 qi.

If q = 2, then we obtain t5 = 10b2 − 109b + 297, t9 = −20b2 + 176b − 323 and
t13 = 10b2− 67b+ 111. Since t5 ≥ 1, t9 ≥ 0 and t13 ≥ 0, it is easy to prove that b ∈ {3, 4, 5, 6}
necessarily.

If b = 3, then a = bq = 6 and k = aq2 + 1 = 25. Furthermore, we obtain that
(t5, t9, t13) = (60, 25, 0). K is a 25-set of type (5, 9)2 in PG(3, 4).

If b = 4, then a = bq = 8 and k = aq2 + 1 = 33. Furthermore, we obtain (t5, t9, t13) =
(21, 61, 3). K is therefore a 33-set of type (5, 9, 13)2 in PG(3, 4).

If b = 5, then a = bq = 10 and k = aq2 + 1 = 41. Let us note that in such a case,
k = 41 = 25 + 23 + 1 = q5 + q3 + 1. This case is therefore included in item 4 in the statement
of the lemma.

If b = 6, then a = bq = 12 and k = aq2 + 1 = 49. Furthermore, we obtain that
(t5, t9, t13) = (3, 13, 69). K is therefore a 49-set of type (5, 9, 13)2 in PG(3, 4). Finally, by
point (2) of Lemma 1, we obtain that h ≤ 4.

Now let us study the case q ≥ 3.
Since tq2+1 ≥ 1, by Equation (12), we obtain that:

f (b) := q(q2 + 1)b2 − (2θ5 − q4 − 1)b + θ7 + 2q4 + q3 + 1 ≥ 0 (15)

It is easy to see that:

• f (q2 + 1) = q3 − 2q2 + 1 > 0 for any q;
• f (q2 + 2) = −q(q− 1)(q2 − 3q + 1) < 0 for any q ≥ 3;
• f (q2 + q− 1) = −2q2 + 3q + 3 < 0 for any q ≥ 3;
• f (q2 + q) = (q− 1)(q3 − 2q− 2) > 0 for any q.

For any q ≥ 3, there are therefore two real numbers b1 and b2 such that q2 + 1 < b1 <
q2 + 2, q2 + q− 1 < b2 < q2 + q and g(b1) = g(b2) = 0. Thus, for any q ≥ 3, we have
b ≤ q2 + 1 or b ≥ q2 + q.
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Since tq3+1 ≥ 0, by Equation (13), we obtain

g(b) := q2(q2 + 1)b2 − (θ5 + q4 + 2q2 + 1)qb + θ7 + q5 + 2q4 + q2 ≤ 0 (16)

It is easy to see that

• g(q) = (q + 1)(q4 + 1) > 0 for any q;
• g(q + 1) = −(q− 1)(q5 − q3 + 1) < 0 for any q;
• g(q2 + q) = −2q3 + q + 1 < 0 for any q;
• g(q2 + q + 1) = (q− 1)(q5 + q4 + 3q3 − 1) > 0 for any q.

Thus, for any q, there are two real numbers b1 and b2 such that q < b1 < q+ 1, q2 + q <
b2 < q2 + q + 1 and g(b1) = g(b2) = 0. For any q, we therefore have q + 1 ≤ b ≤ q2 + q.

Since tq3+q2+1 ≥ 0, by Equation (14), we obtain

h(b) := q(q2 + 1)b2 − (θ5 + q2)b + θ6 − q5 + q4 ≥ 0 (17)

It is easy to see that:

• h(q) = q4 + 1 > 0 for any q;
• h(q + 1) = −(q− 2)q4 < 0 for any q ≥ 3;
• h(q2 − 1) = −(q− 2)(q4 + q3 + 2q2 + 2q + 1) < 0 for any q ≥ 3;
• h(q2) = q + 1 > 0 for any q.

For any q ≥ 3, there are therefore two real numbers b1 and b2 such that q < b1 < q + 1,
q2 − 1 < b2 < q2 and g(b1) = g(b2) = 0. Thus, for any q ≥ 3, we have b ≤ q or b ≥ q2.

Finally, if q ≥ 3, then b ∈ {q2, q2 + 1, q2 + q} necessarily.
If b = q2, then k = q5 + 1, tq3+q2+1 = q + 1, tq3+1 = q6 + q4 − q3 − 2q − 3− 4

q−1 , and

tq2+1 = q3 + q2 + q + 3 + 4
q−1 . Thus, q− 1 must divide 4 with q ≥ 3. Hence, q ∈ {3, 5}

and K is a 244-set of type (10, 28, 37)2 in PG(3, 9) or q = 5 and K is a 3126-set of type
(26, 126, 151)2 in PG(3, 25). Furthermore, since tq3+q2+1 = q + 1, by point (3) of Lemma 1,
we have that h ≤ 2(q + 1).
If b = q2 + 1, then k = q5 + q3 + 1, tq2+1 = q2 − q, tq3+1 = q6 − q5 + 2q4 − 2q3 + 2q2 + 1,
tq3+q2+1 = q5− q4 + 2q3− 2q2 + q; therefore, K is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2. Now,
let us suppose that there is a (q2 + 1)-plane α such that α ∩ K is a line r. Substituting
h = q2 + 1 into Equation (5), we obtain uq3+1 = 1− quq2+1. Hence, uq2+1 = 0 necessarily
and no (q2 + 1)-plane passes through line r, which is a contradiction.
If b = q2 + q, then k = q5 + q4 + 1. Since tq2+1 ≥ 2, by point (4) of Lemma 1, we have that
q5 + q4 + 1 = k ≤ q5 + q4 − q3 + 2q2 + 1. Thus, q ≤ 2, which is a contradiction.

Lemma 5. If a ≡ 1 (mod q), then:

1. k = q5 + q2 + 1 for any q ≥ 2; furthermore:
K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

2. k = q5 + q4 − q3 + q2 + 1 for any q ≥ 3; furthermore:

• K is a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;
• A line meets K in at most 2q + 1 points and therefore K contains no line.

Proof. Putting a = cq + 1 into Equations (9)–(11), we obtain

(q− 1)tq2+1 = q(q2 + 1)c2 − (2θ5 − q4 − 2q2 − 3)c + θ7 − 2q2 − 2 (18)

(q− 1)tq3+1 = −q2(q2 + 1)c2 + (θ6 + q5 − q− 1)c− (θ7 − θ3) (19)

tq3+q2+1 = q(q2 + 1)c2 − (θ5 − q2 − 2)c + q6 + q4 (20)

where θd := ∑d
i=0 qi.
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Since tq2+1 ≥ 1, by Equation (18) we obtain:

f (c) := q(q2 + 1)c2 − (2θ5 − q4 − 2q2 − 3)c + θ7 − 2q2 − q− 1 ≥ 0 (21)

It is easy to see that:

• f (q2) = (q− 1)q3 > 0 for any q;
• f (q2 + 1) = −(q− 1) < 0 for any q;
• f (q2 + q− 2) = −q4 + 4q3 − 6q2 + 9q− 2 < 0 for any q ≥ 3;
• f (q2 + q− 1) = (q− 1)(q2 − 3q + 1) > 0 for any q ≥ 3.

Thus, for any q ≥ 3, there are two real numbers c1 and c2 such that q2 < c1 < q2 + 1,
q2 + q− 2 < c2 < q2 + q− 1 and g(c1) = g(c2) = 0. For any q ≥ 3, we therefore have
c ≤ q2 or c ≥ q2 + q− 1.

If q = 2 and c = q2 + q − 2 = 4, then a = cq + 1 = 9 and k = aq2 + 1 = 37 =
(23 + 1)22 + 1 = (q3 + 1)q2 + 1. Thus, this case is included in item 1 in the statement of the
lemma.

If q = 2 and c = q2 + q − 1 = 5, then a = cq + 1 = 11 and k = aq2 + 1 = 45 =
25 + 23 + 22 + 1 = q5 + q3 + q2 + 1. Therefore, tq2+1 = 0, which is a contradiction.

Since tq3+1 ≥ 0, by Equation (19), we obtain

g(c) := q2(q2 + 1)c2 − (θ6 + q5 − q− 1)c + (θ7 − θ3) ≤ 0 (22)

It is easy to see that:

• g(q) = (q− 1)q3 > 0 for any q;
• g(q + 1) = −(q− 1)(q + 1)q4 < 0 for any q;
• g(q2 + q− 1) = −(q− 1)(q3 + 2)q2 < 0 for any q;
• g(q2 + q) = (q− 1)(q + 1)q3 > 0 for any q.

Therefore, for any q, there are two real numbers c1 and c2 such that q < c1 < q + 1,
q2 + q− 1 < c2 < q2 + q and g(c1) = g(c2) = 0. For any q, we thus have q + 1 ≤ c ≤
q2 + q− 1.

Since tq3+q2+1 ≥ 0, by Equation (20), we obtain

h(b) := q(q2 + 1)c2 − (θ5 − q2 − 2)c + q6 + q4 ≥ 0 (23)

It is easy to see that:

• h(q) = q(q2 − q + 1) > 0 for any q;
• h(q + 1) = −q5 + q4 + q3 + q2 + q + 1 < 0 for any q;
• h(q2 − 1) = −q5 + 2q4 − q3 + q2 + 2q− 1 < 0 for any q;
• h(q2) = q2(q2 − q + 1) > 0 for any q.

Therefore, for any q there are two real numbers c1 and c2 such that q < c1 < q + 1,
q2 − 1 < c2 < q2 and g(c1) = g(c2) = 0. For any q, we thus have c ≤ q or c ≥ q2.

Finally, if q ≥ 3, then c ∈ {q2, q2 + q− 1} necessarily.
If c = q2, then k = q5 + q2 + 1, tq2+1 = q3 + 1, tq3+1 = q6, tq3+q2+1 = q4 − q3 + q2; K is
therefore a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.
If c = q2 + q− 1, then k = q5 + q4 − q3 + q2 + 1, tq2+1 = (q− 1)(q− 2), tq3+1 = (q3 + 2)q2,
tq3+q2+1 = q6− q5 + q4− 2q2 + 3q− 1; K is therefore a set of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.
Furthermore, by point (2) of Lemma 1, we have that h ≤ 2q + 1.

3. The Proof of the Main Result

In this section, K is a k-set of class [q2 + 1, q3 + 1, q3 + q2 + 1]2 in PG(4, q2). By Result 2,
we immediately have that k ≡ 1 (mod q2).

We will prove that, apart from possible initial cases with q ∈ {2, 3, 5} as in Corollary 1,
K is the Hermitian variety H(4, q2).
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As an immediate consequence of Theorem 2, we have the following

Corollary 1. Apart from the following initial possible cases:

1. q = 2, K is a set of class [25, 33, 37, 41, 45, 49]3, and there is at least one 25-solid or one
33-solid or one 49-solid (otherwise K is of class [37, 41, 45]3 as in the next general case);
furthermore:

• If S is a 25-solid, then K ∩ S is a set of type (5, 9)2 of PG(3, 4);
• If S is a 45-solid, then K ∩ S is a set of type (9, 13)2 of PG(3, 4);
• If S is a n-solid with n ∈ {33, 37, 41, 49}, then K ∩ S is a set of type (5, 9, 13)2 of

PG(3, 4).

2. q = 3, K is a set of class [244, 253, 271, 280, 307]3 and there is at least one 244-solid (otherwise
K is of class [253, 271, 280, 307]3 as in the next general case); furthermore:

• If S is a 280-solid, then K ∩ S is a set of type (28, 37)2 of PG(3, 9);
• If S is a n-solid with n ∈ {244, 253, 271, 307}, then K ∩ S is a set of type (10, 28, 37)2

of PG(3, 9).

3. q = 5, K a set is of class [3126, 3151, 3251, 3276, 3651]3 and there is at least one 3126-solid
(otherwise K is of class [3151, 3251, 3276, 3651]3 as in the next general case); furthermore:

• If S is a 3276-solid, then K ∩ S is a set of type (126, 151)2 of PG(3, 25);
• If S is a n-solid with n ∈ {3126, 3151, 3251, 3651}, then K ∩ S is a set of type

(26, 126, 151)2 of PG(3, 25).

K is of class [q5 + q2 + 1, q5 + q3 + 1, q5 + q3 + q2 + 1, q5 + q4− q3 + q2 + 1]3; furthermore,
if S is an n-solid, then

• If n = q5 + q3 + q2 + 1, then K ∩ S is a set of type (q3 + 1, q3 + q2 + 1)2 of PG(3, q2);
otherwise, K ∩ S is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2;

• If n ∈ {q5 + q3 + 1, q5 + q4 − q3 + q2 + 1}, then for any (q2 + 1)-plane α of S the set α ∩ K
is not a line.

Remark 1. If H is a set of type (m)d of PG(r, q) with 1 ≤ d ≤ r, then m = 0 or m = θd.
Furthermore, in the first case, H is the empty set, while in the second one, H is the whole space.

Lemma 6. K is of type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

Proof. If there is no (q2 + 1)-plane, then K is of type (q5 + q3 + q2 + 1)3, which is a contra-
diction since q5 + q3 + q2 + 1 �= 0 and q5 + q3 + q2 + 1 �= θ3. There is therefore at least one
(q2 + 1)-plane.

If there is no (q3 + 1)-plane, then K has no type with respect to solids, which is a
contradiction. There is therefore at least one (q3 + 1)-plane.

If there is no (q3 + q2 + 1)-plane, then q = 2, and K is a set of type (25)3, which is a
contradiction since 25 �= 0 and 25 �= 15 = θ3. There is therefore at least one (q3 + q2 + 1)-
plane.

Lemma 7. Apart from the possible initial cases as in Corollary 1, at least one (q5 + q3 + q2 + 1)-
solid passes through each (q3 + q2 + 1)-plane.

Proof. Let α be a h-plane with h ∈ {q2 + 1, q3 + 1, q3 + q2 + 1} such that no (q5 + q3 + q2 +
1)-solid passes through α and let:

• w be the number of (q5 + q2 + 1)-solids passing through α;
• x be the number of (q5 + q3 + 1)-solids passing through α;
• y be the number of (q5 + q4 − q3 + q2 + 1)-solids passing through α.

Counting the point of K via the q2 + 1 solids passing through α, we have

k = h + w(q5 + q2 + 1− h) + x(q5 + q3 + 1− h) + y(q5 + q4 − q3 + q2 + 1− h) (24)
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Substituting x = q2 + 1− w− y and k = aq2 + 1 into (24), we obtain

w = q4 + q3 + 3q2 + (y + 3)q− y + 4− a + h− 5
q− 1

(25)

By Lemma 6, there is at least one (q2 + 1)-plane α. By Corollary 1, no (q5 + q3 + q2 + 1)-
solid passes through α. Substituting h = q2 + 1 into Equation (25), we obtain

w = q4 + q3 + 3q2 + (y + 2)q− y + 3− a− 3
q− 1

(26)

Thus, q− 1 divides a− 3. Now, let β a (q3 + q2 + 1)-plane and let us suppose that no
(q5 + q3 + q2 + 1)-solid passes through β. Substituting h = q3 + q2 + 1 into Equation (25),
we obtain

w = q4 + q3 + 2q2 + (y + 1)q− y + 2− a− 2
q− 1

(27)

Thus, q− 1 divides a− 2, which is a contradiction. Thus, the statement is true.

Lemma 8. Apart from the possible initial cases as in Corollary 1, a (q3 + q2 + 1)-plane contains
no external line.

Proof. Let β be a (q3 + q2 + 1)-plane and rh be a line of β meeting K in exactly h points. In
view of the previous Lemma, at least one (q5 + q3 + q2 + 1)-solid S passes through β. By
Corollary 1, S contains no (q2 + 1)-plane. Substituting uh

q2+1 = 0 and k = q5 + q3 + q2 + 1

into Equation (6), we obtain h = uh
q3+q2+1. Since uh

q3+q2+1 ≥ 1, we have the statement.

Lemma 9. Apart from the possible initial cases as in Corollary 1, only (q5 + q3 + q2 + 1)-solids
can pass through an external line.

Proof. Let r0 be an external line and let S an n-solid passing through r0. By the previous
Lemma, we have that no (q3 + q2 + 1)-plane passes through r0. Substituting h = 0,
u0

q3+q2+1 = 0 and k = n into Equation (6), we obtain:

(q− 1)u0
q2+1 = q3 + q + 1− n− 1

q2 (28)

• If n = q5 + q2 + 1, then we have that u0
q2+1 = 1 + 1

q−1 ;

• If n = q5 + q3 + 1, then we have that u0
q2+1 = 1

q−1 ;

• If n = q5 + q3 + q2 + 1, then we have that u0
q2+1 = 0;

• If n = q5 + q4 − q3 + q2 + 1, then we have that u0
q2+1 = 1− q + 1

q−1 .

Since q > 2 and u0
q2+1 are integers, we necessarily obtain n = q5 + q3 + q2 + 1.

Lemma 10. Apart from the possible initial cases as in Corollary 1, if α is a (q2 + 1)-plane, then
K ∩ α is a line.

Proof. By Lemma 6, there is at least one (q2 + 1)-plane α. Let S be a solid passing through
α. If K ∩ α is not a line, then K ∩ α is not a blocking-set with respect to the lines of α. Hence,
in α (and hence in S), there is at least one line r0 external to K. By the previous Lemma, S is
a (q5 + q3 + q2 + 1)-solid. Finally, by Corollary 1, S contains no (q2 + 1)-plane, which is a
contradiction.

Lemma 11. Apart from the possible initial cases as in Corollary 1, K is a set of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3. Furthermore, K has exactly q7 + q5 + q2 + 1 points.
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Proof. By Corollary 1 and Lemma 10, we immediately have that K is of class [q5 + q2 +
1, q5 + q3 + q2 + 1]3.

Now, let α be a (q2 + 1)-plane. Again, by Corollary 1, we have that only (q5 + q2 + 1)-
solids pass through the plane α. Counting the points of K via these solids, we obtain
k = (q2 + 1)q5 + q2 + 1 = q7 + q5 + q2 + 1.

Finally, Theorem 1 follows either by Result 1 or, as can be seen in [11], by the following:

Result 3. In PG(4, q2) with q > 2, let K be a (q7 + q5 + q2 + 1)-set having two solid intersection
numbers and three plane intersection numbers. If the minimum plane intersection number is q2 + 1,
then K is H(4, q2).

4. Conclusions

The principal aim of this paper was to prove that the lower dimensional incidence as-
sumption is stronger that the higher one. Therefore, applications and future developments
are improvements on other combined characterizations that are obtained through different
dimensional assumptions that remove the higher dimensional one.
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1. Introduction

In our paper, we study artificial, or formal, neurons. Recall that these are the building
blocks of mathematically modeled neural networks, e.g., [1]. The design and functionality
of artificial neurons are derived from observations of biological neural networks. Our
investigation belongs to the theory which is developed and applied in various directions
contained in many publications, cf. [2–6]. The bodies of artificial neurons compute the sum
of the weighted inputs and bias and “process” this sum with a transfer function, cf. [1–10].

In the next step, the information is passed via outputs (output functions). Thus,
artificial neural networks have the structure similar to that of weighted directed graphs
with artificial neurons being their nodes and connections between neuron inputs and
outputs being directed edges with weights. Recall that in the framework of artificial neural
networks there are networks of simple neurons called perceptrons. The basic concept
(perceptron) was introduced by Rosenblatt in 1958. Perceptrons compute single outputs
(the output function) from multiple real-valued inputs by forming a linear combination
according to input weights, and then possibly putting the output through some nonlinear
activation functions. Mathematically, this can be written as

y(t) = ϕ

(
n

∑
i=1

wi(t)xi(t) + b

)
= ϕ

(
�wT(t)�x(t) + b

)
, (1)

where �w(t) = (w1(t), . . . , wn(t)) denotes the vector of time dependent weight functions,
�x(t) = (x1(t), . . . , xn(t)) is the vector of time dependent (or time varying) input functions,
b is the bias and ϕ is the activation function. The use of time varying functions as weights and
inputs is a certain generalization of the classical concept of artificial neurons from the work of
Warren McCulloch and Walter Pitts (1943); see also [1–10] and references mentioned therein.

2. Differential Neurons and Their Output Functions

In accordance with our previous papers [1,7–9], we regard the above mentioned artifi-
cial neurons such that inputs xi and weights wi will be functions of argument t belonging
into a linearly ordered (tempus) set T with the least element 0. As the index set we use

Mathematics 2022, 10, 1571. https://doi.org/10.3390/math10091571 https://www.mdpi.com/journal/mathematics
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the interval of real numbers [1, ∞) = {x ∈ R; 1 ≤ x}, where R denotes the set of all real
numbers. So, denote by W the set of all non-negative functions w : T → R forming a
subsemiring of the ring of all real functions of one real variable x : R → R. Denote by
Ne(�wr(t)) = Ne(wr1(t), . . . , wrn(t)) for r ∈ [1, ∞), n ∈ N and the mapping

yr(t) =
n

∑
k=1

wr,k(t)xr,k(t) + br (2)

which will be called the artificial neuron with the bias br ∈ R, in fact the output function of
the corresponding neuron. By AN(T) we denote the collection of all such artificial neurons.

Neurons are usually denoted by capital letters X, Y or Xi, Yi. However, we use also
notation Ne(�w), where �w = (w1, . . . , wn) is the vector of weights.

We suppose, for the sake of simplicity, that transfer functions (activation functions) ϕ,
σ (or f ) are the same for all neurons from the collection AN(T) or that this function is the
identity function f (y) = y.

Now, similarly as in the case of the collection of linear differential operators, we will
construct a cyclic group of artificial neurons, extending their monoid, cf. [1].

Denote by δij the so called Kronecker delta, i, j ∈ N,, i.e., δii = δjj = 1 and δij = 0,
whenever i �= j.

Suppose Ne(�wr), Ne(�ws) ∈ AN(T), r, s ∈ [1, ∞), �wr = (wr1, . . . , wr,n), �ws = (ws1, . . . ,
ws,n), n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that wr,m > 0. We define

Ne(�wv(t)) = Ne(�wr(t)) ·m Ne(�ws(t)), (3)

where
�wv(t) =

(
wv,1(t), . . . , wv,n(t)

)
, (4)

wv,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T (5)

and, of course, the neuron Ne(�wv) is defined as mapping yv(t) =
n
∑

k=1
wk(t)xk(t) + bv,

t ∈ T, bv = brbs. Further, for a pair Ne(�wr(t)), Ne(�ws(t)) of neurons from AN(T) we put

Ne(�wr(t)) ≤m Ne(�ws(t)),

�wr(t) =
(
wr,1(t), . . . , wr,n(t)

)
, �ws(t) =

(
ws,1(t), . . . , ws,n(t)

) (6)

if wr,k(t) ≤ ws,k(t), k ∈ N, k �= m and wr,m(t) = ws,m(t), t ∈ T and with the same bias.

Remark 1. There exists a link between formal neurons and linear differential operators of the
n-th order. This link is important for our future considerations. Recall the expression of formal

neuron with inner potential y−in =
n
∑

k=1
wk(t)xk(t), where �x(t) =

(
x1(t), . . . , xn(t)

)
is the vector

of inputs, �w(t) =
(
w1(t), . . . , wn(t)

)
is the vector of weights. Using the bias b of the considered

neuron and the transfer function σ we can expressed the output as y(t) = σ

(
n
∑

k=1
wk(t)xk(t) + b

)
.

Now consider a fundamental function u : J → R, where J ⊆ R is an open interval; inputs are
derived from the function u ∈ Cn(J) as follows:

x1(t) = u(t), x2 =
du(t)

dt
, . . . , xn(t) =

dn−1(t)
dtn−1 , n ∈ N.

Further the bias b = b0
dnu(t)

dtn . As weights we use continuous functions wk : J → R, k = 1, . . . ,
n− 1.

Then formula

y(t) = σ

(
n

∑
k=1

wk(t)
dk−1u(t)

dtk−1 + b0
dnu(t)

dtn

)
(7)
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is a description of the action of the neuron Dn which will be called a formal (artificial) differential
neuron. This approach allows to use solution spaces of corresponding linear differential equations.

3. Products and Powers of Differential Neurons

Suppose �w(t) =
(
w1(t), . . . , wn(t)

)
are fixed vectors of continuous functions wk : R→

R and b0 be the bias for any polynomial p ∈ Rs[t], n ≤ s, s ∈ N0. We consider a differential
neuron DNep(�w) by the action

y1(t) =
n

∑
k=1

w1,k(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn (8)

with the identity activation function ϕ(u) = u. According to the formula, we can calculate
the output function of the differential neuron D2Nep(�w) = DNep(�w) · DNep(�w).

Firstly, we describe the product of neurons Ne(�wr) · Ne(�ws) = Ne(�wu);, i.e., outputs
of neurons

yr(t) =
n

∑
k=1

wr,k(t)xk(t) + br, ys(t) =
n

∑
k=1

ws,k(t)xk(t) + bs. (9)

The vector of weights of the neuron Ne(�wu) is of the form �wu(t) = (wu,1, . . . , wu,n),
where

wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T and 1 ≤ m ≤ n. (10)

Then the neuron Ne(�wu) is defined using its output function yu(t) =
n
∑

k=1
wu,k(t)xk(t) +

brbs, t ∈ T.
In a greater detail:

wu,1(t) = wr,m(t)ws,1(t) + wr,1(t),

wu,2(t) = wr,m(t)ws,2(t) + wr,2(t),
...

wu,m(t) = wr,m(t)ws,m(t),
...

wu,n(t) = wr,m(t)ws,n(t) + wr,n(t).

Application of the above product onto the case of differential neurons: Suppose
DNep(�wr), DNep(�ws) are neurons with output functions

yr(t) =
n

∑
k=1

wr,k(t)
dk−1 p(t)

dtk−1 + br
dn p(t)

dtn ,

ys(t) =
n

∑
k=1

ws,k(t)
dk−1 p(t)

dtk−1 + bs
dn p(t)

dtn ,

(11)

where p ∈ Rl [t], n ≤ l. Denote

DNep(�wu) = DNep(�wr) · DNep(�ws). (12)

Then the output function of the neuron DNep(�wu) has the form
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yu(t) =
n

∑
k=1
k �=m

(
wr,m(t)ws,k(t) + wr,k(t)

)dk−1 p(t)
dtk−1 +

+ wr,m(t)ws,m(t)
dm−1 p(t)

dtm−1 + brbs

(
dn p(t)

dtn

)2

.

(13)

Now, using the above formula we can express output functions of powers D2Nep(�wr),
DαNep(�wr) (for α ∈ N) and D0Nep(�wr) (the neutral element-unit) of the infinite cyclic

group {DαNep(�wr); α ∈ Z}. The output function y[2]u (t) of the differential neuron is of
the form

y[2]u (t) =
n

∑
k=1
k �=m

((wr,m(t) + 1)wr,k(t))
dk−1 p(t)

dtk−1 + w2
r,m(t)

dm−1 p(t)
dtm−1 + b2

r

(
dn p(t)

dtn

)2

=

= (wr,m(t) + 1)
n

∑
k=1
k �=m

wr,k(t)
dk−1 p(t)

dtk−1 + w2
r,m(t)

dm−1 p(t)
dtm−1 + b2

r

(
dn p(t)

dtn

)2

. (14)

In the paper [1] the following theorem is proved:

Theorem 1. Consider a differential neuron DNep(�w) with the vector �w(t) =
(
w1(t), . . . , wn(t)

)
of time variable weights and the vector of inputs �x(t) =

(
p(t), dp(t)

dt , . . . , dn p(t)
dtn

)
with polynomial

p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The output function y(t) of the
above mentioned neuron is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b
dn p(t)

dtn (15)

with the bias b dn p(t)
dtn . Suppose α ∈ N, 2 ≤ α. Then the output function of the differential neuron

DαNep(�w) has the form

y[α](t) =
α−1

∑
k=0

wk
m(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α

. (16)

Now, we discuss a certain type of subgroup which appears in all groups. The following
text up to Proposition 2 incl. contains well-known facts, which are overtaken from the
monography [11] (Chapter 2, §2,4).

Take any group G and any element a ∈ G. Consider all powers of a : Define a0 = e
(the neutral element), a1 = a, and for k > 1, define ak to be the product of k factors of a. (A
little more properly, ak is defined inductively by declaring ak = aak−1.) For k > 1 define
a−k = (a−1)k.

Recall briefly some well-known classical facts.

Definition 1. Let a be an element of a group G. The set of powers of a 〈a〉 = {ak : k ∈ Z} is a
subgroup of G, called the cyclic subgroup generated by a. If there is an element a ∈ G such that
〈a〉 = G, one says that G is a cyclic group. We say that a is a generator of the cyclic group.

There are two possibilities for 〈a〉, one possibility is that all the powers ak are distinct,
in which case, of course, the subgroup 〈a〉 is infinite; if this is so, we say that a has
infinite order.

The other possibility is that two powers of a coincide, but this is not our case.
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Definition 2. The order of the cyclic subgroup generated by a is called the order of a. If the order of
a is finite, then it is the least positive integer n such that an = e.

Proposition 1. Let a be an element of a group G.

(a) If a has infinite order then 〈a〉 is isomorphic to Z.
(b) If a has finite order n, then 〈a〉 is isomorphic to the group Cn of n-th roots of 1.

Proposition 2.

(a) Any non-trivial subgroup of Z is cyclic and isomorphic to Z.
(b) Let G = 〈a〉 be a finite cyclic group. Any subgroup of G is also cyclic.

For a construction of a cyclic group of artificial differential neurons we need to extend
the cyclic monoid of differential neurons obtained in the paper [1] by negative powers of
differential neurons, in particular to describe their output functions, so we need to construct
negative powers D−αNe(�w) of differential neurons which belong to the basic contribution
of this paper. We suppose the existence of such inverse elements, i.e., negative powers of
the generated element of the considered group.

In general, for the construction of the negative power D−αNe(�w) with α ∈ N it seems
to be a suitable way of a using of this equality:

Dα+1Ne(�w) ·m D−αNep(�w) = DNep(�w), (17)

where on the right hand side is given an arbitrary general differential neuron with the
vector �w(t) =

(
w1(t), . . . , wm(t), . . . , wn(t)

)
of time variable weight functions, with the

vector of inputs

�x(t) =
(

p(t),
dp(t)
d(t)

, . . . ,
dn p(t)

dtn

)
, (18)

with a polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The neuron
DNep(�w) has the output function

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn , (19)

with the bias b = b0
dn p(t)

dtn . However, we will construct the proof using mathematical
induction—similarly as in [1]—the proof of the Theorem 1, which seems to be a more
convenient way. So we are going to prove the following theorem.

Theorem 2. Suppose the existence of an inverse elements (i.e., negative powers of the gener-
ated element of the considered group). Let DNep(�w) be a differential neuron with the vector
�w(t) =

(
w1(t), . . . , wm(t), . . . , wn(t)

)
of time variable weights and with the vector of inputs

�x(t) =
(

p(t), dp(t)
dt , . . . , dn p(t)

dtn

)
, with a polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n,

n ∈ N = {1, 2, . . . }, i.e., the output function y(t) of the neuron DNep(�w) is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn , (20)

with the bias b = b0
dn p(t)

dtn . Suppose α ∈ N. Then the output function of the differential neuron
DNe−α

p (�w) has the form

y[−α](t) = − 1
wα

m(t)

α−1

∑
ξ=0

wξ
m(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wα
m(t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α
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or

y[−α](t) = −w−α
m (t)

α−1

∑
k=0

wk
m(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + w−α
m (t)

dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α

.

Proof. Consider the equality

DNep(�w) ·m D−1Nep(�w) = N1(�e)m, (21)

where the output function of the neuron N1(�e)m (the identity element of the monoid (S1, ·m)
from [1]) is of the form yN1(t) =

dm−1 p(t)
dtm−1 + 1.

Let y(t) = ∑n
k=1 wk(t)

dk−1 p(t)
dtk−1 + b0

dn p(t)
dtn be the output function of the neuron DNep(�w)

with the bias b = b0
dn p(t)

dtn and

y[−1](t) =
n

∑
k=1

ws,k(t)
dk−1 p(t)

dtk−1 + bs (22)

be the output function of the neuron D−1Nep(�w). Since 0 = w1,k = wm(t) · ws,k(t) + wk(t)
and wm(t) · ws,m(t) = 1 for any k ∈ {1, 2, . . . , n}� {m}, we have

ws,m(t) =
1

wm(t)
and ws,k(t) = −

wk(t)
wm(t)

. (23)

Moreover, 1 = b · bs = b0
dn p(t)

dtn · bs which implies that the bias bs =
(

b0
dn p(t)

dtn

)−1
.

Thus, the output function is of the form

y[−1](t) =
n

∑
k=1
k �=m

(
− wk(t)

wm(t)

)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 + bs =

=
−1

wm(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 +

(
b0

dn p(t)
dtn

)−1

. (24)

Using of Equation (16) we obtain after some simple calculation the expression:

y[−α](t) = − 1
wα

m(t)

α−1

∑
ξ=0

wξ
m(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 +

+
1

wα
m(t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α

. (25)

This function is in a fact the output function of the neuron D−αNep(�w).
Now, for α = 1 we obtain

y[−1](t) = − 1
wm(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 +
1

wm(t)
· dm−1 p(t)

dtm−1 +

(
b0

dn p(t)
dtn

)−1

,

which is in fact the Expression (24).
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We have

y[−α−1](t) = − 1
wα+1

m (t)

α

∑
ξ=0

wξ
m(t)

n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 +

+
1

wα+1
m (t)

· dm−1 p(t)
dtm−1 +

(
b0

dn p(t)
dtn

)−α−1

,

which is the Equality (25) written for −(α + 1) instead for −α. The other negative powers
can be also obtained from example we have.

Using output functions of corresponding differential neurons we verify a validity of equalities

D−αNep(�w) ·m N1(�e)m = D−αNep(�w) = N1(�e)m ·m D−αNep(�w) (26)

certifying that the neuron N1(�e)m is the neutral element also for negative powers of the
neuron DNep(�w).

Denote by yu(t) the output function of the neuron

DNep(�wu) = D−αNep(�w) ·m N1(�e)m. (27)

Since the output function of the neuron N1(�e) (the unit element) has the form

y1(t) = wN1,m(t)
dm−1 p(t)

dtm−1 + 1 with wN1,m(t) = 1, (28)

we have

yu(t) =
1

wα
m(t)

(
−

α−1

∑
ξ=0

wξ
m(t)

)
n

∑
k=1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + 1 ·w−α(t)
dm−1 p(t)

dtm−1 + 1 ·
(

b0
dn p(t)

dtn

)−α

,

which is in fact the output function y[−α](t) of the differential neuron D−αNep(�w). In a
similar way we can verify the second equality.

Remark 2. In paper [12] there is defined a concept of a general n-hyperstructure as there follows:
Let n ∈ N be an arbitrary positive integer and {Xk; k = 1, . . . , n} be a system of non-empty

sets. By a general n-hyperstructure we mean the pair

({Xk; k = 1, . . . , n}, ∗n),

where ∗n :
n
∏

k=1
Xk → P∗

(
n⋃

k=1
Xk

)
is a mapping assigning to any n-tuple [x1, . . . , xn] ∈

n
∏

k=1
Xk a

non-empty subset ∗n(x1, . . . , xn) ⊆
n⋃

k=1
Xk. Here P∗(M) means the power set of M without the

empty set ∅.
Similarly as above, with this hyperoperation there is associated a mapping of power sets

⊗n :
n

∏
k=1
P∗(Xk)→ P∗

(
n⋃

k=1

Xk

)
(29)

defined by

⊗n (A1, . . . , An) =
⋃{

∗n (x1, . . . , xn); [x1, . . . , xn] ∈
n

∏
k=1

Ak

}
. (30)

This construction is also based on an idea of Nezhad and Hashemi for N − 2.
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At the end of this section we give this example:
Let J ⊆ R be an open interval, Cn(J) be the ring (with respect to the usual addition

and multiplication of functions) of all real functions f : J → R with continuous derivatives
up to the order n ≥ 0 including. Now, as in suppositions of Theorems 1 and 2, we
consider a differential neuron DNep(�w) with the vector �w(t) =

(
w1(t), . . . , wn(t)

)
of

time variable weights and the vector of inputs �x(t) =
(

p(t), dp(t)
dt , . . . , dn p(t)

dtn

)
with the

polynomial p ∈ Rl [t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The output function
y(t) of the mentioned neuron is of the form

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b
dn p(t)

dtn (31)

with the bias b dn p(t)
dtn and wk : T → R, wk ∈ Cn(T). In accordance with [13], we put

DANk(T) =
{

DNep(�ws); p ∈ Rl [t], �ws ∈ [Cn(T)]k
}

.

As above, we put DNep(�ws) ≤ DNep(�wr) whenever �ws(t) =
(
ws,1(t), . . . , ws,n(t)

)
,

�wr(t) =
(
wr,1(t), . . . , wr,n(t)

)
and ws,k(t) ≤ wr,k(t), t ∈ T, k = 1, 2, . . . , n. Defining

∗n,p
(

DNep(�w1(t), DNep(�w2(t), . . . , DNep(�wn(t)
)
=

=
n⋃

k=1

{
DNep(�w(t) ∈ DANk(T)p; Nep(�wk(t)) ≤ Nep(�w(t))

}
(32)

for any n-tuple [Nep(�w1(t)), Nep(�w2(t)), . . . , Nep(�wn(t))] ∈
n
∏

k=1
DANk(T)p, we obtain that

Dp(n) = ({DANk(T)p; k = 1, 2, . . . , n}, ∗n,p) (33)

is a general n-hyperstructure for the polynomial p ∈ Rl [t].
It is to be noted, that the used concept of investigated neurons is in a certain sense

motivated by ordinary differential operators forming of left-hand sides of corresponding
differential equations, see, e.g., [13,14].

Therefore, the construction of differential neurons consists of a certain modification
of the concept of an artificial neuron which is investigated in a certain formal analogy
to linear differential operators as mentioned above. Using the obtained cyclic group of
differential neurons, we will construct a certain other hyperstructure of differential neurons.
The mentioned relationship is in [8] described by the construction of a homomorphism.

It is to be noted that a hypergroup is a multistructure (H, ∗), where H is a non-empty
set and ∗ : H × H → P(H) is a mapping which is associative, i.e.,

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for any triad a, b, c ∈ H, where A ∗ B =
⋃

(a,b)∈A×B
a ∗ b for A �= ∅ �= B, A, B ⊆ H, and

b ∗ A = {b} ∗ A. Further, the reproduction axiom

a ∗ H = H = H ∗ a

for any element a ∈ H is satisfied.
The above definition of a hypergroup is in the sense of F. Marty.
Let J ⊆ R be an open interval (bounded or unbounded) of real numbers, Ck(J) be the

ring (with respect to usual addition and multiplication of functions) of all real functions
with continuous derivatives up to the order k ≥ 0 including. We write C(J) instead of
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C0(J). For a positive integer n ≥ 2 we denote by An the set of all linear homogeneous
differential equations of the n-th order with continuous real coefficients on J,, i.e.,

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0, (34)

(cf. [14–16]), where pk ∈ C(J), k = 0, 1, . . . , n− 1, p0(x) > 0 for any x ∈ J (this is not an
essential restriction). Denote L(p0, . . . , pn−1) : Cn(J) → Cn(J) the above defined linear
operator defined by

L(p0, . . . , pn−1)(y) = y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y (35)

and put
LAn(J) = {L(p0, . . . , pn−1); pk ∈ C(J), p0 > 0}. (36)

Further N0(n) = {0, 1, . . . , n− 1} and δij stands for the Kronecker δ, δij = 1− δij. For
any m ∈ N0(n) we denote by LAn(J)m the set of all linear differential operators of the n-th
order L0(p0, . . . , pn−1) : Cn(J) → C(J), where pk ∈ C(J) for any k ∈ N0(n), pm ∈ C1(J),
(i.e., pm(x) > 0 for each x ∈ J). Using the vector notation �p(x) = (p0(x), . . . , pn−1(x)), x ∈
J we can write Ln(�p0)y = y(n) + (�p(x) · (y, y′, . . . , y(n−1))),, i.e., a scalar product.

We define a binary operation ◦m and a binary relation ≤m on the set LAn(J)m in this way:
For arbitrary pair L(�p), L(�q) ∈ LAn(J)m, �p = (p0, . . . , pn−1), �q = (q0, . . . , qn−1) we

put L(�p) ◦m L(�q) = L(�u), �u = (u0, . . . , un−1), where

uk(x) = pm(x)qk(x) + (1− δkm)pk(x), x ∈ J (37)

and L(�p) ≤ L(�q) whenewer pk(x) ≤ qk(x), k ∈ N0(n), pm(x) = qm(x), x ∈ J. Evidently,
(LAn(J)m,≤m) is an ordered set.

In paper [14] there is presented the sketch of the proof of the following lemma:

Lemma 1. The triad (LAn(J)m, ◦m, ≤m) is an ordered (non-commutative) group.

4. Groups and Hypergroups of Artificial Neurons

As it is mentioned in the dissertation [2] neurons are the atoms of neural com-
putation. Out of those simple computational units all neural networks are build up.
For a pair Ne(�wr), Ne(�ws) of neurons from AN(T) we put Ne(�wr) ≤m Ne(�ws), wr =(
wr,1(t), . . . , wr,n(t)

)
, ws =

(
ws,1(t), . . . , ws,n(t)

)
if wr,k(t) ≤ ws,k(t), k ∈ N, k �= m and

wr,m(t) = ws,m(t), t ∈ T and with the same bias. Evidently (AN(T), ≤m) is an ordered set.
A relationship (compatibility) of the binary operation “·” and the ordering ≤m on AN(T) is
given by this assertion analogical to the above one. In paper [1] there is established that the
structure (AN(T), ·m) is a non-commutative group.

Lemma 2. The triad (AN(T), ·m,≤m) (algebraic structure with an ordering) is a non-commutative
ordered group.

Sketch of the proof is presented in [8]. Denoting

AN1(T)m = {Ne(�w); �w = (w1, . . . , wn), wk ∈ C(T), k = 1, . . . , n, wm(t) ≡ 1}, (38)

we get the following assertion, the proof of which with necessary concepts is contained
in [1].

Proposition 3. Let T = 〈0, t0) ⊂ R, t0 ∈ R∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2
and for any integer m such that 1 ≤ m ≤ n the semigroup (AN1(T)m, ·m) is an invariant subgroup
of the group (AN(T)m, ·m).
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If m, n ∈ N, 1 ≤ m ≤ n− 1, then a certain relationship between groups (ANn(T)m, ·m),
(LAn(T)m+1, ◦m+1) is contained in the following proposition:

Proposition 4. Let t0 ∈ R, t0 > 0, T = 〈0, t0) ⊂ R and m, , n ∈ N are integers such
that 1 ≤ m ≤ n − 1. Define a mapping F : ANn(T)m → LAn(T)m+1 by this rule: For an
arbitrary neuron Ne(�wr ∈ ANn(T)m, where �wr =

(
wr,1(t), . . . , wr,n(t)

)
∈ [C(T)]n we put

F(Ne(�wr) ) = L(wr,1, . . . , wr,n) ∈ LAn(T)m+1 with the action :

L(wr,1, . . . , wr,n)y(t) =
dny(t)

dtn +
n

∑
k=1

wr,k(t)
dk−1(t)
dtk−1 , y ∈ Cn(T). (39)

Then the mapping F : ANn(T)m → LAn(T)m+1 is a homomorphism of the group
(ANn(T)m, ·m) into the group (LAn(T)m+1, ◦m+1).

Consider Ne(�wr), Ne(�ws) ∈ ANn(T)m and denote F(Ne(�wr)) = L(wr,1, . . . , wr,n),
F(Ne(�ws = L(ws,1, . . . , ws,n). Denote Ne(�wu) = Ne(�wr) ·m Ne(�ws). There holds

F(Ne(�wr) ·m Ne(�ws)) = F(Ne(�wu)) = L(wu,1, . . . , wu,n), (40)

where

L(wu,1, . . . , wu,n)y(t) = y(n)(t) +
n

∑
k=1

wu,k(t)y(k−1)(t). (41)

Here wu,k(t) = wr,m+1(t)ws,k(t)+wr,k(t), k �= m, and wu,m+1(t) = wr,m+1(t)ws,m+1(t).
Then L(wu,1, . . . , wu,n) = L(wr,1, . . . , wr,n) ·m L(ws,1, . . . , ws,n) = F(Ne(�wr)) ·m F(Ne(�ws)).
The neutral element Ne(�w) ∈ ANn(T)m is also mapped onto the neutral element of the
group (LnA(T)m+1, ·m+1), thus the mapping F : (ANn(T)m, ·m)→ (LnA(T)m+1, ◦m+1) is
a group homomorphism.

Now, using the construction described in Lemma 2, we obtain the final transpozi-
tion hypergroup (called also non-commutative join space). Denote by P(AN(T)m)∗ the
power set of AN(T)m consisting of all nonempty subsets of the last set and define a binary
hyperoperation

∗m : AN(T)m ×AN(T)m → P(AN(T)m)
∗ (42)

by the rule

Ne(�wr) ∗m Ne(�ws) = {Ne(�wu); Ne(�wr) ·m Ne(�ws) ≤m Ne(�wu)}

for all pairs Ne(�wr), Ne(�ws) ∈ AN(T)m. More in detail if �w(u) = (wu,1, . . . , wu,n), �w(r) =
(wr,1, . . . , wr,n), �w(s) = (ws,1, . . . , ws,n), then wr,m(t)ws,m(t) = wu,m(t), wr,m(t)ws,k(t) +
wr,k(t) ≤ wu,k(t), if k �= m, t ∈ T. Then we have that (AN(T)m, ∗m) is a non-commutative
hypergroup. The above defined invariant (termed also normal) subgroup (AN1(T)m, ·m)
of the group (AN(T)m, ·m) is the carried set of a subhypergroup of the hypergroup
(AN(T)m, ∗m) and it has certain significant properties.

Using certain generalization of methods from [8] we obtain after investigation of
constructed structures this result:

Let T = [0, t0) ⊂ R, t0 ∈ R∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2 and for
any integer m such that 1 ≤ m ≤ n the hypergroup (AN(T)m, ∗m), where

AN(T)m = {Ne(�wr); �wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T)]n, wr,m(t) > 0, t ∈ T},

is a transpozition hypergroup (i.e., a non-commutative join space) such that (AN(T)m, ∗m)
is its subhypergroup, which is

- Invertible (i.e., Ne(�wr)/Ne(�ws)∩AN1(T)m �= ∅ implies Ne(�ws)/Ne(�wr)∩AN1(T)m
�= ∅ and Ne(�wr) Ne(�ws) ∩AN1(T)m �= ∅ implies Ne(�ws) Ne(�wr) ∩AN1(T)m �= ∅
for all pairs of neurons Ne(�wr), Ne(�ws) ∈ AN1(T)m,
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- Closed (i.e., Ne(�wr)/Ne(�ws) ⊂ AN1(T)m, Ne(�wr) \ Ne(�ws) ⊂ AN1(T)m for all pairs
Ne(�wr), /, Ne(�ws) ∈ AN1(T)m,

- Reflexive (i.e., Ne(�wr)AN1(T)m = AN1(T)m/Ne(�wr) for any neuron Ne(�wr) ∈ AN(T)m
and

- Normal (i.e., Ne(�wr) ∗ AN1(T)m = AN1(T)m ∗ Ne(�wr) for any neuron Ne(�wr) ∈
AN(T)m.

Remark 3. We can define a certain transformation function which mappes the output function
y[α](t) into the output function y[α+1](t). This function denoting by ρ[α] also determines the

transformation S[α] of powers of corresponding differential neurons: Dα S[α]

−→ Dα+1. In more detail,
let us describe output functions y[α](t), y[α+1](t) and mentioned transformation function ρ[α].

y[α](t) = (1+ wm(t) + · · ·+ wα−1
m (t))(w1(t)p(t) + w2(t)

dp(t)
dt

+ · · ·+ wm−1(t)
dm−2 p(t)

dtm−2 +

wα
m

dm−1 p(t)
dtm−1 + wm+1

dm p(t)
dtm + · · ·+ (b

dn p(t)
dtn )α

)
,

y[α+1](t) = (1 + wm(t) + · · ·+ wα−1
m (t) + wα

m(t))(w1(t)p(t) + w2(t)
dp(t)

dt
+ · · ·

wm−1(t)
dm−2 p(t)

dtm−2 + wα+1
m

dm−1 p(t)
dtm−1 + wm+1

dm p(t)
dtm + · · ·+ (b

dn p(t)
dtn )α+1

)
.

Transformation function ρ[α] of the output function y[α](t) into the output function

y[α+1](t) which determines the transformation Dα S[α]

−→ Dα+1 of powers of corresponding
differential neurons.

So,

ρ[α]

⎡⎢⎣( α−1

∑
r=0

wr
m(t)

)
·
(

m+1

∑
k−1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α
)⎤⎥⎦ =

=

⎡⎢⎣( α

∑
r=0

wr
m(t)

)
·
(

m+1

∑
k−1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + wα+1
m (t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α+1
)⎤⎥⎦.

Denoting

w[α−1]
m =

α−1

∑
r=0

wr
m(t) and v[α] =

m+1

∑
k−1
k �=m

wk(t)
dk−1 p(t)

dtk−1 + wα
m(t)

dm−1 p(t)
dtm−1 +

(
b

dn p(t)
dtn

)α
,

we can write

ρ[α]

[(
w[α−1]

m

)
· w[α]

m

]
= w[α]

m · v[α+1].

5. Conclusions

We have constructed the infinite cyclic group (GDn, ·m) of differential neurons which
is isomorphic to the cyclic group (Z,+), possessing the neuron N1(�e)m as the identity
element of (GDn, ·m). Thus,(

{N1(�e)m} ∪ {DαNep(�w; α ∈ Z, α �= 0}, ·m
)
= (GDn, ·m) ∼= (Z,+). (43)

It is to be noted that the above constructed cyclic (infinite) group of artificial differential
neurons can be also used for the construction of certain hyperstructures formed by such
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neurons [17–20]. So the above presented approach enables an additional elaboration of
the hyperstructure theory ([8,9,11–32]) in connection with time varying weights and with
vectors of differentiable input functions.

The construction of the considered infinite cyclic group of differential neurons can
be onto other its isomorphic images under the using other weights and inputs. Af-
ter those constructions there is possible to create abelian finitely or infinitely generated
groups of artificial differential neurons and to investigate their direct products or sums.
Using a suitable ordering these considerations involve to obtain neural networks with
prescribed structures.
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Abstract: We introduce a family of hypergroups, called weakly complete, generalizing the con-
struction of complete hypergroups. Starting from a given group G, our construction prescribes the
β-classes of the hypergroups and allows some hyperproducts not to be complete parts, based on a
suitably defined relation over G. The commutativity degree of weakly complete hypergroups can
be related to that of the underlying group. Furthermore, in analogy to the degree of commutativity,
we introduce the degree of completeness of finite hypergroups and analyze this degree for weakly
complete hypergroups in terms of their β-classes.
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1. Introduction

We refer to hypercompositional algebra as the branch of algebra concerned with
hypercompositional structures, that is, algebraic structures where the composition of two
elements is a nonempty set rather than a single element [1]. Although hypercompositional
algebra differs from classic algebra in its subjects, methods, and goals, the two fields are
connected by certain equivalence relations, called fundamental relations [2,3]. Through the
fundamental relations, hypercompositional algebra can make use of the wealth of tools
typical of traditional algebra.

A fundamental relation is the smallest equivalence relation defined on a hypercomposi-
tional structure such that the corresponding quotient is a classic structure whose operational
properties are analogous to those of the original structure [4,5]. For example, the quotient of
a hypergroup modulo the equivalence β is isomorphic to a group [6–8]. On the other hand,
given a group G and a family F = {Ak}k∈G of nonempty and pairwise disjoint sets, the set
H =

⋃
k∈G Ak equipped with the hyperproduct x ◦ y = Aij, for all x ∈ Ai and y ∈ Aj, is a

hypergroup. Hypergroups built in this way are called complete [4] and have the property
that the β-classes are the sets Ak. For any nonempty subset A of a hypergroup (H, ◦), the set
C(A) =

⋃
a∈A β(a) is the complete closure of A. Hence, a hypergroup (H, ◦) is complete if

and only if x ◦ y = C(x ◦ y), for all x, y ∈ H. Complete hypergroups have been the subject
of many studies, see, e.g., [9–12], because they have a variety of group-like properties.
Notably, in [13], the authors define the commutativity degree of complete hypergroups and
characterize it with an identity that is analogous to the class equation for groups. Recall
that the commutativity degree of a finite group G was defined by W. Gustafson in [14] as
the probability that two randomly chosen elements commute,

d(G) =
|{(x, y) ∈ G2 | xy = yx}|

|G|2 .
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Inspired by this concept, in [13] the commutativity degree of a finite hypergroup (H, ◦)
is defined as

d(H) =
|{(x, y) ∈ H2 | x ◦ y = y ◦ x}|

|H|2 .

The probabilistic interpretation of this number is completely analogous to that for
groups. In this paper, we define the completeness degree of a finite hypergroup (H, ◦) as
the number

Δ(H) =
|{(x, y) ∈ H2 | C(x ◦ y) = x ◦ y}|

|H|2 ,

and determine some formulas which allow us to compute the previous numbers for a
special class of hypergroups, called weakly complete, that include complete hypergroups.

The plan of this paper is the following: In Section 2, we introduce definitions, notations,
and fundamental facts to be used throughout the paper. In Section 3, we give the definition
of product-free relations on a group G and study their main characteristics. In particular,
we characterize product-free relations that are maximal with respect to inclusion. In
Section 4, we present a new construction of hypergroups. These hypergroups are called
weakly complete and are defined using a product-free relation I on a group G, a family
{Ak : k ∈ G} of nonempty and pairwise disjoint sets and a special family of functions
{ϕi,j : (i, j) ∈ I}. The main features of these hypergroups are discussed in this section. The
completeness degree Δ(H) of finite weakly complete hypergroups is defined and analyzed
in Section 5. There, we prove lower bounds for Δ(H) that depend only on the size of
the β-classes of H. Finally, in Section 6, we discuss the commutativity degree d(H) of
finite weakly complete hypergroups, and establish relations between d(H) and Δ(H). In
particular, in our last theorem we prove that, if the cardinality of Ak does not depend on k,
then |d(H)− Δ(H)| ≤ 1

4 .

2. Basic Definitions and Notations

We adopt from known texbooks [1,4,5] standard definitions of basic concepts in
hypercompositional algebra, such as semihypergroups and hypergroups. For the reader’s
convenience, we present below a few concepts that are needed in this work.

Given a semihypergroup (H, ◦), the relation β ⊆ H × H is defined as β = ∪n≥1βn,
where β1 is the diagonal relation in H and, for every integer n > 1, βn is defined as follows:

xβny ⇐⇒ ∃z1, . . . , zn ∈ H : {x, y} ⊆ z1 ◦ z2 ◦ · · · ◦ zn, (1)

see, e.g., [2,3]. This relation is one of the main fundamental relations alluded to in the
Introduction. For some special families of semihypergroups, β is transitive; see, e.g., [15,16].
In particular, if (H, ◦), is a hypergroup then β is an equivalence relation, see [7,8], and we
have the chain of inclusions

β1 ⊆ β2 ⊆ β3 ⊆ · · · ⊆ βn · · · . (2)

Moreover, the quotient set H/β equipped with the operation β(x)⊗ β(y) = β(z) for
all x, y ∈ H and z ∈ x ◦ y, is a group. More precisely, β is the smallest strongly regular
equivalence on H such that the quotient H/β is a group [2]. The canonical epimorphism
π : H !→ H/β fulfills the identity π(x ◦ y) = π(x)⊗ π(y) for all x, y ∈ H, and the kernel
ωH = π−1(1H/β) of π is the heart of (H, ◦).

Let (H, ◦) be a hypergroup. We say that a nonempty subset A ⊆ H is a complete part
if for every n ≥ 1 and x1, x2, . . . , xn ∈ H,

(x1 ◦ x2 ◦ · · · ◦ xn) ∩ A �= ∅ =⇒ x1 ◦ x2 ◦ · · · ◦ xn ⊆ A.
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The complete closure of A is the intersection of all complete parts containing A and is
denoted with C(A). Using the canonical projection π : H !→ H/β∗, the complete closure of
A can be characterized as follows:

C(A) = π−1(π(A)) = A ◦ωH = ωH ◦ A.

A hypergroup (H, ◦) is complete if x ◦ y = C(x ◦ y) for all x, y ∈ H. In other words,
(H, ◦) is a complete hypergroup if x ◦ y = C(a) = β(a) for every (x, y) ∈ H2 and a ∈ x ◦ y.

Finally, let G be a group and let I ⊆ G× G be a binary relation on G. We denote IT the
transpose relation of I ⊆ G× G, that is, (a, b) ∈ I ⇔ (b, a) ∈ IT . Furthermore, we associate
with I the span and support sets defined below:

Span(I) = {ij : (i, j) ∈ I},
Supp(I) = {i ∈ G∗ : ∃j ∈ G∗ : (i, j) ∈ I or (j, i) ∈ I}.

Here and in the following, G∗ denotes the set G \ {1G}.

3. Product-Free Relations on a Group

The class of complete hypergroups is among the best known in hypergroup theory,
and is characterized by the fact that the hyperproduct of any two elements is a β-class.
These hypergroups were introduced by P. Corsini in [4] and can be built by considering
a group G and a family F = {Ak}k∈G of nonempty and pairwise disjoint sets. The set
H =

⋃
k∈G Ak is endowed with the product x ◦ y = Aij for x ∈ Ai and y ∈ Aj. Then,

(H, ◦) is a complete hypergroup and the β-classes of (H, ◦) are the sets Ak. In this section,
we introduce a special family of binary relations in a group G. These relations will allow
us to define in the next section the class of hypergroups that generalize that of complete
hypergroups and is the main subject of this work.

Definition 1. Let G be a group. A binary relation I ⊆ G×G is called product-free or PF-relation
if, for all i, j, k ∈ G,

(i, j) ∈ I =⇒ (ij, k) /∈ I and (k, ij) /∈ I.

PFG denotes the family of all PF-relations in the group G. If I ∈ PFG and (i, j) ∈ I,
then the elements i, j are different from 1G. Otherwise, if, for example, i = 1G, then we
have the contradiction (i, j) = (i, 1G j) = (i, ij) �∈ I. As a consequence, if |G| = 1, then PFG
reduces to the empty relation. Hence, if I �= ∅, then |G| ≥ 2 and I ⊂ G∗ × G∗.

Our first result provides a characterization of PF-relations in terms of support and
span sets. Subsequently, we analyze the structure of PFG and provide some examples.

Lemma 1. Let I ⊆ G× G. Then, I ∈ PFG if and only if Supp(I) ∩ Span(I) = ∅.

Proof. If x ∈ Supp(I) ∩ Span(I), then (x, y) ∈ I or (y, x) ∈ I for some y ∈ G∗ and there
exists (i, j) ∈ I such that ij = x. We obtain (ij, y) ∈ I or (y, ij) ∈ I, a contradiction.
Conversely, if I /∈ PFG, then there exists (i, j) ∈ I and y ∈ G such that (ij, y) ∈ I or
(y, ij) ∈ I. However, then we have ij ∈ Supp(I) ∩ Span(I).

Below we provide a couple of examples of how PF-relations can be built.

Example 1. Let G be a group. For any subset S ⊆ G∗, let IS be the relation

IS = {(i, j) : i, j ∈ S, ij /∈ S}.

It is can be seen that Supp(IS) ⊆ S and Span(IS) ⊆ G \ S. Hence, IS ∈ PFG by Lemma 1.
For example, IG∗ is the relation consisting of the pairs (x, x−1) for x ∈ G∗. On the other hand, I1G
is the empty relation.
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Example 2. Let G and G′ be groups. Moreover, let I ∈ PFG and I′ ∈ PFG′ . Then, the direct
product relation

I ⊗ I′ = {((a, a′), (b, b′)) | (a, b) ∈ I, (a′, b′) ∈ I′}
is a PF-relation on the direct product G× G′. Indeed, Supp(I ⊗ I′) = Supp(I)× Supp(I′) and
Span(I ⊗ I′) ⊆ Span(I)× Span(I′), so the claim follows from Lemma 1.

The following features of PF-relations are self-evident, so we refrain from including
a proof.

• Every subset of a PF-relation is a PF-relation.
• If I1, I2 ∈ PFG, then I1 ∩ I2 ∈ PFG.
• Let G be abelian. Then, I ∈ PFG if and only if IT ∈ PFG.

Hereafter, we show that no PF-relation can contain more than a quarter of all possible
pairs of elements in the group. This result will play an important role in the forthcom-
ing sections.

Theorem 1. Let G be a finite group and I ∈ PFG. Then, |I| ≤ |G|2/4.

Proof. For notational simplicity, let S = Supp(I). For any element i ∈ S, let S(i) = {j ∈ G :
(i, j) ∈ I} andR(i) = {ij : j ∈ S(i)}. Obviously, S(i) andR(i) have the same cardinality,
since the application fi : S(i) → R(i) such that fi(j) = ij is bijective. Since R(i) ⊆ G \ S,
we have

|R(i)| ≤ |G \ S| = |G| − |S|.
Moreover,

|I| =
∣∣∣∣ ⋃

i∈S
S(i)

∣∣∣∣ ≤ ∑
i∈S
|S(i)| = ∑

i∈S
|R(i)| ≤ |S|(|G| − |S|).

To maximize the rightmost quantity, we set |S| = |G|/2, and we have the claim.

The following example shows that the inequality in the preceding theorem is the best
possible, since it can hold as an equality.

Example 3. Let G = (Zm,+), where m ≥ 2 is even. Consider the following relation I ⊂ G× G:

(i, j) ∈ I ⇐⇒ i ≡ j ≡ 1 (mod 2).

It is easy to see that Span(I) = {i ∈ Zm : i ≡ 0 (mod 2)} and Supp(I) = {i ∈ Zm : i ≡ 1
(mod 2)}. Hence, I ∈ PFG by Lemma 1. Finally, |Span(I)| = |Supp(I)| = m/2 and |I| =
|G|2/4.

Maximal PF-Relations

PF-relations can be semi-ordered by inclusion; hence, it is worth considering maximal
elements in PFG, with regard to their existence and characterization. The existence of
maximal relations is shown in the forthcoming result.

Proposition 1. The family PFG of PF-relations on G has at least one maximal element.

Proof. The family PFG is nonempty because it contains the empty relation. Moreover,
for each chain {Rj}j∈J in the partially ordered set (PFG,⊆), the relation R̂ = ∪j∈J Rj is
product free. Indeed, if (x, y) ∈ R̂ and by chance there exists z ∈ G such that (xy, z) ∈ R̂,
then there exist j1, j2 ∈ J such that (x, y) ∈ Rj1 and (xy, z) ∈ Rj2 . Since {Rj}j∈J is a chain,
we can assume that Rj1 ⊂ Rj2 , and so {(x, y), (xy, z)} ⊆ Rj2 , which is impossible because
Rj2 ∈ PFG. Hence, R̂ is a upper bound of {Rj}j∈J . By Zorn’s Lemma, in PFG there exists a
maximal element.
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Using an argument similar to the previous one, we also have that every PF-relation I
on a group G is contained in a maximal PF-relation M. It suffices to apply Zorn’s lemma to
the family of PF-relations that contain I. Hence, we have the following result:

Proposition 2. Let I ∈ PFG. Then, there exists a maximal PF-relation M ∈ PFG such that
I ⊆ M.

Remark 1. Every maximal PF-relation M in an abelian group G is symmetric. Indeed, if (x, y) ∈
M and (y, x) �∈ M, then M ∪ {(y, x)} is a PF-relation and M ⊂ M ∪ {(y, x)}. The same fact is
not true if the group is not abelian, as shown in the following example. Let G be a noncommutative
group with two elements a, b ∈ G − {1G} such that ab �= 1G, a2 = 1G and ab �= ba, e.g.,
the symmetric group S3. In these hypotheses, a �= b and the relation I = {(a, b), (a, ba)} are
product free. If M ∈ PFG is maximal and I ⊆ M, then we have (b, a) �∈ M since (a, ba) ∈ M.

The empty relation is maximal if and only if G is trivial. In the next result, we give a
necessary and sufficient condition for a PF-relation to be maximal.

Theorem 2. Let G be a group and let I ∈ PFG. Moreover, let

I = {(x, y) : xy ∈ Supp(I) or {x, y} ∩ Span(I) �= ∅}.

Then, we have

1. I ∩ I = ∅;
2. I is maximal if and only if I ∪ I = G∗ × G∗.

Proof. If I = ∅ then the claim is trivial, so suppose I �= ∅. Note that I admits the
alternative definition

I = {(x, y) ∈ G∗ × G∗ | ∃ (i, j) ∈ I : xy ∈ {i, j} or ij ∈ {x, y}}.

1. Let (x, y) ∈ I ∩ I. By hypotesis, there exists (i, j) ∈ I such that xy ∈ {i, j} or
ij ∈ {x, y}. If xy = i (resp., xy = j), then (xy, j) ∈ I (resp., (i, xy) ∈ I), which contradicts
(x, y) ∈ I. Similarly, if ij = x (resp., ij = y) then (ij, y) ∈ I (resp., (x, ij) ∈ I), which
contradicts (i, j) ∈ I.

2. By point 1, if I ∪ I = G∗ × G∗, then I is maximal. On the other hand, let I be
maximal and (x, y) ∈ G∗ × G∗ with (x, y) �∈ I. Since I ∪ {(x, y)} is not a PF-relation, two
cases are possible:

(a) There exist (i, j) ∈ I and k ∈ G∗ such that (x, y) = (ij, k) or (x, y) = (k, ij).
(b) There exists k ∈ G∗ such that (xy, k) ∈ I or (k, xy) ∈ I.

In the first case, we obtain x = ij or y = ij; hence, (x, y) ∈ I. In the second case, we
have (x, y) ∈ I because xy ∈ {xy, k}. In both cases, we obtain I ∪ I = G∗ × G∗.

Remark 2. We observe that if I and I′ are maximal PF-relations, then the tensor product relation
I ⊗ I′ is not necessarily maximal. For example, let G = {1G, a} and G′ = {1G′ , a′, b′} be groups
isomorphic to (Z2,+) and (Z3,+), respectively. Moreover, let I = {(a, a)} ⊂ G × G and
I′ = {(a′, b′), (b′, a′)} ⊂ G′ × G′. The relations I and I′ are maximal PF-relations. However,
the tensor product relation I ⊗ I′ = {((a, a′), (a, b′)), ((a, b′), (a, a′))} is not maximal because it
is contained in the following PF-relation on G× G′:

T = I ⊗ I′ ∪ {((1G, a′), (1G, a′))}.

4. Weakly Complete Hypergroups

In this section, we introduce a new class of hypergroups, whose construction is
fundamentally based on PF-relations. We introduce a few auxiliary concepts and notations
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for background information. In what follows, we denote P∗(X) the collection of nonempty
subsets of the set X.

Definition 2. Let A, B, C be nonempty sets. A function ϕ : A × B !→ P∗(C) is a double
covering, or bi-covering for short, if for all a ∈ A and b ∈ B we have⋃

x∈B
ϕ(a, x) =

⋃
x∈A

ϕ(x, b) = C. (3)

A bi-covering ϕ : A× B !→ P∗(C) is called trivial if ϕ(a, b) = C for all a ∈ A and b ∈ B,
and proper if ϕ(a, b) ⊂ C for all a ∈ A and b ∈ B.

Example 4. Bi-covering functions can be constructed by considering a group G and three nonempty
sets A, B, C of size ≥ |G|. If α : A→ G, β : B→ G and γ : C → G are three surjective functions;
then, the function ϕ : A× B→ P∗(C) such that ϕ(a, b) = γ−1(α(a)β(b)), for all (a, b) ∈ A× B,
is bi-covering. Indeed, we trivially have

⋃
x∈B ϕ(a, x) ⊆ C, for all a ∈ A. Moreover, if c ∈ C, then,

taking b ∈ β−1(α(a)−1γ(c)), we have β(b) = α(a)−1γ(c) and we obtain

c ∈ γ−1(γ(c)) = γ−1(α(a)β(b)) = ϕ(a, b) ⊆
⋃

x∈B
ϕ(a, x).

Hence,
⋃

x∈B ϕ(a, x) = C for all a ∈ A. Analogous arguments prove that
⋃

x∈A ϕ(x, b) = C,
for all b ∈ B. Thus, ϕ is a bi-covering. We note in passing that in the previous construction the role
of the group G can be played by an arbitrary hypergroup.

Let G be a group and let I be a relation on G. Consider a family F = {Ak}k∈G of
nonempty and pairwise disjoint sets, and let I = {ϕi,j}(i,j)∈I be a family of bi-coverings
ϕi,j : Ai × Aj !→ P∗(Aij). In particular, if I = ∅, then I = ∅. In the set, H =

⋃
k∈G Ak

introduce the hyperproduct ◦ : H × H !→ P∗(H), defined as follows:

x ◦ y =

{
Aij if x ∈ Ai, y ∈ Aj and (i, j) �∈ I
ϕi,j(x, y) if x ∈ Ai, y ∈ Aj and (i, j) ∈ I

(4)

for all x, y ∈ H. This hyperproduct is well defined because the sets in the family F =
{Ak}k∈G are nonempty and pairwise disjointed. The hyperproduct is naturally extended
to nonempty subsets of H as usual: For X, Y ∈ P∗(H) let

x ◦Y =
⋃

y∈Y
x ◦ y, X ◦ y =

⋃
x∈X

x ◦ y, X ◦Y =
⋃

x∈X,y∈Y
x ◦ y.

In particular, for every i, j ∈ G and x ∈ Aj, we have

Ai ◦ x = Aij, x ◦ Ai = Aji. (5)

Indeed, if (i, j) �∈ I then Ai ◦ x =
⋃

y∈Ai
y ◦ x = Aij. Otherwise, if (i, j) ∈ I, then from

(3) we obtain Ai ◦ x =
⋃

y∈Ai
ϕi,j(y, x) = Aij. Analogously we can deduce that x ◦ Ai = Aji.

From this observation, it is not difficult to derive that if I = ∅ or all functions ϕi,j are trivial;
for every (i, j) ∈ I, then (H, ◦) is a complete hypergroup. The following result shows that
(H, ◦) is always a hypergroup under the sole condition that I ∈ PFG.

Theorem 3. Let I ∈ PFG. Then, in the previous notations,

(a) for every i, j, k ∈ G, x ∈ Ai, y ∈ Aj and z ∈ Ak, we have

(x ◦ y) ◦ z = Aijk = x ◦ (y ◦ z);

(b) for every integer n ≥ 3 and for every z1, z2, . . . , zn ∈ H there exists i ∈ G such that
z1 ◦ z2 ◦ · · · ◦ zn = Ai;
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(c) (H, ◦) is a hypergroup such that β = β2;

Proof. (a) Let i, j, k ∈ G, x ∈ Ai, y ∈ Aj and z ∈ Ak. If (i, j) �∈ I and (j, k) �∈ I, then we
have x ◦ y = Aij, y ◦ z = Ajk. Consequently, by (5) we obtain

(x ◦ y) ◦ z = Aij ◦ z = A(ij)k = Ai(jk) = x ◦ Ajk = x ◦ (y ◦ z).

If (i, j) ∈ I and (j, k) �∈ I, we have (ij, k) �∈ I, x ◦ y = ϕi,j(x, y) ⊆ Aij and y ◦ z = Ajk.
Moreover, for every a ∈ Aij we have a ◦ z = A(ij)k. Hence,

(x ◦ y) ◦ z =
⋃

a∈ϕi,j(x,y)

a ◦ z = A(ij)k.

Moreover, by (5), we obtain x ◦ (y ◦ z) = x ◦ Ajk = Ai(jk). Therefore, (x ◦ y) ◦ z =
x ◦ (y ◦ z). We obtain same result also when (i, j) �∈ I and (j, k) ∈ I. Finally, if (i, j) ∈ I and
(j, k) ∈ I, we have x ◦ y = ϕi,j(x, y) ⊆ Aij and y ◦ z = ϕj,k(y, z) ⊆ Ajk. Since I is product
free, we have (ij, k) �∈ I and (i, jk) �∈ I. Thus,

(x ◦ y) ◦ z =
⋃

a∈ϕi,j(x,y)

a ◦ z = A(ij)k,

x ◦ (y ◦ z) =
⋃

b∈ϕj,k(y,z)

x ◦ b = Ai(jk).

Hence, also in this case (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aijk.
(b) It suffices to apply (5) and the previous part (a) and proceed by induction on n.
(c) To prove that (H, ◦) is a hypergroup, we only need to show that ◦ is reproducible.

Let x ∈ H and x ∈ Ai. Clearly, iG = G for all i ∈ G and, by Equation (5), we obtain

x ◦ H = x ◦
( ⋃

j∈G
Aj

)
=
⋃
j∈G

x ◦ Aj =
⋃
j∈G

Aij = H.

The identity H ◦ x = H follows analogously for every x ∈ H, so (H, ◦) is a hypergroup.
Finally, let xβy. By (2), there exists n ≥ 3 such that xβny. By point b), there exists i ∈ G such
that {x, y} ⊆ Ai. Now, let a ∈ A1G . Since (i, 1G) /∈ I, by (4) we have {x, y} ⊆ Ai = x ◦ a
and we deduce xβ2y.

Example 5. Let G be a group and let I ⊂ G × G be a relation on G. Consider a family F =
{Ak}k∈G of nonempty and pairwise disjoint sets such that |Ak| ≥ |G|, for all k ∈ G. Moreover,
let { fk : Ak → G}k∈G be a family of surjective functions. Proceeding as in Example 4, we obtain
a family of bi-covering functions I = {ϕi,j : Ai × Aj → P∗(Aij)}(i,j)∈I . If I ∈ PFG, then
Theorem 3 provides a hypergroup (H, ◦).

Remark 3. Product-free relations have a kind of optimality with respect to the rule (4). As shown
in Theorem 3, every hyperproduct defined in terms of a PF-relation is associative and reproducible,
independent of families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I . The same property does not hold in
general if the relation I is not a PF-relation. For example, consider the group (Z3,+), the relation
I = {(1, 1), (2, 2)}, the sets A0 = {a, b}, A1 = {c, d, e}, A2 = { f , g, h} and the bi-coverings
ϕ1,1 : A1 × A1 !→ P∗(A2), ϕ2,2, ϕ′2,2 : A2 × A2 !→ P∗(A1) defined as follows:

ϕ1,1 c d e
c A2 A2 f , g
d A2 f , g A2
e A2 A2 f , g

ϕ2,2 f g h
f A1 A1 c, d
g d, e A1 A1
h d, e A1 d, e

ϕ′2,2 f g h
f A1 A1 c
g d, e A1 A1
h d, e A1 d, e

Considering the functions ϕ1,1 and ϕ2,2, definition (4) returns the following hypergroup:
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◦1 a b c d e f g h
a A0 A0 A1 A1 A1 A2 A2 A2
b A0 A0 A1 A1 A1 A2 A2 A2
c A1 A1 A2 A2 f , g A0 A0 A0
d A1 A1 A2 f , g A2 A0 A0 A0
e A1 A1 A2 A2 f , g A0 A0 A0
f A2 A2 A0 A0 A0 A1 A1 c, d
g A2 A2 A0 A0 A0 d, e A1 A1
h A2 A2 A0 A0 A0 d, e A1 d, e

On the other hand, considering the functions ϕ1,1 and ϕ′2,2, we have the hyperproduct

◦1 a b c d e f g h
a A0 A0 A1 A1 A1 A2 A2 A2
b A0 A0 A1 A1 A1 A2 A2 A2
c A1 A1 A2 A2 f , g A0 A0 A0
d A1 A1 A2 f , g A2 A0 A0 A0
e A1 A1 A2 A2 f , g A0 A0 A0
f A2 A2 A0 A0 A0 A1 A1 c
g A2 A2 A0 A0 A0 d, e A1 A1
h A2 A2 A0 A0 A0 d, e A1 d, e

which is not associative since ( f ◦2 h) ◦2 e �= f ◦2 (h ◦2 e). This example reveals a specific quality
of PF-relations: If a hyperproduct defined as in (4) is associative and reproducible, independent
of families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I , then the relation I is product free. This fact is
formalized in the following result.

Theorem 4. Let G be a group and suppose that I ⊂ G× G is not product free. Then, there exists a
family F = {Ak}k∈G of nonempty and pairwise disjoint sets and there exists a family of bi-coverings
I = {ϕi,j}(i,j)∈I such that the hyperproduct defined in (4) is not associative.

Proof. Firstly, note that we have I �= ∅ as I /∈ PFG. The proof can be reduced to the
analysis of two cases: (a) there exists (i, j) ∈ I such that 1G ∈ {i, j}; and (b) there exists
i, j, k ∈ G∗ such that (i, j) ∈ I and (ij, k) ∈ I (or, equivalently, (k, ij) ∈ I).

(a) If i = j = 1G then it suffices to consider arbitrary families F and I where A1G =
{a, b} and the function ϕ1G ,1G is described by the following table:

ϕ1G ,1G a b
a b a
b a, b a, b

Then, associativity fails because (a ◦ a) ◦ a = {a, b} �= {a} = a ◦ (a ◦ a). Otherwise,
without loss of generality, assume j = 1G and (1G, 1G) �∈ I. Let F and I verify the following
conditions: |A�| = 2 for every � ∈ G and |ϕp,q(x, y)| = 1 for all (p, q) ∈ I. Let x ∈ Ai and
y, z ∈ A1G . Then,

(x ◦ y) ◦ z = ϕi,1G (x, y) ◦ z = ϕi,1G (ϕi,1G (x, y), z).

Hence, |(x ◦ y) ◦ z| = 1. On the other hand, x ◦ (y ◦ z) = x ◦ A1G = Ai; hence
(x ◦ y) ◦ z �= x ◦ (y ◦ z).

(b) Let F = {A� : � ∈ G} and I = {ϕp,q : (p, q) ∈ I} be arbitrary families verifying the
following conditions: (b1) |A�| = 2 for every � ∈ G; (b2) if (i, jk) ∈ I then ϕi,jk(x, y) = Aijk
for every x ∈ Ai and y ∈ Ajk; |ϕp,q(x, y)| = 1 in all remaining cases. Let x ∈ Ai, y ∈ Aj,
and z ∈ Ak. Then,

(x ◦ y) ◦ z = ϕi,j(x, y) ◦ z = ϕij,k(ϕi,j(x, y), z).
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Since 1G /∈ {i, j, k}, then (i, j) �= (i, jk) and (ij, k) �= (i, jk). Hence, |(x ◦ y) ◦ z| = 1 by
(b2). On the other hand, for some w ∈ y ◦ z ⊆ Ajk, we have

Aijk = x ◦ w ⊆ x ◦ (y ◦ z).

By (b1) we can conclude that (x ◦ y) ◦ z �= x ◦ (y ◦ z). (The proof proceeds in a similar
way if (k, ij) ∈ I.)

Definition 3. The hypergroups (H, ◦) defined as in (4) with a PF-relation I are called weakly
complete. A weakly complete hypergroup is n-uniform if |Ai| = n for all i ∈ G; if the size n is not
relevant, then we simply call it uniform.

The term “weakly complete” originates from the following observations: Let (H, ◦) be
a weakly complete hypergroup built from families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I , and
let " be the hyperproduct obtained from the same set family F using only trivial bi-coverings.
Then, (H, ") is a complete hypergroup and x ◦ y ⊆ x " y for all x, y ∈ H. We also obtain the
same conclusion by replacing the given relation I with the empty relation. Furthermore,
both in complete hypergroups and weakly complete hypergroups, the fundamental relation
β coincides with β2, as shown in Theorem 3.

In the following, we use the notation (H, ◦) = W(G, I,F, I) to indicate a weakly
complete hypergroup whose hyperproduct ◦ is defined as (4) from I ∈ PFG and the
families F = {Ak}k∈G and I = {ϕi,j}(i,j)∈I . We callW(G, I,F, I) a representation of (H, ◦).
It is worth noting that a weakly complete hypergroup may have multiple representations.
Indeed, let (H, ◦) =W(G, I,F, I) and let (i, j) /∈ I. If the relation Ĩ = I ∪ {(i, j)} is product
free, then the same hypergroup admits the representationW(G, Ĩ,F, Ĩ) where Ĩ = I∪{ϕi,j}
and ϕi,j(x, y) = Aij for every x ∈ Ai and y ∈ Aj. However, all possible representations
of a given weakly complete hypergoup share the same group G and family F. This fact
should be evident from the following proposition, where we explain the algebraic role of
the parameters of a representation of a weakly complete hypergroup.

Proposition 3. Let (H, ◦) =W(G, I,F, I). Then, we have:

1. The sets Ai ∈ F are the β-classes of H, i.e, for every x ∈ H, x ∈ Ai ⇔ β(x) = Ai.
2. H/β # G and ωH = A1G .
3. Every subhypergroup K of (H, ◦) is a complete part of H, that is, C(K) = K.
4. A subset K ⊆ H is a subhypergroup of (H, ◦) if and only if there exists a subgroup G′ of G

such that K =
⋃

i∈G′ Ai.

Proof. 1. Let x ∈ Ak and a ∈ A1G . Then, Ak = x ◦ a, and so y ∈ Ak implies yβ2x.
Conversely, if yβ2x, then there exist a, b ∈ H such that {x, y} ⊆ a ◦ b. By construction, there
exists r ∈ G such that a ◦ b ⊆ Ar. Therefore, since x ∈ Ak ∩ Ar and the sets of the family F

are pairwise disjoint, we obtain y ∈ a ◦ b ⊆ Ar = Ak. Hence, y ∈ Ak if and only if yβ2x. By
Theorem 3, we conclude Ak = β(x).

2. The map f : G !→ H/β such that f (k) = Ak, for every k ∈ G, is a group isomorphism.
Moreover, we have ωH = A1G since 1H/β = f (1G) = A1G .

3. We must prove that β(x) ⊆ K, for all x ∈ K. By reproducibility of K, if x ∈ K
then there exists u ∈ K such that x ∈ x ◦ u. Considering the canonical epimorphism
π : H !→ H/β, we obtain π(x) = π(x)⊗ π(u) and so π(u) = 1H/β. Hence, from point
2., we have u ∈ π−1(1H/β) = ωH = A1G . Consequently, ωH = A1G = u ◦ u ⊆ K and
β(x) = x ◦ωH ⊆ K ◦ K = K, for all x ∈ K.

4. Since iG′ = G′ = G′i, for all i ∈ G′, the proof of the implication⇐ is similar to the
one used in point 3. of Theorem 3 to prove that (H, ◦) is a hypergroup. Now, we prove
the implication ⇒. By point 1, the β-classes of (H, ◦) are the sets Ai, for all i ∈ G. Let
π : H !→ H/β be the canonical epimorphism and f : H/β !→ G be the isomorphism such
that f (Ai) = i, for all i ∈ G. If K is a subhypergroup of (H, ◦), then G′ = ( f ◦ π)(K) is a
subgroup of G. Moreover, if x ∈ K then there exists i ∈ G such that x ∈ Ai. By point 1,
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we have Ai = β(x) and i = f (Ai) = f (π(x)) = ( f ◦ π)(x) ∈ G′. Hence, K ⊆ ⋃i∈G′ Ai. On
the other hand, if x ∈ ⋃i∈G′ Ai, there exists i ∈ G′ such that x ∈ Ai. Clearly, there exists
y ∈ K such that ( f ◦ π)(y) = i. If we suppose that y ∈ Aj, then we have Aj = β(y) and
i = ( f ◦ π)(y) = f (π(y)) = f (Aj) = j. Finally, by point 3, x ∈ Ai = Aj = β(y) ⊆ K.
Therefore,

⋃
i∈G′ Ai ⊆ K.

The following result, which follows from the definition of hyperproduct in (4) and point 1
in Proposition 3, describes all cases where a weakly complete hypergroup is complete.

Corollary 1. Let (H, ◦) =W(G, I,F, I).

1. If I = ∅, then (H, ◦) is complete;
2. if I �= ∅, then (H, ◦) is complete ⇐⇒ ϕi,j is trivial, for every (i, j) ∈ I.

Example 6. Let (H, ◦) = W(G, I,F, I) such that |Ak| > 1 for some k ∈ G and |Ai| = 1 for
i �= k. Then, (H, ◦) is complete, as a consequence of the previous corollary. Indeed, if (i, j) ∈ I and
ij �= k, then |Aij| = 1 and ϕi,j is trivial. On the other hand, if k = ij then k �∈ {i, j} because I is
product free. Thus, |Ai| = |Aj| = 1 and ϕi,j are trivial since it is a bi-covering.

The next example shows a weakly complete hypergroup that contains both complete
and noncomplete subhypergroups.

Example 7. Let G = {1, 2, 3, 4} be a group isomorphic to the Klein group Z2 ×Z2 where 1 = 1G.
Consider I = {(2, 2), (3, 3)}, A1 = {a, b}, A2 = {c, d}, A3 = {e, f } and A4 = {g}. In the set
H = {a, b, c, d, e, f , g, h}, define the hyperproduct represented in the following table:

◦ a b c d e f g
a A1 A1 A2 A2 A3 A3 A4
b A1 A1 A2 A2 A3 A3 A4
c A2 A2 a A1 A4 A4 A3
d A2 A2 b a A4 A4 A3
e A3 A3 A4 A4 b a A2
f A3 A3 A4 A4 a b A2
g A4 A4 A3 A3 A2 A2 A1

Then, (H, ◦) ia a weakly complete hypergroup. The subsets K1 = A1 ∪ A2, K2 = A1 ∪ A3,
K3 = A1 ∪ A4 are a subhypergroup of (H, ◦). Moreover, K3 is complete and K1 and K2 are not
complete.

The next theorem characterizes weakly complete hypergroups, in that it yields a
necessary and sufficient condition for a given hypergroup to be weakly complete, based on
the structure of its quotient group.

Theorem 5. Let (H, ◦) be a hypergroup, and let π : H !→ H/β be the canonical projection.
Consider the following relation J ⊆ H/β× H/β:

J = {(i, j) : ∃x ∈ π−1(i), ∃y ∈ π−1(j) : x ◦ y �= C(x ◦ y)}.

The following conditions are equivalent:

1. J is product free;
2. (H, ◦) is a weakly complete hypergroup.

Proof. Suppose that J is product free. For every i ∈ H/β, let Ai = π−1(i), and note that⋃
i Ai = H. For every (i, j) ∈ J introduce the function fi,j : Ai × Aj !→ Aij such that

90



Mathematics 2022, 10, 981

fi,j(x, y) = x ◦ y. It is not difficult to see that fi,j is a bi-covering. Indeed, for any fixed
x ∈ Ai we have by construction⋃

y∈Aj
fi,j(x, y) =

⋃
y∈Aj

x ◦ y = x ◦ Aj

= x ◦ (y ◦ωH)

= (x ◦ y) ◦ωH = C(x ◦ y) = Aij.

The identity
⋃

x∈Ai
fi,j(x, y) = Aij can be derived analogously, so fi,j is a bi-covering.

It remains to observe that (H, ◦) = W(H/β, J, {Ai}, { fi,j}), and we have the first part of
the claim.

Conversely, suppose that (H, ◦) is a weakly complete hypergroup, (H, ◦) =W(G, I,F, I).
Identifying G with H/β modulo an isomorphism, we have J ⊆ I. Indeed, let (i, j) ∈ J.
By hypotesis, there exist x, y ∈ H such that π(x) = i, π(y) = j and x ◦ y �= C(x ◦ y).
Hence, (i, j) ∈ I by (4). This conclusion follows immediately from the fact that a subset of a
PF-relation is a PF-relation.

5. Completeness Degree of Finite Hypergroups

In this section, we introduce the notion of completeness degree of finite hypergroups
and analyze the completeness degree of finite weakly complete hypergroups.

Definition 4. Let (H, ◦) be a finite hypergroup. Define the set CH ⊆ H × H,

CH = {(x, y) ∈ H × H | C(x ◦ y) = x ◦ y}.

The rational number

Δ(H) =
|CH |
|H|2

is the completeness degree of (H, ◦).

Thus, the completeness degree of a hypergroup is the probability that the hyperproduct
of two randomly chosen elements is a β-class. Clearly, Δ(H) ∈ [0, 1] and Δ(H) = 1 if and
only if (H, ◦) is complete. In the next lemma, we deduce an explicit formula for the
completeness degree of finite weakly complete hypergroups. For this purpose, we make
use of the following auxiliary notation. Let (H, ◦) =W(G, I,F, I). For every i, j ∈ G, let

Ci,j = {(x, y) ∈ Ai × Aj | x ◦ y = Aij}.

Lemma 2. Let (H, ◦) =W(G, I,F, I). Then,

Δ(H) =
∑(i,j)/∈I |Ai||Aj|+ ∑(i,j)∈I |Ci,j|

|H|2 . (6)

Moreover, if (H, ◦) is uniform, then

Δ(H) = 1− |I||G|2 +
∑(i,j)∈I |Ci,j|
|H|2 . (7)

Proof. Firstly, note that CH =
⋃

i,j Ci,j. From the definition of the hyperproduct ◦ in (4), we
deduce the alternative formula

Ci,j =

{
Ai × Aj if (i, j) /∈ I
{(x, y) ∈ Ai × Aj | ϕi,j(x, y) = Aij} if (i, j) ∈ I;
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hence,

CH =

( ⋃
(i,j)/∈I

Ai × Aj

)
∪
( ⋃

(i,j)∈I

Ci,j

)
.

Recalling that the sets of the family F are pairwise disjoint, we obtain

|CH | =
∣∣ ⋃

(i,j)/∈I Ai × Aj
∣∣+ ∣∣ ⋃(i,j)∈I Ci,j

∣∣
= ∑(i,j)/∈I |Ai||Aj|+ ∑(i,j)∈I |Ci,j|,

and Equation (6) follows. Moreover, if (H, ◦) is n-uniform, then |H| = n|G| and

∑(i,j)/∈I |Ai||Aj|
|H|2 =

∑(i,j)/∈I n2

|H|2 =
(|G|2 − |I|)n2

|G|2n2 = 1− |I||G|2 ,

and we also obtain (7).

Our next result provides two lower bounds on Δ(H) that depend only on the size of
the β-classes of H.

Theorem 6. Let (H, ◦) be a finite weakly complete hypergroup. Then,

Δ(H) ≥ |ωH |
|H|

(
2− |ωH |

|H|

)
,

where ωH is the heart of H. Moreover, if (H, ◦) is uniform, then Δ(H) ≥ 3
4 .

Proof. Let {Ai}i∈G be the family of disjoint sets in the representation of (H, ◦). Then,

|CH | ≥ ∑
(i,j)/∈I

|Ai||Aj|

=
|G|
∑

i,j=1
|Ai||Aj| − ∑

(i,j)∈I
|Ai||Aj|

= |H|2 −∑(i,j)∈I |Ai||Aj|
≥ |H|2 − (∑i∈G∗ |Ai|)2

= |H|2 − (|H| − |A1G |)2 = |A1G |(2|H| − |A1G |).

Recalling that A1G = ωH and using (6), we obtain the first inequality. Moreover,
from (7) we have Δ(H) ≥ 1− |I|/|G|2; hence, the second part of the claim is an immediate
consequence of Theorem 1.

The next example shows that the inequalities in Theorem 6 can hold as equalities.

Example 8. Let m ≥ 2 be an even number, and let G and I be the same as in Example 3. Let
(H, ◦) = W(G, I,F, I) be any uniform weakly complete hypergroup such that Ci,j = ∅ for all
(i, j) ∈ I; i.e., all bi-coverings are proper. A straightforward application of Lemma 2 proves that
Δ(H) = 3/4. Moreover, if m = 2, then |H| = 2n and |ωH | = n. Thus, also the first inequality in
Theorem 6 holds as an equality.

In the forthcoming example, we construct uniform weakly complete hypergroups
where all bi-coverings are proper, that is, Ci,j = ∅, for all (i, j) ∈ I. According to Lemma 2,
these hypergroups achieve the smallest Δ(H) possible for a given PF-relation.
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Example 9. Let G be a group and I ∈ PFG. Let F = {Ak}k∈G be a family of finite, pairwise
disjoint sets such that |Ak| = n ≥ 2 for all k ∈ G. We assume Ak = Bk ∪ Ck, with Bk, Ck
nonempty disjoint sets. For every (i, j) ∈ I, let ϕi,j : Ai × Aj !→ Aij be defined as follows:

ϕi,j(x, y) =

{
Bij if (x ∈ Bi and y ∈ Bj) or (x ∈ Ci and y ∈ Cj)

Cij else.

It is not difficult to verify that ϕi,j is a proper bi-covering. Moreover, the hypergroup (H, ◦) =
W(G, I, {Ai}, {ϕi,j}) is n-uniform. Owing to (7) and the finiteness of G, the completeness degree
of (H, ◦) is

Δ(H) = 1− |I||G|2 ,

i.e., the smallest possible value for the given relation I.

6. Commutativity Degree of Weakly Complete Hypergroups

In a nonabelian group and, more generally, in any nonabelian algebraic structure, it
makes sense to compute the probability that two randomly chosen elements commute. This
problem was popularized by Gustafson in [14], who defined the commutativity degree
d(G) of a group G as the probability that two arbitrary elements commute,

d(G) =
|{(x, y) ∈ G2 : xy = yx}|

|G|2 , (8)

and proved that if d(G) > 5
8 then G is abelian. Moreover, we have d(G) = 5

8 if and only
if G/Z(G) # Z2 × Z2, where Z(G) is the center of G. The basic technique adopted for
the proof relies on the relationship between d(G) and the number of conjugacy classes of
G, and can be traced back to a paper by Erdős and Turán [17]. Later on, there has been
considerable interest in the use of probabilistic techniques in group theory, and this concept
has had significant developments.

Recently, the concept of commutativity degree has been introduced also in hypergroup
theory [13,18]. In particular, in [13] the authors defined the commutativity degree of a finite
hypergroup (H, ◦) as

d(H) =
|{(x, y) ∈ H2 : x ◦ y = y ◦ x}|

|H|2 (9)

and characterized this index when (H, ◦) is complete by considering a partitioning of H
into suitably defined conjugacy classes. In this section, we study the commutativity degree
of weakly complete hypergroups. Our main tool is the partitioning of H into β-classes. To
begin with, we point out an important observation. For any i, j ∈ G and for any x ∈ Ai
and y ∈ Aj, a necessary condition for the identity x ◦ y = y ◦ x to be valid is ij = ji,
because x ◦ y ⊆ Aij, y ◦ x ⊆ Aji and Aij ∩ Aji = ∅ if ij �= ji. Hence, we can restrict our
attention to pairs (i, j) belonging to the set

c(G) = {(i, j) ∈ G× G : ij = ji}.

This set is directly related to the commutativity degree of G, since d(G) = |c(G)|/|G|2.

Definition 5. We say that a relation I ∈ PFG is G-symmetric if its restriction to c(G) is
symmetric; that is, for every i, j ∈ G, if ij = ji then (i, j) ∈ I ⇐⇒ (j, i) ∈ I.

Equivalently, I ∈ PFG is G-symmetric if and only if I ∩ c(G) = IT ∩ c(G). It can
be observed that if G is abelian then a relation in PFG is G-symmetric if and only if it
is symmetric. The relevance of the previous definition lies in the fact that every weakly
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complete hypergroup admits a representation with a G-symmetric relation, as shown in
the following lemma.

Lemma 3. Let (H, ◦) be a weakly complete hypergroup. Then, there exists a representation
(H, ◦) =W(G, I,F, I) where I is G-symmetric.

Proof. Let (H, ◦) =W(G, Î,F, Î) be any representation of (H, ◦). If Î is G-symmetric, then
it is complete. Otherwise, Î ∩ c(G) �= ÎT ∩ c(G) and we define the relation

I = Î ∪ ( ÎT ∩ c(G)).

We have I∩ c(G) = IT ∩ c(G), so I is G-symmetric, and I properly extends Î. Moreover,
from Lemma 1 we can deduce that I ∈ PFG, because both the support and the span of I
coincide with those of Î.

For every (i, j) ∈ I \ Î let ψi,j : Ai × Aj !→ Aij be the trivial bi-covering, and define I =

Î∪ {ψi,j}. To conclude the proof, it suffices to show that the hypergroup (H, ") =W(G, I,F, I)
coincides with (H, ◦). Indeed, for arbitrary x ∈ Ai and y ∈ Aj, if (i, j) ∈ I \ Î , then

x " y = ψi,j(x, y) = Aij = x ◦ y.

Otherwise, if either (i, j) ∈ Î or (i, j) /∈ I then the identity x " y = x ◦ y follows trivially
from the construction (4). We can conclude that (H, ◦) =W(G, I,F, I).

In what follows, we obtain different characterizations of the commutativity degree
of a weakly complete hypergroup (H, ◦) =W(G, I,F, I) in terms of the parameters of its
representation. By virtue of Lemma 3, we can safely assume that I is G-symmetric. In this
case, for every pair (i, j) ∈ c(G) ∩ I the sets

Di,j = {(x, y) ∈ Ai × Aj : ϕi,j(x, y) = ϕj,i(y, x)} (10)

Ei,j = {(x, y) ∈ Ai × Aj : ϕi,j(x, y) �= ϕj,i(y, x)} (11)

are well defined.

Theorem 7. Let (H, ◦) =W(G, I,F, I) where I is G-symmetric. Then,

d(H) =
∑(i,j)∈c(G)\I |Ai||Aj|+ ∑(i,j)∈c(G)∩I |Di,j|

|H|2 . (12)

Moreover, if (H, ◦) is uniform then

d(H) = d(G)− |c(G) ∩ I|
|G|2 +

∑(i,j)∈c(G)∩I |Di,j|
|H|2 (13)

= d(G)− ∑(i,j)∈c(G)∩I |Ei,j|
|H|2 . (14)

Proof. Let i, j ∈ c(G), x ∈ Ai and y ∈ Aj. Two cases are possible:

(a) (i, j) ∈ c(G) \ I. In this case, x ◦ y = Aij = Aji = y ◦ x; hence

{(x, y) ∈ Ai × Aj : x ◦ y = y ◦ x} = Ai × Aj.

(b) (i, j) ∈ I ∩ c(G). Owing to the G-symmetry of I, we have both x ◦ y = ϕij(x, y) and
y ◦ x = ϕji(y, x). By (10),

{(x, y) ∈ Ai × Aj : x ◦ y = y ◦ x} = Di,j.

94



Mathematics 2022, 10, 981

The first claim follows from the fact that the set c(G) is the disjoint union of c(G) \ I
and I ∩ c(G). Moreover, if |Ai| = n for all i ∈ G, then

∑
(i,j)∈c(G)\I

|Ai||Aj| = n2|c(G) \ I| = n2(|c(G)| − |c(G) ∩ I|).

Since |H| = n|G|, we also have

∑(h,k)∈c(G)\I |Ah||Ak|
|H|2 =

|c(G)| − |c(G) ∩ I|
|G|2 = d(G)− |c(G) ∩ I|

|G|2 ,

and (13) follows. Finally, using (11) we obtain

|c(G) ∩ I|
|G|2 − ∑(i,j)∈c(G)∩I |Di,j|

|H|2 =
∑(i,j)∈c(G)∩I(n2 − |Di,j|)

|H|2

=
∑(i,j)∈c(G)∩I |Ei,j|

|H|2 ,

which yields (14), and the proof is complete.

The previous theorem yields a few notable consequences. For example, taking I = ∅

we conclude that if (H, ◦) is complete and

d(H) =
∑(i,j)∈c(G) |Ai||Aj|

|H|2 .

In particular, if (H, ◦) is also uniform, then d(H) = d(G). More generally, d(H) ≤
d(G) for any uniform weakly complete hypergroup, and the equality holds if and only if
ϕi,j(x, y) = ϕj,i(y, x) for every (i, j) ∈ c(G) ∩ I.

Finally, the similarity between formulas (6) and (12) suggests that we should study
the relationship between the degrees of commutativity and completeness, at least in the
commutative case. We propose our result below. Before doing so, we recall that if G is
abelian, then G-symmetric relations are symmetric. Hence, by Lemma 3, every weakly
complete hypergroup built from an abelian group admits a representation whose PF-
relation is symmetric.

Theorem 8. Let G be abelian and let (H, ◦) =W(G, I,F, I), where I is symmetric. Then,

d(H) = Δ(H) +
∑(i,j)∈I(|Di,j| − |Ci,j|)

|H|2 . (15)

Moreover, if (H, ◦) is uniform then |d(H)− Δ(H)| ≤ |I|/|G|2 ≤ 1
4 .

Proof. Since G is abelian, we have c(G) ∩ I = I and the condition (i, j) ∈ c(G) \ I reduces
to (i, j) /∈ I. Therefore, subtracting (13) from (6) we obtain (15). Furthermore, for every
(i, j) ∈ I we have Di,j ∪ Ci,j ⊆ Ai × Aj. If H is n-uniform, then |H| = n|G| and |Ai × Aj| =
n2. Hence,

−n2 ≤ |Di,j| − |Ci,j| ≤ n2.

Thus, |d(H)− Δ(H)| ≤ n2|I|/|H|2 = |I|/|G|2. The rightmost inequality in the claim
comes from Theorem 1.

7. Conclusions

The class of complete hypergroups is among the best known in hypergroup theory.
Complete hypergroups have a variety of group-like properties and are characterized by the
fact that the composition of two elements is a β-class [9–12]. In this paper, we introduce
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a class of hypergroups (H, ◦) that includes complete hypergroups as a particular case.
The construction of these hypergroups, called weakly complete, is crucially based on
particular binary relations defined on the quotient group H/β. We call these relations
product free because no group element is in relation with the product of two elements that
are related to each other. Product-free relations are interesting by themselves, and we show
a number of their main properties on generic groups in Section 2. For example, we prove
an attainable upper bound on the cardinality of product-free relations in finite groups.

The main motivation of introducing weakly complete hypergroups lies in the pos-
sibility of measuring their “closeness” to complete hypergroups. Indeed, to every finite
hypergroup, we can associate a completeness degree, which quantifies how close to com-
pletion the hypergroup is. We introduce and analyze this concept in Section 5. More
precisely, the completeness degree of a hypergroup is the probability that the composition
of two randomly chosen elements is a β-class. For a weakly complete hypergroup whose
β-classes have the same cardinality, this probability is bounded from below by 3

4 . Indeed,
the completeness degree of weakly complete hypergroups admits simple closed formu-
las. Furthermore, it can be related to the commutativity degree, which has been recently
brought into hypercompositional algebra from group theory [13,18].

Completeness concepts and probabilistic methods are relevant topics nowadays not
only in classical algebra but also in hypercompositional algebra, and this discipline is
continually expanding with the introduction of structures with distinctive properties [19].
It would be interesting to discover more hypergroup classes, and more general hypercom-
positional structures, for which useful results can be found along these directions.
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Abstract: Let H be a connected subgraph of a graph G. An H-factor of G is a spanning subgraph
of G whose components are isomorphic to H. Given a setH of mutually non-isomorphic graphs, a
uniformH-factorization of G is a partition of the edges of G into H-factors for some H ∈ H. In this
article, we give a complete solution to the existence problem for uniform (Ck, Pk+1)-factorizations of
Kn − I in the case when k is even.

Keywords: graph factorization; complete graph; block design

MSC: 05B30

1. Introduction

Let V(G) and E(G) denote the vertex set and the edge set of a graph G, respectively.
As per standard notations, Kn denotes the complete graph on n vertices, Ck is the k-cycle
(i.e., the cycle of length k) and Pk+1 is the path on k + 1 vertices. For missing notions and
terms that are not explicitly defined in this paper, we point the reader to [1] and its online
updates. IfH is a set of mutually non-isomorphic connected graphs, anH-decomposition of
a graph G is a partition of E(G) into subgraphs (blocks) that are isomorphic to some element
of H. An H-factor of G is a spanning subgraph of G, i.e., a subgraph of G with the same
vertex set as G, whose connected components are isomorphic to some element of H. An
H-factorization of G is anH-decomposition of G whose set of blocks admits a partition into
H-factors. AnH-factorization of G is also known as a resolvableH-decomposition of G and
anH-factor of G can be called a parallel class of G. WhenH = {H}, then we simply write
H-factor and H-factorization. A K2-factorization of G is better known as a 1-factorization
and its factors are said 1-factors; a 1-factor of Kn is a set of n

2 mutually vertex disjoint edges
of Kn and a 1-factorization of Kn exists if and only if n is even [2]. A Ck-factorization of Kn
exists if and only if 3 ≤ k ≤ n, n and k are odd and n ≡ 0 (mod k) [3]. AnH-factorization
of a graph G is said to be uniform if each factor is an H-factor for some H ∈ H (sometimes
it is referred to as a uniformly resolvableH-decomposition of G).

In the context of graph factorizations, and in particular of cycle factorizations, the
most famous problems are the Oberwolfach Problem and the Hamilton–Waterloo Problem. The
first one was first posed in 1967 by G. Ringel and asks whether it is possible to seat n
mathematicians at m round tables in (n− 1)/2 dinners so that every two mathematicians
sit next to each other exactly once. This puzzle can be formalized in terms of graph
factorizations as follows. If integers p1, p2, . . . , pm denote the sizes of the m round tables,
then the solution of the Oberwolfach Problem is a factorization of Kn where each factor
has m components which are isomorphic to cycles of length p1, p2, . . . , pm, ∑m

i=1 pi = n. It
is well known that such a factorization can exist only if n is odd. If the number n is even,
then an analogous problem is reformulated in terms of decomposition of Kn − I, that is the
graph obtained by removing a 1-factor from Kn. The version where all cycles of a factor
have the same size is called the uniform Oberwolfach Problem, which has been completely
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solved by Alspach and Häggkvist [4] and Alspach, Schellenberg, Stinson and Wagner [3].
The Hamilton–Waterloo Problem is a variation of the Oberwolfach Problem and requires
that the dining mathematicians have their dinners in two different venues. In this case,
the factors of the sought decomposition of Kn (when n is odd) or Kn − I (when n is even)
can have either s components that are isomorphic to cycles of length p1, p2, . . . , ps or t
components that are isomorphic to cycles of length q1, q2, . . . , qt, ∑s

i=1 pi = ∑t
i=1 qi = n. If

the tables in one venue sit p mathematicians and those in the other venue sit q each, then the
problem is called the uniform Hamilton–Waterloo Problem, which asks for a decomposition
of Kn or Kn − I into Cp-factors and Cq-factors. For both problems, the Hamilton–Waterloo
Problem and the non-uniform case of the Oberwolfach Problem, many partial results are
known, but a complete solution is far to be achieved.

Existence problems forH-factorizations are usually considered for the complete graph
Kn or the graph Kn− I. For these graph families, many results have been obtained especially
in the uniform case; just to give some examples, when H contains two complete graphs
of order k ≤ 5 [5–8], when H contains two or three paths of order 2 ≤ k ≤ 4 [9,10], for
H = {K2, K1,3} [11,12], forH = {K2, K1,4} [13], and forH = {C2k, K1,2k} [14].

A uniform {H1, H2}-factorization of G with ri Hi-factors, i = 1, 2, is denoted by
URD(G; Hr1

1 , Hr2
2 ). When G = Kn we simply write URD(n; Hr1

1 , Hr2
2 ). In this paper, we deal

with uniform H-factorizations of Kn or Kn − I in the case when H = {Ck, Pk+1}. In [9],
a solution to the existence problem of a URD(n; Cr1

k , Pr2
k+1) is given for k = 2 (note that

C2 = K2). Here, we are interested in the case when k ≡ 0 (mod 2) and k ≥ 4. As for the
k even case, it is known that a URD(n; C0

k , Pr2
k+1) exists if and only if n ≡ 0 (mod k + 1)

and (k + 1)(n− 1)n ≡ 0 (mod 2k), see [15,16], while no URD(n; Cr1
k , P0

k+1) exists because n
must be odd and divisible by k; a URD(Kn− I; Cr1

k , P0
k+1) exists if and only if n ≡ 0 (mod 2)

and k divides n, see [17]. When n is even, no URD(n; Cr1
k , Pr2

k+1) exists with r1 > 0 because,
otherwise, the resolvability implies 2(k + 1)r1 + 2kr2 = (k + 1)(n− 1) and, clearly, this is
impossible. Therefore, it would be interesting to prove whether or not there exist uniformly
resolvable decompositions of Kn − I in terms of factors belonging toH = {Ck, Pk+1}. For
brevity, we introduce the notation URD∗(n; Cr1

k , Pr2
k+1) for a decomposition of this kind.

Moreover, since k and k + 1 must divide n, we assume n ≡ 0 (mod k(k + 1)). Finally, we
must have r1 > 0 because (n− 2)(k + 1)/(2k) is not an integer.

The goal of this paper is to characterize the existence of URD∗(n; Cr1
k , Pr2

k+1) in the
previously defined cases, namely, k ≡ 0 (mod 2), k ≥ 4, and n ≡ 0 (mod k(k + 1)). Our
main result, shown in the last section, proves that such decompositions exist if and only if
the (ordered) pair (r1, r2) belongs to the set I(n) defined in Table 1.

Table 1. The set I(n).

n I(n)

0 (mod 2k(k + 1)) ( n−2
2 − kx, (k + 1)x), x = 0, 1, . . . , n−2k

2k

k(k + 1) (mod 2k(k + 1)) ( n−2
2 − kx, (k + 1)x), x = 0, 1, . . . , n−k

2k

We remark that, since n is an even positive integer, I(n) is a set of ordered pairs
of integers.

To this goal, we firstly recall in Section 2 known decompositions of simple cases and
two basic constructions, the so-called GDD Construction and Filling Construction, which
allow to derive decompositions of more general cases from the knowledge of simpler
cases. Our main theorem is crucially based on a clever use of these two constructions. In
Section 3, we derive the necessary conditions for the existence of URD∗(n; Cr1

k , Pr2
k+1), see

Lemma 2. Moreover, we set up preliminary results for later use, consisting of particular
decompositions of certain simple graphs. On the basis of these results, in Section 4, we
prove that the necessary conditions derived in Lemma 2 are also sufficient. Section 5

100



Mathematics 2022, 10, 936

essentially contains the statement of our main theorem, the proof of which boils down to a
recall of the partial results of the previous sections.

2. Two Constructions

In what follows, Ku(g) denotes the complete multipartite graph with u partite sets of
size g. An H-decomposition of Ku(g) is known as a group divisible decomposition (briefly,
H-GDD) of type gu; the partite sets are called groups. An H-decomposition of Kn can be
regarded as an H-GDD of type 1n. When H = {H}, we simply write H-GDD. In what
follows, a (uniformly) resolvable H-GDD is denoted by H-(U)RGDD. More precisely, a
{H1, H2}-URGDD with ri Hi-factors is denoted by URGDD(Hr1

1 , Hr2
2 ). It is not hard to see

that the number of H-factors of an H-RGDD is

α =
g(u− 1)|V(H)|

2|E(H)| .

Let H be a given graph. For any positive integer t, H(t) denotes the graph with vertex
set V(H)× Zt and edge set {{xi, yj} : {x, y} ∈ E(H), i, j ∈ Zt}, where the subscript nota-
tion ai denotes the pair (a, i). We say that the graph H(t) is obtained from H by expanding
each vertex t times. When H = Km, the graph H(t) is the complete equipartite graph

Kt, t, . . . , t︸ ︷︷ ︸
m times

with m partite sets of size t and is denoted by Km(t). Analogously, Cm(t) denotes the graph
H(t) where H is an m-cycle.

Remark 1. The graph H(t) admits t 1-factors for each 1-factor of G. Therefore, since a 2k-cycle has
two 1-factors, then C2k(t) admits 2t 1-factors.

Given two pairs (r1, r2) and (r′1, r′2) of non-negative integers, define (r1, r2) + (r′1, r′2) =
(r1 + r′1, r2 + r′2). Given two sets I and I′ of pairs of non-negative integers and a positive
integer α, then I + I′ denotes the set

{(r1, r2) + (r′1, r′2) : (r1, r2) ∈ I, (r′1, r′2) ∈ I′}.

Moreover, we denote α ∗ I the set whose elements are all pairs of non-negative integers
obtained by adding any α elements of I (repetitions of elements of I are allowed).

To obtain our main result we firstly construct RGDDs with appropriate parameters by
means of the GDD-Construction defined here below, see Theorem 1. Subsequently, we fill
their groups using the Filling Construction, stated in Theorem 2. The GDD-Construction can
be derived from the more general construction described in [14]. The Filling Construction
is a minor variation of the corresponding construction in [14].

Theorem 1 (GDD-Construction). Let t be a positive integer and suppose there exists anH-RGDD
of type gu, whose blocks are graphs of order at least 2 and whose factors are Fi, i = 1, 2, . . . , α. If for
any i = 1, 2, . . . , α there exists a URD(B(t); Cr̄1

k , Pr̄2
k+1) for each B ∈ Fi and for each (r̄1, r̄2) ∈ Ii,

then so does URGDD(Cr1
k , Pr2

k+1) of type (gt)u for each (r1, r2) ∈ I1 + I2 + · · ·+ Iα.

Theorem 2 (Filling Construction). Suppose there exists a URGDD(Cr1
k , Pr2

k+1) of type gu for

each (r1, r2) ∈ I. If there exists a URD∗(g; Cr′1
k , Pr′2

k+1), for each (r′1, r′2) ∈ I′, then so does a
URD∗(ug; Cr̄1

k , Pr̄2
k+1), for each (r̄1, r̄2) ∈ I′ + I.
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Proof. Fixed any pairs (r1, r2) ∈ I and (r′1, r′2) ∈ I′, for every group Gi, i = 1, 2, . . . , u, of

a URGDD(Cr1
k , Pr2

k+1) of type gu, place a copy of a URD∗(g; Cr′1
k , Pr′2

k+1) on Gi so to obtain a

URD∗(gu; Cr′1+r1
k , Pr′2+r2

k+1 ).

We conclude this section by quoting from [18] the following result for a later use.

Lemma 1. Let m ≥ 3 and u ≥ 2. There exists a Cm-RGDD of type gu if and only if g(u− 1) ≡ 0
(mod 2), gu ≡ 0 (mod m), m ≡ 0 (mod 2) if u = 2, and (g, u, m) �= (2, 3, 3), (2, 6, 3), (6, 2, 6),
or (6, 3, 3).

3. Necessary Conditions and Basic Decompositions

Let k ≡ 0 (mod 2), k ≥ 4. In this section, we start by giving necessary conditions
for the existence of a URD∗(n; Cr1

k , Pr2
k+1), and then, we construct the basic decompositions

which will be used as ingredients in the GDD and Filling Constructions. From now on,
throughout the paper, we set p = k(k + 1). Recall that the set I(n) is defined in Table 1.

Lemma 2. Let n ≡ 0 (mod p). If there exists a URD∗(n; Cr1
k , Pr2

k+1) then (r1, r2) ∈ I(n).

Proof. The resolvability implies

r1kn
k

+
r2kn
k + 1

=
n(n− 2)

2

and so
2(k + 1)r1 + 2kr2 = (k + 1)(n− 2). (1)

Since k + 1 cannot divide 2k, Equation (1) implies r2 = (k + 1)x. Replacing r2 =
(k + 1)x in the above equation gives r1 = n−2

2 − kx, where x < n−2
2k (because r1 is a positive

integer) and so 0 ≤ x ≤ $ n−2
2k %.

From now on, we denote by (a1, a2, . . . , ak) the k-cycle on {a1, a2, . . . , ak} with edge
set {{a1, a2}, {a2, a3}, . . . , {ak−1, ak}, {ak, a1}}, and by [a1, a2, . . . , ak+1] the path Pk+1 on the
vertex set {a1, a2, . . . , ak+1} with edge set {{a1, a2}, {a2, a3}, . . . , {ak, ak+1}}.

Lemma 3. There exists a C2l−2-decomposition of Pl(2) for any integer l ≥ 3.

Proof. Let Pl(2) be the graph obtained from the path [1, 2, . . . , l] by expanding each vertex
twice. Consider the (2l − 2)-cycles

C = (10, 20, . . . , (l − 1)0, l1, (l − 1)1, (l − 2)1, . . . , 21),

and

C̄ = (11, 20, 31, 40, . . . , (l − 1)1, l0, (l − 1)0, (l − 2)1, (l − 3)0, (l − 4)1, . . . , 30, 21)

if l is even, or

C̄ = (11, 20, 31, 40, . . . , (l − 2)1, (l − 1)0, l0, (l − 1)1, (l − 2)0, (l − 3)1, (l − 4)1, . . . , 30, 21),

if l is odd. It is easy to see that C and C̄ decompose the graph Pl(2).

Lemma 4. Let q = k
2 (1 + k). There exists a Ck-factorization of Cq(2).
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Proof. Start from the cycle Cq = (1, 2, . . . , q) and decompose it into the following copies of
Pl , with l = 1 + k

2 ,

P(i) =

[
1 +

k
2

i, 2 +
k
2

i, . . . , 1 +
k
2
(1 + i)

]
, i = 0, 1, . . . , k.

Expand twice each vertex of Cq and for every i = 0, 1, . . . , k, decompose the graph
Pl(2) on V(P(i)) × Z2 into the k-cycles Ci and C̄i by using Lemma 3. The set of k-cycles
{Ci, C̄i}i=0,1,...,k is a decomposition of Cq(2) whose cycles can be partitioned into the factors
{Ci}i=0,1,...,k and {C̄i}i=0,1,...,k.

Lemma 5. There exists a 1-factorization of Cl(2) for any integer l ≥ 3.

Proof. If l is even, since Cl can be decomposed into two 1-factors, then Cl(2) can be de-
composed into four 1-factors (see Remark 1). If l is odd, Cl(2) can be decomposed into the
2l-cycles

C1 = (10, 21, 30, 41, . . . , l0, 11, l1, (l − 1)0, (l − 2)1(l − 3)0, . . . , 20)

and
C2 = (10, l0, (l − 1)0, (l − 2)0, (l − 3)0, . . . , 20, 11, 21, 31, 41, . . . , l1),

each of which provides two 1-factors and so a 1-factorization of Cl(2) is given.

The following lemma follows by a result first proved by R. Laskar in [19]. For the ease
of the reader, here, we propose an alternative proof which uses Graeco-Latin squares.

Lemma 6. Let k �= 4, 12 and m = k + 1. Then, there exists a Hamiltonian cycle decomposition
of Cm( k

2 )
.

Proof. Consider the graph Cm( k
2 )

obtained from the cycle (1, 2, . . . , m) by expanding each

vertex k
2 times. Let Q be a Graeco-Latin square of order k

2 on the sets X1 = {1} × Z k
2

and X2 = {2} × Zk/2, which exists for any k
2 �= 2, 6, see [20]. The columns of Q give a

1-factorization Fj, j ∈ Zk/2, of the complete bipartite graph with partite sets X1 and X2. For

i = 1, 2, . . . , m and j ∈ Zk/2, consider the k
2 × 1 matrices Aj

i = [ij ij · · · ij]
t and

A(i,j) = [ij ij+1 · · · ij+ k
2−1]

t.

Now, for each j ∈ Z k
2
, construct the k

2 ×m matrix

Aj = [Fj Aj
3 A(4,j) Aj

5 A(6,j) · · · A(m−1,j) Aj
m].

The rows of the k
2 × km

2 matrix A = [A0 A1 · · · A k
2−1] give a Hamiltonian cycle

decomposition of Cm(k/2)).

Lemma 7. A URD(Cm(k); Cr1
k , Pr2

k+1)with m = k+ 1 exists for every (r1, r2) ∈ {(k, 0), (0, k + 1)}.

Proof. The proof is divided into two parts, which respectively cover the case (r1, r2) = (k, 0)
and (r1, r2) = (0, k + 1).

1. Case (r1, r2) = (k, 0). If k �= 4, 12, start from a Hamiltonian cycle decomposition of
Cm( k

2 )
(which exists by Lemma 6 and has k

2 cycles) and, after expanding each vertex

twice, for each cycle C on V(C)× Z2, place a Ck-factorization of Cq(2), q = k
2 (1 + k)

(which exists by Lemma 4 and has two factors) so to obtain a Ck-factorization of Cm(k)

with k factors, i.e., a URD(Cm(k); Ck
k , P0

k+1). For k = 4, 12, start from a 1-factorization of
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Cm(2) (by Lemma 5, it exists and has four factors) and after expanding each vertex k
2

times, for each 1-factor F and each edge e ∈ F on e×Z k
2
, place a Ck-RGDD of type ( k

2 )
2,

which is known to exist and have k
4 Ck-factors [21], so obtain a URD(Cm(k); Ck

k , P0
k+1).

2. Case (r1, r2) = (0, k + 1). Starting from C = (0, 1, . . . , k) on Zk+1, expand each vertex
k times and take the factors

Fj = {[ji, (1 + j)i, (2 + j)i+1, (3 + j)i, (4 + j)i+2, . . . , (k− 1 + j)i, (k + j)i+ k
2
] : i ∈ Zk},

for j ∈ Zk+1.

4. Sufficient Conditions

Lemma 8. If n ≡ 0 (mod 2p), then a URD∗(n; Cr1
k , Pr2

k+1) exists for every (r1, r2) ∈ I(n).

Proof. Let n = 2ph, h ≥ 1. Apply the GDD-Construction with t = k to a Ck+1-RGDD
of type 2(k+1)h (which exists by Lemma 1 and has α = (k + 1)h− 1 factors) to obtain a
URGDD(Cr̄1

k , Pr̄2
k+1) of type (2k)(k+1)h for each

(r̄1, r̄2) ∈ [(k + 1)h− 1] ∗ {(k, 0), (0, k + 1)}

using as ingredients designs from Lemma 7. Finally, apply the Filling Construction by
using copies of a URD∗(2k; Ck−1

k , P0
k+1) (see [17]) to get a URD∗(2ph; Cr1

k , Pr2
k+1) for every

(r1, r2) ∈ {(k− 1, 0)}+ [(k + 1)h− 1] ∗ {(k, 0), (0, k + 1)}
= {(ph− 1− kx, (k + 1)x) : x = 0, 1, . . . , (k + 1)h− 1}
= I(2ph) = I(n).

Lemma 9. If n ≡ p (mod 2p), then a URD∗(n; Cr1
k , Pr2

k+1) exists for every (r1, r2) ∈ I(n).

Proof. Let n = p(1 + 2h), h ≥ 0. Apply the GDD-Construction with t = k to a Ck+1-RGDD
of type 1(k+1)(1+2h) (which exists by Lemma 1 and has α = (k+1)(1+2h)−1

2 factors) to obtain
a URGDD(Cr̄1

k , Pr̄2
k+1) of type k(k+1)(1+2h) for each

(r̄1, r̄2) ∈
(k + 1)(1 + 2h)− 1

2
∗ {(k, 0), (0, k + 1)}

using as ingredients the designs from Lemma 7. Finally, apply the Filling Construction

by using copies of a URD∗(k; C
k−2

2
k , P0

k+1) (see [17]) to get a URD∗(p(1 + 2h); Cr1
k , Pr2

k+1)
for every

(r1, r2) ∈
{(

k− 2
2

, 0
)}

+
(k + 1)(1 + 2h)− 1

2
∗ {(k, 0), (0, k + 1)}

=

{(
p(1 + 2h)− 2

2
− kx, (k + 1)x

)
: x = 0, 1, . . . ,

(k + 1)(1 + 2h)− 1
2

}
= I(p(1 + 2h)) = I(n).

5. Conclusions

Combining together Lemmas 2, 8 and 9 gives our main result.
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Theorem 3. Let n ≡ 0 (mod k(k + 1)). There exists a URD∗(n; Cr1
k , Pr2

k+1) if and only if
(r1, r2) ∈ I(n).

We emphasize that our main result fits in the context of a series of papers, where
the authors investigated the existence ofH-factorizations of Kn or Kn − I in the case that
H contains at least one cycle. As a final note, we stress that determining necessary and
sufficient conditions for the existence of analogous decompositions for odd values of k is
still an open problem of definite interest for further research.

Author Contributions: Conceptualization, G.L.F., S.M. and A.T.; formal analysis, G.L.F., S.M. and
A.T.; writing-original draft preparation, G.L.F., S.M. and A.T.; writing-review and editing, G.L.F., S.M.
and A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by GNSAGA INDAM (Giovanni Lo Faro, Antoinette Tripodi).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Colbourn, C.J.; Dinitz, J.H. (Eds.) Handbook of Combinatorial Designs, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007.
Available online: https://site.uvm.edu/jdinitz/?page_id=312 (accessed on 7 March 2022).

2. Lucas, E. Récréations Mathématiques; Gauthier-Villars: Paris, France, 1883; Volume 2.
3. Alspach, B.; Schellenberg, P.; Stinson, D.R.; Wagner, D. The Oberwolfach problem and factors of uniform length. J. Combin. Theory

Ser. A 1989, 52, 20–43. [CrossRef]
4. Alspach, B.; Häggkvist, R. Some observations on the Oberwolfach problem. J. Graph Theory 1985, 9, 177–187. [CrossRef]
5. Rees, R. Uniformly resolvable pairwise balanced designs with block sizes two and three. J. Combin. Theory Ser. A 1987, 45,

207–225. [CrossRef]
6. Dinitz, J.H.; Ling, A.C.H.; Danziger, P. Maximum Uniformly resolvable designs with block sizes 2 and 4. Discrete Math. 2009, 309,

4716–4721. [CrossRef]
7. Schuster, E.; Ge, G. On uniformly resolvable designs with block sizes 3 and 4. Des. Codes Cryptogr. 2010, 57, 57–69. [CrossRef]
8. Wei, H.; Ge, G. Uniformly resolvable designs with block sizes 3 and 4. Discret. Math. 2016, 339, 1069–1085. [CrossRef]
9. Gionfriddo, M.; Milici, S. Uniformly resolvable {K2, Pk}-designs with k = {3, 4}. Contrib. Discret. Math. 2015, 10, 126–133.
10. Lo Faro, G.; Milici, S.; Tripodi, A. Uniformly resolvable decompositions of Kv into paths on two, three and four vertices. Discret.

Math. 2015, 338, 2212–2219. [CrossRef]
11. Küçükçifçi, S.; Lo Faro, G.; Milici, S.; Tripodi, A. Resolvable 3-star designs. Discret. Math. 2015, 338, 608–614. [CrossRef]
12. Chen, F.; Cao, H. Uniformly resolvable decompositions of Kv into K2 and K1,3 graphs. Discret. Math. 2016, 339, 2056–2062.

[CrossRef]
13. Keranen, M.S.; Kreher, D.L.; Milici, S.; Tripodi, A. Uniformly resolvable decompositions of Kv into 1-factors and 4-stars. Australas.

J. Combin. 2020, 76, 55–72.
14. Lo Faro, G.; Milici, S.; Tripodi, A. Uniformly Resolvable Decompositions of Kv − I into n-Cycles and n-Stars, for Even n.

Mathematics 2020, 8, 1755. [CrossRef]
15. Horton, D.G. Resolvable paths designs. J. Combin. Theory Ser. A 1985, 39, 117–131. [CrossRef]
16. Bermond, J.C.; Heinrich, K.; Yu, M.L. Existence of resolvable paths designs. Europ. J. Combin. 1990, 11, 205–211. [CrossRef]
17. Hoffman, D.G.; Schellenberg, P.J. The existence of Ck-factorizations of K2n − I . Discret. Math. 1991, 97, 243–250. [CrossRef]
18. Cao, H.; Niu, M.; Tang, C. On the existence of cycle frames and almost resolvable cycle systems. Discret. Math. 2011, 311,

2220–2232. [CrossRef]
19. Laskar, R. Decomposition of some composite graphs into Hamilton cycles. In Combinatorics, Proceedings of the Fifth Colloquium of

the János Bolyai Mathematical Society, Keszthely, Hungary, 28 June–3 July 1976; Hajnal, A., Sós, V.T., Eds.; North-Holland: New York,
NY, USA, 1978; pp. 705–716.

20. Bose, R.C.; Shrikhande, S.S.; Parker, E.T. Further results on the construction of mutually orthogonal Latin squares and the falsity
of Euler’s conjecture. Canad. J. Math. 1960, 12, 189–203. [CrossRef]

21. Enomoto, H.; Miyamoto, T.; Ushio, K. Ck-factorization of complete bipartite graphs. Graphs Comb. 1988, 4, 111–113. [CrossRef]

105





Citation: De Salvo, M.; Fasino, D.;

Freni, D.; Lo Faro, G. G-Hypergroups:

Hypergroups with a Group-Isomorphic

Heart. Mathematics 2022, 10, 240.

https://doi.org/10.3390/

math10020240

Academic Editors: Elena Guardo and

Domenico Freni

Received: 17 December 2021

Accepted: 10 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

G-Hypergroups: Hypergroups with a Group-Isomorphic Heart

Mario De Salvo 1, Dario Fasino 2, Domenico Freni 2,∗ and Giovanni Lo Faro 1

1 Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra,
Università di Messina, 98122 Messina, Italy; desalvo@unime.it (M.D.S.); lofaro@unime.it (G.L.F.)

2 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, 33100 Udine, Italy;
dario.fasino@uniud.it

* Correspondence: domenico.freni@uniud.it

Abstract: Hypergroups can be subdivided into two large classes: those whose heart coincide with
the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class
includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial
group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong
to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that
is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an
emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties
of the stabilizers of group actions of the heart, which play an important role in the construction of
multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups
that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables
of all G-hypergroups of size not larger than 5, apart of isomorphisms.

Keywords: hypergroups; heart; group action; 1-hypergroups; cogroups

1. Introduction

Hypercompositional algebra is a branch of Algebra that falls under the many gener-
alizations of group theory [1]. Therefore, it is not surprising that there is a great deal of
overlap between the tools and problems of group theory and those of hypergroup theory.
In fact, one of the best developed research areas in hypergroup theory is that of their clas-
sification. Although a complete classification of hypergroups is well beyond any current
research horizon, several important results have been obtained in characterizing classes of
hypergroups having certain properties. For example, the class of D-hypergroups consists
of those hypergroups that are isomorphic to the quotient set of a group with respect to a
non-normal subgroup, and is a subclass of cogroups [2–4], and cogroups appear as gener-
alizations of C-hypergroups, that were introduced as hyperstructures having an identity
element and a weak form of the cancellation law [5,6].

A strong link between group theory and hypergroup theory is established by the
relation β, which is the smallest equivalence relation defined on a hypergroup H such that
the corresponding quotient set H/β is a group [7–9]. This relation is a very expressive tool
for classifying significant families of hypergroups. In particular, the β-class of the identity
of the quotient group H/β is called heart [10–12]. The heart is a special sub-hypergroup
of H that gives detailed informations on the partition of H determined by β. Notably, a 1-
hypergroup is a hypergroup whose heart consists of only one element [13,14]. In this case,
that element is also the identity of the hypergroup. In [15,16], the authors characterized
1-hypergroups in terms of the height of their heart and provided a classification of the
1-hypergroups with |H| ≤ 6 based on the partition of H induced by β. By means of
this technique, the authors were able to enumerate all 1-hypergroups of size up to 6 and
construct explicitly all non-isomorphic 1-hypergroups of size up to 5.

Motivated by these studies, in this paper we consider the class of hypergroups whose
heart is isomorphic to a group. These hypergroups are called G-hypergroups. Clearly, this
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class contains that of 1-hypergroups as the heart of a 1-hypergroup is the trivial group.
The plan of this paper is the following. In the next section, we introduce basic definitions
and notations to be used throughout the paper. In Section 3, we introduce G-hypergroups
and their main properties, and give a flexible construction of G-hypergroups that allows
to prescribe arbitrarily both the heart and the quotient group H/β. Moreover, we analyze
G-hypergroups whose the heart is isomorphic to a torsion group. We denote this sub-
class of G-hypergroups with T(H). If (H, ◦) ∈ T(H) then the identity ε of ωH is also
identity of (H, ◦), that is x ∈ x ◦ ε ∩ ε ◦ x for all x ∈ H. Consequently, we prove that the
singleton {ε} is an invertible sub-hypergroup of (H, ◦) and the family of right (or left)
cosets ε ◦ x (or x ◦ ε, respectively) is a partition of H. Moreover, all β-classes are a disjoint
union of right (left) cosets of {ε}. In Section 4, we analyze the main properties of the
stabilizers of special actions of ωH on the set families L = {x ◦ g | x ∈ H − ωH , g ∈ ωH}
and R = {g ◦ x | x ∈ H − ωH , g ∈ ωH}. These stabilizers play an important role in the
construction of multiplicative tables of G-hypergroups, as they fix the hyperproducts g ◦ x
and x ◦ g for all g ∈ ωH and x ∈ H. The results of Section 5 concern products of elements
x, y ∈ H − ωH such that x ◦ y ⊆ ωH . In Section 6, we characterize the G-hypergroups
in T(H) that are of type U on the right. Moreover, we find a sufficient condition for a
G-hypergroup of type U on the right to be a cogroup. Finally, in Section 7, we classify the G-
hypergroups of size ≤ 5 and |ωH | ∈ {2, 3, 4}. Apart of isomorphisms, all the multiplicative
tables of these hypergroups are listed and, using the results on 1-hypergroups found in [16],
we conclude that there are 48 non-isomorphic G-hypergroups of size ≤ 5.

2. Fundamentals of Hypergroup Theory

Throughout this paper, we will use standard definitions of fundamental concepts
in hyperstructure theory, such as hyperproduct, semi-hypergroup, hypergroup, and sub-
hypergroup, see, e.g., in [17–19]. To keep the exposition self-contained, we recall below
some auxiliary definitions and results that will be needed in the sequel.

A sub-hypergroup K of a hypergroup (H, ◦) is invertible on the right (resp., on the
left) if for all x, y ∈ H, x ∈ y ◦ K ⇒ y ∈ x ◦ K (resp., x ∈ K ◦ y ⇒ y ∈ K ◦ x). Moreover,
if K is invertible both on the right and on the left then it is called invertible.

A sub-hypergroup K of a hypergroup (H, ◦) is said to be conjugable if for all x ∈ H
there exists x′ ∈ H such that xx′ ⊆ K.

An element ε of a semihypergroup (H, ◦) is an identity if x ∈ x ◦ ε∩ ε ◦ x, for all x ∈ H.
Moreover, if {x} = x ◦ ε = ε ◦ x then ε is a scalar identity.

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive closure of the
relation β = ∪n≥1βn, where β1 is the diagonal relation in H and, for every integer n > 1,
βn is defined as follows:

xβny⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ · · · ◦ zn.

The relations β and β∗ are among the so-called fundamental relations [7,9,11,20]. Their
relevance in hyperstructure theory stems from the following facts. If (H, ◦) is a semihy-
pergroup (resp., a hypergroup), then the quotient set H/β∗ endowed with the operation
β∗(x)⊗ β∗(y) = β∗(z) for x, y ∈ H and z ∈ x ◦ y is a semigroup (resp., a group) [21,22].
The canonical projection ϕ : H → H/β∗ verifies the identity ϕ(x ◦ y) = ϕ(x)⊗ ϕ(y) for all
x, y ∈ H, that is, ϕ is said to be a good homomorphism. Moreover, if (H, ◦) is a hypergroup
then β is transitive [8], H/β is a group and the kernel ωH = ϕ−1(1H/β) of ϕ is the heart
of (H, ◦).

If A is a non-empty set of a semihypergroup (H, ◦), then we say that A is a complete
part if for every n ≥ 1 and (x1, x2, . . . , xn) ∈ Hn,

(x1 ◦ x2 ◦ . . . ◦ xn) ∩ A �= ∅ =⇒ x1 ◦ x2 ◦ · · · ◦ xn ⊆ A.

The transposed hypergroup of a hypergroup (H, ◦) is the hypergroup (H, �) where
x � y = y ◦ x for all x, y ∈ H.
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For later reference, we collect in the following theorem some classic results of hyper-
group theory, see in [8,17].

Theorem 1. Let (H, ◦) be a hypergroup. Then,

1. the relation β is transitive;
2. if K is a subhypergroup invertible on the right (resp., on the left) of (H, ◦), then the family

{x ◦ K}x∈H (resp., {K ◦ x}x∈H) is a partition of H;
3. a subhypergroup K of (H, ◦) is a complete part if and only if it is conjugable;
4. the heart ωH is the intersection of all conjugable subhypergroups (or complete parts) of (H, ◦);
5. the heart ωH is a reflexive subhypergroup of (H, ◦), that is, x ◦ y ∩ ωH �= ∅ ⇒ y ◦ x ∩

ωH �= ∅.

3. G-Hypergroups

The heart of a hypergroup (H, ◦) allows us to explicitly compute the partition de-
termined by β, as β(x) = wH ◦ x = x ◦ wH for all x ∈ H. For this reason, the heart
of hypergroups has been the subject of much research, in particular, to characterize it
as the union of particular hyperproducts [12]. A special class of hypergroups is that of
1-hypergroups, where the heart is a singleton. Clearly, the heart of a 1-hypergroup is
isomorphic to a trivial group and if wH = {ε} then the element ε is an identity since
x ∈ β(x) = ε ◦ x = x ◦ ε. Other relevant results on 1-hypergroups can be found, e.g.,
in [13–16]. In this section, we will study the main properties of hypergroups whose heart is
isomorphic to a group G, which we call G-hypergroups.

Notably, the class of G-hypergroups is closed under direct product. Indeed, if (H, ◦) and
(H′, �) are G-hypergroups then the direct product H × H′ is a G-hypergroup as ωH×H′ =
ωH × ω′H. Indeed, for all (x, y) ∈ H × H′, we have βH×H′(x, y) = βH(x)× βH′(y). Non-
trivial examples of G-hypergroups can be built by means of the construction shown in
Example 2 of [15], which we recall hereafter. Let Aut(H) be the automorphism group of a
hypergroup (H, ◦). For f ∈ Aut(H), let 〈 f 〉 denote the subgroup of Aut(H) generated by
f . In H × 〈 f 〉, define the following hyperproduct: for (a, f m), (b, f n) ∈ H × 〈 f 〉, let

(a, f m) � (b, f n) = {(c, f m+n) | c ∈ a ◦ f m(b)} = (a ◦ f m(b))× { f m+n}.

with respect to this hyperproduct (H × 〈 f 〉, �) is a hypergroup whose heart is ωH × { f 0}.
Clearly, if (H, ◦) is a G-hypergroup then also (H × 〈 f 〉, �) is a G-hypergroup.

3.1. A Construction of G-Hypergroups

Let T and G be groups with |T| ≥ 2. Consider a family F = {Ak}k∈T of non-empty
and pairwise disjoint sets such that A1T = G and |Ai| = |G|, for all i ∈ T. In these
hypotheses we pose Ai = {ai,h}h∈G, for all i �= 1T . In the set H =

⋃
k∈T Ak we consider the

hyperproduct ◦ : H × H → P∗(H) defined as follows: for all x, y ∈ H,

x ◦ y =

⎧⎪⎨⎪⎩
{xy} if x, y ∈ A1T ;
{ai,hy} if x = ai,h , y ∈ A1T and i �= 1T ;
Aij if x ∈ Ai, y ∈ Aj and j �= 1T ;

(1)

We note that, by definition of hyperproduct ◦, we have x ◦ 1G = {x} and x ∈ 1G ◦ x
for all x ∈ H. Moreover, for every i, j ∈ T and x ∈ Aj we obtain

Ai ◦ x = Aij, x ◦ Ai = Aji. (2)

Indeed, if j �= 1T then Ai ◦ x =
⋃

y∈Ai
y ◦ x = Aij. Otherwise, if i = j = 1T then

A1T ◦ x = Gx = G = A1T . Moreover, if i �= 1T and j = 1T then we obtain Ai ◦ x =⋃
h∈G ai,h ◦ x =

⋃
h∈G{ai,hx} = Ai. By analogous arguments, we can deduce that x ◦ Ai =

Aji. These simple remarks yield the basis of the following result, where we prove that
(H, ◦) is a G-hypergroup with some special properties.
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Theorem 2. In the previous notations, the hyperoperation ◦ defined in (1) is associative. Moreover,
we have

1. for every integer n ≥ 3 and for every (z1, z2, . . . , zn) ∈ Hn, there exists r ∈ T such that
z1 ◦ z2 ◦ . . . ◦ zn ⊆ Ar;

2. for all i ∈ T there exist x, y ∈ H such that x ◦ y = Ai;
3. (H, ◦) is a hypergroup such that β = β2;
4. ωH = A1T = G and β(x) = Ak, for all x ∈ Ak and k ∈ T;
5. H/β ∼= T.

Proof. Let x ∈ Ai, y ∈ Aj and z ∈ Ak with i, j, k ∈ T. If i = j = k = 1T then we have
immediately (x ◦ y) ◦ z = x ◦ (y ◦ z) since A1T = G is a group. Otherwise, we have the
following cases:

• Only two of the three elements i, j, k coincide with 1T ;
• Only one of the three elements i, j, k coincides with 1T ;
• i, j, k ∈ T − {1T}.

In the first case, if we assume that i = j = 1T and k �= 1T , then we have (x ◦ y) ◦ z =
{xy} ◦ z = Ak = x ◦ Ak = x ◦ (y ◦ z).

If i = k = 1T and j �= 1T , we obtain (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aj.
If j = k = 1T and i �= 1T , we have (x ◦ y) ◦ z = x ◦ (y ◦ z) = Ai.

In the second case, suppose i = 1T and j, k ∈ T − {1T}, we have (x ◦ y) ◦ z = Aj ◦ z =
Ajk = x ◦ Ajk = x ◦ (y ◦ z).

If j = 1T and i, k ∈ T − {1T}, we obtain (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aik because
x ◦ y ⊆ Ai, z ∈ Ak and y ◦ z = Ak.

If i, j ∈ T − {1T} and k = 1T , we deduce (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aij as x ◦ y = Aij,
x ∈ Ai and y ◦ z ⊆ Aj.

In the last case we have (x ◦ y) ◦ z = x ◦ (y ◦ z) = Aijk. Thus, ◦ is associative. Now,
we complete the proof of the remaining claims.

1. To prove this claim it suffices to proceed by induction on n, based on (2) and the
associativity of hyperproduct ◦.

2. Let i ∈ T. If i �= 1T then we have x ◦ y = Ai, for all x ∈ A1T and y ∈ Ai. If i = 1T ,
since |T| ≥ 2, there exists j, k ∈ T − {1T} such that jk = 1T and so x ◦ y = Ajk = A1T ,
for all x ∈ Aj and y ∈ Ak.

3. To prove that (H, ◦) is a hypergroup we only need to prove reproducibility. Let x ∈ Ai.
As iT = T, using (2) we obtain

x ◦ H = x ◦

⎛⎝⋃
j∈T

Aj

⎞⎠ =
⋃
j∈T

x ◦ Aj =
⋃
j∈T

Aij = H.

Analogously, we can prove that H ◦ x = H for every x ∈ H. Now, being (H, ◦) a
hypergroup, we have the chain of inclusions

β1 ⊆ β2 ⊆ β3 ⊆ · · · ⊆ βn · · ·

Thus, if aβb then there exists n ≥ 3 such that aβnb. For points 1. and 2., there exist
r ∈ T and x, y ∈ H such that {a, b} ⊆ Ar = x ◦ y, so we obtain xβ2y.

4. Clearly A1 = G is a subhypergroup of H. Moreover, G is conjugable as for all
x ∈ H − G and x ∈ Aj there exists x′ ∈ Aj−1 such that x ◦ x′ = A1T = G. By point 4.
of Theorem 1, we have ωH ⊆ G. Moreover, G ⊆ ωH because ωH is a complete part
of H and G = x ◦ x′

⋂
ωH �= ∅. Finally, by (2) we have β(x) = ωH ◦ x = G ◦ x = Ak,

for all x ∈ Ak and k ∈ T.
5. The application f : T !→ H/β such that f (k) = Ak is a group isomorphism.
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3.2. If G Is a Torsion Group

In this subsection, we denote by ε the identity of the heart of a G-hypergroup (H, ◦).
Moreover, we denote by T(H) the class of G-hypergroups whose heart is a torsion group.
For each element x of a hypergroup (H, ◦), we identify x1 with the singleton {x} and,
for any integer n ≥ 2, we set

xn = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
n times

.

Moreover, define

x̆ =
∞⋃

k=1

xk.

The set x̆ is the cyclic semihypergroup generated by x. This hypercompositional
analogue of cyclic semigroups has attracted the interest of many researchers, being a
powerful tool for the construction and study of remarkable families of hypergroups. We
point the interested reader to the detailed reviews in [23,24].

In what follows, we exploit cyclic sub-semihypergroups to derive some properties
of hypergroups in T(H). Specifically, we prove that the identity of the heart ωH of a
hypergroup (H, ◦) ∈ T(H) is an invertible sub-hypergroup of (H, ◦). We will use these
properties in the subsequent section to describe the group actions of ωH on families of
hyperproducts g ◦ x and x ◦ g for g ∈ ωH and x ∈ H.

Theorem 3. Let (H, ◦) ∈ T(H). Then, ε is an identity of (H, ◦).

Proof. Let x ∈ H − G. There exists e ∈ ωH such that x ∈ x ◦ e by reproducibility of (H, ◦).
Moreover, x ∈ x ◦ e ⊆ (x ◦ e) ◦ e = x ◦ (e ◦ e) = x ◦ e2 and, by an inductive argument,
x ∈ x ◦ en for all n ≥ 1. Finally, as ωH is a torsion group, there exists m ≥ 1 such that
em = {ε}, thus x ∈ x ◦ ε. By analogous arguments we also have x ∈ ε ◦ x.

Proposition 1. Let (H, ◦) an G-hypergroup and x ∈ H. The following conditions are equivalent:

1. ε ◦ y = {y} (resp., y ◦ ε = {y}) for all y ∈ β(x);
2. |g ◦ y| = 1 (resp., |y ◦ g| = 1) for all g ∈ ωH and y ∈ β(x).

Proof. 1. ⇒ 2. Let g ∈ ωH and y ∈ β(x). The thesis is obvious if β(x) = ωH , so let
x ∈ H −ωH and a ∈ g ◦ y. We have a ∈ g ◦ y ⊆ ωH ◦ y = β(y) = β(x) and so ε ◦ a = {a}.
Moreover, g−1 ◦ a ⊆ g−1 ◦ (g ◦ y) = (g−1 ◦ g) ◦ y = ε ◦ y = {y}. Hence g−1 ◦ a = {y}.
Consequently, g ◦ y = g ◦ (g−1 ◦ a) = (g ◦ g−1) ◦ a = ε ◦ a = {a}. Therefore |g ◦ y| = 1.
In the same way we prove that |y ◦ g| = 1 if y ◦ ε = {y} for all y ∈ β(x).

The converse implication, 2.⇒ 1., is an immediate consequence of Theorem 3.

Corollary 1. Let (H, ◦) ∈ T(H). Then ε is a left scalar identity (resp., right scalar identity) of
(H, ◦) if and only if |g ◦ x| = 1 (resp., |x ◦ g| = 1), for all g ∈ ωH and x ∈ H.

Theorem 4. Let (H, ◦) ∈ T(H). If S is a finite sub-semihypergroup of (H, ◦) then we have:

1. ε ∈ S;
2. S is a sub-hypergroup of (H, ◦).

Proof. 1. Let ϕ : H → H/β be the canonical projection. As S is finite, there exists x ∈ S
such that x̆ has minimal size.

If x ∈ x2 then ϕ(x) = ϕ(x) ⊗ ϕ(x). Hence ϕ(x) = 1H/β and x ∈ ωH . As ωH is a
torsion group, there exists a positive integer n such that xn = {ε} and so ε ∈ S.

If x �∈ x2 then there exists y ∈ x2 such that y �= x. Clearly, we have y̆ ⊆ x̆ and
consequently y̆ = x̆ as x̆ has minimal size. Therefore, x ∈ y̆ and there exists a integer n ≥ 2
such that x ∈ yn ⊆ (x2)n = x2n = x ◦ x2n−1. Therefore, there exists a ∈ x2n−1 such that
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x ∈ x ◦ a and ϕ(x) = ϕ(x)⊗ ϕ(a). Thus, ϕ(a) = 1H/β and a ∈ ωH . Finally, there exists a
integer positive m such that am = {ε} and ε ∈ (x2n−1)m = x(2n−1)m ⊆ x̆ ⊆ S.

2. We must show that x ◦ S = S ◦ x = S, for all x ∈ S. By point 1. and Theoreme 3,
ε ∈ S and ε is identity in (H, ◦). Therefore, we have S ⊆ ε ◦ S ⊆ S ◦ S ⊆ S and so
ε ◦ S = S ◦ S = S. Now, if x ∈ S, the subset x ◦ x̆ is a finite sub-semihypergroup of (H, ◦)
as S is finite, x ◦ x̆ ⊆ S and (x ◦ x̆) ◦ (x ◦ x̆) = x ◦ x ◦ x̆ ◦ x̆ ⊆ x2 ◦ x̆ ⊆ x ◦ x̆. Thus, for point
1., we obtain ε ∈ x ◦ x̆. Finally,

S = ε ◦ S ⊆ x ◦ x̆ ◦ S ⊆ x ◦ S ◦ S ⊆ x ◦ S ⊆ S ◦ S = S.

Therefore, x ◦ S = S for all x ∈ S. In the same way we prove that S ◦ x = S.

Theorem 5. Let (H, ◦) ∈ T(H). The singleton S = {ε} is a invertible sub-hypergroup of (H, ◦).

Proof. We prove that S = {ε} is invertible on the left, that is x ∈ S ◦ y ⇒ y ∈ S ◦ x,
for all x, y ∈ H. In the same way, it is proved that S is invertible on the right. Let
x ∈ S ◦ y = ε ◦ y. If y ∈ ωH , we have x = y and y ∈ ε ◦ x = S ◦ x. Now, we suppose
y ∈ H − ωH . Clearly, we have ε ◦ x ⊆ ε ◦ y. Moreover, we obtain x ∈ ωH ◦ y = β(y) and
so y ∈ β(x) = ωH ◦ x. Therefore, there exists g ∈ ωH such that y ∈ g ◦ x. Consequently,
y ∈ g ◦ x ⊆ g ◦ (ε ◦ y) ⊆ g ◦ (ε ◦ (g ◦ x)) = g2 ◦ x and y ∈ g2 ◦ x. By induction, we deduce
that y ∈ gn ◦ x, for all integer n ≥ 1. As ωH is a torsion group, there exists a positive integer
m such that gm = {ε} and so y ∈ ε ◦ x = S ◦ x.

Remark 1. The invertibility on the left (resp., on the right) of the sub-hypergroup S = {ε} implies
that the family of right cosets (resp., left cosets) of S = {ε} is a partition of H. Since for each element
y of a β-class β(x) we have ε ◦ y ⊆ ωH ◦ x = β(x) (resp., y ◦ ε ⊆ x ◦ ωH = β(x)), then every
β-class is a disjoint union of right cosets of S (resp., left cosets of S).

3.3. The Cosets of {ε}
As suggested by Remark 1, the families of right and left cosets of S = {ε} are relevant

to determine the structure of G-hypergroups in T(H). In this subsection we deepen the
knowledge of these cosets. We will only do proofs for right cosets because properties that
are true for a hypergroup are also true for its transposed hypergroup.

Proposition 2. Let (H, ◦) ∈ T(H). For all x ∈ H and g ∈ ωH we have:

1. x ∈ g ◦ x ⇔ g ◦ x = ε ◦ x;
2. g ◦ x ∩ ε ◦ x �= ∅ ⇔ g ◦ x = ε ◦ x;
3. x ∈ x ◦ g ⇔ x ◦ g = x ◦ ε;
4. x ◦ g ∩ x ◦ ε �= ∅ ⇔ x ◦ g = x ◦ ε;

Proof. 1. The implication⇐ is a consequence of Theorem 3. Now, suppose that x ∈ g ◦ x.
Clearly, we have ε ◦ x ⊆ ε ◦ (g ◦ x) = (ε ◦ g) ◦ x = g ◦ x. Moreover, g ◦ x ⊆ g ◦ (g ◦ x) =
g2 ◦ x and, by induction, we obtain the chain of inclusions ε ◦ x ⊆ g ◦ x ⊆ g2 ◦ x ⊆ · · · ⊆
gn ◦ x ⊆ · · · . As ωH is a torsion group, there exists a positive integer m such that gm = {ε}
and so ε ◦ x ⊆ g ◦ x ⊆ ε ◦ x. Therefore, ε ◦ x = g ◦ x.

Concerning point 2., it is enough to prove the implication ⇒. Let z ∈ ε ◦ x ∩ g ◦ x.
As S = {ε} is a invertible subhypergroup of H, we have ε ◦ x = ε ◦ z and so z ∈ g ◦ x =
g ◦ ε ◦ x = g ◦ ε ◦ z = g ◦ z. Therefore, by point 1., we obtain ε ◦ z = g ◦ z. Consequently,
we deduce ε ◦ x = ε ◦ z = g ◦ z = g ◦ ε ◦ z = g ◦ ε ◦ x = g ◦ x.

Points 3. and 4. follow from 1. and 2. by considering the transposed hypergroup
of (H, ◦).

Proposition 3. Let (H, ◦) ∈ T(H). For all x, y ∈ H and g, g′ ∈ ωH we have

1. y ∈ g ◦ x ⇔ ε ◦ y = g ◦ x;
2. g ◦ x ∩ g′ ◦ y �= ∅ ⇔ g ◦ x = g′ ◦ y;
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3. if y ∈ g ◦ x, then ε ◦ x ∩ g ◦ x = ∅ ⇔ ε ◦ y ∩ g ◦ y = ∅;
4. y ∈ x ◦ g ⇔ y ◦ ε = x ◦ g;
5. x ◦ g ∩ y ◦ g′ �= ∅ ⇔ x ◦ g = y ◦ g′;
6. if y ∈ x ◦ g, then x ◦ ε ∩ x ◦ g = ∅ ⇔ y ◦ ε ∩ y ◦ g = ∅.

Proof. 1. The implication⇐ is a consequence of the Theorem 3. Let y ∈ g ◦ x. We have
g−1 ◦ y ⊆ g−1 ◦ g ◦ x = ε ◦ x. Taking an element z ∈ g−1 ◦ y, we obtain ε ◦ z ⊆ ε ◦ x.
Therefore, for invertibility of subhypergroup S = {ε} in (H, ◦), ε ◦ z = ε ◦ x. Consequently,
as ε ◦ z ⊆ g−1 ◦ y ⊆ ε ◦ x, we deduce g−1 ◦ y = ε ◦ x and so ε ◦ y = g ◦ x.

2. Let z ∈ g ◦ x ∩ g′ ◦ y. By point 1. of Proposition 3, we have ε ◦ z = g ◦ x and
ε ◦ z = g′ ◦ y. Therefore, g ◦ x = g′ ◦ y.

3. As y ∈ g ◦ x, by point 1. of Proposition 3, we have ε ◦ y = g ◦ x and so
ε ◦ x = g−1 ◦ (g ◦ x) = g−1 ◦ (ε ◦ y) = g−1 ◦ y. Consequently, ε ◦ x ∩ g ◦ x = ∅ ⇔
g−1 ◦ y ∩ ε ◦ y = ∅ ⇔ ε ◦ y ∩ g ◦ y = ∅.

Points 4., 5., and 6. follow from 1., 2., and 3. by considering the transposed hypergroup
of (H, ◦).

4. Actions of ωH

If φ : (g, e) !→ ge is a group action of G on the set E, the sets O(e) = {ge | g ∈ G} and
StabG(e) = {g ∈ G | ge = e} are the orbit and the stabilizer of element e ∈ E, respectively.
The orbits family {O(e)}e∈E is a partition of E and the stabilizer StabG(e) is a subgroup of
G. If e and e′ belong to the same orbit the stabilizers are conjugates. Moreover, we have
|O(e)| = [G : StabG(e)] and when G is finite we obtain that |O(e)| divides the size of G.

If (H, ◦) ∈ T(H), we denote by L and R the following sets:

L = {x ◦ g | x ∈ H −ωH , g ∈ ωH}, R = {g ◦ x | x ∈ H −ωH , g ∈ ωH}.

On L and R we consider the actions φl : ωH × L→ L e φr : ωH ×R→ R such that

φl(h, x ◦ g) = x ◦ (g ◦ h) e φr(h, g ◦ x) = (h ◦ g) ◦ x,

for all x ◦ g ∈ L, g ◦ x ∈ R and h ∈ ωH .

For simplicity, let StabωH (x ◦ ε) = xS and xO = O(x ◦ ε) = {x ◦ g | g ∈ ωH} be the
stabilizer and the orbit of x ∈ H−ωH with respect to the action φl , and let StabωH (x ◦ ε) =

xS and xO = O(x ◦ ε) = {x ◦ g | g ∈ ωH} be those with respect to φr.
If y ∈ β(x) then there exists g ∈ ωH such that y ∈ g ◦ x. By Proposition 3, we deduce

ε ◦ y = g ◦ x. Conversely, again for the Proposition 3, if g ◦ x ∈ Ox and y ∈ g ◦ x we have
ε ◦ y = g ◦ x with y ∈ β(x). Therefore, we obtain

Ox = {g ◦ x | g ∈ ωH} = {ε ◦ y | y ∈ β(x)}. (3)

xO = {x ◦ g | g ∈ ωH} = {y ◦ ε | y ∈ β(x)}. (4)

Next, we establish a connection between the sizes of Ox, xO, ωH , and β(x). For brevity,
we only expose results for the action φr. The corresponding results for the action φl follow
trivially by recurring to transposed hypergroups.

Lemma 1. Let (H, ◦) ∈ T(H) and x ∈ H −ωH.

1. Sx = {ε} (resp., xS = {ε}) if and only if g ◦ x ∩ g′ ◦ x = ∅ (resp., x ◦ g ∩ x ◦ g′ = ∅),
for all {g, g′} ⊆ ωH and g �= g′;

2. if Sx = {ε} (resp., xS = {ε}) then |Ox| = |ωH | ≤ |β(x)| (resp., |xO| = |ωH | ≤ |β(x)|;
3. Sx = ωH (resp., xS = ωH) if and only if β(x) = ε ◦ x (resp., β(x) = x ◦ ε).
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Proof. 1. If Sx = {ε} then |O(x)| = [ωH : {ε}] = |ωH | and, by Proposition 3, g ◦ x ∩ g′ ◦ x = ∅,
for all {g, g′} ⊆ ωH and g �= g′. Conversely, if g ∈ Sx then g ◦ x = ε ◦ x and g = ε
by hypothesis.

2. By point 1., we have Ex = Ox and so |Ex| = |O(x)| = [ωH : {ε}] = |ωH |. Moreover,
as the hyperproducts g ◦ x in O(x) have size ≥ 1 and g ◦ x ⊆ β(x), for all g ∈ ωH , we
deduce |ωH | ≤ |β(x)|.

3. If Sx = ωH then g ◦ x = ε ◦ x, for all g ∈ ωH . Therefore, β(x) = ωH ◦ x =
∪g∈ωH g ◦ x = ε ◦ x. Conversely, if β(x) = ε ◦ x then ωH ◦ x = ε ◦ x and g ◦ x = g ◦ (ε ◦ x) =
g ◦ωH ◦ x = ωH ◦ x = ε ◦ x, for all g ∈ ωH . Hence Sx = ωH .

Proposition 4. Let (H, ◦) ∈ T(H) and let x be an element of H − ωH such that ε ◦ y = {y}
(resp., y ◦ ε = {y}), for every y ∈ β(x). Then |β(x)| ≤ |ωH | and equality holds if and only if
Sx = {ε} (resp., xS = {ε}).

Proof. By Proposition 1, we have |g ◦ y| = 1, for every g ∈ ωH and y ∈ β(x). Therefore,
|β(x)| = |ωH ◦ x| = | ∪g∈ωH g ◦ x| ≤ |ωH |. Now, if Sx = {ε} then |β(x)| = |ωH | by point
2. of Lemma 1. Conversely, if |β(x)| = |ωH |, then g ◦ x ∩ g′ ◦ x = ∅, for all g, g′ ∈ ωH and
g �= g′. Thus, by point 1. of Lemma 1, Sx = {ε}.

A consequence of the previous proposition is the following result:

Theorem 6. Let (H, ◦) ∈ T(H) be such that ε is a left scalar identity and Sx = {ε}, for all
x ∈ H − ωH (resp., ε is a right scalar identity and xS = {ε}, for all x ∈ H − ωH). Then
|β(x)| = |ωH |, for all x ∈ H. Moreover, if (H, ◦) is finite then |H| = |H/β| · |ωH |.

Now, if (H, ◦) ∈ T(H) and x, y ∈ H, we denote by Lx(y) and xL(y) the following sets:
Lx(y) = {g ∈ ωH | g ◦ x = ε ◦ y}, xL(y) = {g ∈ ωH | x ◦ g = y ◦ ε}. Clearly, we have
Lx(x) = Sx and xL(x) = xS.

Proposition 5. If (H, ◦) ∈ T(H) and x, y ∈ H−ωH then the following conditions are equivalent:

1. Lx(y) �= ∅ (resp., xL(y) �= ∅);
2. β(x) = β(y);
3. Ox = Oy (resp., xO = yO).

Proof. 1. ⇔ 2. If Lx(y) �= ∅ then there exists g ∈ ωH such that g ◦ x = ε ◦ y, and so
ωH ◦ x ∩ ωH ◦ y �= ∅. Thus β(x) = β(y). On the other hand, if β(x) = β(y) then
y ∈ β(x) = ωH ◦ x and there exists g ∈ ωH such that y ∈ g ◦ x. By point 1. of Proposition 3,
we have g ◦ x = ε ◦ y and so g ∈ Lx(y).

2. ⇔ 3. Let β(x) = β(y). By (3), ε ◦ y ∈ Ox ∩Oy and Ox = Oy since the orbits are a
partition of H − ωH . Now, let Ox = Oy. There exist g ◦ x ∈ Ox and h ◦ y ∈ Oy such that
g ◦ x = h ◦ y. Consequently, we have ωH ◦ x ∩ωH ◦ y �= ∅ and β(x) = β(y).

Proposition 6. Let (H, ◦) ∈ T(H) and let x, y ∈ H−ωH such that β(x) = β(y). Then, we have

1. |Lx(y)| = |Sx| (resp., |xL(y)| = |xS|);
2. the subgroups Sx and Sy (resp., xS and yS) are conjugates;
3. if Sx or Sy (resp., xS or yS) is a normal subgroup or ωH is abelian, then Sx = Sy (resp.,

xS = yS);
4. |Lx(y)| = |Sx| = |Sy| = |Ly(x)|;
5. |xL(y)| = |xS| = |yS| = |yL(x)|.

Proof. 1. By Proposition 5, the sets Lx(y) and Ly(x) are not empty as β(x) = β(y). Fixed
an element h ∈ Ly(x), we have h ◦ y = ε ◦ x = g ◦ x for all g ∈ Sx. Therefore, (h−1 ◦
g) ◦ x = ε ◦ y and h−1 ◦ g ∈ Lx(y). Clearly, the application ϕh−1 : Sx → Lx(y) such that
ϕh−1(g) = h−1 ◦ g, for all g ∈ Sx, is injective and so |Sx| ≤ |Lx(y)|. On the other hand,
as h ◦ y = ε ◦ x, we obtain ε ◦ y = h−1 ◦ x. Therefore, g ∈ Lx(y) ⇒ g ◦ x = ε ◦ y =
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h−1 ◦ x ⇒ h ◦ g ◦ x = ε ◦ x ⇒ h ◦ g ∈ Sx. Finally, the application φh : Lx(y)→ Sx such that
φh(g) = h ◦ g, for all g ∈ Lx(y), is injective and so |Lx(y)| ≤ |Sx(ωH)|.

2. By Proposition 5, we have Ox = Oy. Thus, the elements ε ◦ x, ε ◦ y of R belong to
the same orbit. Consequently, the stabilizers Sx and Sy are conjugates.

Point 3. is an immediate consequence of 2., and points 4. and 5. follow from 1. and 2.
because conjugated subgroups have the same size.

An immediate consequence of point 3. in Proposition 6 is the following result:

Corollary 2. Let (H, ◦) ∈ T(H) and let x, y be elements of H−ωH such that β(x) = β(y). Then,

1. Sx = {ε} ⇔ Sy = {ε} (resp., xS = {ε} ⇔ yS = {ε});
2. Sx = ωH ⇔ Sy = ωH (resp., xS = ωH ⇔ yS = ωH).

5. Properties of the Hyperproducts x ◦ y ⊆ ωH with x, y ∈ H − ωH

In this section, we prove certain properties of products of elements x, y ∈ H−ωH such
that x ◦ y ⊆ ωH . These properties will be utilized in the next section in the construction of
G-hypergroups of small size. Note that x ◦ y ∩ωH �= ∅ =⇒ x ◦ y ⊆ ωH , for all x, y ∈ H
as ωH is a complete part of H by point 4. of Theorem 1.

Proposition 7. Let (H, ◦) ∈ T(H) and let x, y ∈ H − ωH such that x ◦ y ∩ ωH �= ∅.
If Sx = ωH and Sy ∈ {{ε}, ωH} (alternatively, if yS = ωH and xS ∈ {{ε}, ωH}) then
x ◦ y = y ◦ x = ωH.

Proof. Let Sx = ωH and x ◦ y ∩ ωH �= ∅. By Lemma 1 we have β(x) = ωH ◦ x = ε ◦ x.
Thus,

x ◦ y = ε ◦ (x ◦ y) = (ε ◦ x) ◦ y = (ωH ◦ x) ◦ y = ωH ◦ (x ◦ y) = ωH .

Moreover, we have y ◦ x ⊆ ωH because ωH is a reflexive subhypergroup of (H, ◦).
Now, by hypothesis, two cases are possible: Sy = ωH or Sy = {ε}. If Sy = ωH then
y ◦ x = ωH follows by transposing the previous arguments, and the claim follows. On the
other hand, if Sy = {ε} then, by Lemma 1, we have g ◦ y ∩ g′ ◦ y = ∅ for all {g, g′} ⊆ ωH
and g �= g′. Consequently, if by absurd we suppose that ωH �= y ◦ x then we deduce the
contradiction

β(y) = y ◦ωH = y ◦ (x ◦ y) = (y ◦ x) ◦ y =
⋃

g∈y◦x
g ◦ y �=

⋃
t∈ωH

t ◦ y = ωH ◦ y = β(y).

Therefore, also in this case y ◦ x = ωH and x ◦ y = y ◦ x = ωH . When yS = ωH and
xS ∈ {{ε}, ωH} the claim follows by transposition.

Remark 2. If the heart ωH of a hypergroup (H, ◦) ∈ T(H) is isomorphic to a group of size a prime
number p then Sx ∈ {{ε}, ωH}, for every x ∈ H − ωH. In this case, if x, y ∈ H − ωH, x ◦ y ∩
ωH �= ∅ and at least one of the subgroups Sx, Sy is different from {ε}, then x ◦ y = y ◦ x = ωH.
This fact is not true if Sx = Sy = {ε}. For example, consider the hypergroup represented by the
following table:

◦ ε b c d e f
ε ε b c d e f
b b ε d c e f
c c d ε b f e
d d c b ε f e
e e e f f ε, b c, d
f f f e e c, d ε, b

Here, ωH = {ε, b} ∼= Z2, Sc = Sd = {ε}, and c ◦ d = d ◦ c = {b} �= ωH. Recall that
the 1-hypergroups are a special class of G-hypergroups and their sub-hypergroups are conjugable.
The same property is not true if the heart of a G-hypergroup is not trivial. Indeed, if ε is the
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identity of the heart then {ε} is a non-conjugable sub-hypergroup of H. On the other hand,
there are G-hypergroups that have non-trivial non-conjugable sub-hypergroups. For instance,
the hypergroup of the previous table has five non-trivial sub-hypergroups different from H and ωH,
that is, G1 = {ε, c}, G2 = {ε, d}, G3 = {ε, b, c, d}, K1 = {ε, b, e}, K2 = {ε, b, f }. Note that G1
and G2 are isomorphic to Z2 and are not conjugable.

Proposition 8. Let (H, ◦) ∈ T(H) and let x, y ∈ H −ωH such that ε ∈ x ◦ y. Then, Sx ∪ yS ⊆
x ◦ y.

Proof. We have x ◦ y ⊆ ωH as ε ∈ x ◦ y. If g ∈ Sx then g ◦ x = ε ◦ x and so g ∈ g ◦ ε ⊆
g ◦ (x ◦ y) = (g ◦ x) ◦ y = (ε ◦ x) ◦ y = ε ◦ (x ◦ y) = x ◦ y. Therefore, Sx ⊆ x ◦ y. In the
same way, we prove that yS ⊆ x ◦ y.

An immediate consequence of Propositions 7 and 8 is the following:

Corollary 3. Let (H, ◦) ∈ T(H) and let x, y ∈ H −ωH such that ε ∈ x ◦ y. If ωH is isomorphic
to a group of size a prime number and Sx �= {ε} or yS �= {ε}, then x ◦ y = ωH.

Proposition 9. Let (H, ◦) ∈ T(H) and let x, y ∈ H − ωH such that x ◦ y ⊆ ωH. Then,
|a ◦ b| = |x ◦ y|, for all a ∈ β(x) and b ∈ β(y).

Proof. By hypothesis x ◦ y ⊆ ωH . Moreover, as a ∈ β(x) = ωH ◦ x and b ∈ β(y) = y ◦ωH ,
there exist h, k ∈ ωH such that a ∈ h ◦ x and b ∈ y ◦ k. By Proposition 3, we have ε ◦ a = h ◦ x
and b ◦ ε = y ◦ k. As a ◦ b ⊆ β(x) ◦ β(y) = x ◦ ωH ◦ y ◦ ωH = x ◦ y ◦ ωH = ωH , we have
a ◦ b = ε ◦ a ◦ b ◦ ε = h ◦ x ◦ y ◦ k. Finally, the application f : x ◦ y → a ◦ b such that
f (g) = h ◦ g ◦ k, for all g ∈ x ◦ y, is bijective and so |x ◦ y| = |a ◦ b|.

Lemma 2. Let (H, ◦) ∈ T(H) and let P be a normal subgroup of ωH. Moreover, let a, b ∈ H−ωH
and h ∈ ωH. Then, we have

1. if a ◦ b = h ◦ P, then for all z ∈ β(b) there exists z′ ∈ β(a) such that z′ ◦ z ⊆ P;
2. if |H/β| = 2 and P �= ωH then a ◦ b �= h ◦ P.

Proof. 1. Let a ◦ b = h ◦ P. If z ∈ β(b) = b ◦ωH , there exists k ∈ ωH such that z ∈ b ◦ k. Now,
taken z′ ∈ k−1 ◦ h−1 ◦ a, we have z′ ∈ ωH ◦ a = β(a). Moreover, as P is a normal subgroup
and a ◦ b = h ◦ P, we deduce z′ ◦ z ⊆ k−1 ◦ h−1 ◦ a ◦ b ◦ k ⊆ k−1 ◦ h−1 ◦ h ◦ P ◦ k = P.

2. By absurdity, let a ◦ b = h ◦ P. As |H/β| = 2 and a, b ∈ H − ωH , we have β(a) =
β(b) = H −ωH . Now, let z ∈ H. Clearly, if z ∈ ωH then z−1 ◦ z = {ε} ⊆ P. If z ∈ H −ωH ,
we have z ∈ β(a) and, by point 1., there exists z′ ∈ β(b) such that z′ ◦ z ⊆ P. Hence,
P is a conjugable subhypergroup of (H, ◦) and we have ωH ⊆ P ⊆ ωH ; impossible as
P �= ωH .

Proposition 10. Let (H, ◦) ∈ T(H) such that |H/β| = 2 and |ωH | ≥ 2. We have

1. |a ◦ b| ≥ 2, for all a, b ∈ H −ωH;
2. if there exists x ∈ H − ωH such that Sx = ωH or xS = ωH, then a ◦ b = ωH, for all

a, b ∈ H −ωH;
3. if |ωH | = 2 then a ◦ b = ωH, for all a, b ∈ H −ωH.

Proof. 1. By hypothesis S = {ε} is a proper normal subgroup of ωH and a ◦ b ⊆ ωH , for
all a, b ∈ H − ωH . If there exist a, b ∈ H − ωH such that |a ◦ b| = 1, we can suppose that
a ◦ b = {h}, with h ∈ ωH . Therefore, we have a ◦ b = {h} = h ◦ S, that is impossible by
point 2. of Lemma 2.

2. Let x ∈ H − ωH and Sx = ωH . For reproducibility, there exists y ∈ H − ωH such
that ε ∈ x ◦ y. By Proposition 8, we have x ◦ y = ωH . Consequently, from Proposition 9, we
deduce a ◦ b = ωH , for all a, b ∈ H −ωH . We get the same result if xS = ωH .

3. is an immediate consequence of 1.
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Corollary 4. Let (H, ◦) ∈ T(H) and let x be an element of H − ωH such that |β(x)| < |ωH |.
If (H, ◦) is finite and ωH is a group of size a prime number p then y ◦ g = g ◦ y = β(x), for all
y ∈ β(x) and g ∈ ωH. Moreover, if |H/β| = 2 then x ◦ y = y ◦ x = ωH, for all x, y ∈ H −ωH.

Proof. Since |ωH | is a prime number p and |β(x)| < |ωH |, by Lemma 1, Sx = xS = ωH
and ε ◦ x = x ◦ ε = β(x). Now, if y ∈ β(x), g ∈ ωH and a ∈ g ◦ y (resp., a ∈ y ◦ g), by
Proposition 3, we have ε ◦ a = g ◦ y = β(y) = β(x) (resp., a ◦ ε = y ◦ g = β(y) = β(x)).
Furthermore, by Proposition 10, if |H/β| = 2 and x, y ∈ H − ωH then x ◦ y = y ◦ x
= ωH .

Example 1. In the next table we show a hypergroup (H, ◦) ∈ T(H) such that |H/β| = 2,
ωH ∼= Z3, |H| = |ωH | · |H/β| and all hyperproducts a ◦ b have size 2, for all a, b ∈ H −ωH.

◦ ε b c d e f
ε ε b c d e f
b b c ε f d e
c c ε b e f d
d d f e ε, b ε, c b, c
e e d f ε, c b, c ε, b
f f e d b, c ε, b ε, c

According to Proposition 10, necessarily we have here Sx �= ωH and xS �= ωH, for all
x ∈ H −ωH.

In the previous example, each element of the heart is contained in exactly six hyperproducts
x ◦ y ⊂ ωH. This fact finds full justification in the next proposition. A new notation is entered:
For all x, y ∈ H such that x ◦ y ⊆ ωH and g ∈ ωH, let Nx,y

g = {(a, b) ∈ β(x)× β(y) | g ∈ a ◦ b}.
Clearly, Nx,y

g �= ∅ as β(x) ◦ β(y) = x ◦ωH ◦ y ◦ωH = x ◦ y ◦ωH ◦ωH = ωH .

Proposition 11. Let (H, ◦) ∈ T(H), x, y ∈ H − ωH and x ◦ y ⊆ ωH. If ε ◦ a = {a}, for all
a ∈ β(x) (resp., b ◦ ε = {b}, for all b ∈ β(y)), then |Nx,y

g | is the same for all g ∈ ωH.

Proof. Let (a, b) ∈ Nx,y
g . There exists h ∈ ωH such that {g′} = h ◦ g. Clearly, h ◦ a ⊆

ωH ◦ a = β(a) = β(x), with |h ◦ a| = 1 by Proposition 1. Moreover, if h ◦ a = {a′} then
{g′} = h ◦ g ⊆ h ◦ (a ◦ b) = (h ◦ a) ◦ b = a′ ◦ b and so (a′, b) ∈ Nx,y

g′ . Finally, the application

ϕh : Nx,y
g → Nx,y

g′ such that ϕh(a, b) = (a′, b), with h ◦ a = {a′}, is injective because

h ◦ a1 = h ◦ a2 ⇔ a1 = a2, for all a1, a2 ∈ β(x). Therefore, |Nx,y
g | ≤ |Nx,y

g′ |. Similarly, we

have |Nx,y
g′ | ≤ |N

x,y
g |.

Corollary 5. Let (H, ◦) be a finite hypergroup in T(H), and let x, y ∈ H − ωH such that
x ◦ y ⊆ ωH. If ε ◦ a = {a}, for all a ∈ β(x) (resp., b ◦ ε = {b}, for all b ∈ β(y)), then
|a ◦ b| · |β(x)| · |β(y)| = |ωH | · |Nx,y

g | for all a ∈ β(x), b ∈ β(y) and g ∈ ωH. In particular,
if |ωH | is a prime number then a ◦ b = ωH or |ωH | divides |β(x)| or |β(y)|.

Proof. Let nx,y = |Nx,y
g |. By Proposition 9, |a ◦ b| = |x ◦ y| for all a ∈ β(x) and b ∈ β(y).

Thus, taking a ∈ β(x) and b ∈ β(y), by Proposition 11 and β(x) ◦ β(y) = ωH , we obtain
|a ◦ b| · |β(x)| · |β(y)| = |ωH | · nx,y counting in two different ways. Finally, as a ◦ b ⊆ ωH ,
if |ωH | is a prime number then a ◦ b = ωH or |ωH | divides |β(x)| or |β(y)|.

In Proposition 11, the hypothesis ε ◦ a = {a} for all a ∈ β(x) is essential. Indeed,
consider the following hypergroup:
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◦ ε b c d e f g h
ε ε b c d, e d, e f , g f , g h
b b c ε f , g f , g h h d, e
c c ε b h h d, e d, e f , g
d d, e f , g h ε, b ε, b b, c b, c ε, c
e d, e f , g h ε, b ε, b b, c b, c ε, c
f f , g h d, e b, c b, c ε, c ε, c ε, b
g f , g h d, e b, c b, c ε, c ε, c ε, b
h h d, e f , g ε, c ε, c ε, b ε, b b, c

Here, we have ωH ∼= Z3, |H/β| = 2, |Nd,e
ε | = 16 and |Nd,e

b | = |N
d,e
c | = 17. In this

example, Proposition 11 cannot be applied because ε ◦ d �= {d}.

6. Hypergroups of Type U in T(H)

Among the best-known classes of hypergroups are undoubtedly those of type U, type
C, and the cogroups. A hypergroup of type U on the right is a hypergroup (H, ◦) with
a right scalar identity ε that fulfills the condition a ∈ a ◦ b ⇒ b = ε, for all a, b ∈ H,
see [25–27]. A hypergroup of type C on the right is a hypergroup (H, ◦) of type U on the
right that fulfills the condition a ◦ b ∩ a ◦ c �= ∅ ⇒ ε ◦ b = ε ◦ c, for all a, b, c ∈ H, see [5,6].
A cogroup on the right is a hypergroup of type C on the right such that |a ◦ c| = |b ◦ c|
for all a, b, c ∈ H, see in [2–4]. The transposed of a hypergroup of type U on the right is
a hypergroup of type type U on the left, and analogously for hypergroup of type C and
cogroups. The purpose of this subsection is to characterize the hypergroups in T(H) that
are of type U on the right or cogroups on the right. We have the following result:

Theorem 7. Let (H, ◦) ∈ T(H). Then, (H, ◦) is of type U on the right if and only if xS = {ε}
and x ◦ ε = {x}, for all x ∈ H −ωH.

Proof. If (H, ◦) is of type U on the right, x ∈ H −ωH , and g ∈ xS then x ◦ g = x ◦ ε = {x}
and so we have g = ε. Conversely, let xS = {ε} and x ◦ ε = {x}, for all x ∈ H − ωH . If
a, u are elements of H such that a ∈ a ◦ u then u ∈ ωH . Indeed, if ϕ : H → H/β is the
canonical projection then ϕ(a) = ϕ(a)⊗ ϕ(u) and ϕ(u) = 1H/β. Clearly, if a ∈ ωH then
u = ε because a ∈ a ◦ u and ωH is isomorphic to a group. If a ∈ H − ωH then, using
Proposition 2, we have a ◦ ε = a ◦ u and u ∈ aS = {ε}. Thus, u = ε and so (H, ◦) is of type
U on the right.

We note that if (H, ◦) ∈ T(H) is a 1-hypergroup of type U on the right then ωH = {ε}
and H/{ε} ∼= H as ε is a right scalar identity. In this case H is isomorphic to a group.
Consequently, we have the following result.

Corollary 6. A hypergroup (H, ◦) ∈ T(H) is isomorphic to a group if and only if (H, ◦) is a
1-hypergroup of type U on the right.

In reference to Theorem 7 and the previous corollary, we note that the hypergroup
shown in Example 1 is of type U both on the right and on the left. Indeed, in that hypergroup
we have |ωH | ≥ 2, xS = Sx = {ε} and x ◦ ε = ε ◦ x = {x}, for all x ∈ H − ωH . The next
result provides a sufficient condition for a hypergroup of type U on the right to be also
a cogroup.

Theorem 8. Let (H, ◦) ∈ T(H) be of type U on the right. If Sx = ωH for all x ∈ H −ωH then
(H, ◦) is a cogroup.

Proof. The thesis is obvious if (H, ◦) is a group. Therefore, we suppose that |ωH | ≥ 2.
Let Sx = ωH , for all x ∈ H − ωH . If a ◦ b ∩ a ◦ c �= ∅, we obtain ϕ(b) = ϕ(c) and so
β(b) = β(c). Hence, b ∈ ωH if and only if c ∈ ωH . Now, if b ∈ H − ωH , by point 3. of
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Lemma 1, then ε ◦ b = β(b) = β(c) = ε ◦ c. If b ∈ ωH and a ∈ H − ωH , by point 5. of
Proposition 3, we obtain a ◦ b = a ◦ c and so b ◦ c−1 ∈ aS = {ε} as (H, ◦) is of type U
on the right. Therefore, b = c and ε ◦ b = ε ◦ c. We get the same result if we suppose
that a, b ∈ ωH . Thus, (H, ◦) is of type C on the right. Now, we distinguish two cases to
prove that |b ◦ a| = |c ◦ a|, for all a, b, c ∈ H. We note that, by Theorem 6, we have that
|β(x)| = |ωH |, for all x ∈ H.

If a ∈ ωH then we have |b ◦ a| = |c ◦ a| = 1 by Corollary 1. On the other hand, if
a ∈ H − ωH and x ∈ H then, from point 3. of Lemma 1, we have ε ◦ a = β(a) = a ◦ ωH
and so

x ◦ a = (x ◦ ε) ◦ a = x ◦ (ε ◦ a)

= x ◦ (a ◦ωH)

= (x ◦ a) ◦ωH =
⋃

y∈x◦a
y ◦ωH =

⋃
y∈x◦a

β(y).

Finally, as β(y) = β(z), for all y, z ∈ x ◦ a, we obtain that x ◦ a = β(y), for all
y ∈ x ◦ a. Therefore, |x ◦ a| = |β(y)| = |ωH |. Thus, if a ∈ H − ωH and b, c ∈ H then
|b ◦ a| = |ωH | = |c ◦ a| and the proof is over.

The hypothesis Sx = ωH in Theorem 7 is sufficient but not necessary for a hypergroup
of type U on the right to be a cogroup. Indeed, the following hypergroup is a cogroup on
the right in T(H) but Sx �= ωH , for all x ∈ H −ωH .

◦ ε b c d e f g h i l m n
ε ε b c d e, g f , h e, g f , h i, m l, n i, m l, n
b b c d ε f , h e, g f , h e, g l, n i, m l, n i, m
c c d ε b e, g f , h e, g f , h i, m l, n i, m l, n
d d ε b c f , h e, g f , h e, g l, n i, m l, n i, m
e e f g h i, m l, n i, m l, n ε, c b, d ε, c b, d
f f g h e l, n i, m l, n i, m b, d ε, c b, d ε, c
g g h e f i, m l, n i, m l, n ε, c b, d ε, c b, d
h h e f g l, n i, m l, n i, m b, d ε, c b, d ε, c
i i l m n ε, c b, d ε, c b, d e, g f , h e, g f , h
l l m n i b, d ε, c b, d ε, c f , h e, g f , h e, g
m m n i l ε, c b, d ε, c b, d e, g f , h e, g f , h
n n i l m b, d ε, c b, d ε, c f , h e, g f , h e, g

In this case the heart ωH = {ε, b, c, d} is isomorphic to Z4 and Sx = {ε, c} for all
x ∈ H −ωH .

7. G-Hypergroups of Minimal Size

In [16] the authors classified the 1-hypergroups of size ≤ 6. Hereafter, we classify
the G-hypergroups of size ≤ 5 and |G| ≥ 2, apart of isomorphisms. Recall that ε denotes
the identity of G. Furthermore, let T(G, p, q) be the subclass of T(H) such that ωH = G,
|H| = p and |H/β| = q. With these notations, using the results in Section 3, we classify
the hypergroups of the subclasses T(Zn, p, q) with 2 ≤ n ≤ 4, 3 ≤ p ≤ 5, 2 ≤ q ≤ 4 and
T(Z2 ×Z2, 5, 2).
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Apart of isomorphisms, the classes T(Z2, 3, 2), T(Z2, 4, 3), T(Z3, 4, 2), T(Z3, 5, 2),
T(Z3, 5, 3), T(Z4, 5, 2), and T(Z2 × Z2, 5, 2) consist of only one hypergroup. We list their
tables respecting the order in which the previous classes are written.

H1 :

◦ ε b c
ε ε b c
b b ε c
c c c ε, b

H2 :

◦ ε b c d
ε ε b c d
b b ε c d
c c c d ε, b
d d d ε, b c

H3 :

◦ ε b c d
ε ε b c d
b b c ε d
c c ε b d
d d d d ε, b, c

H4 :

◦ ε b c d e
ε ε b c d, e d, e
b b c ε d, e d, e
c c ε b d, e d, e
d d, e d, e d, e ε, b, c ε, b, c
e d, e d, e d, e ε, b, c ε, b, c

H5 :

◦ ε b c d e
ε ε b c d e
b b c ε d e
c c ε b d e
d d d d e ε, b, c
e e e e ε, b, c d

H6 :

◦ ε b c d e
ε ε b c d e
b b c d ε e
c c d ε b e
d d ε b c e
e e e e e ε, b, c, d

H7 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c d ε b e
d d c b ε e
e e e e e ε, b, c, d

We note that the table of hypergroup in T(Z3, 5, 2) is a consequence of Corollary 4.
The other tables are deduced by considering the quotient group H/β.

Class: T(Z2, 4, 2). Using the Propositions 6 and 10, we have the following four hypergroups,
apart of isomorphisms:

H8 :

◦ ε b c d
ε ε b c d
b b ε d c
c c d ε, b ε, b
d d c ε, b ε, b

H9 :

◦ ε b c d
ε ε b c d
b b ε d c
c c, d c, d ε, b ε, b
d c, d c, d ε, b ε, b

H10 :

◦ ε b c d
ε ε b c, d c, d
b b ε c, d c, d
c c d ε, b ε, b
d d c ε, b ε, b

H11 :

◦ ε b c d
ε ε b c, d c, d
b b ε c, d c, d
c c, d c, d ε, b ε, b
d c, d c, d ε, b ε, b

According to Theorems 7 and 8, and Corollary 6, H8 is a hypergroups of type U on the
right and on the left, H9 is a cogroup on the left and H10 is a cogroup on the right. We note that
if (G, ·) is a group and S is a non-normal subgroup of G then the quotient G/S (resp. S\G) is a
hypergroup with hyperproduct xh⊗ yh = {zh | z ∈ xhyh} (resp. hx⊗ hy = {hz | z ∈ hxhy}).
These hypergroups are called D-hypergroups [3]. The hypergroups H9 and H10 are iso-
morphic to S\D4 and D4/S respectively, being D4 is the dihedral group of size 8 and S is
a non-normal subgroup of size 2. Moreover, H10 can be obtained from the construction
shown in Section 3.1 with G = T ∼= Z2.

Class: T(Z2, 5, 2). The element ε is not a left scalar identity (resp., right scalar identity)
otherwise, by Proposition 1, we have |g ◦ y| = 1, for all g ∈ ωH and y ∈ H − ωH . Con-
sequently, as |ωH | = 2, if y ∈ H − ωH then we have the contradiction 3 = |H − ωH | =
|β(y)| = |ωH ◦ y| = 2. Furthermore, in this case, using the Propositions 6 and 10, we obtain
the following four hypergroups, apart of isomorphisms:
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H12 :

◦ ε b c d e
ε ε b c d, e d, e
b b ε d, e c c
c c d, e ε, b ε, b ε, b
d d, e c ε, b ε, b ε, b
e d, e c ε, b ε, b ε, b

H13 :

◦ ε b c d e
ε ε b c d, e d, e
b b ε d, e c c
c c, d, e c, d, e ε, b ε, b ε, b
d c, d, e c, d, e ε, b ε, b ε, b
e c, d, e c, d, e ε, b ε, b ε, b

H14 :

◦ ε b c d e
ε ε b c, d, e c, d, e c, d, e
b b ε c, d, e c, d, e c, d, e
c c d, e ε, b ε, b ε, b
d d, e c ε, b ε, b ε, b
e d, e c ε, b ε, b ε, b

H15 :

◦ ε b c d e
ε ε b c, d, e c, d, e c, d, e
b b ε c, d, e c, d, e c, d, e
c c, d, e c, d, e ε, b ε, b ε, b
d c, d, e c, d, e ε, b ε, b ε, b
e c, d, e c, d, e ε, b ε, b ε, b

Class: T(Z2, 5, 3). If the β-classes are ωH = {ε, b}, β(c) = {c, d} and β(e) = {e}, the
quotient group H/β returns the partial table:

◦ ε b c d e
ε ε b e
b b ε e
c e e ε, b
d e e ε, b
e e e ε, b ε, b c, d

.

By Propositions 2 and 6, we obtain the following four tables, apart of isomorphisms:

H16 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c d e e ε, b
d d c e e ε, b
e e e ε, b ε, b c, d

H17 :

◦ ε b c d e
ε ε b c d e
b b ε d c e
c c, d c, d e e ε, b
d c, d c, d e e ε, b
e e e ε, b ε, b c, d

H18 :

◦ ε b c d e
ε ε b c, d c, d e
b b ε c, d c, d e
c c d e e ε, b
d d c e e ε, b
e e e ε, b ε, b c, d

H19 :

◦ ε b c d e
ε ε b c, d c, d e
b b ε c, d c, d e
c c, d c, d e e ε, b
d c, d c, d e e ε, b
e e e ε, b ε, b c, d

Class: T(Z2, 5, 4). Apart of isomorphisms, we obtain two hypergroups according to that
H/β is isomorphic to Z4 or Z2 ×Z2.

H20 :

◦ ε b c d e
ε ε b c d e
b b ε c d e
c c c d e ε, b
d d d e ε, b c
e e e ε, b c d

H21 :

◦ ε b c d e
ε ε b c d e
b b ε c d e
c c c ε, b e d
d d d e ε, b c
e e e d c ε, b

Therefore, the following result is obtained:

Theorem 9. There are 21 non-isomorphic G-hypergroup of size ≤ 5 and |ωH | ∈ {2, 3, 4}, as
summarized in Table 1.
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Table 1. The G-hypergroups with |H| ≤ 5.

|H| 3 4 5

|ωH | = 2 H1 H2, H8...11 H12...21
|ωH | = 3 - H3 H4,5
|ωH | = 4 - - H6,7

The G-hypergroups with |ωH | = 1 are 1-hypergroups, which include groups. In [16],
the authors classified the 1-hypergroups of size ≤ 6. In particular, those of size ≤ 5 are 27.
Thus, we have the following result.

Corollary 7. There are 48 non-isomorphic G-hypergroup of size ≤ 5.

Remark 3. In every G-hypergroup (H, ◦) with |H| ≤ 5 all subgroups S ⊂ H satisfy the condition
that ωH ⊆ S or S ⊆ ωH. On the other hand, the hypergroup shown in Remark 2 has order 6
and contains a subgroup S such that neither S ⊆ ωH nor ωH ⊆ S. Therefore, that hypergroup is
minimal with respect to this property.

8. Conclusions and Directions for Further Research

If (H, ◦) is a hypergroup then the kernel ωH of the canonical projection ϕ : H !→ H/β
is a sub-hypergroup called heart [10,12]. If |ωH | = 1 then (H, ◦) is a 1-hypergroup [13,14,16].
However, very little is known about hypergroups that have a heart that does not consist
of either a single element or the entire hypergroup. This paper provides a contribution
to the knowledge of such hypergroups. To achieve this goal, we generalized the notion
of 1-hypergroup to hypergroups whose heart is isomorphic to a group. We analyzed in
detail this class of hypergroups, here called G-hypergroups, with a special emphasis on the
sub-class T(H) of G-hypergroups whose heart is a torsion group. In the future, these results
can hopefully lead to a more general construction than the one presented in Section 3.1,
allowing all G-hypergroups to be constructed.

Table 2. Number of non-isomorphic G-hypergroups with |H| ≤ 5, depending on the size of
their hearts.

|H| 1 2 3 4 5

|ωH | = 1 1 1 2 4 19
|ωH | = 2 - - 1 5 10
|ωH | = 3 - - - 1 2
|ωH | = 4 - - - - 2

Total 1 1 3 10 33

Among our main results, we characterized the G-hypergroups that are also of type
U on the right or cogroups on the right. Furthermore, we enumerated all non-isomorphic
G-hypergroups with |H| ≤ 5. The results achieved in Section 7 describe all G-hypergroups
with |H| ∈ {3, 4, 5} and |ωH | ∈ {2, 3, 4}, and are condensed in Table 2. We note that the
hypergroups H9 and H10 are also cogroups. Cogroups are one of the best known classes of
hypergroups. A most notable problem with them is characterizing cogroups that are also
D-hypergroups, i.e., quotient hypergroups G/S of a group G with respect to a non-normal
subgroup S. This problem was solved in greater generality by L. Haddad and Y. Sureau
in [3,4] by considering the group of permutations σ of H such that σ(x ◦ y) = σ(x) ◦ y,
for all x, y ∈ H. The cogroups H9 and H10 are D-hypergroups isomorphic to S\D4 and
D4/S, respectively, being D4 the dihedral group of size 8 and S a non-normal subgroup of
size 2.

At the conclusion of this work we would like to indicate some possible topics for
further investigation. First of all, it would be interesting to verify whether the cogroups in
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T(H) are also D-hypergroups. A challenging problem related to the research carried out,
e.g., in [16], which is classifying G-hypergroups of size greater than 5.

Finally, we observe that all G-hypergroups (H, ◦) produced by the construction shown
in Section 3.1 are such that the identity of ωH is also identity of (H, ◦), also when ωH is
not a torsion group. At present, we are not able to prove or disprove that this is always
the case. Hence, a problem that remains open after our findings can be formulated as the
following conjecture: if (H, ◦) is a G-hypergroup then the scalar identity of ωH is also the
identity of (H, ◦).
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Abstract: Let n be a fixed natural number. Ternary Menger algebras of rank n, which was established
by the authors, can be regarded as a suitable generalization of ternary semigroups. In this article,
we introduce the notion of v-regular ternary Menger algebras of rank n, which can be considered
as a generalization of regular ternary semigroups. Moreover, we investigate some of its interesting
properties. Based on the concept of n-place functions (n-ary operations), these lead us to construct
ternary Menger algebras of rank n of all full n-place functions. Finally, we study a special class of full
n-place functions, the so-called left translations. In particular, we investigate a relationship between
the concept of full n-place functions and left translations.

Keywords: ternary Menger algebras; v-regular ternary Menger algebras; left translations

1. Introduction

Let X be a nonempty set. A unary function which is defined on X, that is a mapping
from X into X, is called a transformation. Based on the concept of unary functions, the
study of multiplace functions (which are also said to be functions of many elements (or
many variables)) arose in various fields of mathematics. In 1946, Menger, K [1] studied the
algebraic property of the composition of multiplace functions, the so-called a superassociative
law. The algebras of multiplace functions, which are called Menger algebras, are studied in
different ways and other branches of theoretical mathematics (c.f., e.g., [2,3]).

Let G be a nonempty set. An algebraic structure (G, o) is called a Menger algebra of rank
n if the (n + 1)-ary operation o, which is defined on G, satisfies the superassociative law, i.e.,

o(o(x, y1, . . . , yn), z1, . . . , zn) = o(x, o(y1, z1, . . . , zn), . . . , o(yn, z1, . . . , zn)),

for every x, yi, zi ∈ G, i = 1, . . . , n. Moreover, the algebraic structure is an arbitrary
semigroup if n = 1.

The theory of Menger algebras of rank n and its applications are developed by Dudek,
W. A. and Trokhimenko, V. S. who presented the concept of subtraction Menger algebras in
2012 (see [4]). Moreover, they studied more results which are related to subtraction Menger
algebras (see [5]). Up to 2014, they introduced some types of congruences on Menger
algebras of rank n, which can be considered as the generalizations of principal right
and left congruences on ordinary semigroups (see [6]). Furthermore, a generalization of
regular semigroups, which is called v-regular Menger algebras of rank n, and its interesting
properties were established and studied by Trokhimenko V. S. in 1997 (see [7]).

Nowadays, the concept of Menger algebras is extended to study in various research
topics by algebraists and semigroup theorists. Denecke, K. [8] used it to establish the
notion of Menger algebras and clones of terms. Recently, Denecke, K. and Hounnon, H. [9]
presented the notion of partial Menger algebras of terms in 2021. Moreover, Menger algebra

Mathematics 2021, 9, 2691. https://doi.org/10.3390/math9212691 https://www.mdpi.com/journal/mathematics
125



Mathematics 2021, 9, 2691

of terms induced by order-decreasing transformations and some of its properties were
investigated by Wattanatripop, K. and Changphas, T. in 2021 (see [10]). In 2021, Kumduang,
T. and Leeratanavalee, S. [11] introduced the concept of left translations on Menger algebras
of rank n and investigated its isomorphism theorems. By using the concept of Menger
algebras and semihypergroups (or hypersemigroups), they established the so-called Menger
hyperalgebras of rank n, which can be regarded as a canonical generalization of arbitrary
semihypergroups (see [12]).

The set Xn is denoted to the n-th Cartesian product of the set X. Any mapping
f : Xn −→ X is called a full n-place function or an n-ary operation if it is defined for
all elements of X. The set of all full n-place functions (n-ary operations) is denoted by
T (Xn, X). On the based set T (Xn, X), we can consider the Menger’s superposition (i.e.,
mappings which map some such functions into other ones and forms a new function in the
following way) O : T (Xn, X)n+1 −→ T (Xn, X) which is defined by

O( f , g1, . . . , gn)(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))

where f , gi ∈ T (Xn, X), i = 1, . . . , n. Please note that, if n = 1 the Menger’s superposition
can be reduced to the usual composition of functions. Moreover, the based set T (Xn, X)
is closed with respect to the Menger’s superposition O and such a algebraic structure is
called an algebra of n-place functions. Furthermore, the Menger’s superposition O satisfies
the superassociative law which was confirmed in [11]. Similar to the concept of partial
transformation on semigroups, Menger algebras F (Xn, X) of all partial n-place functions
were constructed. Such an algebraic structure is the set F (Xn, X) of all partial n-place
functions together with the Menger’s superposition.

The fundamental algebraic properties of Menger algebras of full n-place functions
were proved by Dicker, R. M. in 1963 (see [13]). Moreover, he proved that a Menger algebra
of rank n is isomorphic to some Menger algebras of full n-place functions, and the particular
case of this fact was received by Whitlock, H. in 1964 [14]. Up to 1988, Länger, H. [15]
presented a characterization of full function algebras. For more information related to the
concept of Menger algebras and full n-place functions, see [16–22].

The notion of ternary semigroups was known to Banach, S. (see [23]) who was credited
with an example of ternary semigroup which does not reduced to a (binary) semigroup.
Similar to the theory of (binary) semigroups, the algebraic properties and applications
of ternary semigroups were investigated by many mathematicians. In 1932, Lehmer,
D. H. [24] presented the definition of ternary semigroups and investigated its algebraic
properties. Subsequently, Von Neumann, J. [25] introduced and studied the notion of
regularities in 1936. In 2008, Dutta, T. K., Kar, S. and Maity, B. K. [26] studied the properties
of (completely, intra) regular ternary semigroups. Up to 2010, Santiago, M. L. and Sri Bala,
S. [27] investigated some interesting properties of regular ternary semigroups. Furthermore,
there were interesting results related to ternary semigroups and regular ternary semigroups
(see [28–31]).

A ternary semigroup (T, �) is a pair of a nonempty set T together with the ternary
operation � : T3 −→ T which satisfies the ternary associative law as follows: for each
a, b, c, d, e ∈ T,

�(�(a, b, c), d, e) = �(a, �(b, c, d), e) = �(a, b, �(c, d, e)).

On the other hand, a ternary semigroup can be considered as a special case of the
so-called n-ary semigroups, which are regarded as a suitable generalization of ternary
semigroups where n = 3 (c.f. [32]). According to the important result, ternary semigroups
as a special case of n-ary semigroups were studied by many authors (see [33–35]).

Moreover, (c.f. [36]) ternary semigroups and ternary algebras are interesting for their
applications in some problems of modern mathematical physics, such as the Nambu me-
chanics which was introduced by Nambu, Y. [37] in 1973. For other physical applications
(see [38–40]). Furthermore, the theory of functional equations and the stability of func-
tional equations in ternary (n-ary) algebraic structures were studied by many authors
(e.g., [41–44]).
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According to the algebraic structure of Menger algebras of rank n, the authors dis-
covered that such an algebraic structure is a generalization of (binary) semigroups, while
it is not a generalization of arbitrary ternary semigroups. Based on this important result,
the notion of ternary Menger algebras of rank n where n is a fixed natural number was first
introduced by the authors in 2021 (see [45]). In particular, the isomorphism theorems
and the reduction of ternary Menger algebras of rank n into Menger algebras of rank n
were investigated. Ternary Menger algebras of rank n can be considered as a canonical
generalization of arbitrary ternary semigroups, and it can be reduced to ternary semigroups
if n = 1.

In this article, we start by recalling some important results on ternary semigroups and
ternary Menger algebras of rank n in Section 2. In Section 3, we introduce the notion of
v-regular ternary Menger algebras of rank n, which can be regarded as a generalization of
regular ternary semigroups. In addition, we investigate some of its algebraic properties. In
Section 4, we establish the concept of left translations on ternary Menger algebras of rank
n. Furthermore, we complete this section by showing a relationship between the set of all
full n-place functions, the set of all left translations and left zero ternary Menger algebras
of rank n. The conclusions and future works are provided in the last section.

2. Preliminaries

In this section, we recall some specific notations and results of ternary semigroups
and ternary Menger algebras of rank n.

Definition 1. Let (T, �) be a ternary semigroup. An element a ∈ T is said to be

(i) an idempotent element if �(a, a, a) = a;
(ii) a regular element if there exist x ∈ T such that �(a, x, a) = a.

Please note that a ternary semigroup (T, �) is called regular if every element of T
is regular.

Definition 2 ([46]). Let (T, �) be a ternary semigroup. An element a ∈ T is inverse to b ∈ T if
�(a, b, a) = a and �(b, a, b) = b.

Definition 3 ([45]). A (2n + 1)-ary groupoid (T, •), i.e., the nonempty based set T together
with a (2n + 1)-ary operation • defined on T, is called a ternary Menger algebra of rank n
if the (2n + 1)-ary operation • satisfies the ternary superassociative law as follows: for every
a, bi, ci, di, ei ∈ T, i = 1, . . . , n,

•(•(a,b1, . . . , bn, c1, . . . , cn), d1, . . . , dn, e1, . . . , en)

= •(a, •(b1, c1, . . . , cn, d1, . . . , dn), . . . , •(bn, c1, . . . , cn, d1, . . . , dn), e1, . . . , en)

= •(a, b1, . . . , bn, •(c1, d1, . . . , dn, e1, . . . , en), . . . , •(cn, d1, . . . , dn, e1, . . . , en)).

According to Definition 3, if n = 1, then we immediately obtain that the ternary
Menger algebra (T, •) is reduced to a ternary semigroup. Here and throughout in this arti-
cle, a sequence of elements b1, . . . , bn of T is denoted by b̄. Moreover, we write a[b̄ c̄] instead
of •(a, b1, . . . , bn, c1, . . . , cn). Moreover, we write a[bn cn] instead of •(a, b, . . . , b︸ ︷︷ ︸

n terms

, c, . . . , c︸ ︷︷ ︸
n terms

).

For convenience, the ternary superassociative law can be written as follows:

a[b̄ c̄][d̄ ē] = a[b1[c̄ d̄] . . . bn[c̄ d̄]ē] = a[b̄c1[d̄ ē] . . . cn[d̄ ē]].

Similar to the concept of ternary subsemigroups, a ternary Menger subalgebra (S, •)
of rank n of the ternary nary Menger algebras (T, •) of rank n is defined analogously. That
is, let S be a nonempty subset of T, the set S under the (2n + 1)-ary operation • is called
ternary Menger subalgebra of rank n if for every x, yi, zi ∈ S, i = 1, . . . , n, then x[ȳ z̄] ∈ S.
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Definition 4. Let 0 be an element of a ternary Menger algebra (T, •) of rank n. Then, 0 is said to
be a left zero element if 0[ȳ z̄] = 0 holds for every yi, zi ∈ T, i = 1, . . . , n.

We call a ternary Menger algebra of rank n with all elements are left zero elements as
a left zero ternary Menger algebra of rank n.

Example 1. Several examples of ternary Menger algebras of rank n are provided.

(i) Consider on the set of all positive real numbers ([45]) R+ together with a (2n + 1)-ary
operation • defined by

x[ȳ z̄] = x · n
√

y1 · · · yn · z1 · · · zn for all x, yi, zi ∈ R+, i = 1, . . . , n

where · is the usual (binary) multiplication. Then, (R+, •) forms a ternary Menger algebra of
rank n.

(ii) Let R be the set of all real numbers ([45]). Define a (2n + 1)-ary operation • on R by

x[ȳ z̄] = x + y1+···+yn+z1+···+zn
n for all x, yi, zi ∈ T, i = 1, . . . , n

where + is the usual (binary) addition. Then, (R, •) is a ternary Menger algebra of rank n.
Furthermore, (R+, •) is a ternary Menger subalgebra of rank n of (R, •).

(iii) Let T be a nonempty set and a (2n + 1)-ary operation • be defined as follows:

x[ȳ z̄] = x for all x, yi, zi ∈ T, i = 1, . . . , n.

Every element of T is left zero. Consequently, (T, •) forms a left zero ternary Menger algebra
of rank n.

(iv) Consider on the set of all real numbers R under one ternary operation " defined as follows:

"(x, y, z) = x− y + z for all x, y, z ∈ R,

where − and + are usual (binary) subtraction and (binary) addition. (R, ") forms a ternary
semigroup. Now, we define a (2n + 1)-ary operation • on the same based set R by

x[ȳ z̄] = "(x, y1, z1) for all a, yi, zi ∈ R, i = 1, . . . , n.

By the ternary associativity of the ternary operation ", the (2n + 1)-ary operation • is ternary
superassociative and hence (R, •) forms a ternary Menger algebra of rank n.

(v) Let (T, �) be an arbitrary ternary semigroup. For each p, q ∈ {1, . . . , n}, we define (2n + 1)-
ary operations •pq on T as follows:

•pq(x, y1, . . . , yn, z1, . . . , zn) = �(x, yp, zq) for all x, yi, zi ∈ T, i = 1, . . . , n.

By the ternary associativity of the ternary operation � on T, the (2n + 1)-ary operation •pq
is ternary superassociative. Therefore, (T, •pq) forms a ternary Menger algebra of rank n for
every p, q ∈ {1, . . . , n}.

Based on the algebraic structures of Menger algebras and ternary Menger algebras,
we obtain an important remark as follows:

Remark 1. Let (G, o) be a Menger algebra of rank n under an (n + 1)-ary operation o defined
by (x, y1, . . . , yn) !→ o(x, y1, . . . , yn) ([45]). Then the based set G together with a (2n + 1)-
ary operation •, which is defined by •(x, y1, . . . , yn, z1, . . . , zn) !→ o(o(x, y1, . . . , yn), z1, . . . , zn),
forms a ternary Menger algebra of rank n, while ternary Menger algebras of rank n do not necessarily
reduce to Menger algebras of rank n.

Example 2. Let Z− be the set of all negative integers. While Z− together with a ternary multipli-
cation •, which is defined by •(x, y, z) = ·(·(x, y), z) where · is the usual (binary) multiplication,
forms a ternary Menger algebra of rank 1, the set Z− under the usual multiplication · is not a
Menger algebra of rank 1.
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According to Definition 3, for each ternary Menger algebra (T, •) of rank n we can
construct a new ternary operation induced by the (2n + 1)-ary operation • defined on T.
Then, the based set T under such a ternary operation forms a ternary semigroup.

Definition 5. Let (T, •) be a ternary Menger algebra of rank n ([45]). A ternary operation
∗ : T3 −→ T is defined on T by

∗ (x, y, z) = x[yn zn] for all x, y, z ∈ T. (1)

Then (T, ∗) forms a ternary semigroup.

According to Definition 5, we call the ternary semigroup (T, ∗) together with the
ternary operation ∗, which is induced by the (2n+ 1)-ary operation • of the ternary Menger
algebra (T, •) of rank n, a diagonal ternary semigroup. For more information, see [45].

3. v-Regular Ternary Menger Algebras

In this section, we present the notion of v-regular ternary Menger algebras of rank n,
which can be considered as a generalization of regular ternary semigroups. Moreover, we
give some of its examples. We complete the section by investigating some of its interesting
algebraic properties.

Definition 6. Let (T, •) be a ternary Menger algebra of rank n. An element (t1, . . . , tn) ∈ Tn

is called

(i) idempotent if it satisfies the following equation

ti[t̄ t̄] = ti for all i = 1, . . . , n;

(ii) v-regular if there exists x ∈ T such that

ti[xn t̄] = ti for all i = 1, . . . , n.

A ternary Menger algebra (T, •) of rank n is called v-regular if every element (t1, . . . , tn) ∈
Tn is v-regular.

Definition 7. Let x be an element of a ternary Menger algebra (T, •) of rank n and (t1, . . . , tn) ∈
Tn. Then x is called an inverse of (t1, . . . , tn) ∈ Tn if it satisfies the following equations:

x[t̄ xn] = x and ti[xn t̄] = ti for all i = 1, . . . , n.

Please note that if n = 1, then we immediately obtain that Definitions 1 and 6 are the
same thing. Similarly, Definitions 2 and 7 are the same in case n = 1.

Example 3. (i) Consider on the set of all real numbers R together with a (2n + 1)-ary operation
• defined by the following:

x[ȳ z̄] = x for all x, yi, zi ∈ R, i = 1, . . . , n.

(R, •) forms a v-regular ternary Menger algebra of rank n. Furthermore, each element x ∈ R

is an inverse element of each element (r1, . . . , rn) of Rn. All elements (r1, . . . , rn) ∈ Rn are
idempotent.

(ii) Let N+ be the set of all nonzero natural numbers. Define a (2n + 1)-ary operation • on the
set N+ by

x[ȳ z̄] = min{x, y1, . . . , yn, z1, . . . , zn} for all x, yi, zi ∈ N+, i = 1, . . . , n.

It implies that (N+, •) forms a ternary Menger algebra of rank n. Moreover, for every element
(t, t, . . . , t) ∈ Nn

+ there exists element x ∈ N+ such that t[xn tn] = t for all (t, t, . . . , t) ∈ Nn
+.

Hence, (N+, •) forms a ternary Menger algebra of rank n with all elements (t, t, . . . , t) ∈ Nn
+

are v-regular elements and also idempotent elements.
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Proposition 1. Let (T, •) be a v-regular ternary Menger algebra of rank n. Then, a diagonal
ternary semigroup (T, ∗) of (T, •) forms a regular ternary semigroup.

Proof. Firstly, we assume that (T, ∗) is a diagonal ternary semigroup of a v-regular ternary
Menger algebra (T, •) of rank n, where the ternary operation ∗ on T is defined as in (1), i.e.,

∗(x, y, z) = x[yn zn] for all x, y, z ∈ T.

Lastly, let t ∈ T. So, we immediately get (t, t, . . . , t) ∈ Tn. Since (T, •) is v-regular, we
obtain that the element (t, t, . . . , t) of Tn is a v-regular element, which yield that there exists
x ∈ T such that

t[xn tn] = t for all (t, t, . . . , t) ∈ Tn.

By the definition of the ternary operation ∗ on T and the above equality, we have

∗(t, x, t) = t[xn tn] = t.

It implies that for every t ∈ T there exists x ∈ T such that ∗(t, x, t) = t. Consequently,
(T, ∗) forms a regular ternary semigroup.

Proposition 2. Let (T, •) be a ternary Menger algebra of rank n. Then, every v-regular element of
(T, •) has an inverse element.

Proof. Let (t1, . . . , tn) be a v-regular element of a ternary Menger algebra (T, •) of rank n.
Hence, there is x ∈ T such that

o(ti, x, . . . , x, t1, . . . tn) = ti for all i = 1, . . . , n. (2)

Firstly, we choose the element y = o(x, t1, . . . , tn, x, . . . , x) ∈ T. Next, we will
show that y is an inverse element of the element (t1, . . . , tn) ∈ Tn by showing that
o(y, t1, . . . , tn, y, . . . , y) = y and o(ti, y, . . . , y, t1, . . . , tn) = ti for all i = 1, . . . , n. By the
ternary superassociative law of the (2n + 1)-ary operation • on T and the Equation (2),
we have

o(y, t1, . . . , tn,y, . . . , y) = o(o(x, t1, . . . , tn, x, . . . , x), t1, . . . , tn, o(x, t1, . . . , tn, x, . . . , x)

, . . . , o(x, t1, . . . , tn, x, . . . , x))

= o(x, o(t1, x, . . . , x, t1, . . . , tn), . . . , o(tn, x, . . . , x, t1, . . . , tn),

o(x, t1, . . . , tn, x, . . . , x), . . . , o(x, t1, . . . , tn, x, . . . , x))

= o(x, t1, . . . , tn, o(x, t1, . . . , tn, x, . . . , x), . . . , o(x, t1, . . . , tn, x, . . . , x))

= o(x, o(t1, x, . . . , x, t1, . . . , tn), . . . , o(tn, x, . . . , x, t1, . . . , tn), x, . . . , x)

= o(x, t1, . . . , tn, x, . . . , x)

= y.

Again, by the ternary superassociative law of the (2n + 1)-ary operation • on T and
the Equation (2), we obtain that

o(ti, y, . . . , y, t1, . . . , tn) = o(ti, o(x, t1, . . . , tn, x, . . . , x), . . . , o(x, t1, . . . , tn, x, . . . , x)

, t1, . . . , tn)

= o(o(ti, x, . . . , x, t1, . . . , tn), x, . . . , x, t1, . . . , tn)

= o(ti, x, . . . , x, t1, . . . , tn)

= ti,

hold for all i = 1, . . . , n. Therefore, the element y = o(x, t1, . . . , tn, x, . . . , x) ∈ T is an
inverse element of the element (t1, . . . , tn) ∈ Tn.
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Theorem 1. For every ternary Menger algebra (T, •) of rank n, the following statement (a)
implies (b).

(a) Every element of (T, •) is an inverse element for each element of Tn.
(b) For all x, y, yi ∈ T, i = 1, . . . , n

x[yn yn] = y[xn xn] =⇒ x = y and (3)

yi[xn ȳ] = yi i = 1, . . . , n. (4)

Proof. Let (a) be satisfied. By definition 7, we immediately obtain that (4) holds. Now, we
assume that x[yn yn] = y[xn xn] for all x, y ∈ T. Next, we shall show that x = y. By our
assumption, we have

x[yn yn][(y[xn xn])n (y[xn xn])n] = y[xn xn][(x[yn yn])n (x[yn yn])n].

Since (a) holds, we obtain that elements x and y of T are inverse elements of elements
(y[yn xn], . . . , y[yn xn]) and (y[xn xn], . . . , y[xn xn]) of Tn, respectively. So, we have

x[yn yn][(y[xn xn])n (y[xn xn])n] = x[yn yn][(y[xn xn])n yn][xn xn]

= x[yn (y[(y[xn xn])n yn])n][xn xn]

= x[yn yn][xn xn]

= x[(y[yn xn])n xn]

= x.

Again, since (a) holds, elements x and y of T are inverse elements of elements
(x[yn yn], . . . , x[yn yn]) and (x[xn yn], . . . , x[xn yn]) of Tn, respectively. Now we consider

y[xn xn][(x[yn yn])n (x[yn yn])n] = y[xn xn][(x[yn yn)n xn][yn yn]

= y[xn (x[(x[yn yn])n xn])n][yn yn]

= y[xn xn][yn yn]

= y[(x[xn yn])n yn]

= y.

Consequently, x = y and hence the statement (3) holds.

For illustrating Theorem 1, the following examples are provided.

Example 4. (i) Example 1 (iii) and Example 3 (i) satisfy Theorem 1.
(ii) Every left zero ternary Menger algebra of rank n satisfies Theorem 1.
(iii) Let (T, �) be a left zero ternary semigroup, i.e., T has the property �(x, y, z) = x for all

x, y, z ∈ T. For each j ∈ {1, . . . , n}, we define (2n + 1)-ary operations •j on T by

•j(x, y1, . . . , yn, z1, . . . , zn) = �(x, yj, zj) for all x, yi, zi ∈ T, i = 1, . . . , n.

By the ternary associativity of the ternary operation � on T, the (2n + 1)-ary operation •j is
ternary superassociative. Therefore, (T, •j) forms a ternary Menger algebra of rank n for every
j ∈ {1, . . . , n}. Moreover, (T, •j) satisfies Theorem 1 for every j ∈ {1, . . . , n}, it follows from
the definition of left zero ternary semigroups.

Theorem 2. Let (T, •) be a v-regular ternary Menger algebra of rank n. Then, every element of
(T, •) has exactly one inverse element if and only if

ti[xn t̄] = ti and ti[yn t̄] = ti, i = 1, . . . , n =⇒ x[t̄ xn] = y[t̄ yn],

for all x, y, ti ∈ T, i = 1, . . . , n.
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Proof. (⇒) Firstly, we assume that each element (t1, . . . , tn) of a v-regular Menger algebra
(T, •) of rank n has exactly one inverse element. Now, let x, y, ti ∈ T, i = 1, . . . , n be
such that

ti[xn t̄] = ti and ti[yn t̄] = ti for all i = 1, . . . , n.

According to the proof of Proposition 2, we obtain that x[t̄ xn] and y[t̄ yn] are inverse
elements of the element (t1, . . . , tn) of Tn. By our assumption, we have x[t̄ xn] = y[t̄ yn].

(⇐) Suppose that the given condition holds. Now we assume that x and y are inverse
elements of an element (t1, . . . , tn) of Tn. We will show that x = y. By Definition 7, we
immediately obtain that the following equations are true:

ti[xn t̄] = ti and ti[yn t̄] = ti for all i = 1, . . . , n.

It implies that x[t̄ xn] = y[t̄ yn], which follows from the given condition. Again, by
Definition 7, we immediately obtain that

x[t̄ xn] = x and y[t̄ yn] = y.

Consequently, x = y and hence (T, •) has exactly one inverse element. This completes
the proof.

4. Left Translation on Ternary Menger Algebras

In this section, we introduce the notion of the ternary Menger algebras of all full n-
place functions and its (2n + 1)-ary operation which satisfies the ternary superassociative
law. Moreover, we present the concept of left translations on ternary Menger algebras of
rank n and investigate some of its interesting properties. Furthermore, the relationship
between the previous concepts is investigated.

Let X be a nonempty set. Now, we define the following (2n + 1)-ary operation O∗ on
the set T (Xn, X) of all full n-place functions or n-ary operations by

O∗( f , ḡ, h̄)(x̄) = f (g1(h1(x̄), . . . , hn(x̄)), . . . , gn(h1(x̄), . . . , hn(x̄))) (5)

for all xi ∈ X, i = 1, . . . , n. We call the (2n + 1)-ary operation O∗ on T (Xn, X), a ternary
Menger’s superposition.

Based on the definition of the ternary Menger’s superposition, we can remark that the
ternary Menger’s superposition can be reduced to the ternary composition of functions, if
n = 1, i.e., the Equation (5) is reduced to the following equation:

O∗( f , g1, h1)(x1) = f (g1(h1(x1))). (6)

According to the definition of the ternary Menger’s superposition, we obtain the
following important result.

Theorem 3. Let X be a nonempty set. The ternary Menger’s superposition O∗ of full n-place
functions, which are defined on X, is ternary superassociative, i.e., for each λ, αi, βi, γi, δi ∈
T (Xn, X), i = 1, . . . , n,

O∗(O∗(λ, ᾱ, β̄), γ̄, δ̄) = O∗(λ,O∗(α1, β̄, γ̄), . . . ,O∗(αn, β̄, γ̄), δ̄)

= O∗(λ, ᾱ,O∗(β1, γ̄, δ̄), . . . ,O∗(βn, γ̄, δ̄)).
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Proof. O∗ is a (2n + 1)-ary operation on the set T (Xn, X). Indeed, for each λ, αi, βi, γi, δi ∈
T (Xn, X), i = 1, . . . , n, we have

O∗(O∗(λ, ᾱ, β̄), γ̄, δ̄)(x̄) = O∗(λ, ᾱ, β̄)(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))

= λ(α1(β1(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄))), ..., βn(γ1(δ1(x̄), ..., δn(x̄))

, ..., γn(δ1(x̄), ..., δn(x̄)))), ..., αn(β1(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))

, ..., βn(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))))

= λ(O∗(α1, β̄, γ̄)(δ1(x̄), ..., δn(x̄)), ...,O∗(αn, β̄, γ̄)(δ1(x̄), ..., δn(x̄)))

= O∗(λ,O∗(α1, β̄, γ̄), ...,O∗(αn, β̄, γ̄), δ̄)(x̄) and

O∗(O∗(λ, ᾱ, β̄), γ̄, δ̄)(x̄) = O∗(λ, ᾱ, β̄)(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))

= λ(α1(β1(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄))), ..., βn(γ1(δ1(x̄), ..., δn(x̄))

, ..., γn(δ1(x̄), ..., δn(x̄)))), ..., αn(β1(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))

, ..., βn(γ1(δ1(x̄), ..., δn(x̄)), ..., γn(δ1(x̄), ..., δn(x̄)))))

= λ(α1(O∗(β1, γ̄, δ̄)(x̄), ...,O∗(βn, γ̄, δ̄)(x̄)), ..., αn(O∗(β1, γ̄, δ̄)(x̄)

, ...,O∗(βn, γ̄, δ̄)(x̄)))

= O∗(λ, ᾱ,O∗(β1, γ̄, δ̄), ...,O∗(βn, γ̄, δ̄))(x̄).

Consequently, the ternary Menger’s superposition O∗ of full n-place functions is
ternary superassociative.

By Theorem 3, we immediately obtain the following important corollary.

Corollary 1. Let X be a nonempty set. Then, T (Xn, X) forms a ternary Menger algebra of rank n
under the ternary Menger’s superposition O∗.

According to Corollary 1, a ternary Menger algebra of all full n-place functions (n-ary
operations) is referred to the pair of the set of all n-place functions (n-ary operations), which
are defined on a nonempty set X, and the ternary Menger’s superpositionO∗ of full n-place
functions (n-ary operations) satisfying the ternary superassociative law. For convenience,
a ternary Menger algebra of full n-place functions (n-ary operations) is referred to each
ternary Menger subalgebra of (T (Xn, X),O∗).

Now, we introduce an important class of the set of all full n-place functions T (Xn, X)
defined on a nonempty set X.

Definition 8. Let (T, •) be a ternary Menger algebra of rank n. A mapping λ : Tn −→ T is called
a left translation of Tn if it satisfies the following equation:

λ(x1[ȳ z̄], . . . , xn[ȳ z̄]) = λ(x̄)[ȳ z̄] for all xi, yi, zi ∈ T, i = 1, . . . , n.

Please note that Definition 8 can be considered as a natural generalization concept of
left translations in ternary semigroups by setting n = 1, i.e.,

λ(•(x, y, z)) = •(λ(x), y, z)

holds for every element x, y, z of the ternary semigroup (T, •).

Example 5. Let (T, •) a Ternary Menger algebra of rank n. The projection function πj is defined
on the n-th Cartesian product Tn by,

πj(x1, . . . , xj, . . . , xn) = xj for all 1 ≤ j ≤ n.

Indeed, for each x1, . . . , xj, . . . , xn ∈ T we have

πj(x1[ȳ z̄], . . . , xj[ȳ z̄], . . . , xn[ȳ z̄]) = xj[ȳ z̄] = πj(x1, . . . , xj, . . . , xn)[ȳ z̄].

It implies that the projection πj is a left translation.
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Lemma 1. Let (T, •) be a ternary Menger algebra of rank n and

Λ(T) = {λ : Tn −→ T | λ is a left translation of Tn}.

Then, Λ(T) is a ternary Menger algebra of rank n under the ternary Menger’s superposi-
tion O∗.

Proof. It is clearly that Λ(T) �= ∅. Let an n-place function λ : Tn −→ T be defined by

λ(x1, . . . , xn) = xn for all xi ∈ T, i = 1, . . . , n.

So, we obtain that λ(x1[ȳ z̄], . . . , xn[ȳ z̄]) = xn[ȳ z̄] = λ(x̄)[ȳ z̄] and hence Λ(T) �= ∅.
Now, let λ, αi, βi ∈ Λ(T), i = 1, . . . , n. Indeed, for each xi, yi, zi ∈ T, i = 1, . . . , n we get

O∗(λ, ᾱ, β̄)(x1[ȳ z̄], . . . , xn[ȳ z̄])

= λ(α1(β1(x1[ȳ z̄], . . . , xn[ȳ z̄]), . . . , βn(x1[ȳ z̄], . . . , xn[ȳ z̄]))

, . . . , αn(β1(x1[ȳ z̄], . . . , xn[ȳ z̄]), . . . , βn(x1[ȳ z̄], . . . , xn[ȳ z̄])))

= λ(α1(β1(x̄)[ȳ z̄], . . . , βn(x̄)[ȳ z̄]), . . . , αn(β1(x̄)[ȳ z̄], . . . , βn(x̄)[ȳ z̄]))

= λ(α1(β1(x̄), . . . , βn(x̄))[ȳ z̄], . . . , αn(β1(x̄), . . . , βn(x̄))[ȳ z̄])

= λ(α1(β1(x̄), . . . , βn(x̄)), . . . , αn(β1(x̄), . . . , βn(x̄)))[ȳ z̄]

= O∗(λ, ᾱ, β̄)(x̄)[ȳ z̄].

It implies that O∗(λ, ᾱ, β̄) ∈ Λ(T), and hence, the ternary Menger’s superposition O∗
is a (2n + 1)-ary operation on Λ(T). By Theorem 3, we conclude that (Λ(T),O∗) forms a
ternary Menger algebra of rank n.

By the definition of the set of all left translations Λ(T) defined on a ternary Menger
algebra (T, •) of rank n, we obtain that Λ(T) ⊆ T (Tn, T). Moreover, we immediately
obtain the following corollary.

Corollary 2. Let (T, •) be a ternary Menger algebra of rank n. Then, the algebraic structure
(Λ(T),O∗) is a ternary Menger subalgebra of rank n of the ternary Menger algebra of all full
n-place functions (T (Tn, T),O∗).

Now, we give a relationship between the set of all left translations Λ(T) defined on a
ternary Menger algebra (T, •) of rank n and the set of all full n-place functions T (Tn, T)
by using the concept of left zero ternary Menger algebras of rank n.

Proposition 3. A left translation λ maps a left zero element 0 of a ternary Menger algebra of rank
n, if it exists, to a left zero element, i.e.,

λ(0n)[ȳ z̄] = λ(0n)

holds for all yi, zi ∈ T, i = 1, . . . , n.

Proof. Assume that 0 is a left zero element of a ternary Menger algebra (T, •) of rank n.
By our assumption, we already have 0[ȳ z̄] = 0 for all yi, zi ∈ T, i = 1, . . . , n. Now, let λ be
a left translation. Indeed, for each yi, zi ∈ T, i = 1, . . . , n we get

λ(0n)[x̄ z̄] = λ(0[ȳ z̄], . . . , 0[ȳ z̄]) = λ(0n).

This completes the proof.

Theorem 4. Let (T, •) be a ternary Menger algebra of rank n. Λ(T) = T (Tn, T) if and only if T
is a left zero ternary Menger algebra of rank n.

Proof. (⇒) Suppose that Λ(T) = T (Tn, T). Now, we assume that there are x, yi, zi ∈ T
such that x[ȳ z̄] �= x. We can choose an n-place function λ ∈ T (Tn, T) such that
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λ(xn) = x and λ(x[ȳ z̄], . . . , x[ȳ z̄]) = x.

By our assumption, λ is also a left translation of Tn. It implies that

x = λ(x[ȳ z̄], . . . , x[ȳ z̄]) = λ(xn)[ȳ z̄] = x[ȳ z̄].

It is a contradiction with the assumption that x[ȳ z̄] �= x. So, we have x[ȳ z̄] = x for all
x, yi, zi ∈ T. Therefore, (T, •) forms a left zero ternary Menger algebra of rank n.

(⇐) We assume that T is a left zero ternary Menger algebra of rank n. Note that
Λ(T) ⊆ T (Tn, T). We only show that T (Tn, T) ⊆ Λ(T). By our assumption, we already
have x[ȳ z̄] = x for all x, yi, zi ∈ T, i = 1, . . . , n. Now, let λ ∈ T (Tn, T) and xi, yi, zi ∈ T, i =
1, . . . , n. Then

λ(x1[ȳ z̄], . . . , xn[ȳ z̄]) = λ(x1, . . . , xn) = λ(x1, . . . , xn)[ȳ z̄].

It implies that λ(x1[ȳ z̄], . . . , xn[ȳ z̄]) = λ(x̄)[ȳ z̄] and hence λ is a left translation of Tn

for every λ ∈ T (Tn, T). Thus λ ∈ Λ(T) and this shows that T (Tn, T) ⊆ Λ(T).

5. Conclusions and Future Works

In this article, there are two important purposes. Firstly, we introduced the notion
of classical algebraic structure the so-called v-regular ternary Menger algebras of rank n,
which can be considered as a generalization of regular ternary semigroups, and investigated
its interesting properties. To receive the results, the significant knowledge and basic results
of ternary semigroups and ternary Menger algebras of rank n are presented in Section 2.
Lastly, we used the classical idea on the theory of semigroups the so-called left translations
to construct a left translation on ternary Menger algebras of rank n. Moreover, some
algebraic properties are investigated.

Based on the results of the article, there are interesting research questions to study in
the future works. Can we extend some results on regular ternary semigroups, completely
regular ternary semigroups and intraregular ternary semigroups, which were already
presented in [26], to study in v-regular ternary Menger algebras of rank n? Furthermore,
the following problems are interesting to study:

(i) Defining a right translation and an inner-left (right) translation for ternary Menger
algebras of rank n. Investigating a characterization of ternary Menger algebras of rank
n via this concept.

(ii) Studying some theories of (ideal) extensions of ternary Menger algebras of rank n via
translation as we defined in this article.
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Abstract: We study certain physically-relevant subgeometries of binary symplectic polar spaces
W(2N − 1, 2) of small rank N, when the points of these spaces canonically encode N-qubit ob-
servables. Key characteristics of a subspace of such a space W(2N − 1, 2) are: the number of its
negative lines, the distribution of types of observables, the character of the geometric hyperplane the
subspace shares with the distinguished (non-singular) quadric of W(2N − 1, 2) and the structure of
its Veldkamp space. In particular, we classify and count polar subspaces of W(2N − 1, 2) whose rank
is N − 1. W(3, 2) features three negative lines of the same type and its W(1, 2)’s are of five different
types. W(5, 2) is endowed with 90 negative lines of two types and its W(3, 2)’s split into 13 types. A
total of 279 out of 480 W(3, 2)’s with three negative lines are composite, i.e., they all originate from
the two-qubit W(3, 2). Given a three-qubit W(3, 2) and any of its geometric hyperplanes, there are
three other W(3, 2)’s possessing the same hyperplane. The same holds if a geometric hyperplane is
replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of W(5, 2) is found to host particular
sets of seven W(3, 2)’s, each of them being uniquely tied to a Conwell heptad with respect to the
quadric. There is also a particular type of W(3, 2)’s, a representative of which features a point each
line through which is negative. Finally, W(7, 2) is found to possess 1908 negative lines of five types
and its W(5, 2)’s fall into as many as 29 types. A total of 1524 out of 1560 W(5, 2)’s with 90 negative
lines originate from the three-qubit W(5, 2). Remarkably, the difference in the number of negative
lines for any two distinct types of four-qubit W(5, 2)’s is a multiple of four.

Keywords: N-qubit observables; binary symplectic polar spaces; distinguished sets of doilies; geo-
metric hyperplanes; Veldkamp lines

1. Introduction

Some fifteen years ago, it was discovered (see, e.g., [1–4]) that there exists a deep con-
nection between the structure of the N-qubit Pauli group and that of the binary symplectic
polar space of rank N, W(2N− 1, 2), where commutation relations between elements of the
group are encoded in collinearity relations between points of W(2N− 1, 2). This connection
has subsequently been used to obtain a deeper insight into, for example, finite geometric
nature of observable-based proofs of quantum contextuality (for a recent review, see [5]),
properties of certain black-hole entropy formulas [6] and the so-called black-hole/qubit
correspondence [7], leading to a finite-geometric underpinning of four distinct Hitchin’s
invariants and the Cartan invariant of form theories of gravity [8] and even to an intrigu-
ing finite-geometric toy model of space-time [9]. This group-geometric connection was
further strengthened by making use of the concept of geometric hyperplane and that of the
Veldkamp space of W(2N − 1, 2) [10]. As per quantum contextuality, famous two-qubit
Mermin–Peres magic squares were found to be isomorphic to a special class of geometric
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hyperplanes of W(3, 2) called grids [11], whereas three-qubit Mermin pentagrams were
found to have their natural settings in the magic Veldkamp line of W(5, 2) [12], being
also isomorphic—under the Grassmannian correspondence of type Gr(2, 4)—to ovoids of
W(3, 2) [13]. Concerning the black-hole/qubit correspondence, here a key role is played
by the geometric hyperplane isomorphic to an elliptic quadric of W(5, 2). Interestingly,
form theories of gravity seem to indicate that a certain part of the magic Veldkamp line
in the four-qubit symplectic polar space, W(7, 2), and the associated extended geometric
hyperplanes are of physical relevance as well.

From the preceding paragraph it is obvious that revealing finer traits of the structure
of binary symplectic polar spaces of small rank can be vital for further physical applications
of these spaces. Having this in view, we will focus on sets of W(2N − 3, 2)’s located in
W(2N − 1, 2), for N = 2, 3, 4, providing their comprehensive observable-based taxonomy.
Key parameters of our classification of such subspaces of W(2N− 1, 2) will be: the number
of negative lines they contain (which is also an important parameter when it comes to
quantum contextuality), the distribution of different types of observables they feature, the
character of the geometric hyperplane a subspace of a given type shares with the distin-
guished (non-singular) quadric of W(2N − 1, 2) and, in the case of refined ‘decomposition’
of three-qubit W(3, 2)’s, also the very structure of their Veldkamp lines.

The paper is organized as follows. Section 2 provides the reader with the necessary
finite-geometric background and notation. Section 3 deals with W(3, 2) and the hierarchy
of its triads. Section 4 addresses the three-qubit W(5, 2) and its W(3, 2)’s; here we classify
W(3, 2)’s in two distinct ways and illustrate the fact that there are four W(3, 2)’s sharing
a geometric hyperplane, or a specific tricentric triad. Section 5 focuses on prominent
septuplets of W(3, 2)’s that are closely related to Conwell heptads with respect to a hyper-
bolic quadric of W(5, 2). Section 6 classifies W(5, 2)’s living in the four-qubit W(7, 2) and
furnishes a couple of examples of their composite types. Finally, Section 7 is devoted to
concluding remarks.

2. Finite Geometry Background

Given a d-dimensional projective space PG(d, 2) over GF(2), a polar space P in this
projective space consists of the projective subspaces that are totally isotropic/singular with
respect to a given non-singular bilinear form; PG(d, 2) is called the ambient projective space
of P . A projective subspace of maximal dimension in P is called a generator; all generators
have the same (projective) dimension r− 1. One calls r the rank of the polar space.

Polar spaces of relevance for us are of three types (see, for example, [14,15]): symplectic,
hyperbolic and elliptic. The symplectic polar space W(2N − 1, 2), N ≥ 1, consists of all the
points of PG(2N − 1, 2), {(x1, x2, . . . , x2N) : xj ∈ {0, 1}, j ∈ {1, 2, . . . , 2N}}\ {(0, 0, . . . , 0)},
together with the totally isotropic subspaces with respect to the standard symplectic form

σ(x, y) = x1yN+1 − xN+1y1 + x2yN+2 − xN+2y2 + · · ·+ xNy2N − x2NyN . (1)

This space features
|W|p = 4N − 1 (2)

points and
|W|g = (2 + 1)(22 + 1) · · · (2N + 1) (3)

generators. The hyperbolic orthogonal polar space Q+(2N − 1, 2), N ≥ 1, is formed by all
the subspaces of PG(2N − 1, 2) that lie on a given non-singular hyperbolic quadric, with
the standard equation

x1xN+1 + x2xN+2 . . . + xN x2N = 0. (4)

Each Q+(2N − 1, 2) contains

|Q+|p = (2N−1 + 1)(2N − 1) (5)
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points and there are

|W|Q+ = |Q+|p + 1 = (2N−1 + 1)(2N − 1) + 1 (6)

copies of them in W(2N − 1, 2). Finally, the elliptic orthogonal polar space Q−(2N − 1, 2),
N ≥ 2, comprises all points and subspaces of PG(2N− 1, 2) satisfying the standard equation

f (x1, xN+1) + x2xN+2 + · · ·+ xN x2N = 0, (7)

where f is an irreducible quadratic polynomial over GF(2). Each Q−(2N − 1, 2) contains

|Q−|p = (2N−1 − 1)(2N + 1) (8)

points and there are

|W|Q− = |Q−|p + 1 = (2N−1 − 1)(2N + 1) + 1 (9)

copies of them in W(2N − 1, 2). For both symplectic and hyperbolic polar spaces r = N,
whereas for the elliptic one r = N − 1. The smallest non-trivial symplectic polar space is
the N = 2 one, W(3, 2), often referred to as the doily. It features 15 points (see Equation (2))
and the same number of lines (that are also its generators, see Equation (3)), with three
points per line and three lines through a point; it is a self-dual 153-configuration and the
only one out of 245,342 such configurations that is triangle-free, being, in fact, isomorphic
to the generalized quadrangle of order two (GQ(2, 2)). This symplectic polar space features
ten Q+(3, 2)’s (by Equation (6)) and six Q−(3, 2)’s (by Equation (9)). A Q+(3, 2) contains
nine points and six lines forming a 3× 3 grid, so it is also called a grid. A Q−(3, 2) features
five pairwise non-collinear points, hence it is an ovoid. A triple of mutually non-collinear
points of W(3, 2) is called a triad and a point collinear with all the three points of a triad is
called a center of the triad; W(3, 2) contains 60 unicentric and 20 tricentric triads.

The N-qubit observables we will be dealing with belong to the set

SN = {G1 ⊗ G2 ⊗ · · · ⊗ GN : Gj ∈ {I, X, Y, Z}, j ∈ {1, 2, . . . , N}}\{IN} (10)

where IN ≡ I(1) ⊗ I(2) ⊗ . . .⊗ I(N),

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
(11)

are the Pauli matrices, I is the identity matrix and ‘⊗’ stands for the tensor product of
matrices. SN , whose elements are simply those of the N-qubit Pauli group if the global
phase is disregarded, features two kinds of observables, namely symmetric (i.e., observables
featuring an even number of Y’s) and skew-symmetric; the number of symmetric observables
is (2N−1 + 1)(2N − 1). We shall further employ a finer classification where an observable
having N − 1, N − 2, N − 3, . . . I’s will be, respectively, of type A, B, C, . . . ; also, whenever
it is clear from the context, G1 ⊗ G2 ⊗ · · · ⊗ GN will be short-handed to G1G2 · · ·GN .

For a particular value of N, the 4N − 1 elements of SN can be bijectively identified
with the same number of points of W(2N − 1, 2) in such a way that the images of two
commuting elements lie on the same line of this polar space, and generators of W(2N− 1, 2)
correspond to maximal sets of mutually commuting elements. If we take the symplectic
form defined by Equation (1), then this bijection acquires the form

Gj ↔ (xj, xj+N), j ∈ {1, 2, . . . , N}, (12)

assuming that
I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), and Z ↔ (1, 0). (13)
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Employing the above-introduced bijection (for more details see, e.g., [12]), it can be
shown that given an observable O, the set of symmetric observables commuting with O
together with the set of skew-symmetric observables not commuting with O will lie on
a certain non-degenerate quadric of W(2N − 1, 2), this quadric being hyperbolic (resp.
elliptic) if O is symmetric (resp. skew-symmetric). We can express this important prop-
erty by making, whenever appropriate, this associated observable explicit in a subscript,
Q±

(O)
(2N − 1, 2), noting that there exists a particular hyperbolic quadric associated with I :

Q+
(I)(2N − 1, 2) := {(x1, x2, . . . , x2N) ∈W(2N − 1, 2) | x1xN+1 + x2xN+2+

. . . + xN x2N = 0}.
(14)

Given a point-line incidence geometry Γ(P, L), a geometric hyperplane of Γ(P, L) is a
subset of its point set such that a line of the geometry is either fully contained in the subset
or has with it just a single point in common. The Veldkamp space V(Γ) of Γ(P, L) is the
space in which [16]: (i) a point is a geometric hyperplane of Γ and (ii) a line is the collection,
denoted H′H′′, of all geometric hyperplanes H of Γ such that H′ ∩ H′′ = H′ ∩ H = H′′ ∩ H
or H = H′, H′′, where H′ and H′′ are distinct points of V(Γ). For a Γ(P, L) with three
points on a line, all Veldkamp lines are of the form {H′, H′′, H′ΔH′′} where H′ΔH′′ is the
complement of symmetric difference of H′ and H′′, i.e., they form a vector space over GF(2).
As demonstrated in [10], V(W(2N − 1, 2)) ∼= PG(2N, 2). Its points are both hyperbolic and
elliptic quadrics of W(2N − 1, 2), as well as its perp-sets. Given a point x of W(2N − 1, 2),
the perp-set Q̂(x)(2N − 1, 2) of x consists of all the points collinear with it,

Q̂(x)(2N − 1, 2) := {y ∈W(2N − 1, 2) | σ(x, y) = 0}; (15)

the point x being referred to as the nucleus of Q̂(x)(2N − 1, 2).
We shall briefly recall basic properties of the Veldkamp space of the doily, V(W(3, 2)) #

PG(4, 2), whose in-depth description can be found in [11]. The 31 points of V(W(3, 2))
comprise fifteen perp-sets, ten grids and six ovoids—as also illustrated in Figure 1. The 155
lines of V(W(3, 2)) split into five distinct types as summarized in Table 1 and depicted in
Figure 2. (Table 1, as well as Figures 1 and 2, were taken from [17].)

Figure 1. The three kinds of geometric hyperplanes of W(3, 2). The 15 points of the doily are
represented by small circles and its 15 lines are illustrated by the straight segments as well as by
the segments of circles; note that not every intersection of two segments counts for a point of the
doily. The upper panel shows grids (red bullets), the middle panel perp-sets (yellow bullets) and
the bottom panel ovoids (blue bullets). Each picture—except that located in the bottom right-hand
corner—stands for five different hyperplanes, the four others being obtained from it by its successive
rotations through 72 degrees around the center of the pentagon.
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Table 1. An overview of the properties of the five different types of lines of V(W(3, 2)) in terms of
the core (i.e., the set of points common to all the three hyperplanes forming the line) and the types
of geometric hyperplanes featured by a generic line of a given type. The last column gives the total
number of lines per each type.

Type Core Perps Ovoids Grids #

I Two Secant Lines 1 0 2 45
II Single Line 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15

Figure 2. An illustrative portrayal of representatives (rows) of the five (numbered consecutively
from top to bottom) different types of lines of V(W(3, 2)), each being uniquely determined by the
properties of its core (black bullets).

In what follows, we will mainly be focused on W(2N − 3, 2)’s that are located in
W(2N − 1, 2). These are, in general, of two different kinds [10]. A W(2N − 3, 2) of the first
kind, to be called linear, is isomorphic to the intersection of two perp-sets with non-collinear
nuclei and their number in W(2N − 1, 2) is

|W|Wl =
1
3

4N−1(4N − 1). (16)

A W(2N − 3, 2) of the second kind, to be called quadratic, is isomorphic to the intersec-
tion of a hyperbolic quadric and an elliptic quadric and W(2N − 1, 2) features

|W|Wq = 4N−1(4N − 1) (17)

of them. By way of example, in W(3, 2) a linear (resp. quadratic) W(1, 2) corresponds to a
tricentric (resp. unicentric) triad.

In the sequel, when referring to W(2N− 1, 2) and its subspaces, we will always have in
mind the W(2N− 1, 2) and its subspaces whose points are labelled by N-qubit observables
from the set SN as expressed by Equations (12) and (13). Moreover, a linear subspace of
such W(2N − 1, 2) will be called positive or negative according as the (ordinary) product of
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the observables located in it is +IN or −IN , respectively. Let us illustrate this point, taking
again the N = 2 case. Up to isomorphism, there is just one type of the two-qubit doily. Its
six observables of type A are IX, XI, IY, YI, IZ and ZI and its nine ones of type B are XX,
XY, XZ, YX, YY, YZ, ZX, ZY and ZZ, the latter lying on a particular hyperbolic quadric,
Q+

(YY)(3, 2). Among the fifteen lines only the three lines {XX, YY, ZZ}, {XY, YZ, ZX} and

{XZ, YX, ZY} are negative, forming also one system of generators of Q+
(YY)(3, 2).

3. W(3,2) and Its Two-Qubit W(1,2)’s

This is a rather trivial case. As already mentioned in Section 2, the doily contains three
negative lines, which are all of the same (B− B− B) type. Among its W(1, 2)’s, we find two
types of linear ones and three types of quadratic ones whose properties are summarized in
Table 2.

Table 2. Classification of W(1, 2)’s living in W(3, 2). Column one (T) shows the type, columns two
and three (OA and OB) indicate the number of observables of corresponding types and columns four
(Wl) and five (Wq) yield, respectively, the number of ‘linear’ and ‘quadratic’ W(1, 2)’s of a given type.

T OA OB Wl Wq

1 0 3 − 6
2 1 2 − 36
3 1 2 18 −
4 2 1 − 18
5 3 0 2 −

It is worth noticing that the six quadratic W(1, 2)’s (i.e., unicentric triads) of Type 1 lie
on the distinguished quadric Q+

(YY)(3, 2), being in fact its six ovoids.

4. W(5,2) and Its Three-Qubit Doilies

The space W(5, 2) contains 63 points, 315 lines and 135 generators, the latter being
all Fano planes. Among the 63 canonical three-qubit observables associated to the points,
nine are of type A, twenty-seven are type B and twenty-seven are of type C. Through an
observable of type C, there pass six negative lines, all being of type C− C− B; thus the
total number of negative lines of this type is 27×6

2 = 81. Through an observable of type
B, there pass four negative lines. Of them, three are of the above-mentioned type and
the fourth one is of type B− B− B; the total number of negative lines of the latter type is
27×1

3 = 9. As no negative line features an observable of type A, one finds that the W(5, 2)
accommodates as many as (81 + 9 =) 90 negative lines.

When we pass to W(3, 2)’s, we find a (much) richer structure, because alongside the
types of observables we can employ one more parameter, namely the number of negative
lines a given W(3, 2) contains. In fact, we find that the 336 linear doilies (see Equation (16))
fall into six different types and the 1008 quadratic ones (see Equation (17)) into seven types;
we note in passing that Type 9 splits further into two subtypes depending on whether the
two observables of type A do (Type 9A, 162 members) or do not (Type 9B, 54 members)
commute. This classification is summarized in Table 3 and is also pictorially illustrated in
Figure 3. It is worth noticing here that there are two different types of doilies (Type 3 and
Type 6) exhibiting an even number of negative lines.
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Figure 3. Representatives—numbered consecutively from left to right, top to bottom—of the 13 dif-
ferent types of three-qubit doilies; Type 1 is top left, Type 13 bottom middle; we also distinguish
between Type 9A (3rd row, right) and Type 9B (4th row, left). The three different types of observables
are distinguished by different colors and the negative lines are drawn heavy.
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Table 3. Classification of doilies living in W(5, 2). Column one (T) shows the type, column two
(C−) the number of negative lines in a doily of the given type, columns three to five (OA to OC)
indicate the number of observables of corresponding types and columns six (Dl) and seven (Dq)
yield, respectively, the number of ‘linear’ and ‘quadratic’ doilies of a given type.

T C− OA OB OC Dl Dq

1 7 0 7 8 − 81
2 7 0 9 6 27 −
3 6 1 5 9 − 108

4 5 2 5 8 162 −
5 5 2 7 6 − 162

6 4 3 5 7 − 324

7 3 0 9 6 9 −
8 3 0 15 0 − 36
9 3 2 7 6 − 216

10 3 2 9 4 81 −
11 3 4 5 6 54 −
12 3 4 7 4 − 81
13 3 6 9 0 3 −

The 27 observables of type B lie on an elliptic quadric of W(5, 2), which can be defined
as follows:

Q−
(YYY)(5, 2) := x2

1 + x1x4 + x2
4 + x2

2 + x2x5 + x2
5 + x2

3 + x3x6 + x2
6 = 0. (18)

Here, we took a coordinate basis of W(5, 2) in which the symplectic form σ(x, y) is
given by Equation (1),

σ(x, y) = (x1y4 − x4y1) + (x2y5 − x5y2) + (x3y6 − x6y3),

so that the correspondence between the 63 three-qubit observables (see Equation (10))

S3 = {G1 ⊗ G2 ⊗ G3 : Gj ∈ {I, X, Y, Z}, j ∈ {1, 2, 3}}\I3

and the 63 points of W(5, 2) is of the form (see Equation (12))

Gj ↔ (xj, xj+3), j ∈ {1, 2, 3},

taking also into account Equation (13).
This special quadric Q−

(YYY)(5, 2), as any non-degenerate quadric, is a geometric hyper-

plane of W(5, 2). As a doily is also a subgeometry of W(5, 2), it either lies fully inQ−
(YYY)(5, 2)

(Type 8), or shares with Q−
(YYY)(5, 2) a set of points that form a geometric hyperplane; an

ovoid (Types 3, 4, 6 and 11), a perp-set (Types 1, 5, 9 and 12) and a grid (Types 2, 7, 10 and
13). One also observes that no quadratic doily shares a grid with Q−

(YYY)(5, 2).
In addition to the distinguished elliptic quadric, there are also three distinguished

hyperbolic quadrics in W(5, 2), namely: the quadric whose 35 observables feature either
two X′s or no X,

Q+
(ZZZ)(5, 2) := x2

4 + x2
5 + x2

6 + x1x4 + x2x5 + x3x6 = 0, (19)

the one whose 35 observables feature either two Y′s or no Y (see Equation (14)),

Q+
(I I I)(5, 2) := x1x4 + x2x5 + x3x6 = 0, (20)
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and the one whose 35 observables feature either two Z′s or no Z,

Q+
(XXX)

(5, 2) := x2
1 + x2

2 + x2
3 + x1x4 + x2x5 + x3x6 = 0. (21)

Accordingly, there are three distinguished doilies of Type 8, namely the ones the
quadric Q−

(YYY)(5, 2) shares with these three hyperbolic quadrics.
Take the two-qubit doily. Add formally to each observable, at the same position,

the same mark from the set {X, Y, Z}. Pick up a geometric hyperplane in this three-
qubit labeled doily and replace by I the added mark in each observable that belongs
to this geometric hyperplane. One obviously gets a three-qubit doily. Now, there are
31 geometric hyperplanes in the doily, three possibilities (X, Y, Z) to pick up a mark
and three possibilities (left, middle, right) where to insert the mark; so there will be
31× 3× 3 = 279 doilies created this way. In particular, out of the 15× 9 = 135 doilies
‘induced’ by perp-sets, 81 are of Type 10 and 54 of Type 11; out of the 10× 9 = 90 doilies
‘generated’ by grids, eighty-one are of Type 12 and nine of Type 8; finally, the 6× 9 = 54
doilies stemming from ovoids are all of the same type 9B. So, if we look at Table 3, all
doilies of Types 1 to 7, 27 doilies of Type 8 and all doilies of Type 9A can be regarded as
‘genuine’ three-qubit guys, nine doilies of Type 8 that originate from grids (henceforth
referred to as Type 8′) and all doilies of Types 9B to 13 can be viewed as ‘built from the
two-qubit guy’; with Type 13 doilies being even more two-qubit-like.

This stratification of three-qubit doilies can also be spotted in a different way. Take a
representative doily of a particular type, for example, that of Type 3 depicted in Figure 4,
top. From its three-qubit labels, keep first only the left mark (bottom left figure), then the
middle mark (bottom middle figure) and, finally, the right mark (bottom right figure). In
each of these three ‘residual’ doilies it is easy to see that if you take the points featuring a
given non-trivial mark (i.e., X, Y or Z) together with the points featuring I, these always
form a geometric hyperplane and the whole set form a Veldkamp line of the doily where the
points featuring I represent its core. Employing Table 1 we readily see that this Veldkamp
line is of type V (the core is a single point) for the left residual doily, type III (the core is
a tricentric triad) for the middle doily and of type IV (the core is a unicentric triad) for
the right one. To account this way for the 13 types of three-qubit doilies, we also need
the concept of a trivial Veldkamp line of the doily, i.e., a line consisting of a geometric
hyperplane counted twice and the full doily, which exactly accounts for those doilies
‘generated’ by the two-qubit doily. This classification is summarized in Table 4. Here,
columns two to six give the number of ordinary Veldkamp lines of a given type, columns
seven to nine show the same for trivial Veldkamp lines and the last column corresponds to
the degenerate case when all the points of a residual doily bear the label I. Note that all
doilies stemming from the two-qubit doily (i. e., Types 8′ to 13) feature ordinary Veldkamp
lines of the same type.

Using a computer, we have also found out a very interesting property that given a doily
and any geometric hyperplane in it, there are three other doilies having the same geometric
hyperplane. Figure 5 serves as a visualisation of this fact when the common geometric
hyperplane is an ovoid. The four doilies sharing a geometric hyperplane, however, do
not stand on the same footing. This is quite easy to spot from our example depicted in
Figure 5. A point of the doily is collinear with three distinct points of an ovoid, the three
points forming a unicentric triad. Let us pick up such a triad, say {ZYI, XYI, YYI} and
look for its centers in each of the four doilies. These are IYI (top doily), I IX (left doily), I IY
(right doily) and IYZ (bottom doily). We see that the last three observables are mutually
anticommuting, whereas the first observable commutes with each of them. This property
is found to hold for each of (5

3) = 10 triads contained in an ovoid. Hence, the top doily of
Figure 5 has indeed a different footing than the remaining three. A similar 3 + 1 split up
is also observed in any quadruple of doilies having a grid in common because a point of
the doily is also collinear with three points of a grid that form a unicentric triad. However,
when the shared hyperplane is a perp-set, one gets a different, namely a 2+ 2 split, because
in this case the corresponding triple of points forms a tricentric triad.
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Table 4. A refined classification of doilies living in W(5, 2). We use the following abbreviations for
the cores of Veldkamp lines: 2cl—two concurrent lines, le—line, ttr—tricentric triad, utr—unicentric
triad, pt—point, ov—ovoid, ps—perp-set, gr—grid and fl stands for the full doily.

T 2cl le ttr utr pt ov ps gr fl

1 1 − − − 2 − − − −
2 − 3 − − − − − − −
3 − − 1 1 1 − − − −
4 − 1 2 − − − − − −
5 1 − − 2 − − − − −
6 1 − 1 1 − − − − −
7 − 3 − − − − − − −
8 3 − − − − − − − −

9A 1 − − 2 − − − − −
8′ − − 2 − − − − 1 −
9B − − 2 − − 1 − − −
10 − − 2 − − − 1 − −
11 − − 2 − − − 1 − −
12 − − 2 − − − − 1 −
13 − − 2 − − − − − 1
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Figure 4. A formal decomposition of a three-qubit doily (top) into three ‘single-qubit residuals’
(bottom). In each doily of the bottom row, the three geometric hyperplanes forming a Veldkamp line
are distinguished by different color, with their common points being drawn black; also, the nuclei of
perp-sets are represented by double circles.

A tricentric triad of a linear resp. quadratic doily of W(5, 2) defines a line resp. plane
in the ambient PG(5, 2). The latter type of a triad is found to be shared by four quadratic
doilies. Given the three observables of such a triad, there are seven observables commuting
with each of them, the corresponding seven points lying in a Fano plane (namely in the
polar plane to the plane defined by the triad) in the ambient PG(5, 2). One of the seven
observables has a distinguished footing as it commutes with each of the remaining six ones,
with these six observables forming three commuting pairs. Out of the six observables, one
can form just four tricentric triads of which each is complementary to the triad we started
with and thus defines with the latter a unique quadratic doily. These properties are also
illustrated in Figure 6.

146



Mathematics 2021, 9, 2272

IYI

ZII

ZXZ XZZ

XII

YYI

IZZ

XYIZYI

IXZ
YII

ZZZ

YZZYXZ

XXZ

IIX

ZYX

ZZY XXY

XYX

YYI

IZZ

XYIZYI

IXZ
YYX

ZXY

YXYYZY

XZY

IIY

ZYY

ZZX XXX

XYY

YYI

IZZ

XYIZYI

IXZ
YYY

ZXX

YXXYZX

XZX

IYZ

ZIZ

ZXI XZI

XIZ

YYI

IZZ

XYIZYI

IXZ
YIZ

ZZI

YZIYXI

XXI

Figure 5. An illustration of the case when four different doilies share an ovoid (boldfaced). The top doily is of Type 11, the
bottom one of Type 8, and both the left and right doilies are of Type 3.

Among the 13 different types of three-qubit doilies, there is one type, namely Type 3,
which has two remarkable properties. The first property is that there is one point (to be
called a deep point) such that all three lines passing through it are negative. Let us take
a representative doily of such a type shown in Figure 3, 1st row right. The deep point
is ZIZ. Then one sees that there are just two points (to be called zero-points) such that
neither of them lies on a negative line; one is I IY and the other is XIZ. These two points
and the deep point form in the doily a tricentric triad, hence a copy of ‘linear’ W(1, 2). The
second property is related to the fact that through each observable of type B there pass
four negative lines. Three of them are such that each features one observable of type B and
two observables of type C, whereas the remaining one consists of all observables of type B.
Written vertically, the four negative lines passing through our deep point ZIZ are:

ZIZ ZIZ ZIZ ZIZ
XXX XYX XZX XIX
YXY YYY YZY YIY

We see that the three lines that are located in the doily are of the same type, viz.
B− C− C. If we also include the fourth negative line, viz. the B− B− B one, we obtain
what we can call a ‘doily with a tail.’ Taking into account the above-mentioned four-
doilies-per-hyperplane property, we see that there are altogether 12 doilies, four per each
observable, having the same tail and all being of Type 3.
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Figure 6. Four three-qubit doilies on a ‘planar’ tricentric triad (represented by hexagons). The seven
observables commuting with the three hexagonal ones are, for better illustration, colored differently.
The three red lines of the Fano plane that meet at the distinguished observable (gray) are totally
isotropic, whilst the remaining four (depicted green) are not. The four complementary triads (of
observables) are illustrated by a full black circle and three half-circles.

5. ‘Conwell’ Heptads of Doilies in W(5,2)

Recall Sylvester’s famous construction of W(3, 2), see [18]. Given a six-element set
M6 ≡ {1, 2, 3, 4, 5, 6}, a duad is an unordered pair (ij) ∈ M6, i �= j and a syntheme is a set
of three pairwise disjoint duads, i.e., a set {(ij), (kl), (mn)} where i, j, k, l, m, n ∈ M6 are all
distinct. The point-line incidence structure whose points are duads and whose lines are
synthemes, with incidence being inclusion, is isomorphic to W(3, 2), as also illustrated in
Figure 7.
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Figure 7. A duad-syntheme model of W(3, 2).

Next, take a seven-element set, M7 ≡ {1, 2, 3, 4, 5, 6, 7}. One can form from it (7
3) = 35

unordered triples (ijk), i �= j �= k �= i. From each set of fifteen triples having the same
element in common, we can create a doily using the duad-syntheme construction on that
six-element subset of M7 where the common element is omitted. So, we achieve seven
different doilies, one per each element, as depicted in Figure 8. Any two of them have
an ovoid in common; because each ovoid is characterized by two elements, say a and b,
and it is of the form {(abc), (abd), (abe), (ab f ), (abg)}, where a, b, c, d, e, f , g ∈ M7 are all
different, hence it belongs to both the a-doily and the b-doily. Also, any triple is shared by
three doilies.
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Figure 8. An abstract heptad of doilies on a seven-element set.

A remarkable fact is that this abstract heptad of doilies has a neat realization in our
three-qubit W(5, 2). To see this, we have to introduce the notion of a Conwell heptad of
PG(5, 2). Given aQ+(5, 2) of PG(5, 2), a Conwell heptad [19] (in the modern language [20]
also known as a maximal exterior set) with respect to Q+(5, 2) is a set of seven off-quadric
points such that each line joining two distinct points of the heptad is skew to the Q+(5, 2).
There are exactly 8 heptads with respect to Q+(5, 2). Any two of them have exactly one
point in common and any point off Q+(5, 2) is exactly in two heptads; also any six points
of a heptad are linearly independent in PG(5, 2). Next [21], let P be a point on Q+(5, 2).
The tangent hyperplane of Q+(5, 2) at P intersects a heptad C in exactly three points P1, P2
and P3 such that the points P, P1, P2 and P3 are coplanar and P1, P2 and P3 are not collinear;
that is, the points P1, P2 and P3 represent a conic in the plane and the point P is its knot
(the common intersection of its tangents). Hence, there exists a bijection from the set of the
35 points of Q+(5, 2) onto the set of the 35 triples of points of C.

Now, let us take a Q+(5, 2) that belongs to W(5, 2), for example, Q+
(I I I)(5, 2) (see

Equation (20)) that accommodates all symmetric observables from S3. The eight Conwell
heptads with respect to this distinguished hyperbolic quadric, expressed in terms of three-
qubit observables, are:

1 2 3 4 5 6 7 8
ZYX YZI YIZ YZI YIZ YXI XYI YII
YIX YXZ YZX YXI YIX YZZ ZYZ ZYI
YZZ YXX YXX IYZ XYI YZX ZYX XYZ
XYX IYI IYX IYX IZY IYI ZIY XYX
IYZ IXY ZYZ ZIY IXY IZY XZY XIY
YXZ XZY IIY YYY YYY XXY XXY ZZY
IIY ZZY XYZ XIY ZYI ZXY YII ZXY

We see that each Conwell heptad entails seven pairwise anticommuting observables
and so, in fact, corresponds to a set of generators of a seven-dimensional Clifford al-
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gebra [22]. Let us pick up one of them, say the heptad number 1 , and associate its
observables with the elements of M7 as follows:

1↔ ZYX, 2↔ YIX, 3↔ YZZ, 4↔ XYX, 5↔ IYZ, 6↔ YXZ, 7↔ I IY.

From the above-described relation between tangent hyperplanes to a hyperbolic
quadric and a Conwell heptad it follows that any unordered triple (ijk), i, j, k ∈ M7,
will be associated with a particular point on Q+

(I I I)(5, 2) and its associated observable is
the (ordinary) product of the observables associated with elements/points i, j and k; for
example, 146 ↔ ZYX.XYX.YXZ = IXZ. Hence, all seven doilies of the heptad lie fully
in Q+

(I I I)(5, 2) and, since no two of them share a line, they partition the set of 105 lines

of Q+
(I I I)(5, 2). Figure 9 serves as a visualization of this particular ‘Conwell’ heptad of

doilies. As W(5, 2) contains 36 hyperbolic quadrics (see Equation (6)), it features altogether
36× 8 = 288 such heptads of doilies. It is also worth mentioning that employing the
well-known Klein correspondence between the points of Q+(5, 2) and the lines of PG(3, 2)
(see, e.g., Table 15.10 of [23] for more details) and taking into account that the doily is
a self-dual object, any Conwell heptad of doilies corresponds to a heptad of mutually
azygetic doilies in PG(3,2) (see, e.g., [24]).
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Figure 9. A ‘Conwell’ heptad of doilies in the three-qubit W(5, 2). Following our convention, different
types of observables are distinguished by different colors and negative lines are shown in bold.

6. W(7,2) and Its Four-Qubit W(5,2)’s

The space W(7, 2) possesses 255 points, 5355 lines, 11,475 planes and 2295 generators,
the latter being all PG(3,2)’s. Among the 255 canonical four-qubit observables associated
to the points, 12 are of type A, 54 of type B, 108 of type C and 81 of type D. Through
an observable of type D there pass: four negative lines of type D − D − D, totaling to
81×4

3 = 108; twelve negative lines of type D− D− B, totaling to 81×12
2 = 486; and twelve

negative lines of type D − C − C, totaling to 81× 12 = 972. Through an observable of
type C there pass, apart from the above-mentioned lines of type D− C− C, six negative
lines of type C− C− B, totaling to 108×6

2 = 324. Through an observable of type B there
passes, apart from the already discussed two types of lines, a single negative line of type
B − B − B, the total number of such lines being 54×1

3 = 18. Since no negative line can
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contain an observable of type A, the four-qubit W(7, 2) thus exhibits five distinct types of
negative lines whose total number is (108 + 486 + 972 + 324 + 18 =) 1908.

When it comes to W(5, 2)’s, we find 11 types among their 5440 linear members and
as many as 18 types among their 16,320 quadratic cousins, as summarized in Table 5. It
represents no difficulty to check that 54 observables of type B and 81 of type D lie on a
particular hyperbolic quadric in W(7, 2), to be referred to as the distinguished hyperbolic
quadric Q+

(YYYY)(7, 2), which is also a geometric hyperplane in the latter space. A W(5, 2)
either lies fully in this quadric (Types 2 and 21) or shares with it a set of points that forms
a geometric hyperplane. Hence, the sum of OB and OD in each row of Table 5 must be
one of the following numbers: 27 (when the hyperplane of W(5, 2) is an elliptic quadric),
31 (a perp-set) and/or 35 (a hyperbolic quadric); for the reader’s convenience, the type
of such geometric hyperplane is explicitly listed in column 9 of Table 5. One sees that
no linear W(5, 2) shares with Q+

(YYYY)(7, 2) a perp-set and no quadratic W(5, 2) cuts this
distinguished quadric in an elliptic quadric. Comparing Table 5 with Table 3, one readily
discerns that whereas W(3, 2)’s in W(5, 2) are endowed with both an even and odd number
of negative lines, for W(5, 2)’s in W(7, 2) this number is always even; in addition, the
difference in C− for any two distinct types of four-qubit W(5, 2)’s is a multiple of four.

Let us have a closer look at W(5, 2)’s featuring 90 (i.e., the smallest possible number
of) negative lines. We can easily show that almost all of them originate from the three-qubit
W(5, 2). First, by adding I to each three-qubit observable at the same position we achieve
the four trivial four-qubit W(5, 2)’s of Type 29. Next, adding to each observable at the
same position a mark from the set {X, Y, Z}, picking up a geometric hyperplane in this
four-qubit labeled W(5, 2) and replacing by I the added mark of each observable in the
geometric hyperplane one gets a four-qubit W(5, 2) with 90 negative lines. Now, there
are 28 (# of elliptic quadrics) + 36 (# of hyperbolic quadrics) + 63 (# of perp-sets) = 127
geometric hyperplanes in the W(5, 2), three possibilities (X, Y, Z) to pick up a mark and
four possibilities (left, middle-left, middle-right, right) where to insert the mark. So, there
will be 127× 3× 4 = 1524 four-qubit W(5, 2)’s created this way, which only falls short by
36 the total number of W(5, 2)’s endowed with 90 negative lines (the four guys of Type 29
being, of course, disregarded). A concise summary is given in the last column of Table 5,
where the type of geometric hyperplane is further specified by the character/type of the
associated (three-qubit) observable. One observes that Type 23 is the only irreducible type
of W(5, 2)’s having 90 negative lines.

We shall illustrate this process by a couple of examples. Let us start with the perp-set
of the three-qubit W(5, 2) whose nucleus is an observable of type A, say XII. Out of 31
observables commuting with this observable there are seven of type A (XII, IXI, I IX, IYI,
I IY, IZI and I IZ), fifteen of type B (IXX, IXY, IXZ, XXI, XIX, IYX, IYY, IYZ, XYI, XIY,
IZX, IZY, IZZ, XZI, and XIZ) and nine of type C (XXX, XXY, XXZ, XYX, XYY, XYZ,
XZX, XZY, and XZZ). Hence, out of 32 observables off the perp, there will be 9− 7 = 2 of
type A, 27− 15 = 12 of type B and 27− 9 = 18 of type C:

Q̂(XII) OA OB OC
on 7 15 9
off 2 12 18

Next, each observable of the perp-set acquires a trivial mark I and hence goes into the
four-qubit observable of the same type. However, an observable lying off the perp-set gets
a non-trivial label X, Y or Z and so yields the four-qubit observable of the subsequent type;
that is, O(3)

A → O(4)
B , O(3)

B → O(4)
C and O(3)

C → O(4)
D . Hence, in our case, we get:

(Q̂(XII)) OA OB OC OD
(on – type intact) 7 15 9 0

(off – type shifted) 0 2 12 18
Total 7 17 21 18
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Table 5. Classification of W(5, 2)’s living in W(7, 2). Column one (T) shows the type, column two
(C−) the number of negative lines in a W(5, 2) of the given type, columns three to six (OA to OD)
indicate the number of observables featuring three I’s, two I’s, one I or no I, respectively, columns
seven (Wl) and eight (Wq) yield, respectively, the number of ‘linear’ and ‘quadratic’ W(5, 2)’s of a
given type, the last but one column depicts the type of intersection of a representative W(5, 2) with
the distinguished hyperbolic quadric and the last column indicates the type of geometric hyperplane
featuring the trivial mark (I) for composite W(5, 2)’s.

T C− OA OB OC OD Wl Wq Int GH

1 130 3 9 33 18 108 − ell −−−
2 126 0 24 0 39 − 108 full −−−
3 126 1 13 27 22 − 1944 hyp −−−
4 126 2 10 30 21 − 1620 perp −−−
5 122 1 15 27 20 972 − hyp −−−
6 122 2 10 30 21 − 648 perp −−−
7 118 0 16 32 15 − 324 perp −−−
8 118 3 9 33 18 648 − ell −−−
9 118 3 11 25 24 − 1296 hyp −−−

10 114 1 15 27 20 324 − hyp −−−
11 114 1 17 27 18 − 216 hyp −−−
12 114 3 13 25 22 1944 − hyp −−−
13 114 4 12 28 19 − 1944 perp −−−
14 110 3 15 25 20 − 1944 hyp −−−
15 110 5 11 23 24 648 − hyp −−−
16 106 5 13 23 22 − 1944 hyp −−−
17 102 1 21 27 14 − 648 hyp −−−
18 102 2 18 30 13 − 324 perp −−−
19 102 3 15 25 20 − 648 hyp −−−
20 102 4 12 28 19 − 1944 perp −−−
21 90 0 36 0 27 − 12 full ell: O = YYY
22 90 2 22 30 9 − 108 perp hyp: all 9 O’s featuring two Y’s
23 90 3 9 33 18 36 − ell −−−
24 90 3 21 25 14 324 − hyp perp: all 27 O’s of type C
25 90 4 16 28 15 − 324 perp ell: all 27 O’s featuring one Y
26 90 5 15 31 12 324 − ell perp: all 27 O’s of type B
27 90 6 18 26 13 − 324 perp hyp: 26 O’s having no Y + I I I
28 90 7 17 21 18 108 − hyp perp: all 9 O’s of type A
29 90 9 27 27 0 4 − ell full W(5, 2)

Comparing with Table 5 we see that this is a four-qubit W(5, 2) of Type 28.
As the second example we shall take the case when the geometric hyperplane of

W(5, 2) is an elliptic quadric generated by an antisymmetric observable of type B, say YXI.
This quadric, Q−

(YXI)(5, 2), consists of all symmetric observables that commute with YXI
and all antisymmetric observables that anticommute with YXI. In particular, it contains
4 observables of type A (IXI, I IX, I IZ and IYI), 11 observables of type B (XZI, ZZI, YIY,
IXX, IXZ, YZI, IYX, IYZ, XIY, ZIY and IZY) and 12 observables of type C (XZX, ZZX,
XZZ, ZZZ, YXY, XYY, ZYY, YZX, YZZ, XXY, ZXY and YYY). So, out of 36 observables
off the quadric, there will be 5, 16 and 15 of type A, B and C, respectively. In a succinct form,

Q−
(YXI)(5, 2) OA OB OC

on 4 11 12
off 5 16 15
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From this it follows that the corresponding four-qubit W(5, 2) is of Type 25:

(Q−
(YXI)(5, 2)) OA OB OC OD

(on – type intact) 4 11 12 0
(off – type shifted) 0 5 16 15

Total 4 16 28 15

7. Conclusions

We have introduced a remarkable observable-based taxonomy of subspaces of W(2N−
1, 2), 2 ≤ N ≤ 4, whose rank is just one less than that of the ambient space. Alongside the
distribution of various types of observables, an important parameter of the classification
was the number of negative lines contained in a subspace. As already mentioned in the
introduction, this latter parameter is essential in checking whether a given finite geometric
configuration is contextual or not. For example, our preliminary analysis shows that all
three-qubit and four-qubit doilies are, as their two-qubit sibling, contextual. In a sepa-
rate paper we plan to address this question in more detail, also employing the degree of
contextuality for a variety of other symplectic subspaces. However, when approaching
subspaces of higher rank this way, it would be natural to include as parameters the number
of negative linear subspaces of every viable dimension from 1 to N − 2, i.e., consider
negative lines, negative planes, . . . , negative generators; so, already in the case of N = 4
we can add one more parameter, the number of negative planes a four-qubit W(5, 2) is
endowed with, to achieve an interesting refinement of our Table 5. As the three-qubit
W(5, 2) features 54 negative planes [25], each composite four-qubit W(5, 2) must have the
same number of negative planes; in connection with this fact, it would be interesting to
check whether each irreducible four-qubit W(5, 2) having 90 lines (Type 23) also enjoys
this property.

Another interesting extension/variation of our taxonomy would be to take into ac-
count the number of negative lines passing through a point of the subspace. Let us call this
number the order of a point and for each subspace W(2s− 1, 2) define the following string
of parameters [p0, p1, p2, . . . , p4s−1−1], where pk, 0 ≤ k ≤ 4s−1 − 1 stands for the number of
points of order k the subspace contains. Applying this to three-qubit doilies (s = 2), we
find the following five patterns (as readily discerned from Figure 3): [0, 9, 6, 0] (Types 1 and
2), [2, 9, 3, 1] (Type 3), [5, 5, 5, 0] (Types 4 and 5), [6, 6, 3, 0] (Type 6) and [6, 9, 0, 0] (Types 7
to 13).

A slightly different possibility of employing our strategy is to analyse other distin-
guished subgeometries of W(2N − 1, 2) such as, for example, the split Cayley hexagon
of order two [26]. This generalized polygon can be embedded into W(5, 2), and in two
different ways [27], classical and skew. We have already discerned two distinct kinds of
the former and as many as thirteen different types of the latter. Yet a full understanding
of the case requires a more rigorous computer-assisted approach and will, therefore, be
treated in a separate paper.
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Abstract: By using three equivalence relations, we characterize the behaviour of the elements in a
hypercompositional structure. With respect to a hyperoperation, some elements play specific roles:
their hypercomposition with all the elements of the carrier set gives the same result; they belong to the
same hypercomposition of elements; or they have both properties, being essentially indistinguishable.
These equivalences were first defined for hypergroups, and here we extend and study them for
general hyperrings—that is, structures endowed with two hyperoperations. We first present their
general properties, we define the concept of reducibility, and then we focus on particular classes
of hyperrings: the hyperrings of formal series, the hyperrings with P-hyperoperations, complete
hyperrings, and (H, R)-hyperrings. Our main aim is to find conditions under which these hyperrings
are reduced or not.

Keywords: general hyperring; reducibility; fundamental relation; equivalence

1. Introduction

Algebraic hypercompositional structures, i.e., structures where the result of the synthe-
sis of two elements is a subset of the carrier set, are natural generalizations of the classical
algebraic structures, and thus many properties of groups, rings, fields, modules, vector
spaces, etc., are extended to hypergroups, hyperrings, hyperfields, hypermodules, vector
hyperspaces, etc., more or less in a canonical way. The powerful Hypercompositional
Algebra, i.e., the theory of algebraic hypercompositional structures, is given by concepts
that do not exist in classical Algebra, and reducibility is one of them.

In 1990, James Jantosciak had the idea to describe the behaviour of the elements of
a hypergroup with respect to the hyperoperation by defining three equivalence relations,
that emphasize the interchangeable role of the elements with respect to the hyperoperation.
If two elements in a hypergroup always belong to the same hyperproducts and their
hypercomposition with all the elements of the carrier set is the same, then they are called
essentially indistinguishable [1]. A hypergroup is reduced if the equivalence class of each
element is a singleton with respect to the essentially indistinguishable relation.

In addition, Jantosciak noticed also that factorizing the hypergroup by this equiva-
lence one obtains a reduced hypergroup, called the reduced form of the initial hypergroup.
Therefore, he proposed to divide into two parts the study of the hypergroups: the study
of the reduced hypergroups and the study of the hypergroups having the same reduced
form [1]. Due to this important property, he named as fundamental the three equivalences
used in the definition of the concept of reducibility.

Inspired by this pioneer paper and the further results obtained by researchers on
the reducibility of various types of hypergroups [2–5], we extend here this property to
hyperrings. These are algebraic structures containing an additive and a multiplicative part
connected by the distributivity law, where at least one of them is a hypercompositional
structure. The first type of hyperring was introduced by Krasner [6] as a hypercomposi-
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tional structure whose additive part is a canonical hypergroup, and the multiplicative one
is a semigroup.

Currently, this structure is known as Krasner hyperring and considered as an additive
hyperring, in order to emphasize that the addition is a hyperoperation. If one considers the
multiplication to be a hyperoperation, while the addition stays an operation, the notion of
multiplicative hyperring was introduced in 1982 by Rota [7], where the additive part is an
abelian group and the multiplicative one is a semihypergroup. If both the addition and the
multiplication are hyperoperations, then we talk about general hyperrings.

There are several types of general hyperrings: one studied by Corsini [8] in 1975 in
connection with feebly hypermodules; one defined in 1973 by Mittas [9,10] and called
superring, having as additive part a canonical hypergroup; another one studied in 1989
by Spartalis [11], where the additive part is a hypergroup and the multiplicative one is
a semihypergroup. Expository and survey articles on this topic have been published by
Nakassis [12] in 1988 and recently by Massouros [13,14].

The aim of this manuscript is to define and study the concept of reducibility in the class
of hyperrings. We will do this in a very natural way, by extending the three fundamental
relations defined by J. Jantosciak to both addition and multiplication. It is clear that it
makes sense to do this only in a general hyperring, where the carrier set is endowed with
two hyperoperations, because these fundamental equivalences are equivalent with the
equality relation when they are considered with respect to an operation.

Thus, the study of the reducibility in a Krasner hyperring or in a multiplicative
hyperring is not relevant since it reduces to the study of the reducibility of a hypergroup.
This study, covered in Section 4, was conducted first in a general way and then for particular
classes of general hyperrings, as the hyperring of formal series, or hyperrings with P-
hyperoperations. Particular attention is given to the complete hyperrings and (H, R)-
hyperrings. The paper ends with some conclusive remarks and ideas for future work.

2. Preliminaries on Hypergroups and Hyperrings

For a non-empty set H, we denote, by P∗(H), the family of all non-empty subsets of H.
A binary hyperoperation, also called a hyperproduct, is an application ◦ : H× H → P∗(H)
and the pair (H, ◦) is called a hypergrupoid. It is important to stress that, in a hypergrupoid,
the hyperproduct x ◦ y between two arbitrary elements x and y in H is a non-empty
subset of H. This is a property that we cannot find in classical algebraic structures, such
as groupoids and semigroups.

The hyperoperation is extended to non-empty subsets of H as A ◦ B =
⋃

a∈A,b∈B
a ◦ b.

If the hyperoperation is associative, then the hypercompositional structure (H, ◦) is a
semihypergroup, which becomes a hypergroup when the reproducibility property also
holds: x ◦ H = H ◦ x = H for all x ∈ H.

The link between groups and hypergroups is established by the fundamental relation
β defined on a semihypergroup (H, ◦) as follows: β = ∪n≥1βn where β1 is the diagonal
relation on H and for any n > 1, and x, y ∈ H, xβny ⇔ ∃a1, a2, . . . , an ∈ H such that

{x, y} ⊆
n

∏
i=1

ai = a1 ◦ a2 ◦ · · · ◦ an. It is clear that β is a reflexive and symmetrical relation,

but generally not transitive. That is why we take its transitive closure β∗, which is an
equivalence relation. Recall that, for hypergroups, we have β = β∗ [15,16], and the quotient
(H/β∗,⊗) is a group with the operation β∗(x) ⊗ β∗(y) = β∗(z) for all x, y ∈ H and
z ∈ x ◦ y.

Considering now the canonical projection ϕH : H → H/β∗, which is a good homomor-
phism, i.e., ϕH(x ◦ y) = ϕH(x)⊗ ϕH(y), we may define the heart (or core) of a hypergroup
H as the set ωH = {x ∈ H|ϕH(x) = 1}, where 1 is the identity of the group H/β∗. This set
plays an important role for the structure of a hypergroup, because, if we know it, then we can
determine the complete closure of a subset of H.

More exactly, if A is a non-empty subset of H, it is called a complete part [17] of H if
for any natural number n and any elements a1, a2, . . . , an in H, the following implication
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holds: A ∩
n

∏
i=1

ai �= ∅ ⇒
n

∏
i=1

ai ⊆ A. The intersection of all complete parts of H containing

the subset A is called the complete closure of A in H, and it is denoted by C(A). Moreover,
C(A) = ωH ◦ A = A ◦ωH . The complete closure of a set helps us to define a particular type
of hypergroups, called complete hypergroups.

We say that a hypergroup (H, ◦) is complete if x ◦ y = C(x ◦ y) for all x, y ∈ H.
Moreover, if (H, ◦) is a complete hypergroup, then x ◦ y = C({a}) = β(a) for every
x, y ∈ H and a ∈ x ◦ y. In practice, this definition is substituted with the representation
theorem, which we recall here below.

Theorem 1 ([18]). A hypergroup (H, ◦) is complete if and only if it can be partitioned as H =
⋃

g∈G
Ag,

where G and the subsets Ag of H satisfy the following conditions:

(1) (G, ·) is a group.
(2) For all g1 �= g2 ∈ G, there is Ag1 ∩ Ag2 = ∅.
(3) If (a, b) ∈ Ag1 × Ag2 , and then a ◦ b = Ag1g2 .

It is clear that any group is a complete hypergroup; however, this case is not interesting
for our study. This is why we will consider only proper complete hypergroups, i.e.,
complete hypergroups that are not groups. The heart ωH of a complete hypergroup (H, ◦)
has an interesting property: it coincides with the set of identities of H. The complete
hypergroups have been studied for their general properties [19], or in connection with their
fuzzy grade [20], for their commutativity degree [21], or in relation with their size [22].

General hyperrings are algebraic structures equipped with two hyperoperations,
i.e., hyperaddition and hypermultiplication that satisfy the distributivity condition. Here,
we will recall the definitions of some particular types of general hyperrings, which will be
considered further on in the paper.

Definition 1 ([23]). A hypercompositional structure (R,⊕,�) is called a hyperringoid if

1. (R,⊕) is a hypergroup.
2. (R,�) is a semigroup.
3. The operation “�” distributes on both sides over the hyperoperation “⊕.”

This algebraic hypercompositional structure was first introduced by Massouros [24]
in a study on languages and automata. If we request that both addition and multiplication
are hyperoperations, then the hyperringoid becomes a general hyperring.

Definition 2 ([25]). A triple (R,⊕,�) is a general hyperring if:

1. (R,⊕) is a hypergroup.
2. (R,�) is a semihypergroup.
3. The multiplication is distributive with respect to the addition, i.e., for all a, b, c ∈ R a�

(b⊕ c) = (a� b)⊕ (a� c) and (a⊕ b)� c = (a� c)⊕ (b� c).

The Hv-structures were introduced by Vougiouklis during the 4th AHA Congress in
1990 [26] as hypercompositional structures with weak associative hyperoperations.

Definition 3. The hyperstructure (H, ·) is an Hv-semigroup if x · (y · z) ∩ (x · y) · z �= ∅ for all
x, y, z ∈ H. If also the eproducibility property is valid, i.e., a · H = H · a = H, then (H, ·) is called
an Hv−group.

Definition 4. A multi-valued system (R,⊕,�) is an Hv−ring if:

1. (R,⊕) is an Hv-group.
2. (R,�) is an Hv-semigroup.
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3. The multiplication weakly distributes with respect to the addition, i.e., for all a, b, c ∈ R (a�
(b⊕ c)) ∩ ((a� b)⊕ (a� c)) �= ∅ and ((a⊕ b)� c) ∩ ((a� c)⊕ (b� c)) �= ∅.

It is important to recall here one of the main properties of hypercompositional struc-
tures: the quotient of a group with respect to any of its subgroups is a hypergroup, while the
quotient of a group by any equivalence relation gives birth to an Hv-group [14]. A recently
published overview of the theory of weak-hyperstructures is covered in [26,27].

In the following, we will recall the construction of two types of hyperrings, which we
will study in the next section. The first one leads to an Hv-ring obtained from a ring. This
structure was principally studied by Spartalis and Vougiouklis [28,29], in connection with
homomorphisms and numeration.

Let (R,+, ·) be a ring and P1 and P2 be non-empty subsets of R. The hyperoper-
ations defined by xP∗1 y = x + y + P1 and xP∗2 y = x · y · P2 for all x, y ∈ R are called
P-hyperoperations [30].

Theorem 2 ([29]). Let (R,+, ·) be a ring, Z(R) be the center of the multiplicative semigroup
(R, ·) and P1, P2 be non-empty subsets of R. If 0 ∈ P1 and Z(R) ∩ P2 �= ∅, then (R, P∗1 , P∗2 ) is an
Hv-ring.

This kind of Hv-ring is called an Hv-ring with P-hyperoperations.
We end this section by recalling the construction of the hyperring of the formal

series [31,32]. Based on this, we studied the structure of the set of polynomials over a
hyperring.

Let (R,+, ·) be a general commutative hyperring. A formal series with coefficients in
R is an infinite sequence (a0, a1, a2, . . . , an, . . .) of elements ai in R. The set of all such series
is denoted by R[[x]]. We say that two series (a0, a1, a2, . . . , an, . . .) and (b0, b1, b2, . . . , bn, . . .)
are equal if and only if ai = bi for all indices i.

Let define on R[[x]] the addition by

(a0, a1, . . . , an, . . .)⊕ (b0, b1, . . . , bn, . . .) = {(c0, c1, . . . , cn, . . .), ck ∈ ak + bk}

and the multiplication by

(a0, a1, . . . , an, . . .)� (bo, b1, . . . , bn, . . .)={(c0, c1, . . . , cn, . . .), ck∈ ∑
i+j=k

ai · bj}.

The structure (R[[x]],⊕,�) is a general hyperring. We recall that the set of the poly-
nomials R[x] with coefficients in R is a superring with the same hyperoperations ⊕ and �
defined above [33]. This means that (R[x],⊕) is a canonical hypergroup, (R[x],�) is a semi-
hypergroup such that 0 is a bilaterally absorbing element and the multiplication is weakly
distributive on the left side with respect to the addition, i.e., f � (g⊕ h) ⊆ f � g⊕ f � h,
for f , g, h ∈ R[x].

3. Short Review of the Reducibility in Hypergroups

In this section, we briefly recall the notion of the reducibility of hypergroups. We start
with the three fundamental relations introduced by Jantosciak [1] on an arbitrary hyper-
group.

Definition 5 ([1]). Two elements x, y in a hypergroup (H, ◦) are called:

1. operationally equivalent or by short o-equivalent, and we write x ∼o y, if x ◦ a = y ◦ a,
and a ◦ x = a ◦ y, for any a ∈ H;

2. inseparable or by short i-equivalent, and we write x ∼i y, if, for all a, b ∈ H, x ∈ a ◦ b⇐⇒
y ∈ a ◦ b; and

3. essentially indistinguishable or by short e-equivalent, and we write x ∼e y, if they are
operationally equivalent and inseparable.
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Definition 6 ([1]). A hypergroup H is called reduced if, for any x ∈ H, the equivalence class of x
with respect to the essentially indistinguishable relation ∼e a singleton.

Proposition 1 ([5]). A total hypergroup is not reduced.

Theorem 3 ([5]). Any proper complete hypergroup is not reduced.

Proposition 2. Let φ be a good surjective homomorphism from the hypergroup (R,+) to the hy-
pergroup (T,⊕). If two elements are essentially indistinguishable with respect to the hyperoperation
+, then their images are essentially indistinguishable with respect to the hyperoperation ⊕.

Proof. Let x and y be elements from R such that x + a = y + a, where a ∈ R. This
gives {φ(l)|l ∈ x + a} = {φ(k)|k ∈ y + a}, and thus φ(x + a) = φ(y + a). From here,
φ(x)⊕ φ(a) = φ(y)⊕ φ(a). Denote φ(a) = b and φ(x) = x1, φ(y) = y1. Thus, x1 ⊕ b =
y1 ⊕ b. If the equality x + a = y + a holds for every a ∈ H, then the last equality holds
for all b ∈ T since {φ(a)|a ∈ R} = T. Assuming a + x = a + y for all a ∈ R, similarly, we
obtain φ(a)⊕ φ(x) = φ(a)⊕ φ(y) for all a ∈ R. Hence, if x ∼+

o y then φ(x) ∼⊕o φ(y).
Let x ∼+

i y, i.e., x ∈ a+ b if and only if y ∈ a+ b for all a, b ∈ R. From this equivalence,
we find that φ(x) ∈ {φ(l)|l ∈ a+ b} if and only if φ(y) ∈ {φ(k)|k ∈ a+ b}, and thus φ(x) ∈
φ(a + b) if and only if φ(y) ∈ φ(a + b). Since φ is homomorphism, φ(x) ∈ φ(a)⊕ φ(b) if
and only if φ(y) ∈ φ(a)⊕ φ(b). Let φ(x) = x1, φ(y) = y1 and φ(a) = a1, φ(b) = b1. Since
the mapping is surjective a1 ⊕ b1 covers whole set T. Hence, x1 ∈ a1 ⊕ b1 is equivalent to
y1 ∈ a1 ⊕ b1, for all a1, b1 ∈ T. Here, x ∼+

i y implies φ(x) ∼⊕i φ(y). The definition of the
essential indistinguishability relation, together with the above implications, concludes the
proof of our claim.

4. Reducibility in Hyperrings

In a semigroup, the equivalences ∼o and ∼i coincide with the diagonal relation,
i.e., x ∼o y ⇐⇒ x ∼i y ⇐⇒ x = y. Thus, in a Krasner hyperring or in a multiplicative
hyperring (when the referential set is equipped with a hyperoperation and an operation),
these two equivalences are not significant. Therefore, in this section, our first aim is to
study relationships between these equivalences in a general hyperring (R,⊕,�), where
addition and multiplication are both hyperoperations.

For any element x ∈ R, we denote, by x̂⊕r and x̂�r , the equivalence classes of x with
respect to the hyperoperations ⊕ and �, respectively, where r ∈ {o, i, e} denotes the type
of the equivalence that we consider in Definition 7. In the following, by hyperring, we
mean a general hyperring.

Definition 7. We say that two elements x and y in a hyperring (R,⊕,�) are operationally
equivalent, inseparable or essentially indistinguishable if they have the same property with respect
to both hyperoperations, i.e.,

1. x ∼o y if x⊕ a = y⊕ a, a ⊕ x = a⊕ y and a� x = a� y, x� a = y� a, for all a ∈ R.
2. x ∼i y if x ∈ a⊕ b ⇐⇒ y ∈ a⊕ b, for all a, b ∈ R and x ∈ c� d ⇐⇒ y ∈ c� d, for all

c, d ∈ R.
3. x ∼e y if x ∼o y and x ∼i y.

Definition 8. A hyperring R is called reduced if the equivalence class of each element x ∈ R with
respect to the essentially indistinguishable relation ∼e is a singleton, i.e., x̂e = {x} for any x ∈ R.

The equivalence class of any element x in R with respect to the essentially indis-
tinguishability relation ∼e is obtained as x̂e = x̂⊕e ∩ x̂�e = (x̂⊕o ∩ x̂⊕i ) ∩ (x̂�o ∩ x̂�i ). It is
important to stress on the following property. If at least one of the hypergroupoids (R,⊕)
or (R,�) is reduced, then the hyperring (R,⊕,�) is reduced, too. Reciprocally, if (R,⊕,�)
is reduced, then the hypergroupoids (R,⊕) and (R,�) can be reduced or not, as one can
see in the following examples.
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Example 1. Let (R,⊕,�) be a hyperring defined by the following Cayley tables:

⊕ e a
e R R
a R R

� e a
e e R
a R a

Since (R,⊕) is a total hypergroup, based on Proposition 1, it is not reduced. Here, â⊕e =
ê⊕e = {e, a}. However, it is easy to check that the hypergroup (R,�) is a reduced hypergroup,
and â�e = {a}, ê�e = {e}. All together, it gives that êe = {e} and âe = {a} which shows that
(R,⊕,�) is a reduced hyperring.

Example 2. Let the hyperring (R,⊕,�) be defined by the following Cayley tables:

⊕ x y z
x x, y x, y R
y x, y x, y R
z R R R

� x y z
x R R R
y R y, z y, z
z R y, z y, z

It is elementary to check that the algebraic hyperstructure (R,⊕,�) is a general hyperring.
Since the rows corresponding to x and y are equal in (R,⊕) and both x, y appear in the same
hyperproducts a⊕ b, it follows that x ∼⊕e y, which implies that (R,⊕) is not reduced. Similarly,
(R,�) is not a reduced hypergroup since y ∼�e z. But, x̂e = x̂⊕e ∩ x̂�e = {x, y} ∩ x = {x}.
Similarly, ŷe = {y}, and ẑe = {z}, which proves that (R,⊕,�) is a reduced hyperring.

4.1. Some Properties of the Reducibility in Hyperrings

In the following, subsections, we suppose that the ring (R,+, ·) has no zero divisors.
First, we will present some relationships between the operationally equivalence (in-

separability) with respect to the first hyperoperation of the hyperring and the operationally
equivalence (inseparability) with respect to the second hyperoperation of the considered
hyperring.

Proposition 3. Let (R,⊕,�) be a general hyperring, where the hypergroup (R,⊕) contains a
scalar identity. Then, the essentially indistinguishability with respect to the hyperoperation “⊕“
implies the essentially indistinguishability with respect to the hyperoperation “�”, i.e., x ∼⊕e y⇒
x ∼�e y, for all x, y ∈ R.

Proof. We denote by 0 the scalar identity in (R,⊕). Let x and y be two elements in R such
that x ∼⊕o y, i.e., x⊕ a = y⊕ a and a⊕ x = a⊕ y, for all a ∈ R. This means that, for any
u ∈ R such that u ∈ x ⊕ a, it holds u ∈ y ⊕ a. Let u in a � x. Then, since x = x ⊕ 0, it
follows that u ∈ a� (x⊕ 0). Now, using x⊕ 0 = y⊕ 0, we get u ∈ a� (y⊕ 0) = a� y. By
symmetry, we can conclude that a� x = a� y, and x � a = y� a, for all a ∈ R. Hence,
x ∼�o y.

Let us suppose that x ∈ a ⊕ b if and only if y ∈ a ⊕ b, for any a, b ∈ R. Let c and
d be elements in the hyperring such that x ∈ c � d. Thus, x ∈ (c ⊕ 0) � d. Using the
distributibivity, we obtain x ∈ c� d⊕ 0� d = {m⊕ n|m ∈ c� d, n ∈ 0� d}. Since x and
y appear in the same hyperproducts a⊕ b, for any a, b ∈ R, it follows that y also belongs
to the same hyperproduct, which gives y ∈ c� d⊕ 0� d, i.e., y ∈ c� d. This proves the
implication x ∼⊕i y⇒ x ∼�i y. Now the conclusion of the result is clear.

Corollary 1. Let (R,⊕,�) be a general hyperring such that (R,⊕) contains a scalar identity.
If (R,⊕) is not a reduced hypergroup, then the hyperring (R,⊕,�) is not reduced, too.

Proof. If (R,⊕) is not a reduced hypergroup, then there exist two distinct elements x and
y in R such that x ∼⊕e y. Based on Proposition 3, it follows that x ∼�e y, meaning that the
hyperring (R,⊕,�) is not reduced.
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In the second part of this section, we present some particular types of general hyper-
rings and highlight some of their properties related to the reducibility. We start with some
aspects regarding the reducibility of the hyperring of formal series.

Proposition 4. Let R[[x]] be the hyperring of the formal series with coefficients in the general
commutative hyperring (R,+, ·). The hyperring (R,+, ·) is reduced if and only if the hyperring
(R[[x]],⊕,�) is reduced.

Proof. Let us suppose that the hyperring R is not reduced, i.e., there exist elements a
and b such that a + x = b + x and x + a = x + b for all x ∈ R, and also a and b appear
in the same hyperproducts c + d, where c, d ∈ R. As a direct consequence, the formal
series (a, a, . . . , a, . . .) and (b, b, . . . , b, . . .) are operationally equivalent and inseparable with
respect to the hyperoperation ⊕. Analogously, the implication holds also if we consider the
multiplicative hyperoperation. Hence, if R is not reduced, then the hyperring (R[[x]],⊕,�)
is not reduced, too.

Let us prove now that the reducibility in (R,+, ·) implies the reducibility in (R[[x]],⊕,�).
For that purpose, let us assume that the hyperring R[[x]] is not reduced. Then, there exist two
formal series (a1, a2, . . . , an, . . .) and (b1, b2, . . . , bn, . . .), which are operationally equivalent
with respect to the hyperoperation ⊕. This implies that:

(a1, a2, . . . , an, . . .)⊕ (x1, x2, . . . , xn, . . .) = (1)

(b1, b2, . . . , bn, . . .)⊕ (x1, x2, . . . , xn, . . .), (2)

and

(x1, x2, . . . , xn, . . .)⊕ (a1, a2, . . . , an, . . .) = (3)

(x1, x2, . . . , xn, . . .)⊕ (b1, b2, . . . , bn, . . .), (4)

for any formal series (x1, x2, . . . , xn, . . .) ∈ R[[x]]. Using the definition of the hyperaddition
in (R[[x]],⊕,�), the previous equalities give that ai + xi = bi + xi and xi + ai = xi + bi for
any arbitrary xi ∈ R. Hence, ai ∼+

o bi for any elements ai, bi ∈ R, which are the coordinates
of the considered formal series.

Assuming now that the series (a1, a2, . . . , an, . . .) and (b1, b2, . . . , bn, . . .) are insepara-
ble with respect to the hyperoperation ⊕, it easily follows that ai and bi appear in the same
hyperproducts c + d, where c, d ∈ R, so they are inseparable with respect to the hyper-
product “+” on R. Similarly, we can prove that the essentially indistinguishability with
respect to the hypermultiplication “�” implies essentially indistinguishability with respect
to the hyperoperation “·”. We finally find that (R,+, ·) is not reduced, which concludes the
proof.

The next part of this subsection is dedicated to the study of reducibility of the hyper-
rings with P-hyperoperations.

Proposition 5. Let (R,+, ·) be a commutative principal ideal domain with two units, i.e., 1 and
−1. If P1 = nR, with n ∈ R, and P2 = R, then the structure (R, P∗1 , P∗2 ) is a commutative Hv-ring
with P-hyperoperations, which is a non-reduced hyperring.

Proof. Any principal ideal contains 0; therefore, 0 ∈ P1. As the ring R is commutative, it co-
incides with its center Z(R), and therefore the set P2 = R has a non-empty intersection with
Z(R), and thus the conditions of Theorem 2 are satisfied, proving that the hyperstructure
(R, P∗1 , P∗2 ) is a commutative Hv-ring.

Let x and y be distinct elements such that xP∗1 a = yP∗1 a for all a in R, meaning that
x + a + P1 = y + a + P1, i.e., x + a + nR = y + a + nR, for the fixed element n ∈ R and
any a ∈ R. Since the principal ideal nR is a subgroup, then the equality holds whenever
x− y ∈ nR. Therefore, the elements x and y are operationally equivalent with respect to
the hyperoperation P∗1 if and only if x− y ∈ nR.
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Let x and y be two elements such that x − y ∈ nR. Let us suppose that x ∈ aP∗1 b,
where a, b ∈ R. The element x belongs to a + b + nR, i.e., x = a + b + n · s, with s ∈ R.
Since x = y + n · k, with k ∈ R, it follows that y + n · k = a + b + n · s, meaning that
y ∈ a + b + nR. Hence, y ∈ aP∗1 b. Similarly, we can prove the other implication. Thus,

x ∼P∗1
i y. Conversely, if x ∼P∗1

i y, then it is clear that x− y ∈ nR = P1. Hence, for any two

distinct elements x, y ∈ R, x ∼P∗1
e y if and only if x− y ∈ P1.

Now, suppose that x and y are operational equivalent with respect to the hyperopera-
tion P∗2 . Thus xP∗2 a = yP∗2 a, i.e., x · a · P2 = y · a · P2, for any a ∈ R. Using the property that
two principal ideals are equal when their generators are associated, we obtain that there
exists a unit u such that ya = uxa, and similarly, there exists a unit v such that xa = vya.
Both together imply that ya = uvya, with uv = 1. Since the ring R contains only two units,
we have exactly two possibilities. If both units u and v are the multiplicative identity 1,
then we obtain that xa− ya = 0, i.e., (x− y)a = 0, which implies that x = y. The second
case is when u = v = −1 and we obtain ya = −xa, for any a ∈ R, thus y = −x.

Regarding the inseparability with respect to the hyperoperation P∗2 , we easily see that

for any x ∈ R, there is x ∼P∗2
i (−x) and, moreover, x ∼P∗2

e (−x).
Based on these two results, it follows clearly that x ∼e (−x), for any x ∈ P1 which

says that the Hv-ring (R, P∗1 , P∗2 ) is not reduced.

Example 3. An example of an Hv-ring with P-hyperoperations satisfying Proposition 5 can be
obtained taking R = Z, the ring of integers.

In the following, we will construct other examples of Hv-rings with P-hyperoperations
and study their reducibility.

Example 4. Let Z be the ring of integers and set P1 = nZ with n ∈ Z and P2 = Z+, the set
of positive integers. Then, the hyperstructure (Z, P∗1 , P∗2 ) is a commutative Hv-ring with P-
hyperoperations, which is reduced.

It is easy to see that the conditions of the Theorem 2 are all fulfilled, which implies that the
hyperstructure (Z, P∗1 , P∗2 ) is an Hv-ring. Similarly, as in Example 3, we conclude that x ∼P∗1

e y if
and only if x− y ∈ P1, i.e., x− y = ns for some s ∈ Z.

Let us suppose that xP∗2 a = yP∗2 a, i.e., x · a ·Z+ = y · a ·Z+, for any a ∈ Z. Choosing a = 1,
it follows that {xk | k ∈ Z+} = {yk | k ∈ Z+}. The equality is satisfied only in the case when
x = y. Thus, the Hv-ring (Z, P∗1 , P∗2 ) is reduced.

Example 5. Let (R, P∗1 , P∗2 ) be a commutative Hv− ring with P− hyperoperations such that (R, ·) is
a group and let P1 be a subgroup of (R,+) and P2 = R. Then, the Hv-ring (R, P∗1 , P∗2 ) is not reduced.

It is easy to check that the hyperstructure (R, P∗1 , P∗2 ) is an Hv-ring with P-hyperoperations.
Let us prove its non-reducibility. Indeed, following the procedure explained in Proposition 5, we
conclude that x ∼P∗1

e y if and only if x− y ∈ P1. Hence, for any two distinct elements x, y ∈ R, such
that x− y ∈ P1, there is x̂P∗1

e = ŷP∗1
e ⊇ {x, y}. Taking P2 = R we easily get that xP∗2 a = yP∗2 a,

for all a ∈ R, and if x belongs to aP∗2 b, obviously also y belongs to it. Therefore, for an arbitrary

element x in R, there is x̂P∗2
e = R.

Combining the two results, we get x ∼e y, whenever x− y ∈ P1, meaning that the considered
Hv-ring is not reduced.

Example 6. Let (R, P∗1 , P∗2 ) be a commutative Hv-ring with P-hyperoperations, such that (R,+, ·)
is a field and let K be a subfield of R. If P1 = P2 = K, then the Hv− ring (R, P∗1 , P∗2 ) is not reduced.

Let x and y be arbitrary elements from R. Analogously to Example 5, x ∼P∗1
e y if and only if

x− y ∈ P1.
Let us suppose that the equality xP∗2 a = yP∗2 a is satisfied for all a ∈ R, i.e., xaK = yaK for

any a ∈ R. This is equivalent to xK = yK, which is satisfied for any x, y ∈ K.
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Merging both conclusions, we get that the hyperring (R, P∗1 , P∗2 ) is not reduced, since any two
elements x and y in K are essentially indistinguishable.

We conclude this subsection with the study of the reducibility of the hyperrings con-
structed with Corsini hypergroups. Let us recall first the definition of such a hypergroup.

Definition 9 ([34]). A hypergroup (H, ◦) is called a Corsini hypergroup, if, for any two elements
x, y ∈ H, the following conditions hold:

1. x ◦ y = x ◦ x ∪ y ◦ y,
2. x ∈ x ◦ x,
3. y ∈ x ◦ x if and only if x ∈ y ◦ y,
4. for any (a, c) ∈ H2, c ◦ c ◦ c \ c ◦ c ⊆ a ◦ a ◦ a.

Proposition 6. Let (H, ◦) be a Corsini hypergroup and (H, �) be a B-hypergroup, i.e., x � y =
{x, y} for all x, y ∈ H. Then, the hyperring (H, �, ◦) is a reduced hyperring.

Proof. Based on Al-Tahan and Davvaz [35], it is known that, if (H, ◦) is a Corsini hyper-
group and (H, �) is a B-hypergroup, then the structure (H, �, ◦) is a commutative hyperring.
Kankaraš has proved in [4] that any B− hypergroup is a reduced hypergroup, which easily
gives that the hyperring (H, �, ◦) is reduced, too.

Example 7. Endow the set R = {x, y, z} with the hyperoperations ⊕ and � given by the
following tables:

⊕ x y z
x x, y x, y R
y x, y x, y R
z R R z

� x y z
x x x, y x, z
y x, y y y, z
z x, z y, z z

The hypergroup (R,⊕) is a Corsini hypergroup [35] and (R,�) is a B-hypergroup. Here,
x⊕ a = y⊕ a for any a ∈ R. Thus, x ∼⊕o y. x and y appear in the same hyperproducts, which
gives x ∼⊕i y. Considering the second hyperoperation, it easily follows that x̂�e = {x} for any
x ∈ R. Hence, (R,⊕,�) is a reduced hyperring.

Remark 1. If we consider that (R,⊕) is the hypergroup defined in Example 7 and (R,�) is the
total hypergroup, then both hypergroups are Corsini hypergroups; hwoever, the hyperring (R,⊕,�)
is not reduced since x̂e = ŷe = {x, y}.

4.2. Reducibility in Complete Hyperrings

The definition of complete hyperrings is based on the definition of complete hypergroups.

Definition 10 ([36]). Let (H,⊕,�) be a hyperring. If (H,⊕) is a complete hypergroup, then we
say that H is⊕-complete. If (H,�) is a complete semihypergroup, then we say that H is�-complete
and if both (H,⊕) and (H,�) are complete, then we say that H is a complete hyperring.

Following the construction of complete hypergroups, De Salvo [36] proposed a method
to obtain complete hyperrings starting with rings. Let us recall here this construction.

Let (R,+, ·) be a ring, and {A(g)}g∈R be a family of nonempty sets, such that:

1. ∀g, g
′ ∈ R, g �= g

′ ⇒ A(g) ∩ A(g
′
) = ∅

2. g /∈ R · R⇒ |A(g)| = 1.
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Set HR =
⋃

g∈R A(g) and define on HR two hyperoperations ⊕ and � as follows: for

any a, b ∈ HR, there exist g, g
′ ∈ R such that a ∈ A(g), b ∈ A(g

′
) and define

a⊕ b = A(g + g
′
), a � b = A(gg

′
).

Lemma 1 ([36]). Using the previous notations, for all g, g
′ ∈ R and any a ∈ A(g), b ∈ A(g

′
)

we have:
a⊕ b = A(g + g

′
) = A(g)⊕ A(g

′
),

a� b = A(gg
′
) = A(g)� A(g

′
).

In [37] Corsini proved that (HR,⊕) and (HR,�) are, respectively, a complete commu-
tative hypergroup and a complete semihypergroup.

Remark 2. All complete hyperrings can be constructed by the above described procedure, since it is
known that any complete semihypergroup (hypergroup) can be constructed as the union of disjoint
sets A(g), g ∈ G (see Theorem 1).

Based on Theorem 3, any complete (semi)hypergroup is not reduced; however, this
property does not imply directly the non-reducibility of any complete hyperring. That’s
why we need to study its reducibility in a different way, as shown in the next result.

Theorem 4. Any complete hyperring (HR,⊕,�) is not reduced.

Proof. Let (HR,⊕,�) be a complete hyperring. Therefore the hypergroup (HR,⊕) and the
semihypergroup (HR,�) are both complete, so both are not reduced. It follows that there
exist a �= b ∈ HR such that a ∼⊕e b. Now it is enough to prove that a ∼⊕e b implies a ∼�e b
for a, b ∈ HR, because in this case âe = â⊕e ∩ â�e ⊇ {a, b}, which shows that (HR,⊕,�) is
not reduced.

First, we will prove that the operational equivalence relation with respect to the
hyperoperation ⊕ implies the operational equivalence relation with respect to �. Let a, b
be elements from HR such that a⊕ c = b⊕ c, for all c ∈ HR. It follows that there exist
ga, gb, gc ∈ R such that a ∈ A(ga), b ∈ A(gb) and c ∈ A(gc). According to Lemma 1, we
have a⊕ c = A(ga + gc) and b⊕ c = A(gb + gc), which leads to the equality A(ga + gc) =
A(gb + gc), and so ga + gc = gb + gc in the group (R,+). Therefore, ga = gb, that implies
that ga · gc = gb · gc. Therefore, a� c = A(ga · gc) = A(gb · gc) = A(gb)� A(gc) = b� c.
Similarly, c⊕ a = c⊕ b implies that c� a = c� b. This means that a ∼⊕o b implies a ∼�o b
for all a, b ∈ HR.

Next, we will show that the indistinguishability relation with respect to ⊕ implies the
indistinguishability relation with respect to �.

Let us suppose a ∼⊕i b. This means that a and b appear in the same hyperproducts
d⊕ e, for d, e ∈ HR. Thus a ∈ A(gd)⊕ A(ge) ⇐⇒ b ∈ A(gd)⊕ A(ge), with gd, ge ∈ R such
that d ∈ A(gd), e ∈ A(ge). It follows that a ∈ A(gd + ge) ⇐⇒ b ∈ A(gd + ge), meaning
that a, b ∈ A(g), with g ∈ R. If we consider now a ∈ k � l, then a ∈ A(gk · gl), where
k ∈ A(gk), l ∈ A(gl). Since a and b are in the same Ag, it follows that b ∈ A(gk · gl) = k� l,
equivalently, b ∈ k� l. Similarly, if b ∈ k� l, then a ∈ k� l. Hence, a ∼�i b.

Example 8. Let the hyperring R = ({a, b, c, d, e},⊕,�) be defined as shown in the following tables:

⊕ a b c d e
a a b, c b, c d e
b b, c d d e a
c b, c d d e a
d d e e a b, c
e e a a b, c d

� a b c d e
a a a a a a
b a b, c b, c d e
c a b, c b, c d e
d a d d a d
e a e e d b, c
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The hyperring (R,⊕,�) is a commutative complete hyperring [38]. Since the rows corre-
sponding to the elements b and c are exactly the same in both tables, we conclude that b ∼⊕o c
and b ∼�o c, which further gives b ∼o c, i.e., b̂o = ĉo ⊇ {b, c}. Furthermore, we notice that
b̂o = ĉo = {b, c}. In addition, the elements b and c appear together in the same hyperproducts in
(R,⊕), as well as in (R,�), whence b ∼i c, and thus b̂i = ĉi = {b, c}. Hence, b̂e = ĉe = {b, c},
which implies that the given hyperring is not reduced.

Remark 3. Since (R, ·) is generally a semigroup, and not a group, it may happen that the oper-
ational equivalence relation with respect to the hyperoperation � does not imply the operational
equivalence relation with respect to the hyperoperation ⊕.

4.3. Reducibility in (H,R)-Hyperrings

(H, R)-hyperrings were introduced by De Salvo in [36], when he generalized the
construction of (H,G)-hypergroups described in [39]. In the following, we will present
their construction.

Let (H, ◦, •) be a hyperring and {Ai}i∈R be a family of nonempty sets such that:

1. (R,+, ·) is a ring.
2. A0R = H.
3. For any i �= j ∈ R, Ai ∩ Aj = ∅.

Set K =
⋃

i∈R
Ai and define on K the following hyperoperations:

for any x, y ∈ H, x⊕ y = x ◦ y (5)

and x� y = H (6)

For any x ∈ Ai and y ∈ Aj such that Ai × Aj �= H × H, define

x⊕ y = Ak if i + j = k, (7)

x� y = Am if i · j = m. (8)

The structure (K,⊕,�) is a general hyperring, called an (H, R)-hyperring. Moreover,
if ω is the heart of the hypergroup (K,⊕), then ω = H and H � K = K� H = H [36].

In the following, we will better describe the operational equivalence and the insepara-
bility in an (H, R)-hyperring.

Lemma 2. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) a ring and

(H, ◦, •) a hyperring.

1. Two elements x and y in A0R = H are operationally equivalent with respect to the hyperoper-
ation ⊕ if and only if they are operationally equivalent with respect to the hyperoperation ◦
on H.

2. Two elements x and y in K \ A0R are operationally equivalent with respect to the hyperopera-
tion ⊕ if and only if they belong to the same subset Ai ⊂ K.

3. Two elements x and y in K are inseparable with respect to the hyperoperation ⊕ if and only if
they belong to the same subset Ai ⊂ K.

Proof. 1. Let x, y be in A0R = H such that x ⊕ a = y ⊕ a, for all a ∈ K. If a ∈ Aia ,
with ia �= 0R, then the equality always holds. If a ∈ A0R , then x ⊕ a = y⊕ a whenever
x ◦ a = y ◦ a, and thus the result is proved.

2. Let x and y be in K \ H, such that x ∈ Aix and y ∈ Aiy , with ix, iy ∈ R and consider
x⊕ a = y⊕ a, for all a ∈ K. If a ∈ A0R , then x⊕ a = Aix and y⊕ a = Aiy ; therefore x and y
are operationally equivalent if and only if ix = iy. If a ∈ K \ A0R , for example a ∈ Aia , then
x⊕ a = y⊕ a is equivalent with ix + ia = iy + ia, meaning again ix = iy.

3. Let us consider x ∼⊕i y, meaning that x ∈ a⊕ b if and only if y ∈ a⊕ b. If a, b ∈ A0R ,
then a ⊕ b = a ◦ b, and therefore x ∼⊕i y whenever x, y ∈ a ◦ b ⊂ A0R . If a ∈ Aia and
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b ∈ Aib with Aia × Aib �= H× H, then a⊕ b = Aia+ib = Ai, and therefore x ∼⊕i y whenever
x, y ∈ Ai, with i ∈ R. Combining the two cases, we find that x and y are inseparable if and
only if they are in the same subset Ai.

Lemma 3. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) an integral

domain and (H, ◦, •) a hyperring. Two elements x and y in K are essentially indistinguishable with
respect to the hyperoperation � if and only if they belong to the same subset Ai ⊂ K.

Proof. The proof is similar to the one of Lemma 2. The only difference here is in the
case of the relation “∼o”, where the condition regarding R to be an integral domain is
fundamental.

Proposition 7. Let (K,⊕,�) be an (H,R)-hyperring, where K =
⋃

i∈R
Ai, with (R,+, ·) an integral

domain and (H, ◦, •) a hyperring. Then, the hyperring (K,⊕,�) is not reduced if and only if there
exists i ∈ R, i �= 0R, with |Ai| ≥ 2, or the hypergroup (H, ◦) is not reduced.

Proof. Let us suppose that the hyperring (K,⊕,�) is not reduced. Then, there exist two
distinct elements x and y in K such that x ∼e y, i.e., x ∼⊕e y and x ∼�e y. Based on Lemma 2
and and Lemma 3, if x and y belong to the same subset Ai, with i �= 0R, we conclude
that |Ai| ≥ 2. Otherwise, if all sets Ai, i �= 0R are singletons, then x, y ∈ A0R = H, which
implies that x ∼◦o y and x ∼◦i y, i.e., the structure (H, ◦) is not a reduced hypergroup.

Conversely, suppose there exists i ∈ R \ {0R} such that |Ai| ≥ 2. Then, there exist two
elements x and y in the set Ai, implying that x ∼⊕e y and x ∼�e y. In other words, x ∼e y,
meaning that the (H, R)-hyperring (K,⊕,�) is not reduced. Assuming that (H, ◦) is not
reduced, let x and y be two elements such that x ∼◦e y. According with Lemma 2 and and
Lemma 3, we further conclude that x ∼⊕e y. Due to the definition of the hyperoperation �,
for any x, y ∈ H, it easily follows that x ∼�e y. Hence, x ∼e y, i.e., (K,⊕,�) is not a reduced
hyperring.

Corollary 2. If (H, ◦, •) is a not reduced hyperring, then the (H, R)-hyperring (K,⊕,�) is not
reduced, too.

In the following, we will give an example of an (H,R)-hyperring and show its non-
reducibility.

Example 9. Let endow the set R = {0, a, b, c} with the following operations

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 0 a a
b 0 0 b b
c 0 0 c c

It easily follows that (R,+, ·) is a ring. Furthermore, let (H, ◦, •) be a hyperring given by the
tables

◦ c d
c c c, d
d c, d c, d

• c d
c c c, d
d c c, d

The structure (H, ◦, •) is a general hyperring [36]. It is easy to check that (H, ◦) is a reduced
hypergroup and thus, the hyperring (H, ◦, •) is reduced, too.

We will endow the set K = {c, d, a1, a2, a3, a4, a5, a6}, where A0 = H, Aa = {a1, a2}, Ab =
{a3, a4, a5}, Ac = {a6}, with an (H,R)-hyperstructure, by defining the hyperaddition x⊕ y = x ◦ y
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if both x, y belong to H, otherwise, let x⊕ y = Ak, with x ∈ Ai, y ∈ Aj and k = i + j. We define
x � y = H, where x, y ∈ H and x ⊕ y = Ak with x ∈ Ai, y ∈ Aj and k = i · j. Then, the
structure (K,⊕,�) is an (H,R)-hyperring.

Let us prove that a1 ∼e a2, i.e., a1 ⊕ x = a2 ⊕ x for all x ∈ K. Indeed, if x ∈ H, a1 ⊕ x =
Aa+0 = a2⊕ x. If x ∈ Aa, a1⊕ x = Aa+a = A0 = a2⊕ x = A0. For x ∈ Ab, a1⊕ x = Aa+b =
Ac = a2 ⊕ x. Finally, a1 ⊕ x = a2 ⊕ x = Aa+c = Ab for x ∈ Ac. Due to the commutativity of
the ring R, x⊕ a1 = x⊕ a2 for any x ∈ K. Similarly, a1 � x = a2 � x and x� a1 = x� a2 for
any x ∈ K. Thus, a1 ∼o a2.

Since x⊕ y ⊆ H if both x, y ∈ H = A0 = {c, d}, we conclude that the elements a1 and a2 do
not appear in such hyperproducts. All other hyperproducts x⊕ y are equal to some sets Ak, where
k ∈ {a, b, c}, with Aa, Ab and Ac being disjoint sets. Hence, a1 and a2 appear in the hyperproducts
which are equal to Aa, so they always appear together. Analogously, a1 and a2 appear in the same
hyperproducts x� y. Hence, a1 ∼i a2.

Similarly, one proves that â3e = â4e = â5e = {a3, a4, a5}. Thereby we conclude that the
(H,R)-hyperring (K,⊕,�) is not reduced.

5. Conclusions

In this paper, we defined and studied the reducibility of some particular types of gen-
eral hyperrings, thus, extending the concept of reducibility in hypergroups. We presented
some properties of the fundamental relations in general hyperrings, and we investigated
the reducibility for complete and (H, R)-hyperrings, hyperrings of formal series, and hy-
perrings constructed with Corsini hypergroups. In a future work, our goal is to extend this
study of reducibility to the fuzzy case, i.e., to define and investigate the fuzzy reducibility
in hyperrings.
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