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1 Introduction

It has been long known that the asymptotic symmetry group of gravity in four-dimensional
asymptotically flat spacetimes (AFS) is infinite dimensional [1-3]. This enhancement re-
mained largely overlooked until recently, when an unforeseen connection between the sym-
metries of null infinity and properties of scattering amplitudes in the infrared was uncov-
ered. A prime example is the equivalence between Weinberg’s soft graviton theorem [4],



the Ward identities associated with BMS supertranslation symmetry [5, 6] and the gravita-
tional memory effect [7—11]. The latter was on the one hand identified with the spacetime
Fourier version of the Weinberg soft pole, on the other hand related to transitions between
the infinity of BMS vacua induced by gravitational flux [12], rendering supertranslations
physical.

Building on these ideas, the proposed extension of BMS to allow for local Lorentz
transformations, or superrotations [13-16], led to the discovery of a new, subleading soft
graviton theorem [17, 18]. A derivation from the Ward identity associated with a Virasoro
subgroup of the extended BMS group [19], as well as the identification of the corresponding
observable, a new gravitational memory [20], shortly followed. An equivalence between the
subleading soft theorem and conservation laws was established by a further extension of the
BMS group to include arbitrary smooth diffeomorphisms of the conformal sphere [21, 22].
Moreover, a certain mode of the subleading soft graviton was shown to behave like the stress
tensor of a two-dimensional conformal field theory [23, 24], providing evidence for a dual
description of gravity in 4D AF'S in terms of a theory living on the celestial sphere [25-27].

A key lesson drawn is that the symmetries of gravity in four-dimensional asymptotically
flat spacetimes are much richer than anticipated. The overarching goal of identifying the
underlying symmetry structures and their implications has been approached with different
methods. On the one hand, a reconsideration of the set of allowed boundary conditions
and covariant phase space methods at null infinity [28, 29] led to further extensions of
the asymptotic symmetry group and their canonical analysis [30-33]. On the other hand,
the reformulation of the gravitational scattering problem in a basis of asymptotic boost
eigenstates [26, 27] revealed the existence of an infinite tower of soft theorems [34, 35], which
was remarkably shown to be governed by a higher-spin symmetry [36]. This symmetry was
found to be perturbatively exact in self-dual gravity [37] and, in the same context, explained
via twistor methods in particular Penrose’s non-linear graviton construction [38, 39]. At
the classical level, the infinite tower of symmetries is a generic feature of any theory of
gravity in 4D AFS, so it is natural to try to trace back its origin in the physically relevant
case of Einstein gravity.

In this paper, we take a first step in this direction by establishing an equivalence
between the sub-subleading soft graviton theorem [17, 40-43] and the conservation law
associated with a new class of asymptotic symmetries. Evidence for such a connection was
previously provided in [44, 45], but the divergent behavior of the therein proposed vector
fields at infinity and the lack of a well-defined symmetry action on the gravitational phase
space precluded an identification of asymptotic symmetries. An interesting alternative
approach was pursued for linearized gravity in [46], where the sub-subleading soft graviton
theorem was related to the 1/r2 contribution in a large-r expansion of the supertranslation
charge.

At the leading and subleading orders, the equivalence relies on a matching condition
obeyed by the Bondi mass and angular momentum aspects, as well as their time evolution
governed by constraint equations at leading order in a large-r expansion [6, 19, 21]. Our
strategy is similar in spirit and builds on recent work [47] where symmetry considerations



revealed the existence of a spin-2 charge with an evolution dictated by the remaining lead-
ing order evolution equation. This equation also follows from the Newman-Penrose [48-50]
analysis of asymptotic Einstein’s equations [16, 51-53] where the spin-2 charge can be
identified as the asymptotic value of the Weyl scalar encoding incoming radiation. We
demonstrate explicitly that, as in the leading and subleading cases, the associated asymp-
totic equation includes linear and quadratic components in the gravitational field. The
former is identified with a sub-subleading soft graviton, while the canonical action of the
latter on the gravitational phase space at null infinity is shown to be related to the sub-
subleading soft graviton factor upon Fourier transform. Unlike the leading and subleading
cases, there is also a cubic contribution which translates into a collinear correction to the
sub-subleading soft theorem.

This paper is organized as follows. In section 2 we review the results of [47] that
revealed a clear pattern organizing the asymptotic gravitational dynamics. In particular,
we introduce the Weyl-BMS group (BMSW) [33] corresponding to the asymptotic limit to
null infinity of the extended corner symmetry group of residual diffeomorphisms associated
to a generic codimension-2 surface embedded in spacetime [54-57]. This comprises all
previously proposed BMS extensions [13-16, 21, 31]. Upon identifying the relevant physical
quantities in terms of primary fields for the homogeneous subgroup of BMSW, the leading
order asymptotic Einstein’s equations are expressed compactly in terms of spin-weighted
scalars. In section 2.1 we specify fall-off conditions on the covariant phase-space variables
which allow for the asymptotic evolution equations to be integrated. Finite corner charge
aspects are constructed and associated with asymptotic symmetry generators.

The action of the corner charge aspects on the shear of null infinity is computed in
section 3. In particular, the sub-subleading soft symmetry is shown to be generated by
pseudo-vector fields quadratic in retarded time. In section 4 we use these actions to demon-
strate how the conservation laws for the renormalized corner charge aspects imply the three
soft theorems. At the sub-subleading order we show that the structure of the asymptotic
Finstein’s equation associated with the spin-2 charge yields higher order corrections in G
to the factorization properties of tree-level scattering amplitudes. These corrections take
the form of new collinear terms in the sub-subleading soft factor which are discussed in
section 5. Concluding remarks are presented in section 6 and technical details are collected
in appendices A, B, C and D.

2 Asymptotic equations of motion

Introducing the retarded Bondi coordinates z# = (u,r,04), where 0** denote coordinates
on the celestial 2-sphere, asymptotically flat metrics in the Bondi gauge near future null
infinity (Z*) take the general form [13, 14]

A vB
ds® = —2¢*du(dr + ®du) + r%*y4p (do’A - ﬁdu> (dUB - T—Qdu> . (2.1)



In a large-r expansion, generic solutions to the asymptotic Einstein’s equations to order

r~1 are of the form

o = @ - g +o(r ), (2.22)
g -2 BT (2). (2.20)
WA= =T DpCPA 1 (2P - OB D Con - 000 (CacCPC) ) +o (i) L (220)

YAB= qaB + %CAB + 4%2%3 (CCDCCD) + %(%TAB + %CAB(CCDCCDO +0 (r_3) :
(2.2d)

where 9,qap = 0. All indices are raised with the inverse sphere metric! ¢#Z and the shear
Cap is symmetric and traceless.

The asymptotic symmetry group is the Weyl-BMS group (BMSW) [33] generated by
vector fields that act on ZT as

g(T,Y,W) =T0o, + YA&A + W(uau - raT)- (23)

These are parameterized by a vector field Y4(c4) and functions W(o?),T(c4) on the
sphere. BMSW contains a homogeneous subgroup Hg := (Diff(S) x Weyl) acting on the
normal subgroup of supertranslations. The subgroup of BMSW implemented canonically
on the asymptotic phase space is the generalized BMS group (GBMS) [22, 31, 32] which

preserves the measure ,/q. The metric and its determinant transform under BMSW as

Sry,wyaaB = (Ly —2W)qas, Sy w)vad = DaY* —2W, (2.4)

hence upon restricting to GBMS the Weyl factor becomes Wy = %D AY A

The homogeneous subgroup Hg can be used to organize the metric components in
terms of primary fields for Hg [47]. These are denoted by Ox ) and are labelled by a spin
s and a conformal dimension A [51, 53]. By definition, for a particular cut u =0 of Z%, a
primary field transforms homogeneously under Hg as

Sy;w)Oas) = (Ly + (A = )W)O0(a ), (2.5)

with Ly the Lie derivative along Y. We assign spin +1 to vector fields d4, spin +2 to
0(49py, etc. and spin —1 to dual forms do?, as well as dimension A = 1 to 9, and r.
In this convention, positive spin operators correspond to symmetric traceless forms while
negative spin ones correspond to symmetric traceless tensors, which we denote by

Oas) = Oataray,  Oas =05 s>0. (2.6)

This parallels the re-organization of asymptotic data in a conformal primary ba-
sis [26, 27, 58, 59]. On the space of homogeneous primary fields we can perform certain

'We do not assume that qap is the round sphere metric.



operations that map primaries onto primaries. A basic example of such an operation is the
metric contraction

gAB : (A,S) — (A,S+2), (27)

which raises? the spin by 2. Similarly, contraction with the inverse metric lowers the
spin by 2. Another candidate operation is the contraction with the Levi-Civita derivative
D 4 which raises the spin by 1.3 This operation does not preserve the primary condition;
however, upon introducing a conformal connection T 4, one can construct a conformally
invariant derivative (see appendix A)

DaO(a,s) = (Da+ (A +5)T4)0@.9), (2.9)

where the action of D4 is contracted or symmetrized as in footnote 3. This maps primaries
onto primaries with shifted dimension and spin,

Da:(A)s) = (A+1,s+1). (2.10)

The connection T 4 transforms as a one form under diffeomorphisms and inhomogeneously
under rescalings, namely

5(Y,W)TA =Ly Y4 —DgW. (2.11)

There is a unique connection Y 4(¢q) with the property that Y 4(¢) = 0 for the round
sphere metric §. More precisely, given a conformal transformation with parameter ¢ and
diffeomorphism ¢ : S — S any metric on the sphere can be obtained from ¢ = e¥¢*(q).
The conformal connection can then be written as T 4 = D 4.

The importance of the conformal derivative to the canonical analysis of GBMS was
first revealed by Campiglia and Peraza in [32]. It was also used by Donnay and Ruzziconi
in [60]* and it is a central feature of the holographic fluid perspective developed by Ciambelli
et al. [61, 62].

Another candidate operation on primaries is the time derivative 0, : (A,s) — (A +
1,5) which raises the dimension and preserves the spin. It turns out that if O 4 is a
homogeneous primary, then 9,0 ) is a primary if and only if it transforms covariantly
under supertranslations [47, 60]. For instance, the shear Cyp is a primary of dimension-
spin (1,2), while its time derivative N AB .— CAB ig not. However, the news tensor NAB
defined by [31, 63]

NAB .= NAB _ TAB, TAB ‘= 2(D<ATB> + T<ATB>), (2.12)

2This is consistent with our definition (2.5) and the transformation (2.4).
3Tts action is explicitly given by

Dy : O A DASOAlmAS, Da:0ay.a, = Diag 1044, - (2.8)

“We thank S. Pasterski for bringing this to our attention.



Primary Fields Cup | NAB T4 M M Pa | Tan
Dimension-Spin (A, s) | (1,2) | (3,-2) | (3,-1) | (3,0) | (3,0) | (3,1) | (3,2)

Table 1. Fields transforming covariantly according to (2.5) under the homogeneous component of
BMSW.

is a primary of dimension-spin (2, —2) (see appendix A). 74p is the so-called Liouville

or Geroch tensor [31, 63]. Moreover, the time derivative of the news N5 = 9,NAB
is a primary of dimension-spin (3, —2). More generally d?N4P is a primary of (A,s) =
(n+3,-2).

Building on these ideas, primary fields consisting of components of the metric in a
large-r expansion to order r~! were identified in [47]. The list of primaries additionally
includes the energy current J4 (3,-1), the covariant mass M (3,0), the covariant dual mass
M (3,0), the momentum P4 (3,1) and the spin-2 tensor Tap (3,2). The momentum and
spin-2 field already appear in the metric expansion (2.2), while the energy current and

covariant masses take the form

1 1
g = 5DeNY + 20" R(q), (2.13)
1
M =M+ gJ\fABcAB : (2.14)
- 1 1
M= ZEAC (DADBCCB + §NCBCAB> . (2.15)

Here €47 is the complex structure on the 2-sphere defined through the volume form e4p,
namely

€Al = eAchB, esBegt = —52. (2.16)

The relevant primary fields and their weights are summarized in table 1.
Under supertranslations, the quantities in table 1 acquire inhomogeneous shifts. For

example,
6T =T8,T + %NABaBT, (2.17)
oM = TOM + TA04T, (2.18)
01Pa = T0,Pa+3 (MOAT + MIaT) . (2.19)

Remarkably, Einstein’s equations can be reconstructed by identifying the combinations of
fields and derivatives that transform homogeneously under arbitrary BMSW transforma-
tions [47]. We illustrate this in a short example. It can be easily shown that there are no
translationally covariant scalar combinations at dimension 3. At (A, s) = (4,0) the set of

all parity-even primaries constructed from primary fields is®

CapNAB, M — %DAJA. (2.20)

5Note that products of primaries are also primary.



It turns out that the unique linear combination transforming homogeneously under super-
translations is

E:=M~— %DAJA - %CABNAB. (2.21)

In the absence of sources, the only covariant equation is therefore £ = 0. This is one of
the asymptotic vacuum Einstein’s equations. We can continue this exercise for different
spins and parity conditions. All supertranslation primaries that can be constructed from
the asymptotic metric expansion (2.2) have dimension A = 4 and spin s = —2, 1,0, 1,2,
yielding all equations of motion to the same order in a large-r expansion.

The equations of motion can be compactly written by introducing a holomorphic frame

A

m = m?9, with coframe m = made? and normalization m?m4 = 1. In terms of these

frame fields, the sphere metric gap and the volume form e p are given by
qAB = (mAﬁLB-l-mBﬁ”LA), €EAB = —i(mAﬁ”LB—mBﬁLA). (2.22)

Both m4 and my4 have (A,s) = (0,1). They are however distinguished by their helicity
(also called spin-weight when the metric is spherical): m4 has helicity +1 while m4 has
helicity —1. As we will see, upon quantizing the shear, it is this notion of helicity that
will coincide with the 4D helicity (or the 2D spin) of the graviton [58, 59, 64]. In complex

coordinates, the normalization implies that for the round sphere m = Pdz, where P :=

V2
(1422)°
can use the frame field to convert spin-s tensors into spacetime scalars of definite helicity.

We do not restrict to the round sphere metric case and do not fix the form of m. We

By convention, positive and negative helicity scalars can be obtained by contraction with

mA and m 4 respectively,

MmOy = 0N Ay, . (2.23)

S

Os = On,a,m

This implies that O_, = O, meaning that negative helicity scalars are complex conjugates
of positive helicity ones.

Given the phase space variables (NAB, 74, M, M, P4, Tap) of conformal dimension
3, we define the following (spin-weighted) scalars

A, B AB - = A=
C = Cyupm~m®, N = N*Zmamp, J =T M,

Me == M +iM, P i=Pam”, T = Tapm”mP . (2.24)

We have introduced the complex mass M¢ which is a complex linear combination of the
mass and its dual, while N := mampN48. In spherical complex coordinates this definition
implies that C = P72C,, and N = P?N* = P72N;; in agreement with the standard
convention that (outgoing) positive and negative helicities correspond to holomorphic and
anti-holomorphic forms respectively [6, 19].

We denote D the Cartan derivative along m? and D the Cartan derivative along m
(see appendix A.2). These are such that

DO, = mAm™ ... mASDAOAl...AS = (D, — 15Q)O0s, (2.25)



where D,, := m?D 4, with D4 the covariant derivative and where iQ) := mpD,,m? =

mpDmm?P is the 2d spin connection. D raises the spin weight by 1, while D lowers it by 1.
Upon contraction with the frame field, (2.13) can then be recast as

1 1~
J = §DN + ZDR’ (2.26)
or equivalently in terms of the contraction N = N4Bm ymp of the news tensor (2.12),
1
J = §DN , (2.27)

where we have used (see appendix A.1) %BR = —D7, with 7 := mamp7*P. The asymp-
totic evolution equations [15, 47, 65] can then be compactly expressed as

J = %DN’ : (2.28a)
Mc=DJ + iCN , (2.28D)
P=DMc+CJ, (2.28c)
T =DP + SCMC , (2.28d)

and their complex conjugates.
It will prove convenient to organize aspects of conformal dimension 3 in terms of their
helicity and denote

Q_2 = Q_l = j, Q() = Mc, Ql = 'P7 QQ = T, (229)
allowing for the asymptotic Einstein’s equations to be compactly expressed as

(1+s)

QS:DQS—1+ 2

CQS—2 ) (230)

for s = —1,0,1,2. This analysis can be repeated near Z—.

We conclude this preliminary section with a clarifying remark. In this paper, we
emphasize the corner and celestial fluid perspective [55, 61, 62, 66-70] where M¢, P and
J are the complex energy density, momentum and energy current of the celestial fluid.
From the gravity point of view, M and P are the momentum and angular momentum
aspects. The distinction between bulk and boundary stems from the fact that translations
on the celestial sphere arise from bulk rotations. We find the holographic point of view on
the asymptotic dynamics quite powerful and inspiring. Of course, this is just a change of
perspective and nomenclature with respect to the standard relativist’s bulk point of view
where M is sometimes denoted P, while P is denoted J, such as in [71]. We hope that
this doesn’t introduce confusion.



2.1 Asymptotic conditions and integrated charges

The Einstein constraint equations played an important role in establishing the equivalence
between asymptotic symmetries and soft theorems at the leading [5, 6] and subleading
orders [19, 21, 22]. In order to integrate the asymptotic evolution equations (2.28) and
generalize the analysis to the sub-subleading case, the asymptotic behavior of the dressed
news and the charges at large retarded times needs to be specified. As we will see, to access
the sub-subleading soft theorem one must impose that N = O(|u|~*) where o > 3. For
the leading and subleading soft theorems weaker fall-offs are sufficient, namely o > 1 [5]
and a > 2 [32] respectively. In order to avoid logarithmic corrections [72, 73], o ¢ N will
be assumed throughout.

These fall-offs on the news are necessary to ensure that all generators of asymptotic
symmetries (J, Mc,P,T) decay to zero at Z,", where the geometry reverts to a radiative
vacuum. Specifically,

ull)rfoo Qs(u,2) =0, (2.31)
for s = —2,—1,0,1,2. Here and henceforth, arguments z compactly denote dependence

on the transverse coordinates z,z. Note that it is essential to use the covariant charge
aspects to be able to impose boundary conditions that capture the soft physics. While
these asymptotic conditions are restrictive, they are well adapted to the S-matrix context.
In particular, (2.31) allows one to define the charge aspects as integrals over their flux

Me(u,2) = [ duMe(d, 2), (2.32)
“+o00

and similarly for P and 7. Subject to the asymptotic fall-offs of N, we deduce that
Qs =O0u'™"*) when u— +oo. (2.33)

Consequently, the condition a. > 3 is necessary to integrate the spin s = 2 charge 7. Note
that these conditions do not fix the value of C'(u, z) when u — 400. Nevertheless, this value
can be set to 0 by performing a combination of supertranslation, dual supertranslation and
superrotation which amounts to fixing the asymptotic frame of reference at timelike infinity
to be a center of mass frame. We henceforth assume that C = O(u=**!) at u = +oo. Of
course, such a choice cannot be independently made at ©w = —oo as the asymptotic value
of C is determined by the memory effect.

These fall-off conditions are not sufficient to ensure that P and 7 have finite limits
when u — —oo. To remedy this problem, following [47] one can consider a non-radiative
phase space defined by the conditions”

N=0=J. (2.34)

SFor instance, imposing (2.31) for M¢c excludes the presence of black holes.
"These conditions are equivalent to the typically employed ones for the non-radiative phase space, namely
N =0.



In this case, the shear is simply given by its memory components
Cm(u, 2) == c(z) +ur(z), (2.35)

where 7(z) is the helicity scalar constructed from the Geroch tensor in (2.12) and ¢(z) is an
arbitrary function associated to the vacuum shear. The non-radiative corner phase space
is then parameterized by the renormalized corner charge aspects [47]

~ 81 u? 2 3 v
=3 <T—uD7>+ <7D -3 (/ C))M@> , (2.36)

where K = v/327G. These are time independent when (2.34) holds. The reason for the over-
all numerical rescaling will become clear when we compute their action on C' in section 3.
The first two aspects (7mc,p) define a moment map for the generalized BMS group (this
was proven for the case M = 0 in [71]). Additionally, the spin-2 charge aspect # defines a
moment map for an extension of the generalized BMS group at null infinity which, as we
show, captures the symmetry corresponding to the sub-subleading soft graviton theorem.

To summarize, in order to establish the soft theorems, one needs to impose appropriate
boundary conditions such that the renormalized charge aspects vanish at II,

u,EI—iI—loo Gs(u,z) =0 (2.37)
and are finite at Z*, namely
Jim (i, p,B)(w, 2) = (me(2),p(2). H2)). (2:38)

The asymptotic symmetry generators can then be compactly expressed as

Qury.z) = / A22/g (Tme + Yp + 2t) (2), (2.39)

where Z(z) is an arbitrary function on the sphere that parameterizes the spin-2 symmetry.
In order to compute the symmetry action on C' it will be necessary to consider the
integrated® asymptotic equations of motion

Me(u) = £, 'N) + 10, (CN) (2.40)
Plu) = %D?’(O;?N) + ipaf(om Lo Ca), (2.41)
Tu) = 5 D0, °N) + 1 DX0,°CN) + DOACT) + 50, (CMe),  (242)

where we introduced the symbolic notation

N u ui Un— A
(0" N)(u) = / dup [ dug--- / " dup N (un). (2.43)
—+00 —+o00 —+o00

8The boundary condition Qs = O(u”ka) at u — +oo allows one to do so.

~10 -



This notation will come in handy in the next sections. An identity that will be essential
to our story is the Leibniz rule for the pseudo-differential operator 9,1 [74-78]

[e.9]

0, (PF) = Y (=1)"(0;P)(0," ' F). (2.44)

n=0

The sum truncates when P is a polynomial in u.” Note that the asymptotic condi-

tions (2.33) ensure that the integrals (2.40)—(2.42) are well defined. The order of integral
labels in (2.43) is tailored to the choice of boundary conditions at Z7, corresponding to
the no-radiation condition (2.31) at u = +oc.

2.2 Brackets

The basic bracket needed to compute the action of the charges (2.39) on the asymptotic
shear is [6, 79-81]
2

(N(u,2),C0d, 2)} = %5@ —u)i(z, 7). (2.45)

Note that on ZT, it is the shifted news (2.12) that is canonically conjugate to the shear C.
The Poisson bracket (2.45) implies the following other brackets!'®

2

(N(u,2),C(d, )} = %Gué(u —u)d(z, 7)), (2.46)
2

(T (u,2),C0d, )} = %5@ —)D.(z, %), (2.47)

{C(u,z2),C(, 2} =0. (2.48)

Quantum commutators are simply obtained by defining [-,:] = —ifi{-,-}. At the quan-

tum level we therefore have
2
N (u,2), O, 2)] = —i%@ué(u —u)i(z, 7). (2.49)

The delta function on the sphere is dual to the measure € = iP2dz A dZ, meaning that

@ (z -2
5(z,2) = %. (2.50)

3 Charge action

In this section we evaluate the action of the local charges (2.36) on the shear C. The
commutation relations follow straightforwardly from (2.46) and (2.47) and are explicitly
computed in appendix B. For clarity, we continue working on Z*, but a similar analysis
pertains to Z— and will be discussed in section 4.

9More details on pseudo-differential calculus are provided in section 3.3.
1We are assuming that {m®,C} = 0 which may have to be revisited for extensions of BMS beyond
Virasoro [31, 33].

— 11 —



3.1 Leading action

We start with the complex mass aspect (2.40) which can be split as [5, 6]
Mc = Mg + My, (3.1)

where Mg is linear in C, while My is quadratic in C, C. These are explicitly given by

Ms(u, z) = +u du'DJ (', 2), (3.2)

MH(u,z)z}l " avew n.s). (3.3)

A related split, and the transformation properties of its soft and hard components under
asymptotic symmetries were studied in [60]. The brackets (2.46) and (2.47) allow us to
evaluate

12
{Ms(u,2),C(, 2"} = _ZH(U/ —u)D?§(z,7'), (3.4)
12
{Mu(u, 2),C(u',2")} = gau, [C(,2)0(u —u)]d(z,2), (3.5)

where (z) is the unit step function defined in (B.4). Here and in the following sections,

the derivatives are as defined in (2.25) and in particular do not carry any spatial index.

The subscripts z, 2’ are simply introduced to keep track of the variables they act on.
Putting these together, we find that for v/ > u

8
—{Mc(z,u), 0,2} = (0wC (', 2) —2D2) 6(2,2), (3.6)
or equivalently, in terms of the supertranslation corner aspect defined by (2.38)
{mc(2), O, ')} = (0, C(u',2') = 2D2) 8(2, 2') . (3.7)

According to (2.39), the supertranslation charge!!

Qr = /S T(2)me(z) (3.8)
induces the following symmetry transformation on C
37C(u, 2) == {Qr,Clu, 2)} = T9,C(u, 2) — 2DIT, (3.9)

which is the usual action of supertranslations on the shear. The homogeneous component
of the transformation indicates that the charge Qr is associated with a vector field

It is worth emphasizing that it is the charge constructed from the complex mass aspect
that reproduces the expected Lie derivative action on C. On the other hand, in order for

11 ; — 2
From now on we use the shortcut notation fs F = fS d“z,/qF.
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the “standard” supertranslation charges associated with the real mass aspect (2.14) to act
correctly, one ought to impose an equivalence relation on phase space [5, 6],

M x [(D2—%N>C—(D2—%N)C_*

=0. (3.11)
Iz
One has to be careful with such constraints because they are second class, meaning
{M, C'} # 0. To further clarify this, we consider the action of the anti-holomorphic charges
on the holomorphic shear C|

{Qr,C(u, 2)} = T,C(u, z). (3.12)
The real and imaginary parts of the (complex) supertranslation charge then act respec-
tively as
{w’ C(U,Z)} = TauC’(u, Z) - D§T7
_ (3.13)
{M,C(u,z)} = —D°T.

We see explicitly that the dual mass contains a purely soft contribution, providing a com-
plementary perspective on the mysterious factor of 2 mismatch for the real charge action
first observed and remedied in [6]. While the importance of the dual mass was previously
pointed out in [82-84], its interpretation in a scattering context remains elusive. We leave
a complete understanding of these interesting issues to future work.

3.2 Subleading action

The momentum aspect is given by
u

P(u,z) = . du'P(, 2). (3.14)

Using (2.41) this can be decomposed as
P = Pss + Psu + Pun , (3.15)

where the subscripts label the three terms in (2.41), namely Pyy is the hard component
associated with C'J, Py corresponds to DMy, while Psg is the soft contribution D Msg.
The brackets of the individual terms with C' are computed in appendix B.2 and the results
take the form

{Pss(u, 2),C(, 2"} = %(u’ —u)f(u' —u)D35(2, 2", (3.16)
12

{Psu(u, 2),C(,2")} = —gDzau/ [C(, 2)0(u' —u)d(z,2) (v —u)], (3.17)
12

{Pun(u,2),C(, 2"} = —Z[C’(u’, 2)0(u' —u)]D,6(2,2"). (3.18)

~13 -



Overall, these imply that for v’ > u

I<L2
{P(u2), 0, )} = = (' ~ ) D=[(9sC (', 2) = 2D2) (2, 2')]
K,Z
-y (D.[C(W,2)d(2,2")] +2C (v, 2)D,5(2, 7)) . (3.19)

As anticipated in section 2.1, in the limit u — —oo the bracket (3.19) diverges. As ex-
plained there, this divergence can be eliminated by defining the corner charge aspects (2.38),
whose subleading component is

p(z) == lim ﬁ% (P(u,z) —uDMc(u, z)) . (3.20)
Then using (3.19) and (3.6),
(p(2),C(, 2"} = — %/Dz [(0wC (', 2) —2D2) 5(z, )]
- <C(u’,z)Dz(5(z,z’) + %DZ[C’(U’,Z)é(z,z’)]) S 32

For later convenience, we can use the general formula

S > n S! n s—n
f(2)D2(2,2") = n;o(_l) n!(s—_n)!(D NE)DIT"6(2, ), (3.22)
to rewrite the r.h.s. of (3.21) in terms of C(v/, 2') as
Loy +3)C, ) D.6(2, ) + DuCld, )5(2, )

{p(2), C(u,2)} = u'DIo(2,2) — 5
(3.23)

The asymptotic holomorphic super-Lorentz charges and their symmetry action take the
form [19]
Qri= [Y(E(),  60C0.2) = {Qr.Clu,2)}. (321)
Together with (3.23), one finds
1 U0 3
OV Clu,z) = 5 (62 C) (u,2) + Y (2)DC(u, 2) + SC(u,2)DY (2). (3.25)

The Y transformation can be written in terms of the Lie derivative action

Y (2)DC(u, z) + ;C(u, 2)DY (z) = mAm?P K[,y — %DY) Cap

, (3.26)

which precisely agrees with the super-Lorentz transformations on the shear [19, 31, 33].
Note that the factor of 1/2 in (3.20) ensures that the charge action (3.25) reproduces the
Lie derivative action (3.26) with the correct normalization. This explains the prefactor
of the subleading corner aspect introduced in (2.36), and implies that the charge Qy is
associated with a vector field

£y = gDYau +Ym. (3.27)

— 14 —



3.3 Sub-subleading action

Similarly, the sub-subleading charge aspect takes the form

T(u,z) = ' du/T (v, 2). (3.28)

—+00

As before, equation (2.42) suggests the decomposition

T = Tsss + Tssu + Tsun + Taus + Taum (3.29)

where the first three terms on the r.h.s. correspond respectively to the first three terms
in (2.42), while the last two terms arise from the last term in (2.42) upon splitting Mc
according to (3.1). We obtain the following brackets (see appendix B for details)

{Tauu(u, 2),C(u', 2"} = —EFLQau/ [C(u’, 2) </uu du” C(u”, z)) O(u' — u)] §(z,2),

16
(3.30)
1o 3 2 v " " / 2 /
{Tans(u, 2),C(u', 2')} = ém (/u du"C(u ,z)) O(u —u)D36(z,2"), (3.31)
2
{Tsunu(u, 2),C(v,2")} = Z(U/ —uw)f(u' —u)D, [C(v,2)D,0(z,2")] , (3.32)
K2 ' —u)?
{Tssu(u, 2),C(u', 2")} = g@u/ (DE[C’(U’, 2)0(z, z’)]%@(u/ - u)) , (3.33)
(2
{Tsss(u, 2),C(W,2")} = —g(u’ —u)?0(u — u)D‘ZL(S(z, 2. (3.34)

Putting everything together, these imply the following bracket of (3.28) with C for
u >u
(u' —u)? 2 ' 2 /
TDZ [(&u/C(u ,2) — 2DZ) 3z, 2z )}

+2(u' —u)D, [C(u’, 2)D.6(z,2") + %DZ[C(U/, 2)d(z, z’)]}

ST, 2), 0, ) =

_ g (/u“' du//(j(u//7 z)) KB“IC(UI’ z) — 2D§> 5(z, Z/)}

~ SO0, 2P, 7). (3.35)

We see again that the generator admitting a well defined limit u — —oo is not 7 (u, z) but
the renormalized charge aspect defined in (2.36), namely'?

81 2 3 u
t(z) = uEIPoo 33 (T(u, z) —uDP(u, z) + %DQM((:(U, z)—§ </+OOC>MC> . (3.36)
20ne uses that M +ulu —u) + % = %2 One also uses our boundary condition C' — 0 when

u — +00.
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This combination is then such that

u/2 1
{#(2),C ', 2)} = (fDi 3 (

/+ OOC(Z)>> (00, 2) —2D) 5(2.2)]

+ gu’Dz [C(u/, 2D.6(2, %) + %DZ O, 2)5(z, z')]}

1
— §[C(u', 2)]20(2, 2'). (3.37)
This symmetry action distinguishes itself from the leading and subleading ones through
the following features: 1) it is non-local in time and 2) it involves collinear excitations.
It will be convenient to break down this symmetry action into a soft, hard and collinear
component, t = tg + i1 + to, where the collinear terms are cubic in C, C. As before, upon

introducing the spin-2 charge and the spin-2 variation
Qz = / Z()H(),  62C(u,2) == {Qz,Clu, 2)} (3.38)

Eq. (3.37) allows us to conclude that

520 (u, 2) = —%2 (%:,C) + %u (35,C) + D? [Z (/;Cﬂ - g (02 + 0.0 ([;0)) .
(3.39)

The last term is a non-linear transformation consisting of products of C(u, z) at possibly
different times, but evaluated at the same point on the celestial sphere. We will investigate
this collinear component in section 5.

The linear transformation associated with the first two terms in (3.39) can be described
by introducing the notion of pseudo-vector fields. Vector fields on Z* are linear combina-
tions over the space of functions on ZT of the individual vector fields m, m and 8, which
act as differential operators on Z*. Holomorphic vectors only involve linear combinations
of (m,0d,). Note that according to our discussion in section 2, the vectors (m,d,) were
assigned dimension 1. We also introduce the pseudo-differential operator 9, ! of dimension
—1.13 A holomorphic pseudo-vector of spin s is then given by the product Dy = m*9.~*.
These pseudo-vectors are of dimension 1 and they satisfy a generalization of the Leibniz
rule [76]

P =3 (1;—'8)”(83F) gl-s—n, (3.40)
n=0 '

where (), = z(z —1)...(z —n+ 1) is the falling factorial.
A pseudo-vector field is simply a linear combination over Z1 of pseudo-vectors. The
set of pseudo-vectors is naturally equipped with a Poisson bracket which is defined as the

commutator of pseudo-vector fields restricted to dimension one'*

{FSD57 Gs’Ds’} = FS(DSGS’)DS’ - Gs’(Ds’Fs)Ds- (341)

3This is the space-time version of the dimension-lowering operators encountered in sub-subleading con-
formally soft theorems [34, 85].

141t can be shown that the commutator of two holomorphic pseudo-vectors also contains a sum of terms
proportional to 9, " D5, which are of lower dimension.
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We now see that the linear component of the transformation (3.39) is associated with
the pseudo-vector field

9 2
&2 = 2Dy + ZuDZD + %DQZDO, (3.42)

where Dy = 0, and D1 = m are standard vectors while Dy = m28zj 1'is a pseudo-vector.
Again, the factor of 1/3 in (3.36) is to ensure the correct normalization of the u-independent
contribution in (3.42). It would be interesting to establish a precise relation between these
pseudo-vector fields and the overleading diffeomorphisms proposed to generate the sub-
subleading soft graviton in [44].

For later convenience, we can again use (3.22) to rewrite the r.h.s. of (3.37) in terms
of C(v,2') as

2

{#(2).C(', )} = = 5 D6(z, /)
1 !
+ 6 ([U/283/ +6u' 0y + 6} du"C (", z’)) D?5(z,2")
“+o00
- ; <[u'8ur + 3] D, du”"C(u", z')) D.6(z,2")
+oo

u’
+6(z,2)D? : du"C(u", 2"

u/

- %au/ <C(u’, ') du"C(u”, z')) §(z,2").

+o00

As we will demonstrate in the next section, upon Fourier transforming, this symmetry
action (excluding the non-linear contribution in the last line) can be recast into the sub-
subleading soft theorem [17, 45, 85].

4 From conservation laws to soft theorems

In this section we demonstrate that the leading, subleading and sub-subleading soft graviton
theorems follow from conservation laws associated with the charges (2.36). The analysis
at the leading and subleading orders was first done in [5, 19] and is presented herein for
completeness. The derivation of the sub-subleading soft graviton theorem as a consequence
of conservation of the charges (3.36) is new.

Amplitudes in gravity'® have universal behavior in the limit when one of the gravitons
becomes soft [4, 17]. In particular,

(out]as (w)Slin) = (S + L + 52} (out|Sin) + Ow?). (4.1)

15This behaviour is universal at tree-level. In the quantum theory, the leading soft theorem remains
universal, but S and §® may receive one- and two-loop exact corrections.
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Here Sﬁé) for i =0, 1,2 are the leading, subleading and sub-subleading soft factors [4, 17],

n +\2
G0 _ f g~ (e ) ’ 1.9
+ 2};—%_(1 (4.2)
“ + Jy - eT)
g _ i~ (e e7) (g T ’ 43
T 5 k; p— (4.3)
n (et )2
PO o GRS 44
it 4;::1 — (4.4)

where the subscripts refer to the helicity of the soft graviton. The (outgoing) graviton has
momentum ¢ = w§ and polarization

& (4.5)

while p;, and Jj, are the momenta and angular momenta of all other (hard) particles.
Following [5], the large-r mode expansion!® of C' near Z+ is

C(u, &) = 8% /0 dw [a‘i‘“(w;ﬁ)eiwu — aiut(w:«)e—i““] : (4.6)

C takes a similar form related to (4.6) by Hermitian conjugation. One can check (see
appendix C) that the commutators (2.49) imply the standard commutation relations for
the modes,

2
[0 (wd), al (W3] = (27T)3;5(w — W)d(z, ). (4.7)
We also define the Fourier modes [5]
o8} . —
N¥ = / due**0,C. (4.8)

This notation is consistent with the previous sections where N was defined as the variable
conjugate to C' which is 9,C. As such, N* are the Fourier modes of negative helicity
gravitons.

Leading, subleading and sub-subleading negative-helicity (outgoing) soft gravitons cor-
respond to [23, 45]

1
NO == wli%h (NY+N7¥) = —% wli%h w (aiutJf (w#) + ™ (wf)) ) (4.9a)

NG = =2 dim 9, (N* = N7) = == lim (1 +wd,) (a3 (wd) — o™ (wi)),  (4.9b)

2 w—0t 87T w—0t a

N® = —% lim §2(N¥ + N~%) = L lim 0u(1 4+ wd,) (afru”(w@) + a(im(w:%)) . (4.9¢)

w—0t T w—0t

Using (4.8), (4.9) can be equivalently written as

NO = / duN, NW = / duuN, N© =1 / duu”®N, (4.10)
—00 —00 2J-

6Note that our definition of C' = Capm*m?P already includes the polarization factors.
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which can in turn be related to the soft charges!'”

1
ms(z) = %5 lim_ D9, N(u, ), (4.11a)
1
ps(z) = %é_l uli)rfloo D3 [8;2]\7(11, 2) — ud; ' N(u, z)} , (4.11b)
— 81 li 4 6_3 6_2 u? 8_1
ts(z) = ?éu—lglooD " °N(u, z) —ud, “N(u, z) + 5 % N(u,z)| . (4.11c)

The Leibniz rule (2.44) implies that

uf S W)
a, ! (EF(u)>:(—1)kZ 0, (u), (4.12)
! ~= ol

which allows us to rewrite the subleading and sub-subleading renormalized soft charge
aspects in terms of the soft modes as

4 2 4
ms(z) = —§D2N(O)(z), ps(z) = FDSN(U(Z), ts(z) = —@DHV(Q)(Z)- (4.13)

The analogous relations for N = NypmAm? are obtained by Hermitian conjugation.

The transformation properties of C' under the symmetries (2.36) derived in the previous
sections can be converted into actions of hard charges on asymptotic Fock states by means
of inverting the mode expansion (4.6),

Cw, z) = /_ O:O due™"C(u, z) = fl—”” (a2 (~w)0(—w) — a3 (w2)0(w)) - (4.14)

™

In particular, one finds (3.7), (3.21) and (3.37) imply the following commutators'®

[men(2), ad™ (wi’)] = —wa™ (wi')é(2, 2'), (4.15)
[pr(2), a"™(wd’)] =i (h4D.5(z,2") — 8(z,2') D) a3 (wd), (4.16)

th(2), 3" ()] = g (20 (2hy — D2z, 2)
— 8, D.0(2,2') Dar + 66(2, 2') D% Jw ™ e (wit) + O(x%),  (4.17)
where w > 0 and we defined the left-moving conformal weights'®
2hy = —w0o, £2 (4.18)

associated with positive (4) and negative (—) helicity gravitons respectively. For the last
commutator, we used (see appendix C)

i~ Clw, 2)

OulC(w, z) =

(4.19)

—iw — €

"Here the label S refers to the contributions to Mc, P, T linear in N (i.e. containing no hard modes) in
the decompositions (3.1), (3.15), (3.29).

8 ere the label H refers to the contributions to ¢ in (2.36) that are neither soft nor collinear.

9These become diagonal in a conformal primary basis [23, 26].
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The commutators with negative helicity modes are implied by brackets of the charges with
C and can be shown to take the same form with Ay — h_. Similar mode expansions
apply near Z~ [6] allowing for commutators of the charges with the incoming modes to be
computed. The O(x?) contribution arises from the quadratic term in (3.37). We postpone
the analysis of this correction to section 5.

Without loss of generality, in the following sections we set P = 1 in which case the
celestial sphere is flattened to a plane. All formulas can be covariantized by simply replacing
0, by D,. We spell out our conventions in appendix C.

4.1 Leading soft theorem

Using the parameterizations (C.3) of the momenta, the leading soft factor (4.2) becomes

5 n
S_(S) = —% Z €LWi
k=1

e = +1 distinguishes between incoming (—) and outgoing (+) particles. For a negative

— — n
S 5O — _r 6kwk2 —
-z 2w = zZ— 2z

(4.20)

helicity insertion we have

838(_0) = —%ﬂ Z ekwkém (Z — Zk). (4.21)
k=1

The matching condition?’

me(@lge = me(e)ly- (4.22)

where the transverse coordinates z at Z and T, are antipodally related [5], then implies
the conservation law

(out| me(2)|+ S =8 mC(Z)‘I; lin) = 0. (4.23)
mc consists of a soft component, namely a leading soft graviton (4.13) and a hard compo-
nent whose action on asymptotic states is implied by the commutator (4.15). We find

1. N\ ol z .
— UIJIE%) wd? (out|a® (wz)S|in) + kz::l exwid @ (z — z;)(out|S)in) = 0, (4.24)

where the first term is associated with the soft part and the second term arises from the
action of the hard part on asymptotic states.?!’ We have used crossing symmetry

(out|a®"* (wi)S|in) = (out|Sa’tT (wi)|in) (4.25)

to rewrite the soft charge in terms of an outgoing soft insertion. Rearranging, we re-
cover (4.21). Note that at O(w*™1), (4.25) implies
im0 (w(out|a® (wi)Sin}) = (~1)**! im0 (w(out|Sa(~wi)lout)) . (4.26)

Therefore, the soft component of (4.23) and its subleading counterparts below will be twice
that of an outgoing soft insertion [6, 19].

**More precisely, mc(2)|+ = mc(e(2))l,

— where €(z) is the inversion z — —1,z - —1. To avoid
+

clutter, we follow [5] and take the inversion to be implicit in all matching relations.
210ne assumes that mc(2)|0) = 0 which can be achieved by normal ordering.
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4.2 Subleading soft theorem
In the parameterization (C.3), the subleading soft factor (4.3) becomes [19]

1 K (E—Ek)Q 2}_Zk 1 K — (Z_zk)Q 2hy,
s0= 53 Co [ e o], s0 =5y [ o]

zZ — Zk =1 Z— 2k Z— Zk

or equivalently, for a negative helicity soft insertion,

=21k Y [0 0@ (2 = 2) = 6P (2 = )0z, ] - (4.28)
k=1
Here
2h;, = —wkawk + Sk, Qilk = —wkawk — Sk, (4.29)

where sy are graviton helicities.
As before, imposing an antipodal matching condition on p(z)

p(2)|zj = p(2)|1; ) (4.30)

upon splitting p(z) according to (2.41) and using (4.13) to identify the soft component
with a subleading soft insertion and (4.16) to compute the action of the hard component
on asymptotic states, we find [19]

_ v 93 out, :
21‘”8 L})111(1(1+wé7 ){out|a®™*(wz)S|in)

zn: (Pk0:0@) (2 = 2) = 6@ (2 = 24)0%, ) (out|S]in) = 0. (4.31)

As expected, this agrees with (4.28).

4.3 Sub-subleading soft theorem

Using the standard parameterization for the momenta spelled out in appendix C, the sub-
subleading soft factor (4.4) can be put into the form [44, 45, 85]

*'>|€

— [Qhk (2h, — 1) — 2(z — Zk)Qhkﬁzk + (2 — 2) 3§k] (Ekwk)_l,

Z
= (4.32)
2

l\l |
N

l\l |

= _Iw [Qhk (2h — 1) = 2(2 — 2,) 200z, + (2 — Z) ng] (o) ™

l\z

(2)

As before, focusing on the negative helicity insertion and taking 925~ all terms
localize to delta functions or derivatives thereof, namely

9is® = Z (24 (2hs, = 1)0262) (2 — 21) — 4(2h4)2:0@) (= — 2),
k=1 (4.33)

+ 65<2>(z — 21)02, ) (exwr) .
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An antipodal matching condition for ¢(z),
t(z)lzf = t(z)|zj_ (4.34)
then implies the conservation law
{out| ¢(z)|+ S =8 t(z)|I; lin) = 0. (4.35)
Eq. (4.13) identifies the soft component of (4.35) with a sub-subleading soft insertion

. _ 1 . 4 out A, :
(out| ts(2)|;+ S =8 ts(z)\Z; |in) = —G’i—ﬂol}gbaw(l + wd,,)0;, (<0ut]a (wx)S]m}) :
(4.36)
On the other hand, (4.17) allows for the hard component of (4.35) to be written as
(out| tH(z)|I+ S-8 tH(z)|I; lin) =

Z (2hk (2hy, — 1)026®) (2 — 21,) — 811,06 (2 — 21,)0., (4.37)
=1
)

@IH

+65< (2 = 2)02, ) (exeor) " {out| Sfin) + O (7).

The O(x?) contributions arise from the terms cubic in the fields whose action on asymptotic
states will be computed using (3.30) in section 5.
Putting everything together, we find that to leading order in

lirrbﬁ (1 + wd,,)o? ((out|a°“t(wx)8|1n)) = 2w*1845(2)<0ut|8|1n>

w—r

= —TK Z (2hk(2hk — 1)8?5(2)(2 —z) — 8hk(9z5(2)(z — 25)0z,
k=1

+663)(z — Zk)agk) (exwr) " (out|Slin),

which remarkably agrees with (4.33).

5 Collinear contribution to the soft theorem

In this section we consider the quadratic contribution to symmetry action (4.1), which
upon promoting the bracket to a commutator takes the form

te(2), C(u/, 2] = %au (Clu, )8, C(u,2)) 8(2, 2). (5.1)
Upon Fourier transforming and using (4.14), we find
(), g ()] = 2 [3[C0 1] )0z, )
_ _%}/j_oo dw’ (C((:}J_— w’)C({u')) 5(2,2’/), (5.2)
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where we have used the convolution theorem and (4.19). Using (4.14) the r.h.s. of (5.2)
can be re-expressed in terms of modes, namely

[tC( ) aS’FUt(wx’)] _ i/ow dw laim(w/i‘/)aim((w—w/)JA?/)‘| 5(2,2’/)

1672 w—w — i€

Kw? /+°° , [a‘iuﬂ((w’ — w))ad" (W@’

~ 162 /. )] 5(z,2'). (5.3)

(w—w —ie)(w — i€)

Details are given in appendix D. The commutators with the opposite helicity as well as
incoming modes can be found similarly.

Both terms represent collinear corrections to the sub-subleading soft theorem that
can be traced back to classical, non-perturbative gravitational effects. The first term is
a particle creating contribution which can be evaluated using the universal behavior of
equal helicity gravitons in the collinear limit [86] which for positive helicity gravitons takes

the form
) . K Zij (wi +wj)? .
1 B il Slin) = A Wi oV lS 5.4
ﬁigr%j(%puwjpﬂ |in) 27 wiw; ((wi +wj)p;|S|in) + - -, (5.4)
where - -+ denote subleading terms in the collinear limit. The associated correction then
becomes
(out]| tc(z)\IJr S—-S8 tc(z)|If lin) )
xﬁzzwl/ dw @ _w)25(z,zi)<wiﬁi|8|in>+-~ ,
X K ll_I}(l]Zwi e, =1+ €)d(z, z){wip;|S|in) + - - -, (5.5)
7
where B(e, —1+¢€) = = is an Euler beta function resulting from the regulated integral. The

second term can be shown to give rise to corrections with d-function support of the form

(out] tc(z)|zj S-8 tc(z)\Z; \in>(2)

o 1Y i, 07)8 (20, 27)3 (2, 20) (i + )il Sim) + -+ (5.6)
,J

where Fj; are (possibly vanishing) functions of the external energies; these functions, to-
gether with the d(z;, zj), arise from the commutator of the outgoing annihilation operator
in the second line of (5.3) with a given negative helicity outgoing particle creation operator

aout(

w;p;) in the out bra state. We expect a careful treatment of contact terms in the
original proof of [17] to reveal these corrections.?? We leave a complete understanding of

their amplitudes origin and implications to future work.

22We thank Freddy Cachazo for a discussion on this point.
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6 Conclusions

In this work we have established a clear connection between the spin-2 conservation equa-
tion and the sub-subleading soft theorem. We have learned that the non-linear nature of
FEinstein’s equations manifests itself in the sub-subleading soft theorem through collinear
corrections. We have also revealed that, unlike the spin-0 and -1 symmetries responsible for
the leading and subleading soft theorems, the spin-2 symmetry is not simply an asymptotic
diffeomorphism. It involves a non-local transformation represented by a pseudo-vector field
acting on Z. The extension of this symmetry to the bulk of spacetime remains mysterious
to us. Establishing a precise relation between our charges and the ones associated with
overleading diffeomorphisms in [44] may provide insights into the extension and the nature
of these symmetries. This result now puts us in a position to understand the spin-2 memory
effect, which is a question we expect to return to in the near future.

From the S-matrix point of view, it is expected that this spin-2 charge, or rather its
quadratic truncation, is one of the canonical generators for the wiio Symmetry unrav-
eled by celestial holography [35, 36]. Interestingly, the connection between Wy algebras,
pseudo-vectors and integrable systems has already been explored in the past [77]. This sug-
gests that there could be an exciting connection between asymptotic Einstein’s equations
and symmetries of integrable systems.

Finally, it is natural to wonder whether the collection of celestial Ward identities as-
sociated with the entire w1+ symmetry tower possesses a gravitational dynamical inter-
pretation. We started to address this question in [87], where first evidence for a canonical
realization of a w4, loop algebra on the gravitational phase space was given.
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A Conformal derivative

In this appendix we study the properties of the conformal derivative introduced in section 2.
From the transformation (2.4) of the metric we deduce that

Swlip = —DaWd — DpWog + qapD“W . (A1)
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Let us assume that O 4,...4,) is a spin s field of dimension A. We have

SwD(a,04,.-4, = DiagowOn,...a,) — Z&WF&OAZ_OAT..WA..,AQ
i=1

= D(Ao((A - 3>WOA1~~AS)) + QSD(AOWOAlmAS)
= (A= 8)WD4,04,..4,)) + (A +8)Da,WOy,..a,).  (A2)

Hence, by using the transformation (2.11) of the conformal connection T 4, we see that
Di4gOu,.ayy = DiagOa,.a) + (A +38)T4,04,...4,) (A.3)
transforms covariantly. Similarly for a spin —s field, one finds
S D4, O As) — (A + §)WD 4,01 A) 4 (A — 5)(D g, W)OMLA) - (A4)
We can also compute the transformation of

SwDaYpy = DiadwYp) — 5WF<CAB>TC
= —DaDpyW + 2D 4 WY g,

This implies that
dwTap = 20w (DaYpy + Y (aYp)) = 2D 4 DpyW. (A.6)
This coincides with the transformation of Ngp and hence
ow(Nap — 7a) = 0. (A.7)

Since CAB is a primary field of (A, s) = (1,—2), we deduce that DgC4P8 and Dy DpC4E
are respectively of dimension (2, —1) and (3,0). Moreover,

DADBCAB = (DA + TA)(DB — TB)CAB
= DADpCAB — (DT + T4YE)CAB
1
= D,DCAB — §CABTAB. (A.8)

Similarly,
- - 1 -
DADpCAP = DDpCAP — §CABTAB, (A.9)

where CAB := eAcCYB. We can thus write the dual covariant mass as [47]

- 1 - 1 -~
M = ZDADBCAB - gcABNAB

1 ap la o
= DaDpC*P — 2 Cap NP, (A.10)
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In order to extend the definition of the conformally covariant derivative beyond the
case of symmetric, traceless tensors, we use (A.1) to note that for a spin-1 field O4 of
dimension A we have

SwDpO4s = DpdwO4 — dwIl'S50¢
= (A —1)D(WO,) + DA,WOpR 4+ DpWO, — qaD°WO¢
= (A= 1)WDpO4 + (A —1)DgWO4 + 2D 4,WOp . (A.11)

Hence, we see that
DOy := DpOs+ (A —1)Tp0a +2Y 4O0p, (A.12)
transforms covariantly as
dwDpOs = (A—-1)WDgOy. (A.13)

For a general field of spin s and dimension A, the conformal covariant derivative is given by

DpOay..a, :=DpOy,..a, + (A —8)Yp0a,..a, + 22T<BO|A1~-~|A¢>~--AS . (A.14)

i=1

Finally, we see that the sphere metric q4p, which is a field of spin s = 2 and dimension
A =0, is compatible with the conformal connection, namely

Deqap = —2Ycqap + 2T (cqays + 2T cqpya = 0. (A.15)

A.1 Commutators and curvature

By means of the general formula (A.14), we can evaluate the commutator of the Weyl-
covariant derivative on a field of spin 1 and dimension A

[Da,Dp|Ve =Da(DpVe + (A = 1)TpVe + 2T (gVey) — A< B
=D,DpVo + (A — 1)(DATB)VC + Q(DAT<B)VC> — A+ B

= [DA, DB]VC + QA(D[ATB])VC + Q(D[A|T0)V|B] — QQC[B(DA]TD)VD .
(A.16)

Writing the conformal connection as T4 = Dap and working in complex coordinates, we
can derive the identity

(DAY e)Vip — aos(DaYo)VP = qacapsV " DeY?. (A.17)
Moreover, we can write the commutator of the Weyl-covariant derivative as
[Da, DBlVe = RaacapisV?” (A.18)
where, in analogy to [32], we have defined

R:=R+2D,T4, (A.19)
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and we recall R denotes the scalar curvature of the 2-sphere metric gap.
Finally,

5wDATAB = DA51/V7'AB + 5WrﬁCTCB + 5WFECTAC

= 4D (Wr4B) — 2D, DADBIW — 4D W8

=AW <DATAB + iDBR) — DB(RW + Aw), (A.20)
where A = DeDC and [A, DB|W = gDBW. We also have that
SwR=2WR+2AW , (A.21)
from which
Sw(DPR) = 2WDPR + DEQWR + 2AW). (A.22)
Therefore,
S <%DBR + DATAB) 4w (DATAB + %DBR> . (A.23)

This implies that 2D 4742 + DBR is a primary field of dimension/spin (3, —1). If we
assume it vanishes for one choice of the conformal orbit, it vanishes at all times.

A.2 Spin connection and variations

The spin connection €2 appears in

Damp — Dpmy = Qeap. (A.24)
Using (2.22) and contracting with mAm?, as well as with m4m?, one finds
iQ=mADmy =m" " Dmy. (A.25)
Moreover,
Dam® = (mAm®? + mAmP)Dymp = mP Dmp = iQ. (A.26)

We can expand the vector field as Y4 = Ym? + Ym? where Y = Y4m,. This means
that, under GBMS transformations (W = 1D AY4), we have

1
6(T7Y)mA — YBDBmA + mBDAYB — EDBYBmA

—iO(Yma — Vima) + DAV — %((D L Q)Y + (D — i)V )ma, (A27)

mAspyyma = (D —iQ)Y, (A.28)
1 - _

A8 yyma = (D +iQ)Y — (D —i)Y), (A.29)

1

§QAB5(T,Y)QAB = mAmPs iy (mamp) + mAmP sy (Mamp)

= A yyma +m8pyyma = 0. (A.30)
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Then for a primary spin s operator,
Oay.a, = Ogimg, -, + Osma, - -ma,,
oA As = O_gmA...mA 4 O_gmAr ..., (A.31)
where O_g = Os, one finds the variations
mA - mA Gy 04, ..a, = DyOy + sOs(m“ Dyma) + sDY PrpOs + (A — s)Wy O,
= (YD +YD)O, —isQ(Y 4+ Y)Os 4 sOs(DY + YingDmP)
+ %OS(A —8)((D +iQ)Y + (D —iQ)Y)
=Y[(D —isQ)O4] + Y[(D — isQ)Os]
+ %(A +8)0s[(D +iQ)Y] + %(A —5)04[(D —iQ)Y]. (A.32)

Oupon,Sym™t - mAs = —gos[(p —iQ)Y] + gos[(f) i)Y, (A.33)

We thus see that the general transformation (A.32) is consistent with the shear transfor-
mation (3.26) (recall that Cap is a primary of (A, s) = (1,2) and eq. (2.25)). Finally, we
can write

o A A _
Oy Oy = (YD +YD)Os + S 0u(D +iQ)Y + T 04(D i)Y . (A.34)

B Charge commutators
In this appendix we spell out the steps leading to the results presented in section 3.

B.1 Leading charges
The commutators of the soft and hard parts of M¢ with C are

(Ms(u,2),C, ) = [ du'DAT W, 2),C, )}

400
12
= _ZH(UI —u)D?5(2,7), (B.1)
and
1 u
{Mu(u,2),C(, ")} = 1 du”"C(u", 2){N ", 2),C(u, ")}
+o0o
K2 u
=3 du"C(u",2)0y 6 (u' — u")6(z, 2")
“+o00
42
= g@u/ [C(;2)0(u —u)]d(z,2'), (B.2)
where we have used
/ du”6(u" —u') = —/ du"5(u" —u') = —0(u — u), (B.3)
with
0,2z <0,
0(x) = B.4
(@) {M . (B.4)
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B.2 Subleading charges

The commutators of the terms in P with C are

{Pss(u,2), C(u',2)} = | du"DAMs(u",2), C(u, ')}
+o00o

K2 [toe
- Z/ du"0(u’ — u")D35(2, ')

K2

= Z(U/ —w)f(u' —u)D35(z,2'), (B.5)

(Psu(u,2),C, )} = [ A" DAMu(", 2),C(, 2')}
—+o00
2 u
= %au, du"D, (C(u',2")0(u —u")d(z,2"))
+oo
2
- —%Dzau, (O, )00 — w)d(z, 2") (' — )], (B.6)

and

{Pun(u, 2),C(,2")} = ' du"C(", ) {T (W, 2),C(u', ")}

+oo
2 ru
= % A du"C(u", 2)0(u" —u')D.é(z,2")
o
2
— e — D5 ), (B.7

where in the last bracket we used (2.47).

B.3 Sub-subleading charges

For the sub-subleading charge we find

(T, 2), O, 2 = 5 [ dw'c, H{Mu . 2), Cd, #))

2 Jtoo
— %KJ2 :OO du”"C(u",2)0,[C(u', 2)0(u — u")]|6(z, )
_ _%“28“' [C(u', 2) ( /u Y O, z)> o(u — u)] 3(z,2'),
(B.8)
(Tis(w.). €'} = 5 [* Ol )Ml 2), 0, 2)
_ _gﬁ ; du"C (", 2)0(u — u")D25(z, ')
3 ( [ awc, z)) 0’ — u)D26(z, ), (B.9)
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{Tsuu(u, 2),C(,2")} = du" D {Pyu (", 2),C(u, ")}

+0o0
K2 [
=7 du"D, [C(u,2)D.(z,2")] 6(u' —u")
+o00
12
= Z(U/ —w)f(u' —u)D, [C(v,2)D,(z,2")] , (B.10)
{Tssu(u, 2),C(u',2")} = :}o du”" D {Psg(u”,z),C(v,2")}
K2 [
=5/ du"d, (D2[C(u', 2)(z, )] (' = u")0(u' — "))
K2 (u' —u)?
= gﬁu/ (Dg[C(u/,z)é(z,z/)]TH(u/ - u)> , (B.11)

and finally

{Tsss(u,2),C(u,2")} = du”" D {Pss(u”,2),C(/,2")}

+oo
K2 U
=7 du (v — u")0(u' — ") D16(z, 2)
+00
;2
= —g(u’ —u)20(v — u)D5(z, 7). (B.12)

C Conventions

To demonstrate the equivalence between symmetries and soft theorems in section 4 it is
convenient to work in flat retarded coordinates

' = ud,0:¢" (2, 2) + ri"(z, 2),

P (2,5) = D (1425, 45,0l = 91— 29) = 805, o
2,2) = — 2z,z+z,—1(lz—2),1 —zz):=x(z, 2),
q \/§
in which the Minkowski metric becomes
ds® = datdz,, = —2dudr + 2r?dzdz, (C.2)

and the celestial sphere is conformally mapped to a plane. This corresponds to choosing
P =1in (2.22).
More generally, we parameterize Cartesian coordinate massless 4-momenta as

€Wl _ _ . _ _
Pl = 7 (1 + 22k, 25 + 28, —i (2 — 21,), 1 — 2128,

(C.3)

q= 142z, 2+ 2z, —i(z — 2),1 — 22),

Sl

with = 0,1,2,3 and ¢, = £1 for outgoing and incoming momenta respectively. z; is the
spatial location at which a particle of momentum pj, crosses ZT. In this parameterization,

D1 - P2 = —€1€2W1W2212212, (C.4)
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(C.5)

where
Z12 = 21 — 22, 212 = 21 — 22.

It can be shown [6, 19, 23, 45, 85] that in these coordinates, the soft factors (4.2)—(4.4)
indeed take the forms (4.20), (4.27) and (4.32)
The mode expansions of the shear and the news take the form [6] (see [88] for a review)
C A\ K ood outf N iwu out (, ,»\ —iwu
(u, ) = &2 )y w [a_ (wz)e™™ — a™(wi)e ] ,
(C.6)

A

N / dww outT ) zwu_|_ (iut(wx)e—mu}’

where N := 9,C. From this we have for w > 0
——W/duN(u,aE)eiw“,

wa_ (wi)
of () = - 2T / du'C(u, &' )e™ ™", (C.7)
We now recall (2.49),
~ 52
[N(u,z),C(u,2")] = —z’75(u —u')d(z,2) (C.8)
which allows us to compute
A T I Al e 2 ! A I AN iwu,—iw'w
wla_(wi),a’ (W'2")] =1 P /dudu [N(u,z),C(u,z")]e“" e
= 16736 (w — w')d(z, 2) (C.9)
Moreover, considering the Fourier transform of C'
Clw,z) = / due™ C (u, &) = % (02" (—w)0(—w) — a3 (wi)O(w))] (C.10)
we find that
U 1 —+o0 - U . . /
(0,10) (u, 2) == du'C(u,2) = —/ dwC(w, 2) du/ e~ i @i
+00 T J—c0 +00
too (O .
R o)
2T J_oo —w + 1€
or equivalently
O C(w,2) = C'(w,z) . (C.12)
—iw — €
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D Collinear terms

Eq. (C.12) and the convolution theorem imply that

Clw—u,2)

(w—w') —ie

oo -
[0,[C0: 0] (w,2) = o / dw' (W, 2) (D.1)
27 J oo
We can use (5.1) to evaluate the commutator of the cubic contribution to the sub-
subleading charge with an annihilation operator. We find

w =T /C(w_wlzzl)_
QW/dwC(w’Z)(w—w’)—ie_

w/£2 CLOUt(w/,fj’)CLOUt((w _ wl){fjl)
=~ /dw’[ + ~ _Z, — O(w)(w — ')

wa®™ (W — w)2")a (w3’
. — (( ) ) + ( )e(wl)e(w/_w) (D2)

(W' —i€e)(w — w' — i€)

and therefore

b w L= ,C~'w—w’,z’
e R e

KW /w ,a(_ﬂlt(w,i‘/)aiut((w _ w,)j/)5(27zl)
0

5(z,2")

(47)? w—w' — e
p? o a? (W - w)at W)
() / @ =i = —ig) 7)) w>0 (D3)
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