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Despite several automated strategies for identi¯cation/segmentation of Multiple Sclerosis (MS) lesions in
Magnetic Resonance Imaging (MRI) being developed, they consistently fall short when compared to the
performance of human experts. This emphasizes the unique skills and expertise of human professionals in
dealing with the uncertainty resulting from the vagueness and variability of MS, the lack of speci¯city of MRI
concerning MS, and the inherent instabilities of MRI. Physicians manage this uncertainty in part by relying
on their radiological, clinical, and anatomical experience. We have developed an automated framework for
identifying and segmenting MS lesions in MRI scans by introducing a novel approach to replicating human
diagnosis, a signi¯cant advancement in the ¯eld. This framework has the potential to revolutionize the way
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MS lesions are identi¯ed and segmented, being based on three main concepts: (1) Modeling the uncertainty;
(2) Use of separately trained Convolutional Neural Networks (CNNs) optimized for detecting lesions, also
considering their context in the brain, and to ensure spatial continuity; (3) Implementing an ensemble
classi¯er to combine information from these CNNs. The proposed framework has been trained, validated, and
tested on a single MRI modality, the FLuid-Attenuated Inversion Recovery (FLAIR) of the MSSEG
benchmark public data set containing annotated data from seven expert radiologists and one ground truth.
The comparison with the ground truth and each of the seven human raters demonstrates that it operates
similarly to human raters. At the same time, the proposed model demonstrates more stability, e®ectiveness
and robustness to biases than any other state-of-the-art model though using just the FLAIR modality.

Keywords: Multiple sclerosis; MRI; convolutional neural network; U-Net; FLAIR; segmentation; classi¯cation;
uncertainty.

1. Introduction

Multiple Sclerosis (MS) is a degenerative disease

mainly a®ecting the white matter (WM) and the

spinal cord. It has a very heterogeneous clinical

presentation across patients in terms of both severity

and symptoms.1 The origins of the disease are not

well understood but the characteristic signs of tissue

degeneration are the presence of lesions and brain

atrophy. Magnetic Resonance Imaging (MRI)

enables the observation of most signs of MS and has

become the preferred minimally invasive tool for

monitoring lesions.2 Focal lesions are primarily visi-

ble in the WM on structural MRI. They are ob-

servable as hyper-intensities in T2-weighted (T2w)

images, proton-density (PD) images, and FLuid-

Attenuated Inversion Recovery (FLAIR) images,

and as hypointensities in T1-weighted (T1w) images.

Radiologists often use FLAIR for detecting WM

lesions and other modalities to re¯ne their borders,

ascertain the presence of cortical lesions, or con¯rm

the choice made with FLAIR.

In an examination, thousands of images are col-

lected before and after contrast administration.

However, MRI is not speci¯c to MS and not well cor-

related with impairment progression, neuroplasticity,

and the e®ects of demyelination of nerves.2 Lesions

and healthy tissue often share the same volume,

resulting in the partial volume e®ect (PVE). Addi-

tionally, healthy anatomical structures similar to

lesions and close to lesions could contribute to creating

further ambiguity in MRI. The wide range of varia-

tions in images caused by di®erences in scanners,

magnetic ¯eld strength/homogeneity, and parameter

settings adds complexity to the framework.3 While

attempts have been made to standardize amplitudes

in MRI,4 the results remain unsatisfactory due to the

number of involved variables. As a result, when de¯n-

ing the borders of lesions and identifying entire lesions,

disagreement can arise among radiologists as well as

uncertainty within each radiologist. This could make

manual segmentation not only time-consuming and

tedious but also inaccurate, despite the radiologists'

extensive experience.

In recent times, several automated frameworks

have been proposed and reviewed for this prob-

lem.5–11 However, their results still lag behind those

of human experts, leading to an increase in model

complexity without the expected improvement

materializing12 and, in some cases, introducing

framework-speci¯c biases. Additionally, even though

automated strategies have advanced, they still

struggle to fully capture the complex medical ex-

pertise, human judgment, and adaptability needed

for MRI analysis. Finally, automatic strategies do

not completely replicate the reasoning process used

by radiologists for volume analysis, which involves

segmenting 2D axial slices and continuously exam-

ining coronal and sagittal images.2,13 In a recent

paper,14 the signi¯cance of 3D Convolutional Neural

Networks (CNNs) in MS lesion segmentation is em-

phasized. However, other recent frameworks,15,16

favor ensembles of 2D U-Net models, which align

with human methodology, due to the anisotropic

spatial resolution across the three axes, with a pref-

erence for axial planes. Besides, the uncertainty that

impacts radiologists during classi¯cation is not well-

documented in public, binary-labeled datasets. This

lack of representation of an expert's \fuzzy" evalu-

ation through a binary choice is often insu±cient.

Modeling uncertainty could signi¯cantly improve

segmentation17 and its impact on knowledge transfer

to an automated strategy18 deserves further study.
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We propose a framework to narrow the gap with

human experts by implementing the following: (1)

Categorizing uncertainty as an intermediary class

between background and lesions; (2) Optimizing two

CNNs (2D U-Net models), one for the lesion class

and one for the lesions contextualized in the brain;

(3) Repeating the process for all three spatial direc-

tions (axial, coronal, and sagittal) to maintain vol-

ume continuity; (4) De¯ning an ensemble classi¯er to

consolidate the information gathered by all CNNs.

To achieve this goal, we did the following: We

used a publicly available large-scale benchmark MRI

database of brain images and the corresponding

ground truth, as suggested in the MICCAI MS

Lesion Segmentation Challenges (MSSEG),19 ensur-

ing the robustness of our approach; We identi¯ed the

uncertain regions using the binary classi¯cations of

seven human raters in MSSEG. We speci¯cally

designed and applied our framework to FLAIR

images, underscoring the importance of this imaging

modality in our research.

These options enabled us to compare the pro-

posed framework to other competitive automated

strategies and seven human experts. The MSSEG

dataset's uniqueness for our purposes stems from the

presence of data annotated by seven raters, leading

us not to consider other important benchmark

datasets such as MSSEG2.20 Moreover, we demon-

strated how uncertainty modeling could help in

reducing the ambiguity and complexity of the

problem and that a single imaging sequence, FLAIR,

is su±cient for segmenting MS lesions a®ecting WM.

This paper is structured as follows. Section 2

presents a review of automatic approaches to MS

lesion identi¯cation/segmentation, particularly those

using CNNs. Section 3 describes the proposed frame-

work in the context of the used data set, the de¯ned

three-class consensus used for training, the proposed

CNNarchitecture, and the ensemble system. Section 4

details the indicators used for the comparison. Sec-

tion 5 reports and discusses experimental results.

Section 6 concludes the paper and presents some

constructive hints for future investigations.

2. Related Work

Automated strategies are widely used for medical

image analysis, mainly of brain images.21–24 One area

of ongoing research is the automated segmentation of

MS lesions, with numerous methods being developed

and extensively reviewed over time.5,6,8,25,26

Automated strategies can be categorized into

three main groups: methods using pre-selected fea-

tures (PSFs), methods using prior information

(API), and deep learning (DL).

Some PSFs utilize a wide range of features and

then select the ones that are most distinctive through

labeled training.27 Other approaches use topological

and statistical atlases28,29 or Decision Random For-

ests.30 Likewise, a framework for segmenting lesions

enhanced by contrast agents using conditional ran-

dom ¯elds was outlined in Ref. 31. The work in

Ref. 32 introduces a set of features, including con-

textual features, registered atlas probability maps,

and an outlier map, to automatically segment MS

lesions through a voxel-wise approach. Additionally,

a rotation-invariant multi-contrast nonlocal means

segmentation method was proposed in Ref. 33 for the

identi¯cation and segmentation of lesions from 3D

MRI. Supervised learning through PSF has been

widely employed in tasks where the training database

and the PSF set cover all possible cases.34 However,

when dealing withMS andMRI, exhibiting signi¯cant

heterogeneity and huge variability, the size of the

training data set and, most importantly, the choice of

PSFs, become critical.

API does not require labeled data for training but

usually exploits some prior information, such as in-

tensity clustering, to model tissue distribution.35

In Ref. 36, the distribution of intensities in MRI

of healthy brains was modeled by a likelihood esti-

mator. Other methods use threshold with post-

processing re¯nement37 or probabilistic approa-

ches.38 A big challenge for API is represented by the

outliers that could be due to artifacts, intensity in-

homogeneity, and small anatomical structures like

blood vessels.39 Moreover, API heavily relies on the

information extracted and managed by the knowl-

edge of speci¯c experts.

Compared to the other categories, DL models

extract features directly from data,40 that makes

them particularly suitable for medical imaging,22,41–47

mainly for studying neurodegenerative diseases.23,48–52

The recent popularity of DL is due to the U-Nets and

their variants.53–57 While the size and quality of the

training dataset are important forDL, the pre-selection

CNN-Based Framework for MS Segmentation in MRI
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of features, such as in PSF, or prior modeling, as in

API, are not critical. Comparatively, CNNs have

shown signi¯cant success in biomedical image anal-

ysis, outperforming traditional machine learning

approaches.16,39,41,42 DL has been particularly

applied inMS lesion identi¯cation and segmentation,

as con¯rmed by recent studies.5,6,8,10,11,25,58–60

CNNs applied to MS utilize 2D or 3D convolu-

tional layers40,57 to integrate spatial and temporal

information within the model and a minimum lesion

volume threshold to exclude small false positives.

Some methods improve the MS segmentation by

retraining the CNN from the ¯rst layers in a kind of

self-supervision by hypothesizing that those layers

are more informative.61 Hybrid models, such as

Decision Tree (DT) and Support Vector Machines

(SVM), combine textural features with machine

learning approaches to detect MS lesions.62 Finally,

Federated Learning strategies have successfully im-

proved the segmentation of MS lesions.56 However,

all the above strategies still lag behind human

experts and perform poorly on inhomogeneous data

sets.12,56

3. The Proposed Framework

The framework we propose, outlined in Fig. 1,

consists of the following steps:

(1) Automatically classify the cross-sectional images

(2D) that make up the MRI volume on a voxel-

by-voxel basis, separately for axial, coronal, and

sagittal sections (step 1 in Fig. 1).

(2) Fuse the classi¯cations (step 2a in Fig. 1)

and then use a majority vote to con¯rm the

classi¯cation (step 2b in Fig. 1).

(3) Produce the ¯nal output (step 3 in Fig. 1).

The following points are important:

(1) Three classes are considered: Background, Un-

certainty, and Lesion (from now on, the capital

letter indicate the name of the class). The de¯-

nition of Uncertainty is described in Sec. 3.2.

(2) We are optimizing two CNNs for each imaging

section: one for Lesion (lesion tuned) and the

other for Lesion in the context of the whole brain

(brain tuned).

(3) For the class con¯rmation process, the three

classes are expected to be arranged in the following

order: Lesion > Uncertainty > Background. Ac-

cording to this order, the con¯rmation starts from

Lesion, followed by the upgraded Uncertainty. If

the class is not con¯rmed, it is downgraded by one

class.

(4) Just one MRI modality, FLAIR, is used.

In Fig. 1, step 2a is used to incorporate additional

information from the speci¯c characteristics of each

of the two axial CNNs. It also aims to simulate the

decision-making process of radiologists who use axial

orientations to form initial hypotheses. Step 2b

involves voting on whether the classes resulting from

2a (Lesion or Uncertainty) should remain in the

original assignment or be downgraded (from Lesion

to Uncertainty and from Uncertainty to Back-

ground). In this process, objects are considered

con¯rmed only if at least two of the other four clas-

si¯cations (two coronal and two sagittal) agree with

the axial classi¯cation. This approach helps reduce

false positives, strengthens the consideration of the

3D environment, and mimics the procedure followed

by radiologists.

Each classi¯er is trained, validated, and tested

separately. In the following sections, we describe the

dataset used, the ground truth including Uncer-

tainty, the CNN-based architecture, the loss func-

tion, the hyperparameter optimization, and the ¯nal

ensemble classi¯cation in Fig. 1.

3.1. MSSEG dataset

We have chosen the MSSEG dataset19 for our study

as it allows for direct comparison and benchmarking

of our proposed framework with state-of-the-art

segmentation methodologies and with the assess-

ments of seven independent expert radiologists who

annotated data in MSSEG. Indeed, the MSSEG

dataset consists of MRI brain images from 53 cases

collected in di®erent centers using scanners operat-

ing at di®erent magnetic ¯elds: 1.5T Siemens

Aera, 3T Siemens Verio, 3T Philips Ingenia, and 3T

General Electric Discovery. Each examination in the

dataset includes the following imaging sequences:

T1-w, gadolinium-enhanced T1-w (T1-w Gd), T2-w,

T2-FLAIR, and PD-weighted images. Besides the

annotated data, MSSEG contains one consensus, a

statistical \average" among the assessments of

the seven radiologists, used as the ground truth.19

G. Placidi et al.
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The radiologists were tasked with performing binary

segmentation, where each voxel was identi¯ed as

either a lesion or background. The annotated dataset

consists of 15 training cases and 38 testing cases.

The images were anonymized and provided in

both their original form and pre-processed form to

reduce noise and imaging artifacts, equalize space,

eliminate outliers, stabilize contrast, and skull

stripping.63 For our purposes, we used the pre-pro-

cessed data in MSSEG. Additionally, as the MSSEG

data from di®erent scanners have varying slice thick-

nesses,6we integrated the pre-processing pipelinewith

Fig. 1. The model works with three classes: Background (not lesions), Uncertainty (tissues of uncertain nature), and Lesion
(lesions). The approach independently processes axial, coronal, and sagittal sections (1), each handled by two separately trained
U-Nets. One U-Net is optimized for focusing directly on lesions, while the other is optimized for understanding lesions in the
context of the brain. The results are combined by using the Union of axial volumes V1 and V2 (2a), followed by a majority vote
strategy on the coronal (V3 and V6) and sagittal (V5 and V6) volumes for con¯rmation (2b). Voxel classi¯cations that are not
con¯rmed are downgraded: Lesion becomes Uncertainty and Uncertainty becomes Background. The framework operates
independently for Lesion and Uncertainty, starting with Lesion. In the con¯rmation stage, the procedure is voxel-wise, for every
single voxel Q belonging to the class c 2 fLesion;Uncertaintyg. The segmented volume is the output (3).

CNN-Based Framework for MS Segmentation in MRI
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a ¯nal interpolationmodule to standardize ourmodel

with a single slice thickness value, which we set at

1mm. Of the MSSEG, we utilized data solely from

the FLAIR modality to detect and segment MS

lesions in the WM. We demonstrated that using

FLAIR alone is su±cient for MS lesion segmentation

in theWM.Wedivided the dataset of 15 subjects into

two subsets for training and validation. The training

set comprises data from 12 subjects, with four sub-

jects from each center, while the validation set

includes data from three subjects, with one subject

from each center. To ensure comprehensive cross-

validation, the proportions between centers were

maintained. Upon establishing the data set, each

image was augmented by adding two random rota-

tions (between�13� and 13� with a resolution of 1�),
1 random scaling (between 1.1 and 1.3 with a reso-

lution of 0.01), and 1Gaussian randomnoise addition

with a mean of 0 and a variance of 0.001A, where A is

the maximum amplitude value in the examined vol-

ume. Data augmentation enhanced the model's

ability to handle rotation, scaling, and noise. The

augmented data set for each orientation (axial, cor-

onal, and sagittal) consisted of 5634 images for

training and 435 images for validation. For testing,

the data set included 38 subjects. Notably, one of the

tested subjects had no lesions.6 For this speci¯c case,

a separate evaluation was conducted based on the

number of detected lesions, with the ideal value being

0, in line with the recommendations for objective

evaluation,6 also described below.

3.2. The ground-truth including uncertainty

In medical imaging regarding MS, it is often assumed

that there exists a single, unknown, true segmenta-

tion map of the underlying anatomy and that each

radiologist produces an approximation with varia-

tions re°ecting individual experience.64 On the other

hand, it can also be assumed that variable annota-

tions from experts are all realistic and acceptable

instances of true segmentation. It's important to

consider that the truth often lies somewhere in be-

tween: an ideal and unique true segmentation is

impossible, due to the unpredictability of MS and the

nonspeci¯city of MRI, and, at the same time, not all

the variability in expert annotations are acceptable

instances of an ideal true segmentation, due to

human mistakes or oversights. However, human

subjectivity is a signi¯cant factor that cannot be

overlooked. Its e®ects are due to a combination of

prior assumptions, such as experience in the ¯eld,

utilization of additional meta-information (e.g. ana-

tomical/radiological/clinical knowledge), mistakes,

or oversights, particularly regarding small and/or

low-intensity lesions or their borders. Recognizing

the importance of understanding and addressing

human subjectivity is a crucial step toward improv-

ing training and standardizing practices in medical

imaging.

When radiologists are required to provide a sim-

ple \yes" or \no" answer, as in the case of MSSEG,

they are unable to convey any uncertainty caused by

the ambiguities mentioned above. This can lead to

decisions that may not truly re°ect the rater's beliefs

and could also be confusing for an automated sys-

tem. In similar situations, a rater may have to make

ambiguous decisions (like deeming an uncertain area

as healthy in one instance and as a lesion in another),

which could further confuse the automated system.18

To train a model to recognize problem-speci¯c

uncertainty, we needed to combine binary ground

truth with human uncertainty. To maintain the

original ground truth, we identi¯ed voxels as uncer-

tain if at least three out of seven human raters con-

sidered them as lesions while the binary consensus

did not. This approach created room for Uncertainty

while keeping the binary consensus for Lesion

unchanged, allowing comparison with current strat-

egies used for lesion detection. It's important to note

that in this context, introducing Uncertainty helps

to reduce ambiguity in identifying Lesion, rather

than aiming to provide an optimal de¯nition of

Uncertainty, which is beyond the scope of the paper.

Our de¯nition of Uncertainty is di®erent from

others in the literature.11,65 First, it aims to maintain

the original structure of Lesion. Second, it accounts for

the uncertainty a®ecting both the problem and the

raters. Third, it avoids the possibility of the new class

Uncertainty capturing part of the Lesion from the

binary ground truth,making a direct comparisonwith

other methods impossible. Fourth, it quanti¯es the

improvement obtained when Uncertainty is intro-

duced compared to when Uncertainty is not used.

Lastly, it allows the learning strategy to consider not

only lesion borders as uncertain, as other authors do,65

G. Placidi et al.
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but also entire regions. Figure 2 shows an example of a

FLAIR image with the corresponding binary and

ternary consensuses, the latter used to train the pro-

posed framework.

3.3. CNN architecture

In this work, we utilized the U-Net \D" architec-

ture,53 where \D" refers to a variant incorporating a

Dropout layer for regularization, as the foundational

element of the suggested image-based segmentation

framework (Fig. 3).

Compared to traditional architectures, we added

a batch normalization layer in each block to mitigate

the e®ects of gradient ampli¯cation around the

lesions,66 despite the 30% increase in computational

overhead. We performed initial training to determine

the optimal number of blocks, denoted as n, where

n 2 f3; 4; 5g. We focused on this range because with

n ¼ 5, the U-Net model started to over¯t, even with

high L2-Regularization values. However, with n ¼ 2,

there was a noticeable decrease in performance. We

observed that with n ¼ 4, over¯tting was mitigated,

and the performance was acceptable, although some

redundancy remained. In contrast, with n ¼ 3,

redundancy was signi¯cantly decreased, and training

converged more quickly compared to n ¼ 4.

Consequently, we opted to proceed with n ¼ 3 for

subsequent procedures.

3.4. Loss function and hyperparameter
optimization

The proposed architecture had to solve a three-class

annotation, for which the following Multi-label Cross

Entropy Loss Function was used:

loss ¼ 1

N

XN
n¼1

XK
i¼1

ðTn;i logðYn;iÞ þ ð1� Tn;iÞ

� logð1� Yn;iÞÞ; ð1Þ
where N is the number of observations, K is the

number of classes, T is the true label, and Y is the

predicted label.

The use of three classes enabled better con¯dence

in de¯ning both Lesion and Background through

Uncertainty. This approach allowed for the optimi-

zation of two CNNs sharing the same loss function

(Eq. (1)), with a di®erent learning focus: Lesion and

Lesion in the whole brain context. The class Uncer-

tainty acts as a \bu®er class". In the case of binary

classi¯cation, this optimization would not have been

possible, as what is not Lesion is Background and

vice-versa. The use of Uncertainty provided both

CNNs with a way to overcome this limitation. To

achieve faster training and improved performance,

we controlled the training process of each CNN using

the following hyperparameters67,68:

(1) Starting Learning Rate (LR): determined by

the dataset and the type of neural network.

(2) L2-Regularization (L2-Reg): usedtoprevent

over¯tting.

(3) Class balancing: using weights to balance the

di®erent cardinality of the classes. With three

classes, two weights were needed (Lesion weight

(LW) and Background weight (BW)), with the

third being the complement to one of the others.

Of the above, the ¯rst two are standard for CNNs,

while Class balancing is problem-speci¯c as far as

it helps to di®erentiate the paths of optimization.

Fig. 2. (Color online) A FLAIR image from the MSSEG
data set (left), the binary consensus (middle), and the
proposed ternary consensus (right). The image is super-
imposed on both consensuses. Lesion (identical in both
consensuses) is in red, Uncertainty in yellow.

Fig. 3. The U-Net \D" Architecture used for the six clas-
si¯ers in Fig. 1: A1 andA2 (axial), C1 and C2 (coronal), and
S1 and S2 (sagittal).

CNN-Based Framework for MS Segmentation in MRI
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The selected hyperparameters were optimized through

a Bayesian approach67 applied to the following

optimization problem:

x� ¼ argminx2XfðxÞ; ð2Þ
where X is the space of solutions, x� is the optimal

hyperparameter settingwewere searching for, andfðxÞ
the objective function:

fðxÞ ¼ 1� IoUðxÞ; ð3Þ
where IoU is the Intersection over Union score5 de¯ned

in Sec. 4. In our analysis, we calculated the IoU for the

¯rstCNNregarding theLesion and for the secondCNN

regarding the Background. We optimized the hyper-

parameter settings di®erently for each CNN. Multiple

short training sessions were conducted for each CNN

with di®erent hyperparameter con¯gurations. The

maximum number of epochs of each attempt was set to

15. In addition, an early stopping criterion was imple-

mented: if the validation loss did not improve within

the last ¯ve epochs, training was terminated early.

The total number of short training sessions was

constrained by the experimental duration, whichwas

limited to 48 h. This time limit was imposed to ensure

that all training experiments could be completed

within a practical timeframe, striking a balance be-

tween computational e±ciency and model perfor-

mance exploration. For the training, the Adam

optimizer was applied with a batch size of 4. The

search space for the Bayesian optimization algorithm

was limited to the following ranges of hyperpara-

meter values: LR in [1E�4, 1E�2],L2-Reg in [1E�10,

1E�2], LW in [0.02, 0.10], and BW in [0.78, 0.90].

These boundaries guided the optimization process,

facilitating e±cient model tuning. Table 1 reports

the best hyperparameter setting obtained for the 6

CNN in our model. As can be observed, the overall

di®erence in settings justi¯es di®erent training paths

for the CNN and di®erent points of convergence for

each of them. In Fig. 4, we illustrated the di®erent

behavior of the two CNNs in the segmentation grad-

cams of a sample axial slice. The CNN optimized for

Lesion tends to enlarge lesions and uncertainty

compared to the CNN optimized for the lesion in the

context of the whole brain.

Once the optimal hyperparameter con¯gurations

were identi¯ed, an extended training of 100 epochs

was performed for each of the 6 CNN. Under this

con¯guration, each U-Net comprises 7.7 million

parameters, resulting in a total of 46.2 million

parameters across the entire framework. We used

MATLAB 2024a to develop the CNNs and run rel-

evant scripts in our experimental setup. The hard-

ware we used for training the CNNs and running the

scripts included a system with the following speci¯-

cations: Windows 11 OS, an AMD Ryzen 5 3600X

CPU, 32GB of RAM, dual Nvidia RTX 2080 Super

GPUs, each with 16 GB of VRAM, and two 1 TB

SSDs.

3.5. Ensemble classi¯cation

It is a well-known fact that ensemble classi¯ers often

outperform individual components, and they tend to

be more stable as well.15,69,70 For classi¯cation, we

utilized 2D slices of the complete volume, with spe-

ci¯c CNNs trained separately for Lesion and Lesion

in the context of the whole brain, each for axial,

radial, and sagittal orientations. This approach

ensures that no particular orientation is biased

Fig. 4. Grad-cams showing the action of the two CNNs in
a sample axial image: Lesions (In) and Lesions from the
whole brain (Out): Lesion (¯rst column), Uncertainty
(second column), and Background (third column). The
resulting segmentation is in the last column.

Table 1. Optimal hyperparameter con¯gurations calcu-
lated through the Bayesian approach for the 6 CNNs used
in the model.

CNN LR L2-Reg LW BW

Axial In 5.32E�04 3.66E�10 7.98E�02 8.91E�01
Axial Out 4.54E�04 1.14E�10 2.99E�02 8.99E�01
Cor. In 6.50E�04 3.43E�10 7.98E�02 8.71E�01
Cor. Out 3.18E�04 7.92E�09 6.59E�02 8.58E�01
Sag. In 1.01E�04 5.53E�09 7.01E�02 8.74E�01
Sag. Out 1.08E�04 3.41E�09 6.02E�02 8.50E�01

G. Placidi et al.
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towards lesions or the classi¯er. Additionally, it helps

to provide context for lesions in the brain environ-

ment and to maintain 3D continuity.

We used six classi¯ers to mimic the decision-

making process of radiologists. Although 3D FLAIR

data were collected along sagittal planes, radiologists

usually analyze axial slices for data interpretation

and the other orientations are used for veri¯ca-

tion.2,13 In the same way, we prioritized axial clas-

si¯cations and used coronal and sagittal outputs for

con¯rmation.

In terms of axial classi¯cation, both CNNs

gathered valuable contributions and, for this rea-

son, a Union operation was necessary to combine

the two classi¯cations. This aligns with the double

reading procedure followed by radiologists.71 The

resulting classi¯ed volume was a three-value data

set, so the Union operation did follow the tradi-

tional binary union rules. In our case, \Lesion"

taken priority, followed by \Uncertainty," and then

\Background." A voxel was classi¯ed as a Lesion if

at least one of the two classi¯cations identi¯ed it as

such. Elsewhere, if at least one of the two classi¯-

cations identi¯ed it as an Uncertainty, it was clas-

si¯ed that way. If neither of these applied, it was set

as Background. After combining the above sets, we

noticed an increase in false positives compared to

each individual classi¯er. To address this, we used a

majority vote among the other four classi¯cations

(two coronal and two sagittal). For each voxel, a

class was maintained if at least two other classi¯ers

con¯rmed it. Otherwise, it was downgraded by one

(a potential Lesion became Uncertainty, and a

potential Uncertainty became Background). First, a

decision is made on the Lesion, and then on the

Uncertainty.

The use of multiple classi¯ers is justi¯ed because

it allowed us to combine both common and speci¯c

information from axial classi¯ers. This helps to en-

sure that any potentially positive voxel is con¯rmed

by the coronal and sagittal classi¯ers, maintaining

3D continuity. We decided to follow the typical

procedure used by radiologists and take advantage of

the bene¯ts of using multiple classi¯ers.

In the proposed automatic pipeline, we initially

focused on using axial sections over other orienta-

tions, but we also conducted trials to test the pref-

erence of other orientations in the fusion process.

The results, not reported, con¯rm that the axial

preference yields the best results, followed closely by

the coronal preference, with the sagittal preference

being the last, despite it being the direction used for

FLAIR data collection. This could be partly

explained by the fact that axial and coronal slices

display highly symmetrical shapes in both brain

anatomy and lesions, making the learning process

easier compared to sagittal slices, which lack sym-

metry and can result in signi¯cant variations also for

minor head rotations.

4. Performance Parameters

In binary classi¯cation, voxels are categorized as

positive (P or Lesion) or negative (N or Back-

ground). In a ternary classi¯cation, P represents the

voxels of the current class, while N represents the

negative voxels (those of the other two classes). Each

rater follows the same rules for the current class:

True Positive (TP) are the correctly identi¯ed posi-

tive voxels, True Negative (TN) are the correctly

identi¯ed negative voxels, False Positive (FP) are

the incorrectly identi¯ed positive voxels, and False

Negative (FN) are the incorrectly identi¯ed negative

voxels. In our speci¯c case, we only checked Lesion

and the other two classes are fused and considered as

Background. To thoroughly compare all raters

(arti¯cial, human, and ground truth) and to account

for the lack of a single performance parameter, we

calculated various well-known scores and metrics.

Despite some redundancy, we prioritized over-

describing the results to expose any potential errors

and prevent them from bene¯ting the model. We

de¯ned and calculated scores, typically ranging from

0 to 1 with 1 indicating the ideal value, and metrics,

typically ranging from 0 to in¯nity with 0 indicating

the best value. Detailed de¯nitions can be found

elsewhere.5,6,72 Table 2 provides the list of scores and

metrics used for our comparisons, along with their

respective formulas.

5. Results and Discussion

The proposed framework has undergone training,

validation, and testing using the ternary ground

truth provided above. By keeping the original binary

ground truth unchanged, we ensured a direct

CNN-Based Framework for MS Segmentation in MRI
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comparison with both human raters and state-of-the-

art automated methods.

We evaluated the proposed framework and the

human radiologists by applying cross-validation, as

de¯ned in Sec. 3.1. We calculated the average and

standard deviation for the indicators de¯ned in

Sec. 4, divided into scores and metrics. The initial

results reported in Fig. 5 involve a comparison be-

tween the raters and the proposed framework with

the ground truth concerning Lesion. This compari-

son also enables an indirect assessment of the pro-

posed framework against the human raters, using the

ground truth as a reference.

To provide a clearer overview, the average values

are displayed in Fig. 6 using a radar visualization.

These values con¯rm that the proposed framework

aligns with the variability among di®erent raters.

This can be explained by the fact that our framework

has been trained using a consensus approach,

which tends to average the assessments of di®erent

raters involved in its development. A statistical test

(Wilcoxon signed-rank test) of the metric values

shows, with a signi¯cance level of 0.01, that there is

no signi¯cant di®erence between the performance of

our method and that of the seven human raters. In

other words, if data are presented without labels,

distinguishing the behavior of our framework from

that of humans would be nearly impossible.

The positive results mentioned above are not

enough on their own for us to conclude that our

framework behaves like human raters. This is be-

cause the comparison was made against the ground

truth. Put di®erently, our framework could be at the

same distance from the ground truth as the human

raters, but from opposite sides. A direct comparison

was necessary. To do this, we experimented by

Table 2. Scores (left) and metrics (right) used for the comparisons.

Scores (optimum is 1) Metrics (optimum is 0)

SENS ¼ TP
TPþFN EF ¼ FP

TPþFN

OSENS ¼ TPo

TPoþFNo
DER ¼ DE

MTA

SPEC ¼ TN
TNþFP OER ¼ OE

MTA

ACC ¼ TP
TPþFN þ TN

TNþFP

� �
=2 FDE ¼ FP

P

PPV ¼ TP
TPþFP RAE ¼ TPþFP�P

P

OPPV ¼ TPo

TPoþFPo

HDðA;BÞ ¼ maxðhðA;BÞ;hðB;AÞÞ
Dice ¼ 2�TP

2�TPþFPþFN
EDðA;BÞ ¼ maxðdðA;BÞ; dðB;AÞÞ

IoU ¼ TP
TPþFPþFN SD ¼

P
i2AS

dðxi;GSÞþ
P

j2GS
dðxj;AS Þ

NAþNG

F1 ¼ 2 � OSENS�OPPV
OSENSþOPPV

PCCðA;BÞ ¼ covðA;BÞ
�A��B

Notes: Left: sensitivity (SENS); object-wise SENS (OSENS), where the subscript o indi-
cates the whole object; speci¯city (SPEC); accuracy (ACC); positive predictive value
(PPV); object-wise PPV (OPPV); Dice score (Dice); intersection over union (IoU); F1;
Pearson correlated coe±cient (PCC), ranging in ½�1; 1� and calculated between two data
sets A and B of which it uses the covariance between them and their standard deviation.
Right: extra fraction (EF); detection error rate (DER), using the detection error (DE),
calculated by summing the voxels of connected regions incorrectly labeled as positives, and
the mean total area (MTA), where MTA is the average of the number of positive voxels
from both the rater and the ground truth; the outline error rate (OER), where OE is the
outline error calculated as the di®erence between the number of voxels of the union and
that of the intersection between the positively connected regions; false detection error
(FDE); relative area error (RAE); Hausdor® distance (HD) among two sets A and B, using
hðA;BÞ ¼ maxa2A minb2Bjja� bjj; pseudo-Euclidean distance (ED), using
dðA;BÞ ¼ 1

N

P
a2A minb2Bjja� bjj; surface distance (SD), using two segmentations, the

rater segmentation (AS) and the ground truth segmentation (GS), and their corresponding
number of points, NA and NG, respectively.

G. Placidi et al.
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comparing all raters to each other, in rotation. The

results for the most commonly used indicators are

presented in Fig. 7, con¯rming that the proposed

framework's behavior is similar to that of other

human raters and that it is not biased toward a

speci¯c rater or the ground truth. Additionally, as

noted by other authors,11 the results reveal similar-

ities between some human raters (R4 with R5 and

R6 with R7). Thankfully, the results also con¯rm

that the ground truth is not in°uenced by these

similarities among raters and that it maintains a

\human" behavior, closely resembling raters R1 and

(a)

(b)

Fig. 5. The raters and the proposed framework are compared to the ground truth for the class Lesion both in scores (a) and in
metrics (b). The average and the standard deviation de¯ne the interval of con¯dence for the reported results.

(a) (b)

Fig. 6. (Color online) Radar plots of the average values of the indicators depicted in Fig. 5. Only the average values are
presented for clarity, where the line of the proposed framework (in red) is highlighted for emphasis.

CNN-Based Framework for MS Segmentation in MRI
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R2. This is crucial as it indicates that all people

striving to train automated systems to the ground

truth, including ourselves, are not chasing an

unattainable goal, where the closer we get, the far-

ther we move from the true objective. A visual

representation of the behavior of the proposed

framework throughout the process of identi¯cation/

segmentation, for both Lesion and Uncertainty, is

depicted in Fig. 8 as an example of a typical exami-

nation (the more frequent situation). For both Le-

sion and Uncertainty, the proposed framework tends

to produce FP. Interestingly, FN is almost absent

from the segmented volume. Regarding FP, a ques-

tion arises: if, as shown earlier, the proposed frame-

work is just as good as human raters, then why is it

a®ected by FP? The answer is simple: both the

human raters and the consensus are also in°uenced

by FP. If this weren't the case, the proposed frame-

work would have shown di®erent performance,

mainly a®ecting those indicators relying on FP,

compared to human raters. This is also con¯rmed by

analyzing the unique no-lesion subject of the test

dataset in MSSEG. The proposed framework detec-

ted three lesions with a lesion load of 0.096 cm3.

However, according to Commowick et al.,6 human

raters assigned the number of lesions for this case in

the range of 0–8, with just two raters indicating 0

lesions. The reported lesion load ranged from 0 to

10.88 cm3. In this no-lesion subject, as in the others,

the proposed framework falls in the middle. It's

important to note that none of the state-of-the-art

models listed in Table 3 considered this special case.

Finally, we have summarized the comparison

between the proposed framework and recently in-

troduced automated strategies in Table 3. The nec-

essary condition for a method to be considered is

that it must have been trained, validated, and tested

on the MSSEG dataset. This ensures that the com-

parison is consistent and conducted under the same

conditions as those for the seven human raters. The

considered indicators are those calculated in at least

one strategy, apart our framework, and their values

are collected from the referenced papers.

Despite the di±culty of creating a global ranking,

the data in Table 3 clearly show that the proposed

framework is the most stable across indicators and

generally performs better than other methods, even

those using multiple imaging modalities. In fact,

while the proposed framework excels in only two of

the reported indicators, its stability ensures that

biases are not introduced, as could happen with

other models that optimize a limited number of

potentially favorable indicators. For instance, the

model developed by Ghosal et al. demonstrates a

high accuracy value of 0.97. In contrast, the accuracy

levels of the seven human experts in Fig. 5 range

from 0.78 to 0.91. A similar situation is observed in

the model developed by Alijamaat et al., which

shows a high Dice score level of 0.82, compared to

that of the human experts, which ranges from 0.64 to

0.75. A particularly strong performance by one

indicator could generate a \distinctive" sign (a bias)

in the model. However, this doesn't occur in the

proposed framework, as it maintains a good balance

with input from the seven human experts. This is

supported by the huge number of calculated indica-

tors, which prevents the introduction of new biases

beyond those originally present in the problem, by

which even human experts are in°uenced, as any

other supervised automatic strategies trained on

their labeled data.

The use of a single imaging modality in the pro-

posed framework could have interesting implications:

-- FLAIR not only contains the necessary informa-

tion but also provides su±cient details to identify

and segment all MS lesions in the WM.

-- The performance could be enhanced more than

using multiple modalities due to the extensive

variability of MRI.

-- Acquisition time, patient stress, and time for

diagnosis could be reduced.

-- Valuable information for radiologists could be

obtained.

An important factor contributing to the valuable per-

formance of the proposed framework is the utilization

of the ternary ground truth. Figure 9 displays the

results when the proposed framework is trained on the

binary consensus (without Uncertainty) compared to

those obtained when trained on the ternary consensus

(with Uncertainty). The ensemble method trained

without Uncertainty outperforms similar automated

strategies (TF6); however, it still falls far behindhuman

methodologies. What put the proposed framework on

par with human performance was the inclusion of

Uncertainty.

G. Placidi et al.
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Fig. 7. All raters are compared to each other, including our framework and the consensus, with each one alternatively
considered as the ground truth. To make it easier to read, we only reported on some metrics. The angular position indicates the
metric value: clockwise for scores converging to 1, and counterclockwise for metrics converging to 0. Di®erent raters are
indicated radially.

CNN-Based Framework for MS Segmentation in MRI
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This is consistent with the ¯ndings in Ref. 11: the

framework improves its understanding of what is

de¯nitely a Lesion and what is de¯nitely Back-

ground, and uses Uncertainty as a bu®er class for

ambiguous cases. The polarized and ambiguous

classi¯cation of uncertain voxels, sometimes as

Lesion and other times as Background, confuses any

automated strategy and leads it away from human-

like reasoning. In the proposed study, it would have

been important to evaluate the nature of the

Uncertainty class segmented by the proposed model.

However, we could not do it for di®erent reasons: (1)

the Uncertainty class, which we de¯ned from the

di®erences from the seven Raters with the ground

truth, was not originally present in the MSSEG

dataset (the raters were not originally asked to seg-

ment, besides Lesion and Background, the Uncer-

tainty class — in a ternary way — and this could

have been led to a completely di®erent output from

the Raters. (2) Our de¯nition of the Uncertainty

(a) (b)

Fig. 8. (Color online) Comparison between the ground truth (left) and the proposed automated framework (right). Lesions are
marked in red and Uncertainty in yellow. The upper right panel on each side shows the 3D localization of the reported slices for
readability.

Table 3. Comparison of our framework with the state-of-the-art methods, whose indicators are collected
from the original papers. Unavailable data are represented by \—". Team Fusion (TF)6 is reported for
reference.

Method MRI mod. Sens OSens Acc PPV OPPV Dice F1 SD

TF6 FLAIR, PD, T2, T1, G-E T1 0.71 0,60 — 0.65 0.53 0.64 0.50 0.91
Ref. 9 FLAIR, PD, T2, T1, G-E T1 0.65 — 0.97 — — 0.76 — —
Ref. 73 FLAIR, T1 0.55 — — — 0.79 0.63 — —
Ref. 10 FLAIR, PD, T1, G-E T1 0.76 — — — — 0.82 — —
Ref. 12 FLAIR, T1, T2 — — — — — 0.76 0.59 —
Ref. 74 FLAIR — — — —- — 0.74 — —
Ref. 75 FLAIR, T2, T1 0.74 — — 0.65 — 0.67 0.59 —
Ref. 56 T2-FLAIR, T1 0.68 0.62 — 0.64 — 0.72 — —
Ref. 57 FLAIR, T1 0.68 0.83 — 0.68 0.55 0.65 — —
OUR FLAIR 0.73 0.62 0.80 0.66 0.68 0.73 0.86 0.37

G. Placidi et al.
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class was arbitrary: we used it just to demonstrate

that if an AI model could adopt an intermediate class

between Background and Lesions, the segmentation

of the Lesion class was more e®ective. (3) We lacked

a ground truth for the Uncertainty class, so any

comparison would have been arbitrary.

6. Conclusions

An automated framework has been presented for

identifying and segmenting MS lesions in WM from

FLAIR MRI images. The framework utilizes CNN-

based architectures that are adapted to behave like

human specialists. The strengths of the proposed

framework include training the system to recognize

lesions in their environment, emulating the proce-

dures of human radiologists, using ensemble classi-

¯cation, operating solely on FLAIR images, and

incorporating an arti¯cially generated Uncertainty

class to improve performance. This Uncertainty class

represents the system's con¯dence level in its

predictions, which is a key factor in improving the

system's performance.

Results have shown that the framework closely

resembles human raters in both behavior and

performance. It outperforms state-of-the-art strate-

gies and has exhibited behavior equivalent to human

raters. The use of Uncertainty during training has

signi¯cantly improved the framework's performance.

A recent report by the JASON Advisory Group76

emphasizes the importance of new technologies

addressing signi¯cant clinical needs and reducing

medical costs. Demonstrating improved performance

by incorporating key concepts such as Uncertainty

and Ensemble aligns with these recommendations.

Future directions of exploration include de¯ning

\Uncertainty" and studying its role in decision-

making, implementing speci¯c pre-processing

strategies for FLAIR images to improve method

robustness concerning MRI variability,77 addres-

sing unbalancing problems via di®erent loss func-

tions, exploring consensus and loss functions based

on probability values, testing the framework for

identifying cortical lesions and in longitudinal

studies,20 implementing pre-processing strategies

for MRI harmonization,78 and studying the role of

additional meta-information in improving lesion

identi¯cation.
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