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Path planning for special robotic operations

Paolo Boscariol, Alessandro Gasparetto, and Lorenzo Scalera

Abstract

The problem of robotic path planning has been the focus of countless investigations since
the early works of the 70’s and, despite the large number of results available in literature, is
still a topic that draws a great interest. In virtually all robotic applications it is required
to somehow define a feasible and safe path, and such a problem can be cast and solved in
many ways, given the several possible combination of robots - industrial robots, Autonomous
Guided Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), underwater vehicles - and
scenarios - a production line, a warehouse, an hazardous mountain - and therefore a large
number of approaches and solutions have been, and are being, investigated. The aim of
this chapter is to provide an overview of such widespread literature, first by briefly recalling
some classic and general-purpose methods used in path planning, then by focusing on some
application-specific problems, related to AGVs in industry, medical robotics and robotic
welding. This choice is motivated by the prominent relevance of the path planning problem in
these three applications. Then, a single application of great industrial interest, such as robotic
spray painting, is analyzed. Its specific features are described, and several techniques for task
modeling and path planning are considered. A detailed comparison among these techniques
is carried out, so as to highlight pros and cons of each one, and to provide a methodology to
choose the most suitable one for the specific robotic spray painting application.

1.1 Path planning for general-purpose applications

Autonomous vehicles, mobile robots and, in general, robots, are usually required to move
between two - or more - points in space, and solving the path planning problem results in
the definition of a feasible and collision-free path to be followed by the robot. Additionally,
some metric is usually embedded in the problem solution algorithm to fulfill the improvement
of some performance criteria, with the aim of finding an 'optimal’ solution. This problem
is often intertwined with localization, i.e., the problem of understanding where the vehicle
actually is (Akai et al. 2018), and map building (Castellanos and Tardos 2012), i.e., the
definition of the map of an unstructured environment during the robot operation. Combining
the two problems results in a Simultaneous Localization and Mapping (SLAM) problem
(Durrant-Whyte and Bailey 2006; Bailey and Durrant-Whyte 2006).
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The extremely vast literature on path planning for mobile robots calls for a comprehensive
classification of the several methods proposed over the years: one possibility is to classify
the available methods among classical methods - such as roadmap planning or artificial
potential field method -, heuristic methods - such as genetic algorithms, neural networks -
and meta-heuristic methods, among which Ant Colony Optimization and Particle Swarm
Optimization are worth of mentioning. A brief overview is presented here before focusing on
more application-specific solutions.

1.1.1 Classical methods

Classical methods refer to the broad range of options that were developed before the introduc-
tion of artificial intelligence. The most authoritative references on such topics is the classic
book (Latombe 2012), which focuses on roadmap planning, cell decomposition methods,
and artificial potential field methods. Roadmap methods refers to a family of algorithms
which share the capability of producing a map composed of one-dimensional curves: once
the roadmap is built, the best option among the roadmap is chosen. In practical terms,
usually the roadmap can be built as a visibility graph (Lulu and Elnagar 2005), i.e., a graph
composed of lines that connect the vertices of the geometric representation of obstacles: the
result is the shortest collision-free path, but such path is as close as possible to the obstacles
(Latombe 2012). If the goal is to move as far as possible from obstacles, Voronoi diagrams
are a better method to build a roadmap: such diagrams are defined as the location in space
which are equidistant from obstacles. The method based on Voronoi diagrams has found its
use not only for mobile robots (Duinkerken et al. 2006), but for UAVs (Davis et al. 2012) and
underwater vehicles (Candeloro et al. 2016) as well.

The artificial potential field method was developed in the eighties (Khatib 1986) as a
computationally efficient way to produce a collision-free path. The procedure is divided into
two steps: the first one aims at defining a suitable number of potential field functions, that
comprise both attractive and repulsive fields. Attractive fields are used to drive the robot to
its final goal, repulsive fields are used to represents the areas to be avoided, i.e., the obstacles:
their sum produces a total potential that must be navigated to seek for an optimal path.
Path optimization can be performed either in off-line or on-line fashion. The main strong
point of this method lies in its conceptual simplicity, its main drawback is that the total
potential field might exhibit local minima in which the robot might be trapped (Rimon and
Koditschek 1992). This difficulty can be however overcome by using navigation functions,
i.e., by ensuring that the potential field does not have local minima (Connolly et al. 1990) or
by adding procedures to escape local minima.

Another classic method that is worth mentioning is the cell decomposition method
(Latombe 2012; Lingelbach 2004). In this method a workspace with obstacles is split into
regions, called cells. Each cell is numbered, and then translated into a node of a connectivity
graph, which collects the information on the reachability of each node. The best sequence
of cells that connects the initial and final cell is found by a simple graph search algorithm.
The method can be applied to 2D spaces as well as to higher dimension spaces by simply
adjusting the structure of the connectivity graph.

Further developments of the ’classic’ algorithms have been achieved by introducing random
sampling of the workspace, with the aim of boosting the efficiency for large-scale problems.
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Figure 1.1: An example of probabilistic roadmap path planning.

One example is given by the probabilistic roadmap algorithm, which collects random points
within the robot workspace, discards the one that overlap an obstacles, and tries to connect
the ones in the free space to produce a feasible path (Kavraki et al. 1996; Geraerts and
Overmars 2004). Random sampling is also used in rapidly-expanding random trees (LaValle
1998): in this method a tree structure is build by rooting it to the starting point of the
path, then a growing algorithm tests the feasibility of a path built by adding ’branches’ after
testing the feasibility and measuring the progress towards the designated goal.

1.1.2 Heuristic and meta-heuristic methods

Heuristic methods have been developed since the 90’s to circumvent the most common
drawbacks sported by classic methods, mainly due to the low efficiency for large-scale
problems and local minima trapping (Masehian and Sedighizadeh 2007). Heuristic methods
mainly work by using ’shortcuts’ to define a feasible solution, often sacrificing a complete
exploration of the possible space of solutions, therefore they often trade off global optimality
for speed.

Worth of mention is the use of Genetic Algorithms (GA), which have found an extremely
wide field of applications, including path planning. Genetic algorithms work by representing
a tentative solution to a general optimization problem by representing it as a population,
whose evolution is dominated by selection (elimination of non-fit individuals), propagation of
the genes to new generation and gene mutation. This method is of very general application,
being suitable to the optimization of virtually every problem, with minimal effort on its
mathematical representation, as explicit gradients are generally not needed. One of its main
drawback is however, the possibility that a true optimal solution is not explored, and as such
they are incapable of guaranteeing a global optimum. A basic implementation, as the one
proposed, for example, in (Achour and Chaalal 2011), associates a path, represented by a
discrete set of point to be visited in sequence, with a chromosome. The initial, necessarily
feasible, path, is then altered by creating a new generation, according to the crossover
mechanism, followed by the evaluation of the fitness function to be minimized. The best
chromosome are selected, to improve the quality of the population. This sequence is continued
until reaching a pre-defined stopping criteria. Other early examples of application of GA
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Figure 1.2: Graphical representation of a Genetic Algorithm optimization procedure.

to motion planning include (Shibata and Fukuda 1993; Xiao et al. 1997). A path can be
also generated by fuzzy logic, which works by combining several fuzzy rules, that take into
account planning-specific goals such as proximity to the final goal, obstacle avoidance, and
direction changes (Yen and Pfluger 1991). Alternatively, Particle Swarm Optimization (PSO)
has found many applications in path planning: this technique is based on collecting the
potential solution of an optimization problem into a swarm of particles. The solution evolves
by exploiting the activity of each individual element of the swarm, but as the algorithm
progresses, the activity of each particle changes (i.e., it evolves) according to the experience
gained by the whole swarm, combining the power of stochastic and evolutionary methods,
and exploiting efficiently parallelism (Wang et al. 2018; Zhang et al. 2013).

Another popular biologically-inspired method is the Ant Colony Optimization (ACO)
(Englot and Hover 2011; Rao et al. 2018; Wang et al. 2019b), which is a meta-heuristic and
probabilistic method inspired by the attitude used by ants to forage food. Ants have the
capability of finding the best path to a food source by relying on the traces of pheromones
left by other ants. The optimization method somehow reflects this behavior, since the agents,
in this case the artificial ants, explore the solution space and leave some long-term memory
of the ’trail’ run by each ant. The traced are then followed by other 'ants’ by exploiting the
results of the previous explorations, improving gradually the quality of the solution.

Ant colony optimization has found its first uses specifically in the field of path planning,
being this the actual task performed by real ants. In a basic and typical implementations of
a path planning method by Ant Colony Optimization (Yu et al. 2020), the representation of
the navigable space is obtained by a grid map, which contains both free and forbidden grid
elements. The task is to find the path from an initial point to the last one with a minimum
number of turns and with the shortest possible path. Each ant follows a path that is built
iteratively, and each move to another grid is defined by an heuristic that may vary with the
implementation. Each ant then 'marks’ the path depositing the so-called 'pheromone trace’ -
leaving an information on the 'fitness’ of the path that is then used by other ants. Iterations
are then stopped when reaching a pre-defined goal. Similar procedures can be applied to a
graph, rather than a grid map with minimal alterations to the algorithm.

Similar to the Ant Colony is the Bee Colony method (Contreras-Cruz et al. 2015; Bhat-
tacharjee et al. 2011), which combines a global search performed by ’scout bees’, and a local
search, performed by 'forager bees’. Furthermore, the Cuckoo Search Algorithm (Mohanty

4



Path planning for special robotic operations

I A I I I O B I I
FSY = R = = AN
HEEE
] ] S
HEEE EEEE HEEE

Figure 1.3: A simple route map for a small warehouse.

and Parhi 2016; Wang et al. 2019a; Song et al. 2020) is also experiencing some applications
in the path planning of robotic systems.

1.2 Application-specific path planning

1.2.1 Path planning for Automated Guided Vehicles

Since their introduction in the mid fifties, Automated Guided Vehicles (AGVs) are an ever
increasingly popular solution for material handling and all sort of transports in industry and
logistic centers, as well as in transshipment systems (Fazlollahtabar and Saidi-Mehrabad
2015). Operating a fleet of AGVs requires to solve two issues: the scheduling and the
routing problems. While the scheduling problem focuses on the definition of the time frame
within which the AGV should move (respecting constraints such as priorities and deadlines),
the routing problem focuses on the definition of the route, i.e., the path, that the AGV
should move along. Despite being closely related, the two issues are often tackled separately
(Qiu et al. 2002). Each of the problem can be technically challenging, especially when the
complexity of the scenario is amplified by the numerosity of the fleet of AGVs, that in many
cases can comprise several hundreds of vehicles.

Routing problems for AGVs, which are briefly reviewed here, are usually split into two
groups, by separating static and dynamic routing problems. A static routing problem solves
once for all the target of defining, in advance, the route to go from point A to point B: if the
same procedure is then applied to all possible combinations of two arbitrary points, a list of
optimal paths can be defined and stored for later use. Once defined, the route between point
A and B is always used. However, these methods are practical only for static scenarios, since
every change in the working environment layout requires to re-compute the optimal paths.
The most basic formulation of the routing problem is the well-known Traveling Salesman
Problem (TSP), in which the distance to be covered for visiting a sequence of ’cities’ and
returning to the starting one must be minimized.

In response to the evident limitation posed by static routing problems, dynamic routing
problems can developed. Dynamic routing problems can adapt to time-changing conditions,
such as layout changes or traffic (Vivaldini et al. 2010).

In most cases, the routing problem focuses on defining shorter paths, as is the case of the
early work (Broadbent et al. 1987). In that work, the environment is described by a graph
over which the quicker path is found by the classic Dijkstra’s algorithm. Moreover, one of
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the first examples of conflict-free routing on a bi-directional path network is introduced in
(Daniels 1988), which exploits a branch and bound algorithm. A method that is commonly
used to reach a conflict-free situation is the use of time windows, as introduced in (Kim and
Tanchoco 1991; Kim and Tanchocoj 1993). In the time-window approach each node of the
graphs holds the information of free time windows, and an arc connects only the nodes that
are not busy by other scheduled jobs.

The literature has evolved over the years striving for computational efficiency and for
larger scale scenarios, so the performance sported by the classic Dijkstra’s algorithm has been
boosted by switching to other search methods, such as the A* algorithm (Wang et al. 2015a),
the branch and price algorithm (Savelsbergh and Sol 1998), as well as by using heuristic
(Meeran and Share 1997; Bae and Chung 2018; Kulatunga et al. 2006) and meta-heuristic
approaches (Tavakkoli-Moghaddam et al. 2008; Farahani et al. 2008; Shirazi et al. 2010).
While most methods of path planning for AGVs use graphs to represent the path network,
grids can be used as well, as in the case of the works (Yu et al. 2020; Yang and Wushan 2015;
Fransen et al. 2020).

The growing popularity of technology based on the Industry 4.0 paradigm is fostering
a new stream of research on AGVs, being those a key element in a smart manufacturing
environment with high automation level. Smart factories are required to face the challenges
of flexibility and reconfigurability (Larsen et al. 2017; Gonzalez et al. 2018), since currently a
large part of the commissioning time of a plant is devoted to the generation of collision-free
paths. As suggested by the Industry 4.0 paradigm (Indri et al. 2018), the challenges of
decentralization, real-time capability, service orientation, and modularity are all to be faced
by AGVs, which can be used in fleets of variable size, that can be coordinated either by a
centralized system, or by exploiting the on-board sensing and computing capability of AGVs.
The work (Nguyen Duc et al. 2020), for example, proposes a neural-network based solution
to the route-planning problem that is suitable to real-time applications and compliant with
the limited computational capability of most AGVs.

1.2.2 Path planning for medical applications

The history of surgical robots is now more than 30 years old (Camarillo et al. 2004), and
currently several medical tasks can be performed, with different shades of autonomy, with
the aid of a robot. Common robot-assisted tasks include bone drilling and milling (Louredo
et al. 2012), laparoscopy (Nguan et al. 2008) and stereotactic needle placement (Kwoh et al.
1988; Lavallee et al. 1992) just to cite a few notable examples. Despite the quite long history
of robotics, in general, and of surgical robotics, there are still several issues that need to be
solved: one of them is how to fully exploit the capabilities of a surgical robot to their full
extent to improve minimally invasive surgery.

One of the key tasks in surgery is needle insertion (Elgezua et al. 2013), which is a critical
operation since it involves the interaction of a long and flexible element, the needle, with
soft tissue, that must be performed with precision while providing minimal tissue damaging.
Optimizing the needle-tissue interaction requires also to optimize the needle path: this topic
is currently under investigation and thinner needles with a bevel tip, called steering needles
(Alterovitz et al. 2008) are being developed.

When inserted in a patient’s tissue, such needles follow an arc: by rotating the needle
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Figure 1.4: Steering needle: principle of operation (a), a typical insertion path (b).
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Figure 1.5: A suturing needle (a), a suturing operation (b).

around its axis, a complex path composed by arc can be defined to reach the target area while
avoiding obstacles. Since the needle is clearly not visible during the operation, its motion
must be carefully planned ahead: in the work (Xu et al. 2008), a Rapidly-exploring Random
Trees (RRTs) approach is used to perform this task, adding a backchaining mechanism to
define the best needle entry point. RRTs are also used in (Patil and Alterovitz 2010), adding a
reachability-guided sampling heuristic to alleviate the sensitivity of the algorithm to the choice
of the distance metric. In the work (Alterovitz et al. 2008), the optimal needle path is defined
by dynamic programming, using simulations to optimize the performance in a feedback-loop
approach. Iterative simulations have been used in (Dehghan and Salcudean 2009), using a
fast and gradient-free optimization routine that allows the algorithm to compute the optimal
needle orientation and insertion point. Some other steering needle insertion planning methods
are based on inverse kinematics of the needle, as in (Duindam et al. 2009), but this method
does not ensure solvability for all cases. Alternatively, the classic methods of Roadmaps
(Reed et al. 2011) and Artificial Potential Field (DiMaio and Salcudean 2005; Song and
Zhiyong 2010) have been successfully applied, but such methods trade off the solution speed
for global optimality (Li et al. 2018). More recently, also the Particle Swarm Optimization
has been proposed as an effective tool for needle steering planning, as in the case of the work
(Cai et al. 2020), showing that a good accuracy can be reached if a proper modeling of the
needle-tissue interaction is developed.
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Another surgical procedure that can be efficiently performed by robots is suturing, usually
performed by specifically shaped needles to join together two tissues by means of a thread
(Kapoor et al. 2005). Suturing is a complex operation since its outcome depends on a large
number of geometric parameters, such as insertion point, needle orientation, exit point.
Moreover, several constraints must be taken into account, and a rather dexterous manipulator
must be used. To cope with these difficulties, in the work (Nageotte et al. 2009) the path
planning is translated into an optimization problem using the A* solving method (Dechter
and Pearl 1985). A general-purpose optimization, such as sequential convex optimization is
used for the same task also in (Sen et al. 2016), which has showcased the first case of a fully
autonomous stitching procedure, which however is executed at lower speed than the average
surgeon. A sensible speedup is predicted in the work (Van Den Berg et al. 2010), in which
the motion primitives are not defined a-priori, but they are taught to the robot by a human,
showcasing a promising 'teaching by doing’ application in surgery.

1.2.3 Path planning for robotic welding

The concurrent developments of welding technology and robotics has fostered a wide usage of
welding robots in the manufacturing industry: the most popular and common example is found
in the automotive industry. Welding robots have in many cases taken over traditional manual
welding, which requires a skilled operator and exposes him to an hazardous environment
(Tarn et al. 2007). The first step to the automation of robotic welding has been performed by
introducing the on-line teaching method (Dilthey and Stein 1993), which is also referred to
as teaching and playback, since according to this paradigm the robot just repeats a process
learnt after a human-guided teaching process. Such method is however not suited to any
change of working conditions, which can significantly affect the outcome of the welding
operation (Chen and Lv 2014). Manually teaching from a teaching pendant is also not suited
to small production batches, so in all cases in which flexibility and accuracy are requested, or
simply the complexity of the operation is too high, an off-line programming of the welding
operation is requested.

Programming a robot for welding essentially requires to generate the welding passes,
usually from data extracted from a CAD model, and then to generate the associated robot
path (Fang et al. 2017). The path is usually developed to enhance productivity, and therefore
shorter (i.e., faster) paths are usually sought for, while ensuring obstacle avoidance, which
can be obtained using some general-purpose methods (Ogbemhe and Mpofu 2015).

However, welding requires to take into account some specific technical requirements, which
mark the difference between general-purpose path planning and welding path planning. In
the following, some of these features are recalled and some examples of the related literature
are presented.

Joining metal bodies with large gaps requires multiple-pass welding, i.e., the joint must
be created by carefully stacking the weld beads according to the best possible geometry. This
problem is analyzed in (Zhang et al. 2011), by developing an algorithm to produce optimal
paths on the basis of an analytic model of the bead deposition process. The planning of
multiple-bead passes are investigated also in (Ahmed et al. 2015), in which the multiple bead
passes are planned according to geometry data extracted from a CAD model, and then the
transitions between passes are planned for collision-free motion using the A* algorithm. The
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Figure 1.6: A six degrees-of-freedom soldering robot.

Figure 1.7: Weave bead welding of a V-groove: planned path.

minimization of the bead number for a faster operation is dealt with in (Yan et al. 2016),
which again uses simple analytical descriptions of the bead geometry to produce optimized
welding paths.

Another feature of robotic welding that affects path planning is functional redundancy,
which arises from the symmetry of the welding torch. Such redundancy can be exploited, as
done in the works (Franks et al. 2008; Huo and Baron 2011), to ensure task feasibility when
coping with singularity avoidance and joint limits, or for fulfilling a secondary goal.

Another task-specific feature is welding weaving (Chen et al. 2014; Zhan et al. 2017):
traditionally it is obtained by adding an oscillating device between the robot flange and the
welding torch, but such device is not required when weaving is introduced at the motion
planning level, simply by adding a sinusoidal displacement to the end-effector path (Liu et al.
2011; Shi et al. 2015).

A feature than should not be overlooked is that the heat generated during welding
introduces some thermal-induced stresses on the material, causing its deformation (Radaj
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2012). The usual approach is to minimize the overall distortion by carefully sequencing the
beads deposition (Messler Jr 2008), according to the solution of a scheduling optimization
problem (Kim et al. 2005). The solution to this scheduling problem is generally obtained
through general-purpose optimization routines, among which genetic algorithms seems to
be quite popular, as in (Kadivar et al. 2000; Islam et al. 2014), usually defining the fitness
function according to a FEM model of the thermal-induced distortions. Alternatively, some
heuristics (Kim et al. 1998, 2002) can be used in lieu of a thermo-mechanical model. Some
other options for sequencing welding operations are the Ant Colony Optimization and the
Particle Swarm Optimization (Tabar et al. 2018; Beik et al. 2019).

1.3 Path planning for spray painting robots

1.3.1 The problem of tool path generation

Nowadays, painting robots are employed in a large number of industrial and manufacturing
applications, especially in the automotive, aircraft and furniture manufacturing sectors. The
first painting robot was developed by the Norwegian company Tralffa in 1969, and was used
for painting wheelbarrows (Gasparetto and Scalera 2019). Since then, the employment of
painting machines has been rapidly increasing, thanks to the several advantages of using
robots in a paint finishing system (Baldwin 2010). First of all, robots in automation allow to
remove humans from hazardous environments, since spray paint particles, if inhaled, can be
toxic, carcinogenic, and can lead to chronic neurological problems (Lolin 1989) and pulmonary
dysfunctions (Chen et al. 2019¢). Furthermore, the spray painting environment is usually
noisy, and requires handling bulky paint guns, while performing repetitive tasks. Another
feature of automatic painting is the consistency of the results, since a spray painting robot can
ensure better performance in terms of repeatability of the resulting surface, paint uniformity
and reliability, than the most skilled technician. Furthermore, robot manipulators afford
a greater level of system flexibility, allowing facilities to rapidly adapt to changes in the
product design. Robotic painting systems ensure the optimization of cycle time and paint
waist, and, as a consequence, a reduction of the amount of gaseous polluting emissions (Chen
et al. 2017a).

The tool path planning, i.e., the definition of the sequence of positions and orientations
of the robot end-effector during the task to ensure a uniform paint distribution is still a
challenge in robotic spray painting. Two main approaches can be adopted for the tool path
planning: manual and automatic (Chen et al. 2008). In the manual approach an operator
manually moves the robot to each desired position, recording the internal joint coordinates
corresponding to that end-effector pose (Lozano-Perez 1983). In addition, operations such as
activating a spray gun are specified as well. The program is then executed by the robot that
moves through the recorded points. This method of robot programming is usually known as
teaching by showing or robot guiding. Similarly, the positions and postures of the robot tool
on the processing path against actual work-pieces can be defined by acting on the teaching
pendant connected to the robot controller, or by using appropriate external teaching support
devices, such as in (Sugita et al. 2004). Manual tool planning can be very time consuming,
since the operators usually adopt a trial-and-error approach. With this approach the quality
of the results, the cycle time and the paint waist are strictly dependent on the experience
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Figure 1.8: An industrial spray painting robot.

and on the skills of the operators. Furthermore, during the execution of the teaching tests
the normal production operations must be interrupted.

To overcome these problems, spray painting path and trajectories are usually generated
automatically, with an approach called Computer-Aided Tool path Planning (CATP) (Chen
et al. 2008). This approach is based on the processing of a Computer-Aided Design (CAD) or
a point cloud model of the part to be painted, and on the automatic computation of the path
and trajectory that the painting robot has to follow. The automatic generation of tool paths
avoids trial-and-error operations and reduces the time required to deploy a paint system
for a new product, thus reducing production time and costs. However, automatic tool path
planning is still a challenging task since the results of the painting process is heavily affected
by complex and intertwined factors such as part geometry, the modeling of the spray paint
deposition and the flow rate flux of the spray gun. All such information should be included
to produce a proper definition of the painting application.

Another important aspect that must be taken into account in the automatic path planning
is the compliance with kinematic and dynamic limits of the manipulator. A common approach
is to decouple the path definition and the motion law planning into two separate problems
(Gasparetto et al. 2012). In this way, the sequence of points that the tool has to follow are
defined to ensure a proper covering of the target surface without a specific time law. The
motion law, i.e., the speed and acceleration profiles, are then designed by taking into account
the specifications and the limits of the manipulator.

In the context of robotic spray painting, recent researches include spray modeling and
simulation (Ye and Pulli 2017), automatic path planning (Park and Jeon 2018) and trajectory
planning (Trigatti et al. 2018a). Furthermore, robot kinematic and dynamic control (Moe
et al. 2018; Zhang et al. 2018), methods for optimizing the base position of mobile painting
manipulators (Ren et al. 2016), as well as pose estimation systems (Wang et al. 2019¢) are
currently being studied. The following subsection introduces the problem of spray painting
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modeling, which is a prerequisite for the subsequent definition of the path for the spray
painting robot.

1.3.2 Spray painting modeling

Spray painting is a complex process, in which paint is transferred to the object surface for
protection or aesthetic using air spray as an atomizing medium. Many factors affect the
paint flow rate flux through the spray gun and the distribution of spray within the spray
cone, which is generally non-uniform. In particular, the most relevant factors that have to be
considered are the technical features of the spray gun and paint nozzle, the air pressure, the
amount ot thinner in the paint, the temperature of paint and work-piece surface, and the
paint viscosity. At present, the mechanism of spray painting is well understood and several
models for the flow rate flux and the paint deposition process have been proposed and studied.
Most of the paint deposition models consist of analytical functions, which parameters should
be determined through fitting repeatable experimental data. These mathematical models
usually describe the paint deposition rate on a flat plane with a static spray gun. To account
for the painting robot trajectory, the paint thickness is obtained by integrating the paint
deposition rate along the path of the spray gun.

Empirical paint deposition models offer a significant advantage over simulation results
obtained with numerical methods that usually require complex formulations and high com-
putational costs. Empirical models can also be incorporated into existing simulation tools,
providing the user readily available information about the painting process and the char-
acteristics of the resultant coverage path. The main purposes of a deposition model are to
capture the structure of the deposition pattern that can be used in a planning system, and
to support simulations used to evaluate potential path and trajectory planning algorithms.
Indeed, paint deposition models are needed to determine the optimal inter-pass spacing for
robotic spray painting, which are the basis of the path planning. These two requirements
lead to contradictory criteria, since a deposition model should be accurate enough to predict
the paint coverage on different surfaces, but, at the same time, should be mathematically
simple and computationally light to be efficiently used within a path planning system. In the
deposition process, with paint coverage it is usually indicated the total paint thickness on
the surface, which depends on the rate of the paint deposition, on the path followed on the
surface, and on the speed of the paint gun during the spraying task.

Early approaches to the modeling of spray painting use simplified deposition models,
approximating the paint flux of the spray gun with simple analytical functions. These
approaches are, in the majority of cases, limited to flat surfaces or make first-order approxi-
mations of the surface geometry. For this reason, the utility of these models for the simulation
of reliable paint deposition remains limited and restricted to few real applications, such as
planar surfaces of automobiles chassis.

Several analytical function are taken into account for the modeling of spray painting. A
simple elliptical thickness distribution is considered in the deposition model presented in
(Suh et al. 1991), a parabolic thickness profile with a circular deposition pattern is adopted
in (Sheng et al. 2000; Chen et al. 2002; Chen and Zhao 2009), whereas in (Freund et al. 1998)
a Gaussian distribution with elliptic cross-section is proposed.

Radially symmetric Gaussian distributions of color intensity within the spray cone are
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Figure 1.9: Gaussian paint deposition modeling: evaluation of paint thickness uniformity.

considered in the deposition models for decorative robotic spray painting in (Scalera et al.
2017; El Helou et al. 2019; Vempati et al. 2019). Other examples include the deposition
model based on a bi-variate Cauchy distribution for the paint deposition applied to a flat
panel presented by Ramabhadran and Antonio (Ramabhadran and Antonio 1997), and
the model proposed by Balkan and Arikan, based on a beta distribution, which uses the
shaping parameter 3 to take the flow-out of the paint into account (Balkan and Arikan
1999; Sahir Arikan and Balkan 2000). Furthermore, Hertling et al. propose in (Hertling
et al. 1996) a mathematical model for the paint flux field within the spray cone derived from
experimental data on flat plates. Results indicate that deposition patterns are not uniform,
and not parabolic, as reported by other researchers, but show a minimum at the center of
the spray cone.

In the previously described researches the simplified mathematical formulations are
developed for aerosol spray painting only. Nevertheless, nowadays, the modern automotive
coating lines are increasingly installing electrostatic rotating bell (ESBR) atomizers, which
allow one to obtain high transfer efficiency thanks to the potential difference between the
rotating bell and the grounded surface to be painted (Conner et al. 2005; Ellwood et al.
2014). ESBR combine electrostatic and aerodynamic effects to spray the charged particles
(with a typical diameter of 10-30 um) to the target surface. Therefore, the mechanism of
paint deposition are complex to be investigated and empirically validated analytic models
are needed.

Conner et al. presented in (Conner et al. 2005) a paint deposition model that accounts
for the deposition pattern of ESRB atomizers and the effects of surface curvature. The
deposition pattern is modeled with an asymmetric planar deposition function based on a set of
Gaussians, which globally assumes the shape of an asymmetric volcano. The model is tested
on primer coated Ford Excursion doors with good results, but presents some limitations in the
predictions of paint deposition on highly curved surfaces. In this case, the paint deposition is
under-estimated due to electrostatic effects that actually bend the trajectory of the paint
droplets back to the edges of the surface.

A limitation of the analytical approach of paint deposition modeling is that sensible errors
can be introduced when dealing with curved surfaces. This is due to the assumption that the
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Figure 1.10: Spray painting application (a), automatic path generation software (b) (image taken from (Mineo
et al. 2017)).

streamlines of paint droplets are straight, unlike the real situation in which the streamlines are
curved due to the effects of turbulence in the flow field or due to the shape of the workpiece
(Chen et al. 2019a). The problem can be overcame by simulating the paint deposition process
with a computational fluid dynamics (CFD) approach, which can precisely describe the flow
field and take the turbulence effects into account (Domnick et al. 2005; Fogliati et al. 2006).

1.3.3 Path planning approaches

In the context of robotic spray painting, robot paths are frequently planned through self
learning programming. The process can start from the CAD model of the work-piece to be
painted, described by means of a parametric model, a tessellated mesh (Sheng et al. 2000;
Chen et al. 2008; Zhou et al. 2014), or by a point-cloud model acquired by means of vision
or proximity sensors (Gasparetto et al. 2010; Wang et al. 2019¢). Several examples of path
planning starting from CAD models can be found in the present literature. Early examples
are given by (Goodman and Hoppensteradt 1991), where a method for accurate simulation
of robotic spray application using empirical parameterization is presented, and by (Asakawa
and Takeuchi 1997), where the spray path is first automatically generated on the basis of
the CAD data of the work-piece and the spraying parameters, and then converted into robot
commands.

The simplest path planning approaches that solve the uniform coverage problem (i.e.,
to generate a spray path such that the entire surface is completely covered and receives an
acceptably uniform layer of paint deposition) take into account single parametric surfaces
and are based on the definition of an offset curve. In particular, a start curve (also termed
seed curve (Atkar et al. 2003)) is generated on the target surface, then the subsequent paths
are built by offsetting the start curve along a family of curves orthogonal to initial one. This
approach is implemented in (Atkar et al. 2005b), where the coverage trajectory generation
problem is decomposes into three sub-problems: 1) selecting a seed curve, 2) determining a
speed profile along each pass, and 3) selecting the spacing between consecutive passes.

The spray deposition can be applied continuously without stopping the paint flow or
discontinuously by turning the tool on and off. Several path patterns can be created based
on the start curve, such as zigzag, raster, and spiral (Bi and Lang 2007; Chen et al. 2008;
Zeng and Ni 2013).

If 3D surfaces are considered instead of planar ones, the path planning become more
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complex. A possible strategy is the referred to as 'folding™: a 3D model is virtually folded
in 2D and treated as a single large surface, then paths are generated in 2D (Hertling et al.
1996). However, this method introduces higher errors as the surface curvature increases.

The path planning on 3D surfaces can also be solved by means of a feature-based approach:
each part to be painted is treated through a set of simple features or elementary surface
geometries such as planes, cylinders, cavities (regions with negative curvature) and ribs
(parallel narrow regions with high curvature). The paths for the robot are then generated for
these features individually using predefined strategies for each region (Vincze et al. 2002).
Another example of path planning on typical regular surfaces including planes, cylindrical,
conical and spherical surfaces can be found in (Zhou et al. 2015). The method is also
extended to complex free surfaces with large curvature using hierarchical segmentation to
divide the original surface in a number of region to be planned by template programming.
The authors in (Kout and Miiller 2014) present a general method of offset curve construction
with tool-adaptive offsets for free-form surfaces. The offset path is obtained as a family of
iso-curves of an anisotropic distance function of a seed curve on the workpiece surface. In
(Mineo et al. 2017) a mesh following technique for the generation of tool-paths directly from
tessellated models is presented. The technique does not introduce any approximation and
allows smoother and more accurate surface following tool-paths to be generated.

Surface segmentation is often used in robotic painting path planning when dealing with
complex free-form shapes to divide them into simpler regions (patches). In (Atkar et al. 2005a)
the authors showcase the segmentation of a complex automotive surfaces into topologically
simple surfaces with a hierarchical procedure using the concept of the watershed segmentation
of surfaces (Pulla et al. 2001).

In (Chen et al. 2002; Sheng et al. 2000; Chen and Zhao 2009, 2013; Chen et al. 2017c,
2018, 2019b) the authors adopt a multi-patch approach, in which a CAD model is firstly
approximated by a large number of small triangles. The triangles with the nearest locations
and directions are then combined into flat patches. For each patch, an approach for flat
surface is applied to generate the paths. In (Sheng et al. 2005) tool path planning approach
which optimizes the tool motion performance and the thickness uniformity is presented. The
method first partitions the part surface into flat patches based on the topology and normal
directions, and then determines the movement pattern and the sweeping direction for each
patch. Both zigzag and spiral patterns are considered. Zigzag patterns allow simple tool
movement, but thier non-isotropic nature introduces makes if difficult to achieve thickness
uniformity near the patch borders. Spiral patterns have isotropic nature but they may lead
to disconnected path segments for some patch shapes.

In (Bi and Lang 2007) a multi-patch approach is considered, where mesh triangles are
sorted to define tag points directly, without the need of sorting triangles into a flat or
low-curvature patch. In this manner, the spraying path on complex products such as vehicle
chassis can be planned. In (Xia et al. 2009) a surface segmentation based on the determination
of the maximum deviation angle of the normal vectors of the vertexes is implemented to
generate the patches that are connected and can be covered by paths uniformly. To minimize
the cycle time and the material waste, the segmentation also considers as obstacles the holes
and the unnecessary painting regions. Furthermore, in (Fu et al. 2017) a genetic algorithm
for surface segmentation is presented and two methods are considered: the first is able to
separate the largest patch from the surface, whereas the second is capable of dividing the
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Figure 1.11: Spray painting paths on a car body (image taken from (Chen et al. 2017c)).

surface with the smallest number of slices.

In (Deng et al. 2012), two main methods are identified for the offline path planning of
3D surfaces. In the first approach the CAD mesh file is generated and the robot path is
planned by considering the mesh points and the normal vectors to the surface. In the second
one, orthogonal planes are used to cut the surface to be coated so as to generate a series of
scanning curves. The normal vector is calculated to define the orientation of the torch on
every point of the curves. This method is also known as cutting method or marching method
(Bajaj et al. 1988). For example, in (Freitas et al. 2017) radial basis functions are used for
surface modeling, and the intersection of surfaces for high-precision trajectory generation.
Furthermore, in (Fang et al. 2018) the cutting method is applied to ensure the uniformity of
the distance of two neighbor scanning passes in thermal spraying.

Most of the previously referenced works are based on CAD models to plan the robot tool
path. However, the path planning can also be based on point cloud models, obtained by means
of vision systems or proximity sensors. In (Wang et al. 2015b) a path planning approach based
on point cloud slicing is presented. The authors propose an adaptive method to determine
the direction of the slicing plane, use polynomial fitting and uniform interpolation method
to obtain smooth spray paths, and introduce an iterative formula to optimize the interval
between slicing planes.

Another example of path planning approach in which the model of the object to be
painted is acquired through artificial vision is given by (Gasparetto et al. 2010). In this work,
graph theory and operative search techniques are applied to provide a general and optimal
solution to the path planning problem. In particular, the object to be painted is partitioned
into primitives that can be represented by a graph and the Chinese Postman algorithm is
run on the graph to obtain the minimum-length path covering all arcs.

More recently, in (Wang et al. 2019¢), an image of the target is captured using RGB-D
vision sensors. The image is then segmented using a segmentation network and processed to
estimate the relative pose between the actual target and the pre-scanned target model.

Besides CAD and point-cloud models, other approaches to automatic path planning for
painting robots rely on the processing of digital images for artistic purposes. In this case,
the path planning can be based on non-photorealistic rendering techniques (Lindemeier et al.
2015; Galea et al. 2016; Scalera et al. 2019; Beltramello et al. 2020), which apply user defined
algorithms to render an input image into an artwork, or on deep learning approaches that
take an input map of a desired texture, and infer robotic paint commands to produce that
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painting (El Helou et al. 2019).

In most of the previous examples the robot path is planned offline. This is due to the
fact that offline path planning allows optimization and repeatability of the robot operation,
especially when the same task has to be repeated numerous times for many identical pieces,
which is a common scenario in the industrial and manufacturing applications.

However, the offline path planning strategy can lead to a decreasing in the spray quality,
for example if large-size elements prone to deformation, such as the hull of ships or parts of
buildings, are considered. Indeed, in this case, gravity and mechanical deformation would
result in inevitable deformations for large-scale parts and possible discrepancies between the
as-built workpieces and their nominal specifications would arise (Maset et al. 2020). Thus, the
perpendicularity and constancy of distance between subsequent paths computed on the basis
of nominal CAD models are not guaranteed, leading to decreased spray quality. Furthermore,
in the case of workpiece conveying on the spray-painting pipeline, random pose changes of
the part to be painted might occur. To overcome these problems, systems based on the usage
of real-time 3-D reconstruction together with online and adaptive path planning techniques
are developed. An example of online path planning is given by (Chen et al. 2017b), where the
authors adopt a visual feedback based on fringe pattern to control the motion of the robot tool
in a closed loop to achieve paint film uniformity. Furthermore, the authors in (Ge et al. 2021)
propose an online modeling approach for automatic spray-painting applications. Specifically,
two consumer RGB-D cameras are mounted on the two sides of the pipeline, and the data
streams of the moving workpiece are continuously collected for the subsequent trajectory
planning. Another example of real-time path planning for spray painting purposes is given
by (Tadic et al. 2021), where a stereo camera is used for surface recording via a real-time,
appearance-based mapping procedure, as well as to steer the painting robot. However, in
the online path planning the difficulty on keeping the camera cleaned from paint arises, and
more computational resources are needed with respect to the offline scenario to operate both
the image acquisition and the path computation in real-time.

The problem of path planning in spray painting robots is usually decoupled from the
definition of the motion law that the manipulator has to follow during the execution of
the task. The main objective of the trajectory planning is to ensure constant tool speed to
minimize the variation of accumulated film thickness on the surface (Antonio 1994). An early
example of optimization of the speed profile can be found in (Ramabhadran and Antonio
1997), where two constrained quadratic problems are considered to minimize the painting
time subject to lower bounds of speed, and minimize the variation in coating thickness.
Nevertheless, these problems do not consider any limit on the end-effector acceleration or any
upper bound on end-effector speed. More recently, in (Chen et al. 2019b) not only the spray
path defined on a Bezier triangular surface model, but also the end-effector speed along the
specified path are optimized to ensure limited variation of the coating thickness.

In (Trigatti et al. 2017, 2018a,b) the authors present a path-constrained trajectory planning
strategy that provides feasible motion profiles without resorting to optimization routines and
without the need of a dynamic description of the manipulator. The algorithm takes as input
an arbitrary description of the end-effector path in the operative space and apply a sequence
of look-ahead filtering operations on the speed profile to ensure end-effector speed and joint
acceleration limitation.
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1.4 Conclusions

In this chapter an overview of the literature on path planning generation in robotics has
been presented. The centrality of the problem in robotics is testified by the large number
of works written on the topic, which comprises both general-purpose planning methods and
application-specific ones. The analysis has been focused on AGVs, medical robots, welding
robots and painting robots, as significant examples of the importance of path planning in
robotics. In particular, the latter field of application has been analyzed in detail. The analysis
has outlined the uttermost importance of path planning in the development of effective
robotic operations, as path planning can be used as tool to face the technical challenges of
modern industry.

18



Bibliography

Achour, N.; and Chaalal, M. (2011). Mobile robots path planning using genetic algorithms. In
The seventh international conference on autonomic and autonomous systems, (pp. 111-115).

Ahmed, S. M., Yuan, J., Wu, Y., Chew, C. M., and Pang, C. K. (2015). Collision-free path
planning for multi-pass robotic welding. In 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), (pp. 1-4). IEEE.

Akai, N., Morales, L. Y., and Murase, H. (2018). Mobile robot localization considering class
of sensor observations. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), (pp. 3159-3166). IEEE.

Alterovitz, R., Branicky, M., and Goldberg, K. (2008). Motion planning under uncertainty
for image-guided medical needle steering. The International journal of robotics research,
27(11-12), 1361-1374.

Antonio, J. K. (1994). Optimal trajectory planning for spray coating. In Proceedings of the
1994 IEEE international conference on robotics and automation, (pp. 2570-2577). IEEE.

Asakawa, N., and Takeuchi, Y. (1997). Teachingless spray-painting of sculptured surface by an
industrial robot. In Proceedings of International Conference on Robotics and Automation,
vol. 3, (pp. 1875-1879). IEEE.

Atkar, P. N., Choset, H., and Rizzi, A. A. (2003). Towards optimal coverage of 2-dimensional
surfaces embedded in ir/sup 3: choice of start curve. In Proceedings 2003 IEEE/RS.J Inter-
national Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),
vol. 4, (pp. 3581-3587). IEEE.

Atkar, P. N., Greenfield, A., Conner, D. C., Choset, H., and Rizzi, A. A. (2005a). Hierarchical
segmentation of surfaces embedded in r3 for auto-body painting. In Proceedings of the
2005 IEEE international conference on robotics and automation, (pp. 572-577). IEEE.

Atkar, P. N., Greenfield, A., Conner, D. C., Choset, H., and Rizzi, A. A. (2005b). Uniform
coverage of automotive surface patches. The International Journal of Robotics Research,
24(11), 883-898.

Bae, J., and Chung, W. (2018). A heuristic for path planning of multiple heterogeneous auto-
mated guided vehicles. International Journal of Precision Engineering and Manufacturing,
19(12), 1765-1771.

19



Bibliography

Bailey, T., and Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM):
Part ii. IEEE robotics & automation magazine, 13(3), 108-117.

Bajaj, C. L., Hoffmann, C. M., Lynch, R. E., and Hopcroft, J. (1988). Tracing surface
intersections. Computer aided geometric design, 5(4), 285-307.

Baldwin, S. (2010). Robotic paint automation: The pros and cons of using robots in your
paint finishing system. Metal Finishing, 108(11-12), 126-129.

Balkan, T., and Arikan, M. S. (1999). Modeling of paint flow rate flux for circular paint sprays
by using experimental paint thickness distribution. Mechanics research communications,

26(5), 609-617.

Beik, V., Marzbani, H., and Jazar, R. (2019). Welding sequence optimisation in the automotive
industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science, 233(17), 5945-5952.

Beltramello, A., Scalera, L., Seriani, S., and Gallina, P. (2020). Artistic robotic painting
using the palette knife technique. Robotics, 9(1), 15.

Bhattacharjee, P., Rakshit, P., Goswami, 1., Konar, A., and Nagar, A. K. (2011). Multi-robot
path-planning using artificial bee colony optimization algorithm. In 2011 Third World
Congress on Nature and Biologically Inspired Computing, (pp. 219-224). IEEE.

Bi, Z., and Lang, S. (2007). Automated robotic programming for products with changes.
International Journal of Production Research, 45(9), 2105-2118.

Broadbent, A., et al. (1987). Free-ranging agv and scheduling system. Automated guided
vehicle systems, 43, 301-309.

Cai, C., Sun, C., Han, Y., and Zhang, Q. (2020). Clinical flexible needle puncture path
planning based on particle swarm optimization. Computer Methods and Programs in
Biomedicine, (p. 105511).

Camarillo, D. B., Krummel, T. M., and Salisbury Jr, J. K. (2004). Robotic technology in
surgery: past, present, and future. The American Journal of Surgery, 188(4), 2-15.

Candeloro, M., Lekkas, A. M., Hegde, J., and Sgrensen, A. J. (2016). A 3d dynamic voronoi
diagram-based path-planning system for uuvs. In OCEANS 2016 MTS/IEEE Monterey,
(pp. 1-8). IEEE.

Castellanos, J. A., and Tardos, J. D. (2012). Mobile robot localization and map building: A
multisensor fusion approach. Springer Science & Business Media.

Chen, H., Fuhlbrigge, T., and Li, X. (2008). Automated industrial robot path planning for
spray painting process: a review. In 2008 IEEE International Conference on Automation
Science and Engineering, (pp. 522-527). IEEE.

20



Bibliography

Chen, H., Sheng, W., Xi, N., Song, M., and Chen, Y. (2002). Automated robot trajec-
tory planning for spray painting of free-form surfaces in automotive manufacturing. In
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292), vol. 1, (pp. 450-455). IEEE.

Chen, J., Liu, R., Gao, Y., Li, G., and An, T. (2017a). Preferential purification of oxygenated
volatile organic compounds than monoaromatics emitted from paint spray booth and risk
attenuation by the integrated decontamination technique. Journal of cleaner production,
148, 268-275.

Chen, R., Wang, G., Zhao, J., Xu, J., and Chen, K. (2017b). Fringe pattern based plane-
to-plane visual servoing for robotic spray path planning. IEEE/ASME Transactions on
Mechatronics, 23(3), 1083-1091.

Chen, S., and Lv, N. (2014). Research evolution on intelligentized technologies for arc welding
process. Journal of Manufacturing Processes, 16(1), 109-122.

Chen, W., Chen, Y., Zhang, W., He, S., Li, B., and Jiang, J. (2019a). Paint thickness
simulation for robotic painting of curved surfaces based on euler—euler approach. Journal
of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), 199.

Chen, W., Liu, H., Tang, Y., and Liu, J. (2017¢). Trajectory optimization of electrostatic
spray painting robots on curved surface. Coatings, 7(10), 155.

Chen, W., Liu, J., Tang, Y., and Ge, H. (2019b). Automatic spray trajectory optimization
on bézier surface. Electronics, 8(2), 168.

Chen, W., Wang, X., Ge, H., and Wen, Y. (2018). Trajectory optimization for spray painting
robot on bezier-bernstein algorithm. In 2018 Chinese Automation Congress (CAC), (pp.
3389-3394). IEEE.

Chen, W., and Zhao, D. (2009). Tool trajectory optimization of robotic spray painting. In 2009
Second International Conference on Intelligent Computation Technology and Automation,
vol. 3, (pp. 419-422). IEEE.

Chen, W., and Zhao, D. (2013). Path planning for spray painting robot of workpiece surfaces.
Mathematical Problems in Engineering, 2013.

Chen, Y., He, Y., Chen, H., Zhang, H., and Chen, S. (2014). Effect of weave frequency and
amplitude on temperature field in weaving welding process. The International Journal of
Advanced Manufacturing Technology, 75(5-8), 803-813.

Chen, Y.-C., Lin, C.-H., Lung, S.-C. C., Chen, K.-F., Wang, W.-C. V., Chou, C.-T., and
Lai, C.-H. (2019¢). Environmental concentration of spray paint particulate matters causes
pulmonary dysfunction in human normal bronchial epithelial beas-2b cell. Process Safety
and Environmental Protection, 126, 250-258.

21



Bibliography

Conner, D. C., Greenfield, A., Atkar, P. N., Rizzi, A. A., and Choset, H. (2005). Paint
deposition modeling for trajectory planning on automotive surfaces. IEEE Transactions
on Automation Science and Engineering, 2(4), 381-392.

Connolly, C. I., Burns, J. B., and Weiss, R. (1990). Path planning using laplace’s equation. In
Proceedings., IEEE International Conference on Robotics and Automation, (pp. 2102-2106).
[EEE.

Contreras-Cruz, M. A., Ayala-Ramirez, V., and Hernandez-Belmonte, U. H. (2015). Mobile
robot path planning using artificial bee colony and evolutionary programming. Applied
Soft Computing, 30, 319-328.

Daniels, S. C. (1988). Real time conflict resolution in automated guided vehicle scheduling.
Tech. rep., AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH.

Davis, J., Perhinschi, M., Wilburn, B., and Karas, O. (2012). Development of a modified
voronoi algorithm for uav path planning and obstacle avoidance. In AIAA Guidance,
Navigation, and Control Conference, (p. 4904).

Dechter, R., and Pearl, J. (1985). Generalized best-first search strategies and the optimality
of a. Journal of the ACM (JACM), 32(3), 505-536.

Dehghan, E.; and Salcudean, S. E. (2009). Needle insertion parameter optimization for
brachytherapy. IEEE Transactions on Robotics, 25(2), 303-315.

Deng, S., Cai, Z., Fang, D., Liao, H., and Montavon, G. (2012). Application of robot
offline programming in thermal spraying. Surface and Coatings Technology, 206(19-20),
3875-3882.

Dilthey, U., and Stein, L. (1993). Robot systems for arc welding-current position and future
trends. Welding Research Abroad, 39(12), 2-6.

DiMaio, S. P., and Salcudean, S. E. (2005). Needle steering and motion planning in soft
tissues. IEEE Transactions on Biomedical Engineering, 52(6), 965-974.

Domnick, J., Scheibe, A., and Ye, Q. (2005). The simulation of the electrostatic spray painting
process with high-speed rotary bell atomizers. part i: Direct charging. Particle € Particle
Systems Characterization, 22(2), 141-150.

Duindam, V., Xu, J., Alterovitz, R., Sastry, S., and Goldberg, K. (2009). 3d motion planning
algorithms for steerable needles using inverse kinematics. In Algorithmic Foundation of
Robotics VIII, (pp. 535-549). Springer.

Duinkerken, M. B., Ottjes, J. A., and Lodewijks, G. (2006). Comparison of routing strategies
for agv systems using simulation. In Proceedings of the 2006 winter simulation conference,
(pp. 1523-1530). IEEE.

Durrant-Whyte, H., and Bailey, T. (2006). Simultaneous localization and mapping: part i.
IEEE robotics & automation magazine, 13(2), 99-110.

22



Bibliography

El Helou, M., Mandt, S., Krause, A., and Beardsley, P. (2019). Mobile robotic painting of
texture. In ICRA 2019-IFEEFE International Conference on Robotics and Automation.

Elgezua, 1., Kobayashi, Y., and Fujie, M. G. (2013). Survey on current state-of-the-art in
needle insertion robots: Open challenges for application in real surgery. Procedia CIrP, 5,
94-99.

Ellwood, K. R., Tardiff, J. L., and Alaie, S. M. (2014). A simplified analysis method for
correlating rotary atomizer performance on droplet size and coating appearance. Journal
of Coatings Technology and Research, 11(3), 303-309.

Englot, B., and Hover, F. (2011). Multi-goal feasible path planning using ant colony
optimization. In 2011 IEEE International Conference on Robotics and Automation, (pp.
2255-2260). IEEE.

Fang, D., Zheng, Y., Zhang, B., Li, X., Ju, P., Li, H., and Zeng, C. (2018). Automatic
robot trajectory for thermal-sprayed complex surfaces. Advances in Materials Science and
Engineering, 2018.

Fang, H., Ong, S., and Nee, A. (2017). Robot path planning optimization for welding complex
joints. The International Journal of Advanced Manufacturing Technology, 90(9-12), 3829
3839.

Farahani, R. Z., Laporte, G., Miandoabchi, E., and Bina, S. (2008). Designing efficient
methods for the tandem agv network design problem using tabu search and genetic
algorithm. The International Journal of Advanced Manufacturing Technology, 36(9-10),
996-1009.

Fazlollahtabar, H., and Saidi-Mehrabad, M. (2015). Methodologies to optimize automated
guided vehicle scheduling and routing problems: a review study. Journal of Intelligent &
Robotic Systems, 77(3-4), 525-545.

Fogliati, M., Fontana, D., Garbero, M., Vanni, M., Baldi, G., and Donde, R. (2006). Cfd
simulation of paint deposition in an air spray process. JCT research, 3(2), 117-125.

Franks, J., Huo, L., and Baron, L. (2008). The joint-limits and singularity avoidance in
robotic welding. Industrial Robot: An International Journal.

Fransen, K., van Eekelen, J., Pogromsky, A., Boon, M., and Adan, I. (2020). A dynamic
path planning approach for dense, large, grid-based automated guided vehicle systems.
Computers € Operations Research, 123, 105046.

Freitas, R. S., Soares, E. E., Costa, R. R., and Carvalho, B. B. (2017). High precision
trajectory planning on freeform surfaces for robotic manipulators. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), (pp. 3695-3700).
IEEE.

23



Bibliography

Freund, E., Rokossa, D., and Rofimann, J. (1998). Process-oriented approach to an efficient
off-line programming of industrial robots. In IECON’98. Proceedings of the 24th Annual
Conference of the IEEE Industrial Electronics Society (Cat. No. 98CHS36200), vol. 1, (pp.
208-213). IEEE.

Fu, Z., Xiao, B., Wu, C., and Yang, J. (2017). A genetic algorithm-based surface segmentation
method for spray painting robotics. In 2017 29th Chinese Control And Decision Conference
(CCDC), (pp. 4049-4054). IEEE.

Galea, B., Kia, E., Aird, N., and Kry, P. G. (2016). Stippling with aerial robots. In Proceedings
of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and
Modeling and Non-Photorealistic Animation and Rendering, (pp. 125-134).

Gasparetto, A., Boscariol, P., Lanzutti, A., and Vidoni, R. (2012). Trajectory planning in
robotics. Mathematics in Computer Science, 6(3), 269-279.

Gasparetto, A., and Scalera, L. (2019). From the unimate to the delta robot: the early
decades of industrial robotics. In Ezplorations in the History and Heritage of Machines
and Mechanisms, (pp. 284-295). Springer.

Gasparetto, A., Vidoni, R., Saccavini, E., and Pillan, D. (2010). Optimal path planning for
painting robots. In ASME 2010 10th Biennial Conference on Engineering Systems Design
and Analysis, (pp. 601-608). American Society of Mechanical Engineers.

Ge, J., Li, J., Peng, Y., Lu, H., Li, S., Zhang, H., Xiao, C., and Wang, Y. (2021). Online 3d
modeling of complex workpieces for the robotic spray painting with low-cost rgh-d cameras.
IEEE Transactions on Instrumentation and Measurement.

Geraerts, R., and Overmars, M. H. (2004). A comparative study of probabilistic roadmap
planners. In Algorithmic Foundations of Robotics V, (pp. 43-57). Springer.

Gonzalez, A. G. C., Alves, M. V. S, Viana, G. S., Carvalho, L. K., and Basilio, J. C. (2018).
Supervisory control-based navigation architecture: A new framework for autonomous
robots in industry 4.0 environments. IEEE Transactions on Industrial Informatics, 14(4),
1732-1743.

Goodman, E. D.; and Hoppensteradt, L. T. (1991). A method for accurate simulation of
robotic spray application using empirical parameterization. In Proceedings. 1991 IEFEE
International Conference on Robotics and Automation, (pp. 1357-1368). IEEE.

Hertling, P., Hog, L., Larsen, R., Perram, J. W., and Petersen, H. G. (1996). Task curve
planning for painting robots. i. process modeling and calibration. IEEE Transactions on
Robotics and Automation, 12(2), 324-330.

Huo, L., and Baron, L. (2011). The self-adaptation of weights for joint-limits and singularity

avoidances of functionally redundant robotic-task. Robotics and Computer-Integrated
Manufacturing, 27(2), 367-376.

24



Bibliography

Indri, M., Grau, A., and Ruderman, M. (2018). Guest editorial special section on recent
trends and developments in industry 4.0 motivated robotic solutions. IEEE Transactions
on Industrial Informatics, 14(4), 1677-1680.

Islam, M., Buijk, A., Rais-Rohani, M., and Motoyama, K. (2014). Simulation-based numerical
optimization of arc welding process for reduced distortion in welded structures. Finite
Elements in Analysis and Design, 84, 54—64.

Kadivar, M., Jafarpur, K., and Baradaran, G. (2000). Optimizing welding sequence with
genetic algorithm. Computational mechanics, 26(6), 514-519.

Kapoor, A., Simaan, N.; and Taylor, R. H. (2005). Suturing in confined spaces: constrained
motion control of a hybrid 8-dof robot. In ICAR’05. Proceedings., 12th International
Conference on Advanced Robotics, 2005., (pp. 452-459). IEEE.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEFE transactions
on Robotics and Automation, 12(4), 566—580.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. In
Autonomous robot vehicles, (pp. 396-404). Springer.

Kim, C. W., and Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional agv routeing.
The International Journal of Production Research, 29(12), 2377-2391.

Kim, C. W., and Tanchocoj, J. (1993). Operational control of a bidirectional automated guided
vehicle system. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH,
31(9), 2123-2138.

Kim, D.-W., Choi, J.-S., and Nnaji, B. (1998). Robot arc welding operations planning with a
rotating/tilting positioner. International journal of production research, 36(4), 957-979.

Kim, H.-J., Kim, Y.-D., and Lee, D.-H. (2005). Scheduling for an arc-welding robot considering
heat-caused distortion. Journal of the Operational Research Society, 56(1), 39-50.

Kim, K.-Y., Norman, B., and Nnaji, B. (2002). Heuristics for single-pass welding task
sequencing. International journal of production research, 40(12), 2769-2788.

Kout, A., and Miller, H. (2014). Tool-adaptive offset paths on triangular mesh workpiece
surfaces. Computer-Aided Design, 50, 61-73.

Kulatunga, A., Liu, D., Dissanayake, G., and Siyambalapitiya, S. (2006). Ant colony
optimization based simultaneous task allocation and path planning of autonomous vehicles.
In 2006 IEEE Conference on Cybernetics and Intelligent Systems, (pp. 1-6). IEEE.

Kwoh, Y. S., Hou, J., Jonckheere, E. A.; and Hayati, S. (1988). A robot with improved
absolute positioning accuracy for ct guided stereotactic brain surgery. IEEFE Transactions
on Biomedical Engineering, 35(2), 153-160.

25



Bibliography

Larsen, L., Kim, J., Kupke, M., and Schuster, A. (2017). Automatic path planning of industrial
robots comparing sampling-based and computational intelligence methods. Procedia
Manufacturing, 11, 241-248.

Latombe, J.-C. (2012). Robot motion planning. vol. 124. Springer Science & Business Media.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.

Lavallee, S., Troccaz, J., Gaborit, L., Cinquin, P., Benabid, A.-L., and Hoffmann, D. (1992).
Image guided operating robot: a clinical application in stereotactic neurosurgery. In
Proceedings 1992 IEEE International Conference on Robotics and Automation, (pp. 618—
619). IEEE Computer Society.

Li, P., Yang, Z., and Jiang, S. (2018). Needle-tissue interactive mechanism and steering
control in image-guided robot-assisted minimally invasive surgery: a review. Medical &
biological engineering & computing, 56(6), 931-949.

Lindemeier, T., Metzner, J., Pollak, L., and Deussen, O. (2015). Hardware-based non-
photorealistic rendering using a painting robot. In Computer graphics forum, vol. 34, (pp.
311-323). Wiley Online Library.

Lingelbach, F. (2004). Path planning for mobile manipulation using probabilistic cell
decomposition. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, (pp. 2807-2812). IEEE.

Liu, Y., Zhao, J., Lu, Z., and Chen, S. (2011). Pose planning for the end-effector of robot
in the welding of intersecting pipes. Chinese Journal of Mechanical Engineering-English
Edition, 24(2), 264.

Lolin, Y. (1989). Chronic neurological toxicity associated with exposure to volatile substances.
Human toxicology, 8(4), 293-300.

Louredo, M., Diaz, 1., and Gil, J. J. (2012). Dribon: A mechatronic bone drilling tool.
Mechatronics, 22(8), 1060-1066.

Lozano-Perez, T. (1983). Robot programming. Proceedings of the IEEE, 71(7), 821-841.

Lulu, L., and Elnagar, A. (2005). A comparative study between visibility-based roadmap
path planning algorithms. In 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, (pp. 3263-3268). IEEE.

Masehian, E., and Sedighizadeh, D. (2007). Classic and heuristic approaches in robot motion
planning-a chronological review. World Academy of Science, Engineering and Technology,
23(5), 101-106.

Maset, E., Scalera, L., Zonta, D., Alba, 1., Crosilla, F., and Fusiello, A. (2020). Procrustes
analysis for the virtual trial assembly of large-size elements. Robotics and Computer-
Integrated Manufacturing, 62, 101885.

26



Bibliography

Meeran, S., and Share, A. (1997). Optimum path planning using convex hull and local search
heuristic algorithms. Mechatronics, 7(8), 737-756.

Messler Jr, R. W. (2008). Principles of welding: processes, physics, chemistry, and metallurgy.
John Wiley & Sons.

Mineo, C., Pierce, S. G., Nicholson, P. I., and Cooper, 1. (2017). Introducing a novel
mesh following technique for approximation-free robotic tool path trajectories. Journal of
Computational Design and Engineering, 4(3), 192-202.

Moe, S., Gravdahl, J. T., and Pettersen, K. Y. (2018). Set-based control for autonomous spray
painting. IEEE Transactions on Automation Science and Engineering, 15(4), 1785-1796.

Mohanty, P. K., and Parhi, D. R. (2016). Optimal path planning for a mobile robot using
cuckoo search algorithm. Journal of Fxperimental € Theoretical Artificial Intelligence,
28(1-2), 35-52.

Nageotte, F., Zanne, P., Doignon, C., and De Mathelin, M. (2009). Stitching planning
in laparoscopic surgery: Towards robot-assisted suturing. The International Journal of
Robotics Research, 28(10), 1303-1321.

Nguan, C., Girvan, A., and Luke, P. P. (2008). Robotic surgery versus laparoscopy; a
comparison between two robotic systems and laparoscopy. Journal of robotic surgery, 1(4),
263-268.

Nguyen Duc, D., Tran Huu, T., and Nananukul, N. (2020). A dynamic route-planning system
based on industry 4.0 technology. Algorithms, 13(12), 308.

Ogbembhe, J., and Mpofu, K. (2015). Towards achieving a fully intelligent robotic arc welding:
a review. Industrial Robot: An International Journal.

Park, K., and Jeon, D. (2018). Optimization of tool path pitch of spray painting robots for
automotive painting quality. International Journal of Control, Automation and Systems,
16(6), 2832-2838.

Patil, S., and Alterovitz, R. (2010). Interactive motion planning for steerable needles in 3d
environments with obstacles. In 2010 3rd IEEE RAS & EMBS International Conference
on Biomedical Robotics and Biomechatronics, (pp. 893-899). IEEE.

Pulla, S., Razdan, A., and Farin, G. (2001). Improved curvature estimation for watershed
segmentation of 3-dimensional meshes. IEEE Transactions on Visualization and Computer
Graphics, 5(4), 308-321.

Qiu, L., Hsu, W.-J., Huang, S.-Y., and Wang, H. (2002). Scheduling and routing algorithms
for agvs: a survey. International Journal of Production Research, 40(3), 745-760.

Radaj, D. (2012). Heat effects of welding: temperature field, residual stress, distortion.
Springer Science & Business Media.

27



Bibliography

Ramabhadran, R., and Antonio, J. K. (1997). Fast solution techniques for a class of
optimal trajectory planning problems with applications to automated spray coating. I[EEE
Transactions on Robotics and Automation, 13(4), 519-530.

Rao, A. M., Ramji, K., and Rao, B. S. S. (2018). Experimental investigation on navigation
of mobile robot using ant colony optimization. In Smart Computing and Informatics, (pp.
123-132). Springer.

Reed, K. B., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N. J., and
Okamura, A. M. (2011). Robot-assisted needle steering. IEEE robotics & automation
magazine, 18(4), 35-46.

Ren, S., Xie, Y., Yang, X., Xu, J., Wang, G., and Chen, K. (2016). A method for optimizing
the base position of mobile painting manipulators. IEEE Transactions on Automation
Science and Engineering, 14 (1), 370-375.

Rimon, E., and Koditschek, D. E. (1992). Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, Volume 8, 8, 501-518.

Sahir Arikan, M., and Balkan, T. (2000). Process modeling, simulation, and paint thickness
measurement for robotic spray painting. Journal of Robotic Systems, 17(9), 479-494.

Savelsbergh, M., and Sol, M. (1998). Drive: Dynamic routing of independent vehicles.
Operations Research, 46(4), 474-490.

Scalera, L., Mazzon, E., Gallina, P., and Gasparetto, A. (2017). Airbrush robotic painting
system: Experimental validation of a colour spray model. In International Conference on
Robotics in Alpe-Adria Danube Region, (pp. 549-556). Springer.

Scalera, L., Seriani, S., Gasparetto, A., and Gallina, P. (2019). Non-photorealistic rendering
techniques for artistic robotic painting. Robotics, 8(1), 10.

Sen, S., Garg, A., Gealy, D. V., McKinley, S., Jen, Y., and Goldberg, K. (2016). Automating
multi-throw multilateral surgical suturing with a mechanical needle guide and sequential
convex optimization. In 2016 IEEE International Conference on Robotics and Automation

(ICRA), (pp. 4178-4185). IEEE.

Sheng, W., Chen, H., Xi, N., and Chen, Y. (2005). Tool path planning for compound surfaces
in spray forming processes. IEEFE transactions on automation science and engineering,
2(3), 240-249.

Sheng, W., Xi, N., Song, M., Chen, Y., and MacNeille, P. (2000). Automated cad-guided
robot path planning for spray painting of compound surfaces. In Proceedings. 2000
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat.
No. 00CH37113), vol. 3, (pp. 1918-1923). IEEE.

Shi, L., Tian, X., and Zhang, C. (2015). Automatic programming for industrial robot to
weld intersecting pipes. The International Journal of Advanced Manufacturing Technology,
81(9-12), 2099-2107.

28



Bibliography

Shibata, T., and Fukuda, T. (1993). Intelligent motion planning by genetic algorithm with
fuzzy critic. In Proceedings of 8th IEEE International Symposium on Intelligent Control,
(pp. 565-570). IEEE.

Shirazi, B., Fazlollahtabar, H., and Mahdavi, I. (2010). A six sigma based multi-objective
optimization for machine grouping control in flexible cellular manufacturing systems with
guide-path flexibility. Advances in Engineering Software, 41(6), 865-873.

Song, J. S. L. X. B., and Zhiyong, Y. (2010). The potential field-based trajectory planning of
needle invasion in soft tissue [j|. Journal of Biomedical Engineering, 4.

Song, P.-C., Pan, J.-S., and Chu, S.-C. (2020). A parallel compact cuckoo search algorithm
for three-dimensional path planning. Applied Soft Computing, (p. 106443).

Sugita, S., Itaya, T., and Takeuchi, Y. (2004). Development of robot teaching support
devices to automate deburring and finishing works in casting. The International Journal
of Advanced Manufacturing Technology, 23(3-4), 183-189.

Suh, S.-H., Woo, [.-K., and Noh, S.-K. (1991). Development of an automatic trajectory
planning system (atps) for spray painting robots. In Proceedings. 1991 IEEE International
Conference on Robotics and Automation, (pp. 1948-1955). IEEE.

Tabar, R. S., Warmefjord, K., and Soderberg, R. (2018). Evaluating evolutionary algorithms
on spot welding sequence optimization with respect to geometrical variation. Procedia
CIRP, 75, 421-426.

Tadic, V., Odry, A., Burkus, E., Kecskes, 1., Kiraly, Z., Klincsik, M., Sari, Z., Vizvari, Z.,
Toth, A., and Odry, P. (2021). Painting path planning for a painting robot with a realsense
depth sensor. Applied Sciences, 11(4), 1467.

Tarn, T.-J., Chen, S.-B., and Zhou, C. (2007). Robotic welding, intelligence and automation.
vol. 362. Springer.

Tavakkoli-Moghaddam, R., Aryanezhad, M., Kazemipoor, H., and Salehipour, A. (2008).
Partitioning machines in tandem agv systems based on balanced flow strategy by simulated

annealing. The International Journal of Advanced Manufacturing Technology, 38(3-4),
355.

Trigatti, G., Boscariol, P.; Scalera, L., Pillan, D., and Gasparetto, A. (2018a). A look-ahead
trajectory planning algorithm for spray painting robots with non-spherical wrists. In
IFToMM Symposium on Mechanism Design for Robotics, (pp. 235-242). Springer.

Trigatti, G., Boscariol, P., Scalera, L., Pillan, D., and Gasparetto, A. (2018b). A new
path-constrained trajectory planning strategy for spray painting robots. The International
Journal of Advanced Manufacturing Technology, 98(9-12), 2287-2296.

Trigatti, G., Scalera, L., Pillan, D., and Gasparetto, A. (2017). A novel trajectory planning
technique for anthropomorphic robots with non-spherical wrist. In 49th International
Symposium on Robotics ISR 2017.

29



Bibliography

Van Den Berg, J., Miller, S., Duckworth, D., Hu, H., Wan, A., Fu, X.-Y., Goldberg, K., and
Abbeel, P. (2010). Superhuman performance of surgical tasks by robots using iterative
learning from human-guided demonstrations. In 2010 IEEE International Conference on
Robotics and Automation, (pp. 2074-2081). IEEE.

Vempati, A. S., Khurana, H., Kabelka, V., Flueckiger, S., Siegwart, R., and Beardsley, P.
(2019). A virtual reality interface for an autonomous spray painting uav. IEEE Robotics
and Automation Letters, 4(3), 2870-2877.

Vincze, M., Pichler, A., Biegelbauer, G., Hausler, K., Andersen, H., Madsen, O., and
Kristiansen, M. (2002). Automatic robotic spray painting of low volume high variant parts.
In Proceedings of the 33rd ISR (International Symposium on Robotics), vol. 7.

Vivaldini, K. C. T., Galdames, J. P. M., Pasqual, T., Sobral, R., Aratjo, R., Becker, M.,
and Caurin, G. (2010). Automatic routing system for intelligent warehouses. In IEEE
International Conference on Robotics and Automation, vol. 1, (pp. 1-6). Citeseer.

Wang, C., Wang, L., Qin, J., Wu, Z., Duan, L., Li, Z., Cao, M., Ou, X., Su, X., Li, W., et al.
(2015a). Path planning of automated guided vehicles based on improved a-star algorithm.
In 2015 IEEFE International Conference on Information and Automation, (pp. 2071-2076).
[EEE.

Wang, D., Tan, D., and Liu, L. (2018). Particle swarm optimization algorithm: an overview.
Soft Computing, 22(2), 387-408.

Wang, G., Cheng, J., Li, R., and Chen, K. (2015b). A new point cloud slicing based path
planning algorithm for robotic spray painting. In 2015 IEEFE International Conference on
Robotics and Biomimetics (ROBIO), (pp. 1717-1722). IEEE.

Wang, J., Shang, X., Guo, T., Zhou, J., Jia, S., and Wang, C. (2019a). Optimal path planning
based on hybrid genetic-cuckoo search algorithm. In 2019 6th International Conference on
Systems and Informatics (ICSAI), (pp. 165-169). IEEE.

Wang, L., Kan, J., Guo, J., and Wang, C. (2019b). 3d path planning for the ground robot
with improved ant colony optimization. Sensors, 19(4), 815.

Wang, Z., Fan, J., Jing, F., Liu, Z., and Tan, M. (2019¢c). A pose estimation system based
on deep neural network and icp registration for robotic spray painting application. The
International Journal of Advanced Manufacturing Technology, (pp. 1-15).

Xia, W., Wei, C., and Liao, X. (2009). Surface segmentation based intelligent trajectory
planning and control modeling for spray painting. In 2009 International Conference on
Mechatronics and Automation, (pp. 4958-4963). IEEE.

Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K. (1997). Adaptive evolutionary

planner/navigator for mobile robots. IEEE transactions on evolutionary computation, 1(1),
18-28.

30



Bibliography

Xu, J., Duindam, V., Alterovitz, R., and Goldberg, K. (2008). Motion planning for steer-
able needles in 3d environments with obstacles using rapidly-exploring random trees
and backchaining. In 2008 IEEFE international conference on automation science and
engineering, (pp. 41-46). IEEE.

Yan, S., Ong, S., and Nee, A. (2016). Optimal pass planning for robotic welding of large-
dimension joints with deep grooves. Procedia CIRP, 56, 188-192.

Yang, X., and Wushan, C. (2015). Agv path planning based on smoothing a* algorithm.
International Journal of Software Engineering and Applications (IJSEA), 6(5), 1-8.

Ye, Q., and Pulli, K. (2017). Numerical and experimental investigation on the spray coating
process using a pneumatic atomizer: influences of operating conditions and target geometries.
Coatings, 7(1), 13.

Yen, J., and Pfluger, N. (1991). Path planning and execution using fuzzy logic. In Navigation
and Control Conference, (p. 2801).

Yu, J., Li, R., Feng, Z., Zhao, A., Yu, Z., Ye, Z., and Wang, J. (2020). A novel parallel ant
colony optimization algorithm for warehouse path planning. Journal of Control Science
and Engineering, 2020.

Zeng, Y., and Ni, X. H. (2013). Path optimization of spray painting robot for zigzag path
pattern. In Advanced materials research, vol. 712, (pp. 2260-2263). Trans Tech Publ.

Zhan, X., Zhang, D., Liu, X., Chen, J., Wei, Y., Zhou, J., and Liu, R. (2017). Comparison
between weave bead welding and multi-layer multi-pass welding for thick plate invar steel.
The International Journal of Advanced Manufacturing Technology, 88(5-8), 2211-2225.

Zhang, B., Wu, J., Wang, L., Yu, Z., and Fu, P. (2018). A method to realize accurate
dynamic feedforward control of a spray-painting robot for airplane wings. IEEE/ASME
Transactions on Mechatronics, 23(3), 1182-1192.

Zhang, H., Lu, H., Cai, C., and Chen, S. (2011). Robot path planning in multi-pass weaving
welding for thick plates. In Robotic Welding, Intelligence and Automation, (pp. 351-359).
Springer.

Zhang, Y., Gong, D.-W., and Zhang, J.-H. (2013). Robot path planning in uncertain
environment using multi-objective particle swarm optimization. Neurocomputing, 103,
172-185.

Zhou, B., Fang, F., Shao, Z., Meng, Z., and Dai, X. (2015). Fast and templatable path
planning of spray painting robots for regular surfaces. In 2015 34th Chinese Control
Conference (CCC), (pp. 5925-5930). IEEE.

Zhou, B., Zhang, X., Meng, Z., and Dai, X. (2014). Off-line programming system of industrial
robot for spraying manufacturing optimization. In Proceedings of the 33rd Chinese Control
Conference, (pp. 8495-8500). IEEE.

31



	Path planning for special robotic operations
	Path planning for general-purpose applications
	Classical methods
	Heuristic and meta-heuristic methods

	Application-specific path planning
	Path planning for Automated Guided Vehicles
	Path planning for medical applications
	Path planning for robotic welding

	Path planning for spray painting robots
	The problem of tool path generation
	Spray painting modeling
	Path planning approaches

	Conclusions
	Bibliography


