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Abstract: This study explores the potential in substituting ordinary Portland cement (OPC) with in-
dustrial waste silica fume (SF) as a mineral filler in asphalt mixtures (AM) for flexible road pavements.
The Marshall and indirect tensile strength tests were used to evaluate the mechanical resistance
and durability of the AMs for different SF and OPC ratios. To develop predictive models of the
key mechanical and volumetric parameters, the experimental data were analyzed using artificial
neural networks (ANN) with three different activation functions and leave-one-out cross-validation
as a resampling method. The addition of SF resulted in a performance comparable to, or slightly
better than, OPC-based mixtures, with a maximum indirect tensile strength of 1044.45 kPa at 5%
bitumen content. The ANN modeling was highly successful, partly due to an interpolation-based
data augmentation strategy, with a correlation coefficient RCV of 0.9988.
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1. Introduction

Asphalt mixtures (AM) are the most used construction material for flexible road
pavements worldwide; they are designed to withstand traffic loading, ageing, and water
damage [1]. Such mixtures of coarse aggregates, sand, and bitumen are integrated by
mineral filler, which leads to porosity reduction and bitumen stiffening, resulting in im-
provement of mechanical response against rutting and shoving [2–7]; however, overdoses
of mineral filler reduce the aggregate content, and a reduction in strength is observed [8].

The effective utilization of various mineral fillers such as lime [9], hydrated lime [10],
limestone powder [11], fly ash [12] and cement [13] to improve the strength of asphalt
mixtures has been investigated in various studies. In particular, Portland cement has
demonstrated better effectiveness as a filler material [14]; however, on account of high CO2
emissions associated with cement manufacturing, researchers are constantly looking for
alternate environment-friendly filler materials [15].

Silica fume (microsilica), an industrial waste product, has an adverse impact on the en-
vironment if not disposed of safely; it is an extremely fine silica nanocrystalline polymorph
formed as a by-product of silicon and ferrosilicon alloy processing in electric arc furnaces
(EAFs). Silica fume (SF) has been used in the concrete industries to improve compressive
strength, hardening of concrete, and as a partial replacement for cement [16–19]. In fact,
the material is involved in the pozzolanic reaction with the calcium hydroxide crystals,
producing additional cementing material (C-S-H) and eliminating areas of stress concen-
trations prone to failure initiation [17,20–22]. Furthermore, SF is used in road pavement
subgrade to reduce swelling pressure and increase the bearing capacity of the pavement’s
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subgrade [23–25]; however, a minimal investigation in necessary to study the use of this
material as filler in AM. Al-Hdabi et al. investigated the effect of silica fume as mineral
filler additive with waste fly ash on the indirect tensile strength of AM [26]. The study
revealed that the addition of SF enhances the initial mechanical properties, long-term per-
formance, and durability. Abutalib and Abutalib et al. studied the application of silica fume
(0.25–1.0%) to improve the rheological properties and to reduce the oxidation rate of the
asphalt binder [27,28]. Al-Taher et al. carried out experimental work to quantify the effect of
SF on various mechanical properties of asphalt concrete [29]. The effect of SF on the mechan-
ical strength of reclaimed asphalt concrete was investigated by Larbi et al. [30]. Choudhary
et al. reported that silica fume can effectively improve the mechanical and rheological
properties of asphalt concrete and can be used as an alternative filler material [31].

This research investigates the potential of using SF, a sustainable filler material, in
place of OPC in asphalt mixtures for the base course of road pavements. The study focuses
on evaluating the impact of SF as a mineral filler for heavy load requirements in the Indian
context. The mechanical response of the asphalt mixtures was evaluated using Marshall
stability (MS), the mean Marshall stability ratio (MMSR), and indirect tensile strength (ITS)
and water sensitivity (WS) tests for different proportions of silica fume, OPC, and bitumen.

As well as providing a comprehensive mechanical and volumetric characterization
of asphalt mixtures for base courses made with SF rather than OPC as filler, this study
aims to develop a machine learning-based methodology for predicting the mechanical
and volumetric parameters of such mixtures. To this end, the experimental data were
analyzed using artificial neural networks (ANNs) to create predictive models. Developing
accurate predictive equations for the mechanical and volumetric response of asphalt mixes
can enhance traditional mix design, which relies on costly and time-consuming laboratory
testing. Numerical prediction can reduce the number of experiments required to optimize
the mix without sacrificing reliability of the results. Large datasets are usually required
to properly train a neural model using conventional approaches [32,33]. However, in
this study, a nonconventional approach called leave-one-out cross-validation was used
to adequately train the neural network model based on the limited experimental data
available, maximizing the reliability of the ANN model. This approach was taken to
address the relatively small amount of data in the laboratory dataset.

2. Materials and Methods
2.1. Bitumen

Tiki Tar Industries (Baroda) Limited, Gujarat, India, provided the conventional VG-30
grade bitumen used in this study. The binder’s properties were assessed through viscosity,
flash point, penetration, softening point, solubility, ductility, and specific gravity tests.
Table 1 shows the physical properties of the bitumen used in the study. With respect to the
bitumen characterization, strong similarities can be found between the Indian standards
(IS 1203 and IS 1205) and European standards (EN 1426 and EN 1427) for the evaluation
of penetration and softening point, respectively. Regarding the viscosity measurements,
both the Indian (IS 1206 P-2 and P-3) and European standards (EN 12595 and EN 12596)
are based on the same capillarity approach.

2.2. Aggregate

The investigation used crushed quartz aggregates, and several laboratory experiments
were conducted to evaluate their properties. These experiments included cleanliness, grain
size distribution, bulk specific gravity, Los Angeles abrasion, soundness, flakiness and
elongation index, impact strength, and water absorption. The physical properties of the
aggregates are presented in Table 2 and Figure 1. The grading curve of the aggregate
was compared with the reference envelope prescribed by the Indian Ministry of Road
Transport and Highways (MoRTH, 2013) for flexible road pavements, which resulted in the
classification of the material as grade II [34].
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Table 1. Properties of bitumen.

Test Parameter MoRTH Limits Test Results Test Method

Absolute viscosity (poises) at 60 ◦C 2400–3600 2855 IS 1206 (P-2)
Kinematic viscosity (cSt) at 135 ◦C (Min) 350 392 IS 1206 (P-3)

Flash point Cleveland open cup (◦C) (Min) 250 304 IS 1448 (P-69)
Penetration (1/10 mm) at 25 ◦C, 100 gm, 5 s (Min) 45 49 IS 1203

Softening point (◦C) (Min) 47 48 IS 1205
Matter soluble in trichloroethylene (% by mass) (Min) 99 99.45 IS 1216

Viscosity ratio at 60 ◦C (Max) 4.0 1.3 IS 1206 (P-2)
Ductility (cm) at 25 ◦C after TFOT (Min) 40 75 IS 1208

Specific gravity (g/cm3) 0.97–1.02 0.987 IS 1202

Table 2. Properties of aggregate.

Test Parameter MoRTH Limits Test Results Test Method

Cleanliness (Dust) (%) (Max) 5 3 IS 2386 Part I
Bulk specific gravity (g/cm3) 2–3 2.68 IS 2386 Part III

Percent wear by Los Angeles abrasion (%) (Max) 35 10.6 IS 2386 Part IV
Soundness loss by sodium sulphate solution (%) (Max) 12 3.4 IS 2386 Part V

Soundness loss by magnesium sulphate solution (%) (Max) 18 3.7 IS 2386 Part V
Flakiness and elongation index (%) (Max) 35 IS 2386 Part I

20 mm 27.93
10 mm 32.13

Impact strength (%) (Max) 27 IS 2386 Part IV
20 mm 4.15
10 mm 5.91

Water absorption (%) (Max) 2 1.67 IS 2386 Part III
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2.3. Filler

In India, ordinary Portland cement (OPC) is the conventional mineral filler that is
typically used in asphalt mixes for heavy-load road pavements. In this study, the effective-
ness of silica fume (SF) as a mineral filler was evaluated by comparing it to OPC grade 43.
According to the Indian Standard IS 8112-1989, OPC grade 43 must provide a designed
strength of at least 43 MPa at 28 days.
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The processed silica fume used in the study was obtained in powder form and air-dried
from Safew Tech system in Indore (India), while OPC was sourced from a local supplier.
Both materials underwent assessment of their properties, including density, specific surface
area, grain size distribution, methylene blue value analysis, mineralogical and chemical
composition, German filler, and pH value. The German filler test, as prescribed by the
National Asphalt Pavement Association (1995) [35], was used to determine the porosity of
the fillers, which is inversely proportional to its German filler value. The silica fume grading
curve was compared with the required size of mineral filler prescribed by MoRTH [34]
and was found to lie within the recommended range for asphalt mixture (Table 3). Table 4
presents the various physical and chemical properties of silica fume.

Table 3. Grain size curve of silica fume as per MoRTH requirement for filler material.

Sieve Size
Passing Percentage (%)

MoRTH
Upper Limit

MoRTH
Lower Limit

Considered
Silica Fume

0.6 mm 100 100 100
0.3 mm 100 95 96.8

0.075 mm 100 85 90.3

Table 4. Properties of fillers.

Property OPC SF

Specific gravity (g/cm3) 3.04 2.2
MBV (g/kg) 3.00 3.85

German filler (g) 85 94
Fineness modulus (FM) 4.96 1.96

Average particle size (µm) 10.12 0.243
Surface area (m2/g) 1.75 16.45

pH 12.90 6.98
Loss on ignition (%) 1.8 2.0

Particle shape Granules and sub-angular
particles with rough texture

Spherically shaped and
very fine

Mineralogical composition (XRD) Alite, Belite, Calcite, Quartz,
Portlandite Quartz and Calcite

SiO2 (%) 21.43 93.5
CaO (%) 66.58 0.89

Al2O3 (%) 3.01 0.08
MgO (%) 1.39 0.82
SO3 (%) 2.26 -

Na2O (%) 0.03 0.4
K2O (%) 0.02 3.52
TiO2 (%) 0.21 -
MnO (%) 0.20 0.06
Fe2O3 (%) 4.68 -
TiO2 (%) - 0.05

2.4. Active and Passive Adhesion

The aggregate–bitumen interface significantly affects the moisture resistance of AM.
This aspect has been evaluated in accordance with ASTM D3625 with varying percentages
of filler [36]. Active adhesion is the time required to accurately coat the aggregate with
bitumen during the mixing operation. Bitumen, filler, and aggregate were preheated at a
temperature of 170 ◦C and then mixed with optimal proportions. The total time elapsed
between the addition of the target binder content and 100% coating of the aggregate is
measured in seconds [37]. The time required to completely coat the aggregate was noted
and reported as active adhesion. The shorter elapsed time represents good active adhesion.
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Passive adhesion was calculated by visual inspection using the boiling water test
according to ASTM D 3625-96. The passive adhesion was determined through visual
inspection. A 250 g AM was prepared and stored at room temperature to cool the mixture
down to a temperature of 85–100 ◦C. The cooled bitumen aggregate mixture is boiled in
water for 10 min and after boiling it is cooled again to room temperature. The water is
decanted from the boiled mix and then dried on absorbent paper after boiling the aggregate–
bitumen mix for 10 min. The percentage of bitumen that remained spread on the aggregate
was reported as passive adhesion. The percentage of bitumen that remained coated on the
aggregate was studied by a team of 5 technicians using a magnifying glass. The average
value obtained for the percentage of bitumen remain coated on aggregates is reported as
passive adhesion.

The results of passive and active adhesion are presented in Figure 2. Results show a
better active and passive adhesion of silica fume with respect to OPC, which should ensure
higher moisture damage resistance to SF bituminous mixes.
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2.5. Asphalt Mixes

To isolate the effect of various filler materials on the physical-mechanical properties
of asphalt mixes, the study kept aggregate type, grain size distribution, and bitumen type
constant across all mixtures. Three different volumes of silica fume (4.0%, 6.0% and 8.0%)
and the same amount of OPC were used for comparison. Each dosage of SF and OPC was
prepared with 4 different bitumen contents (4.5%, 5.0%, 5.5%, and 6.0% by volume of mix),
resulting in 24 distinct asphalt mixtures analyzed.

The aggregate, SF, OPC, and bitumen were heated separately at 150 ◦C before mixing.
Dry samples of the necessary amount of aggregate and fillers were mixed at 170 ◦C in a
planetary mixer with a speed of 140 ± 5 rpm. Then, different percentages of bitumen were
added to create asphalt mixture specimens according to Indian MoRTH guidelines. The
entire laboratory procedure was performed in triplicate, and the experimental findings
were reported with standard deviation.

2.6. Marshall Stability Strength Test

The specimens for the subsequent physical-mechanical tests were prepared using the
Marshall method, which is based on the impulsive compaction principle. Although other
laboratory techniques, such as the gyratory compaction, are widely used in the USA within
the SUPERPAVE method (NAPA, 1995) [38], the Marshall compaction is still commonly
used in many road laboratories due to its simplicity, low cost, and extensive database
available in the literature, despite the fact that it leads to volumetric properties of the
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compacted specimens quite different from those observed in road pavement as a result of
rollers compaction [8,37,39–43]. Marshall testing was carried out in accordance with ASTM
D6927 [44] and the results were reported as Marshall stability, flow, and quotient.

2.7. Volumetric Properties

The desirable physical and mechanical characteristics of an asphalt mixture are closely
related to the volume of its binder, mineral filler, and coarse aggregates. Hence, the
volumetric properties of asphalt mixtures significantly impact the durability and strength
of road pavements. In accordance with Indian Ministry of Road Transport and Highways
(MoRTH) standards, various volumetric properties, such as maximum theoretical specific
gravity, dry density, percentage of air voids (Vv), voids in mineral filler, and voids filled
with bitumen, were determined for both silica fume and OPC mixtures. The experimental
procedures involved in MoRTH for the evaluation of the volumetric properties are basically
equivalent to the experimental procedures described in EN 12697-6 and EN 12697-8.

2.8. Long-Term Aging (LTA)

LTA is usually considered to evaluate the long-term hardening of asphalt pavement
during its in-service life. Three specimens per mixture were cured in an oven at 80 ± 5 ◦C
for 5 days to simulate the long-term hardening produced by 10 years of service life [45]
and subsequently tested for Marshall stability, according to the standard ASTM D6927.
Before placing the specimen for curing, it was clamped to avoid complete collapse. The
long-term aging effect was evaluated in terms of the mean Marshall stability ratio (MMSR).
The equation to calculate MMSR is given in Equation (1):

MMSR =
MSA
MS

(1)

where MSA is the Marshall stability after aging and MS is the standard Marshall stability
of the mixes. Although long-term aging can be determined using various strength indices,
in this study, the Marshall strength was considered as described by Al-Hdabi [46].

2.9. Indirect Tensile Strength Test

In accordance with ASTM D6931, an indirect tensile strength (ITS) test was conducted
on cylindrical specimens of the Marshall type after conditioning at 25 ◦C for 4 h. The test
was carried out at a constant strain rate of 50.4 mm/min [47].

2.10. Water Sensitivity Test

The evaluation of water sensitivity was carried out according to the modified Lottman
test [48]. WS was expressed by the percentage reduction in ITS evaluated before and
after moisture conditioning performed in accordance with AASHTO T-283 standards [49].
The 63.5-mm-thick and 150-mm-diameter cylindrical specimens were prepared using a
modified Marshall hammer to obtain an air voids content of 7 ± 0.5%. These compacted
specimens were subsequently stored at room temperature for 24± 3 h before being moisture
conditioned. Specimens were saturated for 10 min at 50 kPa absolute vacuum pressure
and then left submerged for 10 additional minutes in a vacuum container. A degree of
saturation equal to 75 ± 5% was maintained. Cured specimens were covered by a thin
plastic film and subsequently sealed in a plastic bag containing 10 ± 0.5 mL of water.
Sealed specimens were then frozen at −18 ± 3 ◦C for 24 hrs. After removal from the plastic
bag, the frozen specimens were placed in a water bath for 24 h at 25 ± 5 ◦C. Following
specimens’ conditioning, ITS was evaluated according to ASTM D6931 [47].

3. Methodology
3.1. Artificial Neural Networks

ANNs are mathematical models falling in the class of non-linear parametric func-
tions [50–54]. Such models are the result of the weighted and biased connection of logistic
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regression units (called artificial neurons), organized in several sequential layers: an input
layer that receives the features vector, one or more hidden layers, and an output layer
that produces the network outcome. The connections, which establish the complexity
and computing power of the ANN, link neurons belonging to different layers so that the
information can travel from the input to the output layer in only 1 direction. Nevertheless,
the activity of each neuron is ruled by a non-linear activation function that determines
whether the processed output should be transmitted or interrupted. Thanks to this network
architecture, ANNs can identify the relationship or pattern that links input predictors to
target variables: connection weights and biases are set by a supervised training process
that aims to minimize the prediction error of the experimental targets.

This study focuses on shallow neural networks (SNNs), i.e., 3-layer perception net-
works, which have been shown to solve arbitrarily well any multidimensional input-target
fitting problem by providing a sufficient number of neurons in their only hidden layer [55].
The proposed SNN consists of a 3-neuron input layer (1 neuron for each input feature), an
N-neuron hidden layer whose processed output is passed to a non-linear activation unit,
and a 7-neuron output layer associated with a linear activation function. The number of
neurons N and the activation function FUN characterizing the hidden layer were identified
through a grid search procedure, choosing the combination that yielded the lowest score
on the performance function. In this study, the integer range XN = {1, · · · , 100} was used
for selecting the number of hidden neurons and the following activation functions were
considered: the exponential linear (ELU), the hyperbolic tangent (TanH), and the logistic
sigmoid (LogS) units (Figure 3). The input features were the bitumen content (% by volume
of mix), percentage of filler (%), along with a categorical variable that distinguishes the filler
materials (values: 0 for Silica Fume, 1 for OPC). The output variables were air void content
(%), the voids in the mineral aggregate (%), the Marshall stability before and after aging
(kN), the Marshall quotient (kN/mm), the indirect tensile strength (kPa), and the water
sensitivity of asphalt mix (%). Each variable belonging to both input and target vectors was
standardized before being processed by the network, i.e., all variables were rescaled to have
0 mean and unity standard deviation. Such an adjustment served to reduce computational
time and improve the efficiency of the neural model.
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3.2. ANN Training and Regularization

The supervised training process identifies connection weights and biases that minimize
the difference between the ANN output ŷ and the experimental target y, corresponding
to the input feature vector x. This process is divided into 2 distinct phases: a forward
and a backward pass. In the forward stage, the training feature vector x is inputted to
the network, and the neuron activations produce the output ŷ. After that, a backward
comparison is made between the computed output ŷ and the experimental target vector
y by a performance function F(ŷ, y), also called loss function, with the aim of defining
the corrections to the weights and biases of the network. The training process involves
the use of a learning rule that defines the update of network parameters W (the matrix of
weights and biases) according to the value assumed by the performance function for a fixed
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number of iterations E. The mean sum of the error squares (or mean square error, MSE)
is commonly accepted as F(·) function and its gradient with respect to W, calculated by
means of a backpropagation algorithm [52], is used in the learning rule so that the network
parameters are updated to minimize the loss value.

For a better understanding of the training process implemented in this study, the
analytical expression of the learning rule is presented in Equation (2):

We+1 = We −
(
∇2F(We)

)−1
∇F(We), e ∈ {1, · · · , E} (2)

Such equation, assuming the Levenberg–Marquardt (LM) backpropagation algo-
rithm [56], becomes:

We+1 = We −
[
JT(We)J(We) + µeI

]−1
JT(We)v(We), e ∈ {1, · · · , E} (3)

where We is the matrix of weights and biases at iteration e, J is the Jacobian matrix of the
training loss F(·) with respect to We, I is the identity matrix, and v(We) = ŷ(We)− y is the
vector of network errors. We+1 are the updated values of network parameters to be used in
the forward pass of iteration e + 1. While the direction towards the minimum is determined
by the gradient JT(We)v(We), the scalar µ determines the step size taken in that direction at
each iteration and, as a result, the convergence rate. In particular, a high µ value corresponds
to a small learning step and a very long convergence time; on the contrary, a low µ allows
the convergence speed to increase but the algorithm could jump over the minimum. In
order to achieve faster convergence and, in parallel, avoid undesirable local minima, the
parameter µ is varied during training: the value µe+1 corresponds to µe multiplied by
µinc > 1 (or µdec < 1) if the performance index has increased (or decreased) between
iterations e− 1 and e. In addition, if the parameter µ becomes too large, µe+1 > µmax, the
LM algorithm is stopped.

At the end of the E iterations of the training process or when µmax is reached (a good
indication that the algorithm has truly converged), the optimal weights and biases are kept
fixed while the test feature vector is processed just in the forward manner to define the
model’s loss index on novel data.

However, under the conditions set out above, a neural model may overfit the training
data: such a situation is generally caused by too large values of connection weights,
which increase the slope of the network function. To avoid overfitting and to improve the
performance score on test data, a regularization technique was implemented in the current
study setup [55]. It involved modifying the sum squared error by adding a term as the sum
of squares of the network weights in order to penalize network complexity and force the
resulting function to be smooth. In this way, the ANN optimization objective becomes:

Fopt(ŷ(We), y, We) = β‖ŷ(We)− y‖2
2 + α‖We‖2

2 (4)

where the operator ‖·‖2
2 represents the 2-norm applied to the network’s parameters We

and errors v(We) = ŷ(We)− y. α and β are the regularization parameters that control the
complexity of the network solution: the ratio α/β assumes values in the interval [0, 1] where
the bigger is the ratio and the smoother is the ANN response. However, the regularization
raises the issue of setting the α and β parameters properly: if the ratio α/β is too large
compared to the optimum, the network will create an overly smooth interpolation through
the training data, and on the contrary, if such ratio is too small, the network will be more
likely to overfit the data.

In this study, David MacKay’s approach [57], which involves applying Bayesian
statistics to the training of the neural network, was used to optimize the regularization
parameters. Therefore, α and β were automatically re-estimated every iteration of the
training algorithm with the aim of restricting the connection weights to be small by seeking
to minimize the loss function of Equation (4).
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Conversely, the hyperparameters that define the functioning of the LM algorithm (µ,
µinc, µdec, µmax and E) were kept at their default values as assigned in the implementation
offered by the well-known MATLAB® ANN Toolbox: the maximum number of training
epochs E was set to 1000, µ_dec to 0.1, µ_inc to 10, the highest µ value that stops training
is 1 × 1010, and the initial µ is 0.001. As previously mentioned, the number of neurons N
in the SNN hidden layer and the activation unit type FUN were identified by means of a
grid search approach that in the current study setup aims to find the lowest averaged test
error, penalized by the number of SNN parameters, of 12 fitted networks (with the same
structure for each combination of XN = {1, · · · , 100} and XFUN = {ELU, TanH, LogS}) as
a result of a leave-one-out cross-validation partitioning.

3.3. Leave-One-Out Cross-Validation

The standard practice of splitting the available dataset into 2 random subsets for
training and testing (also called hold-out method) may result in biased performance eval-
uations due to the different distribution of data within such splits (the test error rate can
be highly variable depending on precisely which observations are included in each set),
along with the risk of missing some relevant trends in training data. These effects are
particularly marked when the dataset is relatively small [58]. Conversely, the leave-one-out
cross-validation (LOOCV) method [59] repeatedly performs a partition of the experimental
dataset into a training set containing all but 1 observation and a test set that contains only
that observation (Figure 4).
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Therefore, if the available set of observations consists of n data, the ANN model is
trained on n− 1 observations and the fitted model is used to predict the response for the
excluded observation. Such procedure is repeated for n splits: the first training set contains
all but observation 1, the second training set contains all but observation 2, and so on.
Each fitted model produces a squared error MSEi computed as the squared difference
between the prediction ŷi and the experimental value yi of the excluded observation:
MSEi = ‖ŷi − yi‖

2
2. The test error of the ANN model is then estimated by averaging the n

resulting MSE’s:

MSECV =
1
n

n

∑
i=1

MSEi (5)

Thereby, the LOOCV allows the model to be trained on an almost entire dataset,
resulting in the absence of a designated test set, and provides an unbiased estimate of the
prediction error rate [60]. Furthermore, by removing the randomness in the hold-out splits,
LOOCV always returns the same results.

Nevertheless, the model presented in this study aims to describe the physical prop-
erties and mechanical response of 2 groups of mixtures characterized by different filler
materials. For this reason, a cross-validation was implemented by excluding 1 observation
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for each type of filler used, defining 12 stratified couples of observations. In other words,
the model was fitted on 22 observations and tested on an independent data couple, repeat-
ing the procedure 12 times. In this way it was possible to reduce the computational cost of
fitting 24 models (n = 24 is the size of available dataset) and to decrease the variance of the
cross-validation procedure because the overlap between the 12 training sets is lower, and
consequently, the model outputs are somewhat less correlated with each other.

Among the possible combinations of N and FUN, a grid search approach was per-
formed to select the combination that maximized the difference between the effective
number of parameters (i.e., γ = {0, · · · , δ} is a measure of how many weights and biases
in the neural network are effectively used in reducing the loss function [55] divided by the
total number of network weights and biases), ENP, and the averaged test error, MSECV , of
the twelve fitted models:

LCV(δi, αi, ŷ(Wi), y, Wi)= ENP−MSECV =

=
12

∑
i=1

δi − 2αitr
(
∇2F(Wi)

)−1

δi
−

12

∑
i=1
‖ŷi(Wi)− yi‖

2
2

(6)

where Wi is the matrix of weights and biases of the i-th SNN model trained in the leave-
one-out cross-validation procedure and δi is the total number of parameters in the same
i-th SNN. The trace of Hessian matrix can be computed by making use of the Jacobian
matrix of the training set errors and the regularization parameters αi and βi, as described
in Hagan et al. [55]. This approach in selecting the proper SNN model for the given fitting
problem becomes important when a regularization technique is applied in order to reduce
the computational cost: in fact, as the complexity of the network increases (i.e., in this study,
as the number of hidden neurons increases), the effective number of parameters used to
reduce the error function can be much less than the total number of weights and errors in
the neural network, given that many of these parameters are forced to be very small or
even 0 during the training process. In other terms, if a large network is selected, it will
not necessarily overfit the data (thanks to the regularization process) but it will certainly
require more computational time to calculate the network response which may not be too
different from that of a smaller network. Therefore, the use of Equation (6) in the grid
search process allows the SNN to be less complex but more efficiently identified. In fact,
such a network is characterized by the widest gap between ENP and MSECV :

{N, FUN}best = arg max
(N,FUN) ∈ (XN ,XFUN)

LCV(N, FUN) (7)

3.4. Data Augmentation

The number of experimental observations available strongly affects the performance
of a machine learning model: if this number is very small, as often happens when dealing
with asphalt mixtures, it is not always possible to develop a neural model able to represent
the physical complexity of the problem. However, there is the possibility to increase the
diversity of a training set and improve the performance of a machine learning model by
augmenting the data already available. This practice offers the opportunity to generate
training sample variations without changing the semantics of the original data [60] when
the collection of additional data is difficult due to time or cost limitations. The main
challenge of data augmentation is to avoid generating any data that distorts the meaning
of the original ones. Unlike computer vision applications in which it is possible to rotate,
reverse, or flip the image data to augment the training set, in the case of input-output fitting
problems there are no generalized data augmentation strategies, and it is easier to alter the
original data without being able to identify the distortion.

Nevertheless, the recent study by Oh et al. has shown that cubic interpolation
can be a numerical data augmentation method characterized by robustness against
variations of data trend information and ease of use [61]. For these reasons and given
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the difficulties in preparing a very large amount of Marshall specimens with different
bitumen and filler contents (both for cost and testing time), the training sets from the
leave-one-out cross-validation procedure were augmented in the current study setup
by means of the modified Akima cubic Hermite interpolation, also called the “makima”
interpolation, which represents a MATLAB® modification of Akima’s formula (1974) to
avoid excessive local undulations (e.g., the makima interpolating surface is characterized
by fewer undulations compared to cubic splines). The makima algorithm for a 2-D
grid interpolation produces a piecewise function of cubic polynomials with continuous
first-order derivatives using the values of the experimental grid points that are nearer
(in both directions) to each query point [58,62]. In particular, the 2-D query points that
identify the interpolated data added to each LOOCV training set are shown in Figure 5
(red cross marker) along with the experimental grid points (black plus sign marker). It is
worth pointing out that the choice of the interpolation method and the query points is
subjective, and these features could be considered a kind of hyperparameter. However,
bearing in mind that the response of asphalt mixtures is typically non-linear and, at
the same time, that variations in the response can be described by smooth curves, the
makima interpolation represents a good choice because it allows overshoot of the most
general cubic spline to be avoided and the physical non-linearity of the problem with
respect to the linear interpolation to be considered. Instead, the selected configuration of
the query points (Figure 5) was identified in trying to match the amount of information
added to the size of the experimental dataset.
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4. Results and Discussion

Figure 6 displays the volumetric properties of the asphalt mixtures containing SF and
OPC. As expected, increasing the filler percentage resulted in lower air voids for both SF
and OPC mixtures at each bitumen content. The use of SF as a replacement for OPC slightly
decreased air voids in the asphalt mixtures. This could be attributed to the finer particle
size of SF compared to OPC (Table 4), making it more effective in reducing air voids for
each combination of filler and bitumen content. Air voids in both OPC and SF mixtures
remained within the acceptable range of 3–5%, as per the Indian standard.

The VMA of a compacted asphalt mixture is determined by calculating the volume of
the intergranular voids between aggregate particles as well as the air voids and the volume
of bitumen that is not absorbed by the aggregates. Normally, an inverse bell-shaped curve
should be observed for VMA, but the results obtained in this study (Figure 6) only show
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an increasing trend. This could be due to the fact that the decreasing trend is typically
associated with lower bitumen content values than those examined in this study. A similar
trend was observed in a study by Tenza-Abril et al. at a binder percentage greater than
4.5% [63].
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According to Figure 6, the VMA values for OPC mixtures were slightly higher than
those for SF mixtures, with a difference ranging from 0.18% to 1.20%. The VFB, which
represents the percentage of VMA filled with bitumen, was slightly higher in the SF
mixtures than in the OPC mixtures due to the previously determined air voids and VMA
values (Figure 6). However, the differences were small, ranging from 0.18% to 1.19%. All
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the asphalt mixtures investigated in this study had VFB values within the 65–85% range
prescribed by Indian regulations [34].

Experimental results for MS, MQ, and MMSR are shown in Figure 7, and all three
Marshall parameters exhibited a bell-shaped curve for all mixtures studied, consistent with
relevant literature for both SF and OPC mixes [64]. Increasing filler content resulted in
higher values for all three Marshall parameters regardless of the bitumen content, in line
with previous studies [59,65,66].
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The highest MS values for both SF and OPC mixes were achieved at 5% bitumen and
8% filler, with the SF mix showing a 2.90% higher Marshall stability than the corresponding
OPC mix. This suggests that SF can be a viable replacement for OPC in asphalt mixes, which
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can help reduce the disposal problem of SF waste. AMs with 4% filler and 5% bitumen
content meet the MoRTH requirement for conventional bitumen mixes (MS > 10 kN) [34],
while filler content raised to 6% or 8% satisfies the acceptance requisite for modified
bitumen mixes (MS > 13 kN), highlighting the significant improvement in mechanical
response provided by the filler.

Table S1 (Supplementary Materials) indicates that the Marshall flow of all the asphalt
mixes examined falls within the MoRTH-specified range of 2 mm to 4 mm, with the lowest
flow values being observed at 6% and 8% of SF and OPC. The combination of higher stability
and lower flow serves as an empirical indicator of the resistance of asphalt mixtures against
permanent deformations at high temperatures, such as the rutting phenomenon. Figure 7
reveals that the Marshall quotient (MQ) values of SF mixes are higher than those of OPC
mixtures, ranging from 2.73% to 8.55%, depending on the filler content. Nevertheless, for
all the mixtures investigated, MQ results fall within the acceptance range (2–6 kN/mm)
specified by the Indian regulation [34]. Therefore, the addition of silica fume industrial
wastes is unlikely to produce a highly plastic mechanical response.

Figure 7 shows the mean Marshall stability ratio results, which are similar for both
groups of mixtures (SF and OPC) but SF mixtures exhibit slightly higher long-term aging
resistance. This improvement ranges from 0.82% to 1.27% and depends on the bitumen
and filler contents.

ITS values of SF and OPC mixes are shown in Figure 8. A reasonable bell-shaped
curve was obtained for both types of mixes [63], with peak values at 5% of bitumen and
a decreasing trend for higher bituminous binder percentages. A significant increment in
the indirect tensile strength (up to 34.85%) can be observed using 6% and especially 8% of
filler instead of 4% depending on the bitumen content. Comparing OPC and SF mixes for
the same percentage of bitumen and filler, slightly higher values can be observed using SF
filler with differences within the range 0.06% to 1.64%. Both SF and OPC mixes at 8% filler
content have overcome the value of 1 MPa of ITS; therefore, a much higher value than the
minimum acceptance requisite, equal to 0.6 MPa, is suggested in the literature [34].
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Resistance to water damage is a fundamental property for asphalt mixes in order to
ensure an adequate pavement service life. All the mixes investigated have presented a water
sensitivity value as expressed by the loss of indirect tensile strength after water immersion
equal to 20%, lower than the acceptance requisite prescribed by Indian regulations (Figure 8).
Overall, the experimental results outline a better water resistance of the asphalt mixes at
6% and 8% filler contents compared to 4%. Asphalt mixes with SF have presented a slightly
better water resistance according to the active and passive adhesion results; however,
the differences in OPC asphalts are within the range 0.18% to 1.17% depending on the
bitumen percentage.

The best-performing mixture prepared with 5% bitumen and 8% SF was characterized
by Vv, VMA, MS, MMSR, MQ, ITS, and WS equal to 3.64%, 15.49%, 13.86 kN, 63.17%,
5.25 kN/mm, 1091.47 kPa, and 10.05%, respectively.

4.1. Machine Learning Results Discussion

As far as data modeling is concerned, the implementation of the LOOCV resampling
method into the SNNs training and testing processes resulted in a smooth and accurate re-
gression of the few available observations. In particular, the grid search allowed the optimal
model structure to be identified (Figure 9): the SNN, characterized by N = 21 neurons in its
hidden layer and FUN = TanH activation function, showed a mean squared error MSECV
equal to 0.0032 and a correlation coefficient RCV of 0.9988. This network has a total number
of parameters δ equal to 238, of which 96.4% (=ENP) contribute to effectively reduce the
loss function. Such results led to the highest LCV value of 0.9609. In the following, this
model is referred to as TanH-SNN. The TanH activation unit, which gives the non-linearity
required by the problem to the proposed model, has shown greater effectiveness compared
to the more recently introduced ELU function (widely used in the computer vision field)
for the greater number of parameters (i.e., ENP equal to 0.9641 for TanH, 0.9319 for ELU)
that actually contribute to defining the predictive performance of the SNN model, although
the higher number of neurons that comprise the TanH-SNN hidden layer increases the
calculation time compared to the ELU-SNN (i.e., N is 21 for TanH, 16 for LogS, as shown in
Figure 9). No relevant differences were found between the best-performing models with
TanH and LogS activation function (Figure 9). All grid search results (for each number of
neurons and activation function considered) are provided in the Supplementary Materials
(Table S2).

To verify that the TanH-SNN had returned a smooth regression of the data (without
excessive oscillations, not physically acceptable), the seven target variables were predicted,
separately for the two filler materials, in increments of 0.05% bitumen content from 4.5 to
6.0% and of 0.10% filler content from 4.0 to 8.0%. In this way, the regression surface of the
TanH-SNN model for each target variable was plotted in a space whose axes represent
the bitumen content (x-axis), the percentage of filler by volume of the mix (y-axis), and
the desired target variable (z-axis). In addition, a contour map was included in the plane
defined by the bitumen and filler contents to outline the course of the regression surface.
In Figure 10, these surfaces are shown for the Marshall stability parameter before (MS)
and after aging (MSA). Regression surfaces of the remaining variables are included in the
Supplementary Materials (Figures S1 and S2). The azimuth and elevation angles of the
line of sight were changed between the surface graphs of the different target variables
for a better understanding of the trends. The blue spheres in Figure 10 represent the
experimentally observed data. The prediction surfaces in Figure 10 show an almost perfect
adaptation of the model to the experimental data and demonstrate that TanH-SNN has
correctly identified the mechanical (and volumetric) response of the mixes: in fact, all the
findings reported in Section 4.1 can be verified anew by analyzing these surfaces. As a
result, it can be concluded that the modeling procedure followed had a positive outcome
on the fitting of the experimental data presented.
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surface. In Figure 10, these surfaces are shown for the Marshall stability parameter before 
(MS) and after aging (MSA). Regression surfaces of the remaining variables are included 
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the line of sight were changed between the surface graphs of the different target variables 
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perimentally observed data. The prediction surfaces in Figure 10 show an almost perfect 
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findings reported in Section 4.1 can be verified anew by analyzing these surfaces. As a 
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The neural model developed can enhance the asphalt mixture optimization by means
of the numerical prediction of the mix response for different compositions without the
necessity to perform any other laboratory tests.

Finally, to demonstrate that the chosen approach of data augmentation has allowed
the numerical modeling to preserve the meaning of the experimental data, Figure 11 shows
the contour maps of the percentage variation (PV) of the seven target variables between the
asphalt mixes with SF and OPC, for the TanH-SNN model, and the makima interpolation
of experimental results. By way of example:

PVMS(%) =
MSSF −MSOPC

MSOPC
·100 (8)Appl. Sci. 2023, 13, 6664 18 of 23 
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interpolation of experimental results. Contour maps of the percent variation of Marshall stability
after aging (d), Marshall quotient (e), indirect tensile strength (f), and water sensitivity (g) between
SF and OPC mixes for the TanH-SNN model and the makima interpolation of experimental results.

In particular, the two plots are quite similar from a qualitative and quantitative
point of view. The TanH-SNN not only succeeds in reproducing the same percentage
variation in the experimental grid points (black cross markers in Figure 11) but allows
the empirical trend of the PV variable in the domain of interest to be properly rep-
resented. Moreover, the results of these maps further confirm that silica fume leads
to slightly better mechanical performance when used as filler compared to ordinary
Portland cement.

5. Conclusions

This paper presents an integrated experimental and machine learning approach re-
garding the effective reuse of industrial waste silica fume as a sustainable mineral filler
in asphalt mixtures for base courses of road pavements. Comparative laboratory analysis
by varying the SF, OPC, and bitumen contents was carried out. The following conclu-
sions can be drawn based on volumetric, durability, and strength tests along with the
numerical analysis:

• Asphalt mixtures made with silica fume fulfil all the acceptance requisites pre-
scribed by Indian regulations in terms of volumetric properties, Marshall stability,
Marshall quotient, indirect tensile strength, and water sensitivity. In particular,
in order to satisfy all acceptance requirements, it is recommended to prepare
mixtures with an SF content equal to or higher than 6% and a bitumen content
equal to or higher than 5%.

• The analysis carried out to investigate the aging effects demonstrated a good mechani-
cal resistance of the SF asphalt mixes, with MMSR values up to approximately 70%
achieved at 5.0% bitumen and 4.0% SF. The use of SF instead of OPC improved the
mechanical behavior in terms of MMSR from 0.82 to 1.27% depending on bitumen and
filler contents.

• The comparison between mixes with SF and OPC outlines an overall physical–
mechanical equivalence, demonstrating the technical feasibility to substitute cement
with silica fume without any substantial worsening from a mechanical point of view.
Differences in terms of VMA and VFB ranged from 0.18% to approximately 1.20%.
In terms of the highest MS, the SF mixture achieved a 2.90% higher value than OPC
mixtures, with a slightly higher long-term aging resistance. With respect to ITS, SF
mixtures achieved higher values than OPC mixtures, with differences ranging from
0.06 to 1.64%. Finally, differences in terms of resistance to water damage ranged
between 0.18 and 1.17% depending on bitumen percentage.

• With respect to the recommended bitumen content (5%), the mix with 6% SF achieves
an MS of 13.61 kN which is close to the MS of 13.63 kN obtained for the mix pre-
pared with 8% OPC. Even if SF is characterized by a higher price (average price:
145 $/ton [67,68]) than OPC (average price 105 $/ton [69]), the cost of the mixtures
prepared with SF is lower (roughly $19 of SF for cubic meter of mix) than that of
OPC mixtures (roughly $24 of OPC for cubic meter of mix). In fact, the cementitious
filler-based mix requires a higher amount of cement which, moreover, is characterized
by a higher specific gravity.

• Artificial neural networks have allowed accurate modeling of the experimental data
related to the main volumetric and mechanical parameters considered in the study as
a function of bitumen, SF, and OPC contents.

• For the future development of the modeling procedure, the adoption of an optimiza-
tion technique for the selection of the ANN structure to reduce computational time is
recommended, such as Bayesian statistics.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13116664/s1, Table S1: Summary of experimental results;
Table S2: Results of the grid search approach; Figure S1: Model prediction surface over the feature
variability ranges for ITS, WS, and MQ parameters; Figure S2: Model prediction surface over the
feature variability ranges for VMA and Vv parameters.
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