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B S T R A C T

kiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer
ision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison to other sports, primarily
ue to the limited availability of dedicated research studies and datasets. The present paper takes a significant stride towards bridging these gaps. It conducts a
omprehensive examination of skier appearance tracking in videos capturing their entire performance—an essential step for more advanced performance analyses.
o implement this investigation, we introduce SkiTB, the largest and most annotated dataset tailored for computer vision applications in skiing. We subject a
ange of visual object tracking algorithms to rigorous testing, including both well-established methodologies and a novel skier-specific baseline algorithm. The
esults yield valuable insights into the suitability of various tracking techniques for vision-based skiing analysis and into the generalization of state-of-the-art
lgorithms to complex target behaviors and conditions set by winter outdoor environments. To foster further development, we make SkiTB, the associated code,
nd the obtained results accessible through https://machinelearning.uniud.it/datasets/skitb.
. Introduction

Skiing, a recreational winter human activity of global renown
Vanat, 2022), has a rich historical legacy of competitive events dating
s far back as the 1840s. Since its inception in 1924, this sport discipline
as occupied a central position in the spectacularity of the Winter
lympic Games, as documented by the (International Olympic Commit-

ee, 2023). In the contemporary era, skiing encompasses a diverse array
f disciplines, including alpine skiing, ski jumping, and freestyle skiing,
s recognized by the International Ski and Snowboard Federation (FIS).
hese various skiing disciplines collectively hold a prominent status
ithin the winter sports industry, garnering substantial attention with
ver 1.7 billion media views during a typical winter season, according
o Nielsen reports (The Nielsen Company, 2022a,c,b).

Leveraging data-driven analytics in the context of skiing perfor-
ance has the potential to: enhance athletes’ technical skills; promote

heir physical well-being; enrich the educational content and elevate
he entertainment factor of broadcasting professional competitions.
hese advancements contribute to creating more remarkable, secure,
nd captivating sport competitions. In such applications, computer
ision offers promising opportunities for capturing and analyzing skiing
erformances without relying on wearable sensors, as it has been
emonstrated for other sport disciplines (Thomas et al., 2017). In-
eed, the effort of applying and researching computer vision methods
n skiing has been limited compared to other sports such as soc-
er (Vandeghen et al., 2022; Honda et al., 2022; Cioppa et al., 2022;
heiner et al., 2022; Gadde and Jawahar, 2022; Theiner and Ewerth,
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2023), basketball (Bettadapura et al., 2016; Bertasius et al., 2017; Li
and Chuah, 2018; Quiroga et al., 2020; Chappa et al., 2023), or ice-
hockey (Pidaparthy and Elder, 2019; Koshkina et al., 2021; Vats et al.,
2021; Pidaparthy et al., 2021; Vats et al., 2022).

Previous research in the skiing domain has primarily focused on
reconstructing skiers’ poses in 2D or 3D (Ludwig et al., 2022; Bachmann
et al., 2019) and understanding the style of ski jumps (Štepec and
Skočaj, 2022; Wang et al., 2019). A crucial step in building these vision-
based analytical tools involves localizing the skier appearance within
the video frames. This is an essential computer perception task whose
output influences the accuracy of the subsequent higher-level computa-
tional modules. The methods usually rely on off-the-shelf or fine-tuned
object detection models (Ren et al., 2015; Redmon et al., 2016; Liu
et al., 2016) without utilizing the temporal information available in
the athlete’s performance evolution captured in video. Additionally, the
limited and sparsely labeled datasets used in previous studies represent
a significant obstacle to the widespread development and applicability
of computer vision algorithms in skiing. Skiing videos constitute a
particular setting of the task of high-level human activity understanding
which presents several unique challenges characterized by exercises
performed with unique body-equipment relations, at high speed, and
on a continuously changing and widely extended playing field subject
to extreme outdoor winter weather conditions (Cheng et al., 2023).
All of these circumstances raise important questions regarding their
influence on image and video-based systems. Addressing them in a
systematic and extensive manner could have implications not only
ttps://doi.org/10.1016/j.cviu.2024.103978
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for the communities orbiting around skiing but even for the computer
vision community as a whole as evidenced by recent activities.1

For these motivations, this manuscript presents an extensive study
n the fundamental task of tracking an athlete (i.e., a skier) appearance
n monocular broadcasting videos of professional skiing competitions.
ue to the unavailability of suitability benchmarks, a new visual track-

ng dataset named SkiTB (‘‘Skiers from the Top to the Bottom’’) is
ntroduced to implement the investigation. SkiTB consists of 300 video
ecordings across the most challenging skiing disciplines. The videos
over the athletes’ complete performance, from the top to the bottom
f the course,2 as exemplified by Fig. 1. Considering the large spatial
xtent of courses on mountain slopes, multiple cameras are placed
n sequential order along the slope to capture the complete skiing
erformance in such videos. Each video is densely labeled with the
ounding-boxes of a single target skier and with attributes identifying
he camera ID, the visual changes that the skier undergoes (e.g., dif-
erent color appearance due to changing illumination conditions, small
cale because of camera zoom settings, partial visibility due to occlud-
ng items, or perturbed shape due to motion blur), the type of skiing
iscipline, the athlete ID, the location of the competition, the weather
onditions, as well as the parameters of the skiing performance. SkiTB
ffers multiple training and test splits, making it suitable for developing
earning-based computer vision algorithms. We use this benchmark
o extensively evaluate different tracking algorithms, including estab-
ished methodologies and a newly introduced skier-optimized baseline
lgorithm. Standard protocols and metrics are adapted and utilized
o evaluate the specific challenges of video tracking in skiing. The
mpact of these tracking algorithms on higher-level skiing performance
nderstanding tasks is also investigated. The results provide valuable
nsights into the applicability of different visual tracking methods for
kiing analysis, and the robustness and generalization of state-of-the-art
lgorithms to challenging factors represented by the domain.

In short, the contributions of this paper are:

• A systematic and in-depth investigation of the problem of skier
tracking in videos compiled from clips acquired by multiple cam-
eras (i.e., videos with camera shot-cuts), which has not been
thoroughly studied in previous works.

• The description and release of SkiTB a novel benchmark dataset
curated specifically for evaluating and developing computer
vision-based systems in the skiing domain. The dataset is designed
to be diverse, representative, and densely labeled.

• STARK𝚂𝙺𝙸, a baseline algorithm optimized for skier tracking in
videos characterized by camera switching operations.

. Related work

.1. Visual object tracking

In the recent past, there has been increasing interest in developing
recise and robust single object tracking (SOT) algorithms for various
omains (Chen et al., 2022). Early trackers utilized mean shift algo-
ithms (Comaniciu et al., 2000), key-point (Maresca and Petrosino,
013), part-based techniques (Čehovin et al., 2013), or SVM learn-
ng (Hare et al., 2016). Correlation filters gained popularity due to
heir fast processing (Bolme et al., 2010; Henriques et al., 2015).
ore recently, deep learning-based solutions, including regression net-
orks (Held et al., 2016), online tracking-by-detection methods (Nam

1 1st Workshop on Computer Vision for Winter Sports at WACV 2022
ttps://machinelearning.uniud.it/events/CV4WS-2022
nd Workshop on Computer Vision for Winter Sports at WACV 2023
ttps://machinelearning.uniud.it/events/CV4WS-2023

2 In the scope of this paper, a skiing course is considered as a path or
rack down a mountain slope that an athlete should follow to complete his/her
erformance. It should not be confused with a course taken to learn how to
ki.
2

Fig. 1. Tracking a skier from the top to the bottom of the course. This paper
focuses on applying visual object tracking algorithms to localize a skier per-frame
(e.g. with bounding-boxes □) in a video capturing his/her complete performance. Due
to the large spatial extent of skiing courses, multiple cameras (typically pan–tilt-zoom)
are placed sequentially along the slope to capture the whole performance, and multi-
camera tracking is required for high-level performance analysis. This figure shows such
a camera setup for the skiing disciplines of alpine skiing (a), ski jumping (b), and
freestyle skiing (c).

and Han, 2016), reinforcement learning-based methods (Yun et al.,
2017; Choi et al., 2018; Dunnhofer et al., 2019, 2020), deep discrim-
inative correlation filters (Danelljan et al., 2019; Bhat et al., 2019),
siamese network-based trackers (Bertinetto et al., 2016; Li et al., 2019;

https://machinelearning.uniud.it/events/CV4WS-2022
https://machinelearning.uniud.it/events/CV4WS-2023
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Table 1
Comparison of SkiTB with publicly available skiing-related datasets. This table shows a comparison between some key statistics of our SkiTB and the other datasets for
computer vision tasks available in the skiing domain: Skimovie (Steinkellner and Schöffmann, 2021), Ski2DPose (Bachmann et al., 2019), SkiPosePTZ (Bachmann et al., 2019),
YouTube Skijump (Ludwig et al., 2023). As can be noticed, ours results in the largest, most diverse, and most annotated dataset. (n/a stands for ‘‘not annotated’’.)

Dataset Skimovie Ski2DPose SkiPosePTZ YouTube Skijump SkiTB

Skiing application Detection 2D Pose Estimation 3D Pose Estimation 2D Pose Estimation Tracking
Per-frame annotations ✓ (12.5 FPS) n/a n/a n/a ✓ (30 FPS)
Complete performance ✓ n/a n/a n/a ✓

Performance parameters n/a n/a n/a n/a ✓

Weather annotations n/a n/a n/a n/a ✓

# multi-camera videos n/a n/a n/a n/a 300
# single-camera videos 4 n/a 36 n/a 2019
# annotated frames 2718 1982 20K 2867 352 978
# skiing disciplines 1 (AL) 1 (AL) 1 (AL) 1 (JP) 3 (AL, JP, FS)
# sub-disciplines 1 4 1 2 11
# athletes n/a 32 6 118 196
# locations 6 5 1 7 161
Lu et al., 2023), and transformers (Yan et al., 2021; Cui et al., 2022;
Ye et al., 2022; Mayer et al., 2022; Lin et al., 2022), led to higher
tracking accuracy. Long-term trackers and methods combining multiple
trackers have been also explored (Yan et al., 2019; Huang et al., 2020;
Dunnhofer and Micheloni, 2022).

Such a progress in SOT algorithms is attributed to well-curated
evaluation datasets featuring diverse object types (Wu et al., 2015;
Kristan et al., 2020, 2021, 2023) and large-scale datasets for visual
object tracking in generic domains (Müller et al., 2018; Huang et al.,
2019; Fan et al., 2019). Application-centric benchmarks exist for spe-
cific domains such as drones (Mueller et al., 2016), high frame-rate
videos (Galoogahi et al., 2017), transparent objects (Fan et al., 2021),
and egocentric videos (Dunnhofer et al., 2023a). These benchmarks
contribute to the development of accurate and reliable tracking systems
in specific application scenarios.

The aforementioned datasets (Wu et al., 2015; Kristan et al., 2023;
Huang et al., 2019; Müller et al., 2018; Fan et al., 2019) lack a sufficient
representation of skiing, hindering the development of effective track-
ers in this domain. To overcome this limitation, we introduce SkiTB as a
comprehensive and well-curated benchmark for evaluating trackers on
skiing regardless of their methodology. The dataset covers the unique
aspects of the skiing domain, including fast human motion, extreme
weather conditions, and distractor objects. We believe that SkiTB can
also benefit the development of generic tracking methodologies.

2.2. Visual tracking in sport videos

Our investigation builds upon prior research in the realm of athlete
tracking within video footage. Mauthner et al. (2007) introduced an
algorithm based on integral histograms for the tracking of volleyball
players in video sequences obtained from a single camera source. Kris-
tan et al. (2009) leveraged closed-world assumptions with respect to
both visual and dynamical characteristics of players engaged in indoor
sports such as handball and basketball, as captured from a bird’s-eye
view camera perspective. Liu et al. (2013) proposed the utilization
of context-conditioned motion models that implicitly incorporate in-
tricate inter-object correlations to facilitate the tracking of multiple
athletes involved in basketball and field hockey. Morimitsu et al. (2017)
explored the application of structural relations between the athletes’
positions for tracking them in single-camera video footage encompass-
ing table tennis, badminton, and volleyball. Cui et al. (2023) have
made available an extensive and densely-labeled dataset comprising
video recordings of basketball, volleyball, and football. This dataset
has served as a benchmark for evaluating state-of-the-art multiple
object tracking (MOT) algorithms (Dendorfer et al., 2021). A parallel
investigation focusing solely on soccer was conducted by Cioppa et al.
(2022). The latter built open the study performed by Feng et al. (2020)
on single player tracking in the same sport discipline.

In contrast to the aforementioned studies, our investigation uniquely

centers on the sport of skiing. Unlike team sports, skiing represents a

3

discipline wherein athletes strive to optimize their individual perfor-
mance. Consequently, the development of an automated and effective
video analysis system necessitates the inclusion of a visual perception
system featuring a SOT algorithm and not an MOT one. Furthermore, in
contrast to single-camera video stream used in the previous works, our
investigation is centered on multi-camera videos with camera shot-cuts.
This is set by the specific characteristics of the field on which skiing
is performed, which necessitates the generation of a video sequence
captured by several cameras to observe and analyze the complete
performance. In this view, the study most closely related to ours is
the one conducted by Drory et al. (2017), which introduced a visual
tracking algorithm designed for tracking kayak athletes in videos that
contain shot-cuts. Nevertheless, our work is distinctive in its exclusive
focus on skiing, an outdoor discipline characterized by distinct visual
attributes, including rapid motion and substantial variability arising
from intra-discipline differences and exposure to variable weather
conditions (Cheng et al., 2023).

2.3. Applications of computer vision to skiing

Recent advancements in computer vision (He et al., 2016; Ren
et al., 2015; Cao et al., 2017) have enabled vision-based applications
in skiing performance analysis. For example, Zhu and Yan (2022)
proposed object detection and human pose estimation algorithms to
recognize falls of alpine skiers, while Zwölfer et al. (2021) discussed
the combination of pose estimation with kinematics models. Bachmann
et al. (2019) introduced a methodology to reconstruct 3D poses from
images captured by multiple synchronized cameras observing a single
slope section. Ski jumping analysis involved scoring the style of jumps
using 2D human pose trajectories (Štepec and Skočaj, 2022) and de-
tecting key-points on the human body and skis in still images using
improved vision transformer architectures (Ludwig et al., 2022, 2023).
For freestyle skiing and snowboarding, algorithms were developed to
evaluate the quality of jumps in monocular videos (Wang et al., 2019)
and to synchronize videos for comparing the timing and spatial extent
of aerial maneuvers (Matsumura et al., 2021).

The discussed pipelines present object detection (Ren et al., 2015;
Redmon et al., 2016) or off-the-shelf visual tracking (Wang et al.,
2019) for initial skier localization, followed by subsequent modules
for higher-level output computation. The accuracy of skier localiza-
tion greatly affects the performance of the successive modules, but
this aspect has been overlooked by existing systems. Only limited
evaluations on skier localization accuracy have been conducted in
previous works (Steinkellner and Schöffmann, 2021; Qi et al., 2022).
These studies focused on a small number of videos and lacked analysis
of the challenging characteristics of the skiing domain. In contrast,
this paper presents a systematic and comprehensive analysis of skier
tracking on a large scale, involving 300 videos and 353K frames. Multi-
camera-switching videos capturing professional athletes from various
skiing disciplines were used, considering real competition conditions
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with different courses, skiing styles, distracting skiers, and challeng-
ing weather. A comparison between the proposed SkiTB and publicly
available computer vision datasets for skiing applications is presented
in Table 1.

3. Problem formulation

This paper focuses on the per-frame localization of a specific skier
in a video stream capturing his/her complete performance on a skiing
course, from the top of such a skiing course to its bottom. The video
stream is a sequence  =

{

𝐹𝑡 ∈ 
}𝑇
𝑡=0 of frames 𝐹𝑡, where  represents

the space of RGB images and 𝑇 is the total number of frames. The
bounding-box 𝑏𝑡 = [𝑥𝑡, 𝑦𝑡, 𝑤𝑡, ℎ𝑡] ⊆ R4 defines the position and size of
the skier’s appearance in each frame, and the objective is to develop a
visual tracking algorithm – also referred to as tracker – to predict the
bounding-box 𝑏𝑡 with a confidence value 0 ≤ 𝑐𝑡 ≤ 1, for 0 < 𝑡 ≤ 𝑇 ,
in an online fashion. The initial bounding box 𝑏0 can be generated
by an object detection algorithm (Redmon et al., 2016; Ren et al.,
2015) or manually annotated by a human operator. Skiing competitions
involve courses spanning several hundred meters if not kilometers,
requiring multiple cameras to be placed sequentially along the slope
to capture the skier’s entire performance. Thus,  consists of frames
grabbed by several different cameras and concatenated into a single
stream showing a complete performance. Considering that skiing is an
individual sport, our problem of interest constitutes an application case
of single long-term object tracking (Lukeźič et al., 2020; Kristan et al.,
2023), specifically of the global instance variation (Hu et al., 2023)
which aims to continuously localize a target object over an extended
period, even across camera shot-cuts. Fig. 1 presents a visualization of
such a setting for the case of alpine skiing. We assume that manual
camera control and camera switching occur, as it is done for real-time
broadcasting transmission. Our paper focuses on the problem of per-
frame skier appearance localization in a single video. It should not be
confounded with the problem of multi-camera target tracking (Ristani
et al., 2016; Rhodin et al., 2018) where targets are located by exploiting
multiple videos acquired by several synchronized and mutually cali-
brated cameras. We believe that the findings resulting by the study
of our problem of interest can contribute to the development of such
technologies that could be capable of tracking a skier in the 3D space.
Indeed, to exploit multi-view geometry algorithms across views (Hart-
ley and Zisserman, 2003) and to eventually control automatically such
cameras, the athlete’s appearance must be first localized in the frames
of the single video stream captured by each cameras.

4. The SkiTB dataset

The SkiTB dataset provides a comprehensive spatio-temporal video
representation and annotation of professional skiing performance under
the settings described in Section 3. SkiTB comes with dense anno-
tations for tracking purposes, but it is designed to serve as a well-
curated benchmark for subsequent higher-level skiing performance
understanding tasks. In particular, we adhere to the following design
principles:

• Scale: we ensured that SkiTB would contain a significant number
of videos and frames to facilitate the development of modern
computer vision solutions based on deep learning.

• Diversity: we included a wide range of situations, such as different
skiing disciplines, athletes, skiing styles, courses and locations, to
enable the testing and generalization of methods under various
application conditions.

• Representativeness: we designed SkiTB to represent real com-
petition scenarios of professional athletes, which enables the
development of algorithms capable of working in real-world sit-

uations.

4

Table 2
Key statistics of SkiTB. The following table offers overall and per-skiing discipline (AL:
alpine skiing, JP: ski jumping, FS: freestyle skiing) information about the multi-camera
(MC) and single-camera (SC) videos and the associated data present in the proposed
dataset.

Skiing discipline AL JP FS All

# MC videos 100 100 100 300
# SC videos 1100 346 573 2019
# frames 215 517 38 201 99 260 352 978
# cameras (min, avg, max) (6, 11, 26) (2, 3, 5) (1, 6, 15) (1, 7, 26)
avg MC video seconds 71 13 33 39
avg SC video seconds 6.5 3.6 5.7 5.8
# sub-disciplines 4 2 5 11
# athletes 56 54 86 196
# athlete genders (M, W) (34, 22) (35, 19) (49, 37) (118, 78)
# athlete nationalities 15 10 18 25
# courses 68 34 59 161
# courses countries 15 12 17 24

Fig. 2. Frame and bounding-box samples from SkiTB. We showcase examples of
video frames from our dataset for the different disciplines: alpine skiing (AL), ski
jumping (JP), and freestyle skiing (FS). Each frame is accompanied by a manually
annotated bounding-box. A blue rectangle (□) localizes the skier’s appearance as
visible, while a black rectangle (□) as occluded. The camera that captured the frame
and the elapsed time in seconds from the beginning of the performance are also
reported. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The challenge represented by SkiTB arises from the complex and
dynamic nature of skiing and its environment, where an athlete’s
visual appearance and motion are influenced by highly variable factors
such as: complex body movements due to high speed, course settings,
aerial execution, impact absorption; particular image characteristics
due to meteorological conditions (e.g., snowing, raining, and intense
shadowing) and camera operations (e.g., camera switching, fast camera
movements, long-range capturing). From a more general point of view,
SkiTB can serve as a valuable resource for research in multi-camera
target tracking under extremely dynamic outdoor environments.

4.1. Video collection

SkiTB contains 300 videos carefully selected from broadcasting
recordings showcasing complete skiing performances available on the
Internet. Our selection process aimed to maximize diversity in terms
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of athletes, locations, courses, and weather conditions, while ensuring
a balanced distribution across three major skiing disciplines defined
by the FIS rules (International Ski and Snowboard Federation, 2023):
alpine skiing (AL), ski jumping (JP), and freestyle skiing (FS). These
disciplines were chosen based on their popularity and the challenging
representations they provide in videos. Existing datasets (Steinkellner
and Schöffmann, 2021; Bachmann et al., 2019; Ludwig et al., 2023) did
not encompass all the desired characteristics, necessitating the creation
of a new video collection. The videos have a framerate of 25 or 30 FPS
and resolutions ranging from 360p to 720p. More detailed statistics can
be found in Table 2.

4.2. Frame-level annotations

Each of the 300 videos is composed as a single stream of frames
acquired by multiple different cameras. We refer to each of these
videos as a multi-camera (MC) video. Each of the frames belonging
to the 300 MC videos has been manually labeled with the bounding-
box enclosing the visual appearance of the athlete and its equipment
(skis, and poles if present), as shown in Fig. 2. The sequence of boxes
for each video starts with a frame capturing at least 50% of the
skier’s appearance shortly before the descent begins, and it ends with
a frame capturing the skier after completing their performance. Each
box is labeled to indicate whether the skier is visible or occluded (i.e.,
when approximately more than 50% of the skier’s visual appearance is
hidden). The dataset includes instances of complete occlusions, such
as when the skier passes behind snow ramps in FS. In such cases,
boxes are drawn to localize the skier in likely positions based on the
observed motion. On average, complete occlusions last for 15 frames.
The motivation behind the employment of bounding-boxes is grounded
on the fact that such a representation is sufficiently informative for the
computational processes performed by higher-level skiing performance
understanding tasks (Bachmann et al., 2019; Ludwig et al., 2022, 2023;
Štepec and Skočaj, 2022). The aforementioned pipelines simply require
a rectangle highlighting the area covered by the skier’s appearance.
Compared to the more complex segmentation masks (Kristan et al.,
2020, 2021), the four-value representation of bounding-boxes demands
less computational resources, thus enables the development of more
efficient methods. Additionally, the choice of including the appearance
of the skiing equipment within the labeled bounding-box is guided
by the common working mechanism of the aforementioned solutions,
which necessitate a bounding-box encompassing both the athlete’s body
and equipment.

Each frame is also labeled with the index of the camera that cap-
tured it. The camera order for each video was manually determined
by assessing the order of video shot-cuts. This enumeration reflects the
sequence in which the cameras were positioned along the slope.

Some video frames include virtual graphics showing the perfor-
mance results of the athlete. Based on experiments, we have seen
that the algorithms’ behavior is not significantly influenced by such a
presence, thus we treated the graphics as objects occluding the captured
scenes.

4.3. Video-level and clip-level annotations

To enable in-depth analysis, we have associated labels with both the
MC videos and the single-camera (SC) clips, which are sub-sequences
of frames captured by the same camera. Each MC video is labeled with
the following information: the discipline (AL, JP, FS); the specific ski-
ing sub-discipline; the visible weather condition; athlete ID (including
name and surname) and nationality; the date, location, and country of
the competition. It is worth noting that each MC video is also annotated
with the athlete’s performance results in computable form, even though
these labels are not specifically utilized in this work. Fig. 3 shows

that the representation of athlete nationalities and course locations
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Fig. 3. World-wide data representation. The diversity of the videos present in SkiTB
is demonstrated by the nationalities of the athletes and the skiing courses represented
in our dataset. SkiTB features almost all the countries in which winter sports are very
popular activities.

associated to the MC videos covers all the major countries in which
winter sports are majorly popular.

Each SC clip is associated with labels (CM, SC, BC, ARC, IV, POC,
MB, FM, FOC, LR) that express the visual variability of the target
skier, reinterpreted to suit the application domain. Table 3 presents the
description and the application-wise interpretation of such attributes.
Fig. 4 shows the distribution of the SC clips according to the labels. All
of these labels can be utilized for video clustering, enabling experimen-
tal results to be conditioned on different characteristics of the domain.
This evaluation approach is well-established in the visual object track-
ing community (Wu et al., 2015; Galoogahi et al., 2017; Dunnhofer
et al., 2023a; Mueller et al., 2016; Fan et al., 2019; Huang et al.,
2019) and was shown to be sufficiently robust to estimate the trackers’
performance in particular scenarios. Among the many attributes present
in the literature, we selected 10 that well represent the variability of the
skiing domain. The labels have been associated with SC clips because
the SC experimentation setting allows a tracker to cover the situations
happening during the skier’s descent in a more complete and consistent
way (Kristan et al., 2020). Indeed, considering a long video as defined
by the MC setting, it could be the case that a full occlusion (FOC)
happens in the section captured by Camera #2 causing the tracker
to fail. Later in the descent in the section captured by Camera #6,
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Table 3
Selected sequence attributes associated to single-camera (SC) clips. This table gives the formal definition of the selected clip attributes according to previous research in
generic visual object tracking (Wu et al., 2015; Fan et al., 2019; Dunnhofer et al., 2023a). On a side, we give an interpretation of each definition with respect to our application
domain.

Attribute Definition Application-specific Interpretation

CM Camera Motion: an abrupt camera motion can be seen in the
video clip.

The camera operator moves the camera fast to keep the skier in
the field of view.

SC Scale Change: the ratio of the bounding-box area of the first
and the current frame is outside the range [0.5, 2].

The size of a skier’s appearance changes considerably during the
video (e.g. by zooming in/out on the target).

BC Background Clutter: the target has a similar appearance w.r.t.
the surrounding background.

The appearance of the athlete’s suit and equipment confounds
with the elements in the background.

ARC Aspect Ratio Change: the ratio of the bounding-box aspect ratio
of the first and the current frame is outside the range [0.5, 2].

The ratio between the height and width of the athlete changes
(e.g. due to complex body poses).

IV Illumination Variation: the area of the target bounding-box is
subject to light variation.

The appearance of the target skier changes due to particular
lightning conditions (e.g. passing through slope areas under
shadow).

POC Partial Occlusion: the target is partially occluded in the video. Part of the skier is hidden by another item (e.g. by a gate in
AL).

MB Motion Blur: the target region is blurred due to target or
camera motion.

The appearance of the skier is blurred due to its fast motion or
the fast motion of the camera.

FM Fast Motion: the target bounding-box has a motion change
larger than its size.

The skier moves fast during the descent on the course.

FOC Full Occlusion: the target is fully occluded in the video. The skier is completely occluded by another item in the field of
view (e.g. by a kicker in FS).

LR Low Resolution: the area of the target bounding-box is less than
1000 pixels in at least one frame.

The skier appears small due to a low level of camera zoom.
Fig. 4. Distribution of the clip attributes. The plot shows the number of single-
camera (SC) clips associated with each of the attributes introduced to characterize the
visual variability of the target, as in Wu et al. (2015), Fan et al. (2019), Mueller et al.
(2016), Dunnhofer et al. (2023a). The application domain represented by SkiTB’s videos
presents a large number of scale changes (SC), followed by a substantial number of
partial occlusions (POC), changes in the aspect ratio (ARC), and fast motions (FM).

a fast motion (FM) situation could be present. In such a case, the
performance change caused by FM would be hidden by the impact of
FOC. In this view, the SC tracking setting shares similarities with the
Multi-Start Evaluation protocol defined by Kristan et al. (2020), which
runs a tracker at multiple points of initialization along a video to obtain
more robust tracking scores. In SkiTB, the labels SC, ARC, FM, and
LR, have been assigned by an automatic procedure as described by Wu
et al. (2015), Fan et al. (2019). The presence of situations identified
by the other attributes has been visually assessed and annotated by our
research team.

The weather labels have been associated with each MC video be-
cause the weather condition generally remains the same across all the
location in which the skiing competition takes place. The labeling of
the conditions was performed by our team by analyzing the condition
visible in the video. Such a label was also checked to match the one
reported on the official result list available on the FIS database (Inter-
national Ski and Snowboard Federation, 2023). The labeling generated
the following weather labels: ‘‘Clouds’’, ‘‘Fog’’, ‘‘LowClouds’’, ‘‘Mostly-
Cloudy’’, ‘‘Overcast’’, ‘‘PartlyCloud’’, ‘‘Raining’’, ‘‘Snowing’’, ‘‘Sunny’’,
‘‘Clear’’. In order to have a larger number of samples for the experi-
ments, such labels have been clustered into three categories: ‘‘Sunny’’,
6

Fig. 5. Winter weather conditions. Skiing takes place in winter environments,
subjecting athletes to extreme weather conditions that introduce unique image char-
acteristics when captured on camera. For instance, ‘‘Sunny’’ conditions (shown in
the first column of images) can create shadows, resulting in significant variations in
target illumination. ‘‘Cloudy’’ weather (second column of images) leads to ‘‘flat light’’
conditions, reducing image contrast, while ‘‘Harsh’’ conditions such as snowfall or rain
(third column) further diminishes visibility. The SkiTB includes weather condition labels
for each MC video.

‘‘Cloudy’’, and ‘‘Harsh’’ weather. Fig. 5 gives examples of the image
characteristics such weather condition cause. In total, SkiTB provides
191 videos associated with ‘‘Sunny’’, 66 with ‘‘Cloudy’’, and 43 associ-
ated with ‘‘Harsh’’. After the date-based training-test split, the test set
used to compute the results in Fig. 10 has 80 ‘‘Sunny’’, 26 ‘‘Cloudy’’,
and 14 ‘‘Harsh’’ videos.

4.4. Training-test splits

To enable training and evaluation of machine learning-based track-
ers, the MC videos are divided into training and test sets, following
three different split conditions each with a 60–40 ratio. The first split
follows a conventional deployment approach, where models are trained
on past data and tested on newer data. This split is based on the dates
associated with the videos. The second split focuses on evaluating the
models’ generalization ability to unseen athletes. It involves creating
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Table 4
Statistics of SkiTB’s training, validation, and test splits. The following table reports some statistics of the three splits that have been created to evaluate the capability of
learning-based trackers in generalizing to different application conditions. For generalizing to new performances, the date associated to the videos has been used as splitting
condition; for the generalization to unseen athletes, the athlete IDs; to generalize to unseen courses, the course’s location information.

Generalization condition New performances Unseen athletes Unseen courses

Split Train Val Test Train Val Test Train Val Test

# MC videos 162 18 120 155 21 124 164 18 118
# SC videos 1078 137 804 1024 133 868 1115 118 781
# frames 188 500 24 293 140 185 181 140 20 912 150 926 193 029 20 064 139 885
avg MC video seconds 39 45 39 39 33 41 39 37 40
avg SC video seconds 5.8 5.9 5.8 5.9 5.2 5.8 5.8 5.7 6.0
# sub-disciplines 11 11 11 11 11 11 11 11 11
# athletes 127 17 90 109 13 78 128 15 95
# athlete genders (M, W) (77, 50) (11, 6) (53, 37) (67, 42) (6, 7) (47, 31) (76, 52) (10, 5) (56, 39)
# athlete nationalities 21 11 22 22 9 21 23 9 20
# locations 116 14 61 115 21 92 88 11 62
# location countries 21 8 20 23 10 23 22 9 20
separate training and test sets based on disjoint athlete IDs. The third
split assesses the models’ generalization to new skiing courses. In
this case, dedicated disjoint partitions are formed using the location
data associated with each video. Fig. 6 gives visual explanation of
the composition of three different train-test partitions. The splits have
been generated to maintain a balanced distribution across the skiing
disciplines and sub-disciplines while aiming to keep condition-specific
disjoint partitions and respect as close as possible the 60–40 ratio. The
validation videos have been selected by applying the same separation
strategy as previously described (but with a 90–10 ratio) to the set of
training videos generated in the training-test separation phase Table 4
shows some statistics of the videos present in the three different splits.

4.5. Data quality

The video selection and annotation process was meticulously carried
out by our research team, consisting of an MSc student, a post-doc
researcher, and two professors. All annotators had research experience
in visual object tracking and in watching skiing competitions on TV.
To ensure additional accuracy, we sought application-specific guidance
from two professional alpine skiing coaches and a FIS-licensed ski jump-
ing judge. We utilized the CVAT tool (Sekachev et al., 2020) for draw-
ing and validating the bounding-boxes. The metadata associated with
the videos, including performance parameters and weather conditions,
was obtained from the publicly available FIS database (International
Ski and Snowboard Federation, 2023).

5. Trackers

In this section, we give the details of the visual tracking algorithms
evaluated in this study.

5.1. Generic object trackers

In our evaluation, we considered a range of state-of-the-art methods
designed for tracking arbitrary objects, including long-term trackers
specifically designed for addressing abrupt target changes and occlu-
sions (Lukeźič et al., 2020), as in our application of interest. The
trackers falling in this category include SPLT (Yan et al., 2019), Global-
Track (Huang et al., 2020), LTMU (Dai et al., 2020), KeepTrack (Mayer
et al., 2021), STARK (Yan et al., 2021), and CoCoLoT (Dunnhofer and
Micheloni, 2022; Dunnhofer et al., 2022). In addition, we included
the short-term trackers (Lukeźič et al., 2020) MOSSE (Bolme et al.,
2010), KCF (Henriques et al., 2015), and SiamRPN++ (Li et al., 2019)
for their general popularity, and MixFormer (Cui et al., 2022), OS-
Track (Ye et al., 2022), FEAR (Borsuk et al., 2022), UNICORN (Yan
et al., 2022), SeqTrack (Chen et al., 2023), ARTrack (Wei et al., 2023),
ROMTrack (Cai et al., 2023), and ZoomTrack (Kou et al., 2023) for their
very recent demonstration of high accuracy. Although these methods
7

Fig. 6. Composition of the training and test video splits. For each ski discipline
AL, JP, FS in SkiTB, we split the 100 MC videos into two disjoint sets, one for training
machine learning models and one for testing them. (a) In the date-based split, training
videos have an associated competition date that comes earlier than the date associated
to test videos. (b) The athlete-based split provides training and test videos whose
associated athlete IDs (athlete ID = name + surname) do not overlap. (c) The course-
based split provides training and test videos where the names of the associated course
locations do not overlap. After the initial training-test separation, the validation sets
have been separated from the training videos by exploiting a similar approach.

were not explicitly designed for long-term tracking tasks, some of them
have shown promising performance in similar conditions (Fan et al.,
2019) and could be even suitable for skier localization in SC tracking
tasks. Table 5 reports more details on the computational architecture
of the algorithms selected. All the trackers have been implemented by
exploiting the code originally provided by the authors along with pre-
trained weights. The original hyper-parameter values leading to the
best and most likely generalizable instances of all the trackers have
been set. Those trackers that do not output a confidence score, were
modified to return an always-confident score of 1.0.

5.2. Skier-specific trackers

We also assessed the performance of baseline trackers specifically
designed for skier tracking. This has been done to find promising
research directions for the development of more accurate and robust
tracking algorithms in the domain of interest.

YOLO-SORT. The YOLO-SORT tracker implements a tracking-by-
detection approach inspired by MOT (Bewley et al., 2016; Dendorfer
et al., 2021). At each frame of a video, this baseline first detects
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Table 5
Characteristics of the generic object trackers considered in our evaluation. This table provides details about: the Image Representation employed by the trackers (Pixel -
the tracker uses raw pixel intensity values; HOG - the tracker uses Histogram of Oriented Gradients; CNN architecture - the Convolutional Neural Network backbone used); the
Matching operation performed to find the target in sequence frames (CF - the tracker uses correlation filters; CC - the tracker uses the cross correlation; T-by-D - the tracker uses
a tracking-by-detection approach; Had - the tracker uses hadamard correlation; Tra - the tracker uses a transformer-based correlation). The ✓ symbol in the Model Update column
expresses whether the tracker updates the target model during the tracking procedure. The last four columns report the category of tracking approach according to Lukeźič et al.
(2020) (ST0 column - short-term trackers without any re-detection mechanism; ST1 column - short-term trackers without any re-detection mechanism but that estimate tracking
onfidence; LT0 column - pseudo long-term trackers that do not detect failure and do not perform explicit re-detection; LT1 column - long-term trackers that detect tracking failure
nd perform re-detection). The evaluated long-term trackers are detailed in the first block of rows, the short-term ones in the second block.

Tracker Venue Image representation Matching operation Model Class given by Lukeźič et al. (2020)

Update ST0 ST1 LT0 LT1

GlobalTrack (Huang et al., 2020) AAAI 2020 ResNet-50 Had ✓

LTMU (Dai et al., 2020) CVPR 2020 ResNet-50 CF, CF, T-by-D ✓ ✓

STARK (Yan et al., 2021) ICCV 2021 ResNet-50 Tra ✓ ✓

KeepTrack (Mayer et al., 2021) ICCV 2021 ResNet-50 CF ✓ ✓

CoCoLoT (Dunnhofer and Micheloni, 2022) ICPR 2022 ResNet-50 CF, Tra ✓ ✓

MOSSE (Bolme et al., 2010) CVPR 2010 Pixel CF ✓ ✓

KCF (Henriques et al., 2015) TPAMI 2015 HOG CF ✓ ✓

SiamRPN++ (Li et al., 2019) CVPR 2019 ResNet-50 CC ✓

MixFormer (Cui et al., 2022) CVPR 2022 Custom Transformer Tra ✓ ✓

OSTrack (Ye et al., 2022) ECCV 2022 ViT Tra ✓

FEAR (Borsuk et al., 2022) ECCV 2022 ResNet-50 CC ✓ ✓

UNICORN (Yan et al., 2022) ECCV 2022 ConvNeXt Tra ✓ ✓

SeqTrack (Chen et al., 2023) CVPR 2023 ViT Tra ✓ ✓

ARTrack (Wei et al., 2023) CVPR 2023 ViT Tra ✓ ✓

ROMTrack (Cai et al., 2023) ICCV 2023 ViT Tra ✓ ✓

ZoomTrack (Kou et al., 2023) NeurIPS 2023 ViT Tra ✓ ✓
1
1
1
1
1
1
1

1

2

2
2
2
2

skiers with an YOLOX instance (Ge et al., 2021) and then exploits
the Simple Online and Realtime Tracking method (SORT) (Bewley
et al., 2016) to associate the new detections with previously memo-
rized tracklets (i.e. sequences of bounding-boxes referring to the same
target). The YOLOX instance was trained on all the frames and the
associated bounding-box annotations of SkiTB’s combination of training
and validation sets defined by the date-based split, by mostly default
hyper-parameters. The only changes made are relative to the batch
size, set to 16, and the number of training epochs, set to 25. 10%
of the training videos were considered to build the set of validation
images. The model instance achieving the highest Average Precision
(AP) on such a subset was retained for inference during tracking. For
each video, the SORT module is initialized in the first frame with the
given skier’s bounding-box. At every other frame, the module is given
in input all the detections given by YOLOX and returns a new set of
tracks. As output, we retain the bounding-box associated with the track
initialized in the first frame.

STARK𝙵𝚃. The STARK𝙵𝚃 baseline implements a fine-tuned version of
he generic object tracker STARK (STARK-ST50) (Yan et al., 2021).
o implement this tracker we exploited the publicly available code
nd adapted the model’s tracking ability by fine-tuning on SkiTB’s
ombination of training and validation sets, according to STARK’s
riginal training strategy. Mostly default hyper-parameters have been
ept, except for the number of epochs in stage-one training, which has
een set to 200. During inference, this baseline acts in the same ways
s the original STARK.

TARK𝚂𝙺𝙸. Furthermore, we introduce a new and better-performing
racker, called STARK𝚂𝙺𝙸. The pseudo-code of the procedure imple-
ented by this skier-optimized baseline for an MC video is given

n Algorithm 1. In simple words, the procedure is composed of two
kier-specific instances of STARK𝙵𝚃. The first one, which we refer

to as STARK𝙵𝚃−𝚂𝙲, is a modified version of STARK𝙵𝚃 that, at ev-
ery frame, computes the target bounding-box by exploiting a higher-
resolution search area located around the previous target location. This
is achieved by reducing the search area factor from the original value
of 5.0 to 3.0 (we determined the value 3.0 by experiments) and fine-
tuning as done for STARK𝙵𝚃. In this way, we reduce the amount of
ackground information present in the search area, thus increasing
8

Algorithm 1 Pseudo-code of the procedure implemented by the
proposed STARK𝚂𝙺𝙸 while running on a video.
1: // Consider video  and ground-truth box 𝑏0
2: // Trackers initialization
3: Initialize STARK𝙵𝚃−𝚂𝙲with 𝐹0 and 𝑏0
4: Initialize STARK𝙵𝚃with 𝐹0 and 𝑏0
5: 𝑡 ← 1
6: repeat
7: 𝑏𝑡, 𝑐𝑡 ← Run STARK𝙵𝚃−𝚂𝙲 on 𝐹𝑡
8: if 𝑐𝑡 ≤ 𝛿 then
9: 𝑏𝑡, 𝑐𝑡 ← Run STARK𝙵𝚃 on 𝐹𝑡
0: if 𝑐𝑡 > 𝛿 then
1: // STARK𝙵𝚃−𝚂𝙲 re-initialization
2: Re-initialize STARK𝙵𝚃−𝚂𝙲 with 𝐹𝑡 and 𝑏𝑡
3: end if
4: else
5: // Compute bounding-box for STARK𝙵𝚃 relocalisation
6: 𝑆 ← 𝐻

5.0 // 5.0 is STARK𝙵𝚃 search area’s factor
17: 𝑥∗𝑡 ← 𝑐𝑙𝑖𝑝(𝑥𝑡,

𝐻
2 ,𝑊 − 𝐻

2 )
8: 𝑦∗𝑡 ← 𝐻

2 − 𝑆
2

19: 𝑏(𝑅)𝑡 ← [𝑥∗𝑡 , 𝑦
∗
𝑡 , 𝑆, 𝑆]

0: Use 𝑏(𝑅)𝑡 to reset STARK𝙵𝚃’s box used to compute the search
area location

1: end if
2: Return 𝑏𝑡, 𝑐𝑡 as output for 𝐹𝑡
3: 𝑡 ← 𝑡 + 1
4: until 𝑡 = 𝑇

the resolution of the target skier’s appearance and making the tracker
predict more accurate bounding-boxes during SC tracking. Given the
more limited search area, STARK𝙵𝚃−𝚂𝙲 performs better just in such
conditions where the target and camera motion are stable and consis-
tent across consecutive frames. In the other cases, i.e. in those frames
where STARK𝙵𝚃−𝚂𝙲 is not confident in tracking the target (i.e., when
the STARK𝙵𝚃−𝚂𝙲’s confidence score 𝑐𝑡 ≤ 𝛿, lines 8–13 of Algorithm 1),
we exploit a STARK𝙵𝚃 instance configured as described in the previous
paragraph. This instance keeps the original search factor with a value
of 5.0 and thus is able to look for the target in a larger frame area.
The execution of this STARK𝙵𝚃’s instance is generally triggered after
a camera shot-cut and during the complete occlusion of the target. We
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Fig. 7. Evaluation protocol to quantify the tracking impact. This figure visualizes the procedure we implemented to evaluate a visual tracker based on the performance of an
high-level skiing performance understanding module such as a 2D pose estimator (e.g., AlphaPose). On the Ski2DPose and YouTube Skijump dataset, we consider each sequence
of frames with sparsely annotated 2D body and equipment poses. A tracker is initialized in the frame with the first available pose, from which a bounding-box is computed (□).
The tracker is then run on each subsequent frame to provide the bounding-box referring to the same skier (□). At each frame with the ground-truth pose, a larger patch (dashed
□) is extracted from the tracker’s box and it is given in input to the pose estimation algorithm. The latter returns as output the 2D pose of the skier, which is compared with
the ground-truth. The average value of such a distance computed across pose-annotated frame is used to form a ranking of different trackers that expresses their impact on the
quality of the poses.
empirically found it beneficial to set the search area size of this instance
to match the frame’s height, by modifying the bounding-box values that
are used to compute the search area at the next frame (lines 16–20 of
Algorithm 1). The position of such a box is set to be the latest confident
box position predicted by STARK𝙵𝚃−𝚂𝙲, clipped to make the search area
not fall outside of the frame. Whenever STARK𝙵𝚃 finds confidently the
target again (i.e., with 𝑐𝑡 > 𝛿), its predicted bounding-box and the
respective frame are used to re-initialize STARK𝙵𝚃−𝚂𝙲. We found the
re-initialization to work better than just relocating STARK𝙵𝚃−𝚂𝙲 on the
STARK𝙵𝚃’s predicted bounding-box. We found empirically 𝛿 = 0.5 to act
well for the thresholds of both STARK𝙵𝚃−𝚂𝙲’s and STARK𝙵𝚃’s 𝑐𝑡 scores.

6. Evaluation

In this section, we explain and motivate in detail the evaluation
procedures implemented to quantify the tracking accuracy and effi-
ciency, and the impact of the trackers on the accuracy of high-level
skiing performance understanding tasks. If not specified otherwise, in
the experiments all the trackers were executed on the date-based test-
set of SkiTB, with skier-specific trackers trained on the corresponding
training set.

6.1. Tracking performance

Evaluation protocol. To run a tracker for evaluation of its tracking accu-
racy, we employed the one-pass evaluation (OPE) protocol introduced
by Wu et al. (2015) which implements the most realistic way to run
a tracker in practice. The protocol consists of two main stages: (i)
initializing a tracker with a bounding-box of the target in the first frame
of the video; (ii) letting the tracker run on every subsequent frame
until the end and recording bounding-box predictions to be considered
for the evaluation. To obtain performance scores for each sequence,
predictions and ground-truth bounding-boxes are compared according
to some distance measure. The overall scores are obtained by averaging
the scores achieved for every sequence. As in the default OPE, we
use the ground-truth bounding-box for initialization to evaluate the
trackers in the best possible conditions, i.e. when accurate information
about the target is given. However, many deployment conditions do
not allow human labeling but instead require a completely automatic
athlete localization system (e.g. real-time skiing performance analysis
during broadcasting). To evaluate trackers in similar conditions, we use
an object detector to predict the initial skier bounding box. Thus, we
consider a version of the OPE protocol where each tracker is initialized
in the first frame in which the YOLOX detector’s (Ge et al., 2021; Jocher
et al., 2020), fine-tuned for skier localization, provides a bounding-box
prediction with confidence score ≥ 0.5. The fine-tuning of this detector
was performed in the same way as for YOLO-SORT baseline described
before.
9

Performance measures. To quantify the distance between the predicted
and temporally-aligned ground-truth bounding-boxes, we used different
measures. As general tracking accuracy indicators, we employed the
metrics defined by Lukeźič et al. (2020) for long-term tracking prob-
lems: Precision, Recall, and F-Score. Due to the generally long video ob-
servation and presence of multiple occlusions, our problem of interest
is related to such a research framework. The Precision (Pr ↑) measures
the average amount of correctly tracked ground-truth bounding-boxes
where the tracker is confident, with different thresholds used to de-
termine the conditions of correct and confident prediction. In the case
of our domain, the Pr ↑ score determines the average coverage of the
skier’s position on the portion of skiing performance observation on
which the tracker is confident. For example, a Pr ↑ score of 0.8 tells that
an algorithm correctly localizes the athlete for 80% of the bounding-
box predictions that are given with high confidence. The Recall (Re ↑)
instead measures the average amount of correctly tracked ground-truth
bounding-boxes, regardless of the tracker’s confidence. In our context,
such a score determines the average coverage of the position of the skier
throughout the whole skiing performance. For instance, a Re ↑ score of
0.8 gives that the algorithm correctly localizes the athlete for 80% of
the skiing performance appearing in the video. The F-Score (F-Score ↑)
provides a single aggregating score that incorporates both the previous
measures. The best value across the different confidence thresholds is
retained.

In addition to those metrics, we exploited the Generalized Success
Robustness (GSR ↑) (Dunnhofer et al., 2023a) which reports the fraction
of continuous successful tracking before the tracker is lost, measured
as the temporal index of the first wrong prediction normalized by
the number of frames in the video. In the context of this application
domain, such a metric reports the percentage of continuous coverage
of the skier’s performance before the target is lost by the tracking al-
gorithm. The original metric (Dunnhofer et al., 2023a) is strict because
it considers just the first wrong prediction to determine the tracker’s
failure time step. Other work (Kristan et al., 2020) suggested a softer
version of such a measure. If the algorithm gets back to the target
within a range of 10 consecutive frames, the tracking is resumed.
Inspired by such a work, we evaluate the GSR ↑ with several different
temporal ranges to detect a failure, specifically 1 frame (∼0.03s), 7
frames (∼0.25s), 15 frames (∼0.5s), 22 frames (∼0.75s), 30 frames
(∼1s), 60 frames (∼2s), and 90 frames (∼3s).

Finally, we assessed the computational efficiency of the trackers.
This has been done by quantifying the time difference (in seconds)
between the time stamp associated with each frame and the time
instant on which the localization for the respective frame is given by
an algorithm. Considering that sports performance analysis requires the
processing of all the frames for a smooth and continuous understanding,
a tracker that is slow will accumulate time while processing all the
frames and delay its predictions. Thus, it becomes interesting to know
how much time should be waited in order to obtain the localization,
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and how such delay grows during the online processing of the video.
We give such a measurement in seconds with Delay ↓. In addition
to such an evaluation methodology, we also employed the number of
frames-per-second (FPS) and the number of Floating Point Operations
(FLOPs) to assess the efficiency and the complexity of the tracking
methods.

6.2. Tracking impact

The output of tracking is of paramount importance for many high-
level modules that produce fine-grained skiing performance analy-
ses (Štepec and Skočaj, 2022; Wang et al., 2019; Ludwig et al., 2023,
2022; Dunnhofer et al., 2023b). Thus we evaluated the trackers based
on the impact they have on the accuracy of such solutions. We think
that the development of effective tracking methodologies should be
driven not only by tracking performance results but also by the con-
tribution the algorithms bring to improving the accuracy of the overall
systems.

As examples of high-level skiing performance understanding tasks
to evaluate trackers’ impact, we focused on the problem of 2D pose es-
timation of skier body and equipment (Bachmann et al., 2019; Ludwig
et al., 2023). Solving this task serves to obtain information regarding
the position and orientation of specific human joints during exercises,
and such an output is additionally exploited by even more high-level
performance understanding modules such as 3D pose estimation (Bach-
mann et al., 2019; Wandt et al., 2021). To estimate the image-level
coordinates of a set of key-points that localize different parts of a
skier’s body (e.g. head, shoulders, hips, feet, etc.) and of particular
points of interest of the skier’s equipment (e.g. ski tips or tails), the
available solutions (Bachmann et al., 2019; Ludwig et al., 2023) first
run an object detector (Ren et al., 2015; Redmon et al., 2016) to com-
pute bounding-boxes for the athlete present in the input RGB image,
and then crop image patches from such boxes that are successively
given as input to a state-of-the-art deep neural network architecture
– e.g. AlphaPose (Fang et al., 2022) – that predicts the key-point
coordinates. Such a pose estimation network is trained by fine-tuning
on ground-truth poses by exploiting input image patches extracted with
bounding-boxes defined by the coordinates of the annotated key-points.

The aforementioned studies (Bachmann et al., 2019; Ludwig et al.,
2023) propose the datasets of videos Ski2DPose dataset (Bachmann
et al., 2019) (for the AL discipline) and YouTube Skijump dataset (Lud-
wig et al., 2023) (for the JP discipline), with dedicated training and
test sets, that have sparse frames labeled with the poses of body and
ski equipment. The authors evaluate their proposed pipelines on such
benchmarks but treat each frame as an independent image, thus during
testing an object detector is run on every image before the pose estima-
tion network. Considering the presence of videos, we use such datasets
as a base for the evaluation of trackers as athlete localizers before
the pose estimation step. Hence, we determine the tracker’s impact by
evaluating the accuracy of the pose estimation model, where the input
of the latter is influenced by the output of the former. After having fine-
tuned an AlphaPose instance (Fang et al., 2022) on the original training
images as used by Bachmann et al. (2019), Ludwig et al. (2023), we
evaluate its accuracy on the relative test frames by inputting it with
a patch extracted from a tracker’s box prediction. The evaluation of
the pose estimator is done through: the Percentage of Correct Key-
points (PCK ↑) which measures the number of predicted key-points,
normalized by the number of all key-points (Bachmann et al., 2019),
having a pixel distance lower than the 50% of the ground-truth-based
head-neck distance; and the Mean Per Joint Position Error (MPJPE
↓) which measures the normalized pixel distance between predicted
and corresponding ground-truth key-points (Bachmann et al., 2019).
The tracker’s bounding-boxes are obtained by implementing the OPE
protocol on the sequence of frames in between the first and the last pose
annotation occurrences that refer to the same athlete. Indeed, we obtain
boxes’s top-left and bottom-right vertices by considering the lowest and
 m
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greatest values in the key-points coordinates. The first bounding-box is
considered for tracker initialization, while the others are for evaluation
according to the metrics defined in the previous sub-section. A visual
representation of such an evaluation protocol is presented in Fig. 7. We
respect the original training-test separations (Bachmann et al., 2019;
Ludwig et al., 2023). For testing on the Ski2DPose dataset, we used
11 video clips related to the 150 pose annotated images, while for
the YouTube Skijump dataset we used 19 videos built upon the 118
annotated validation images.

For the implementation and fine-tuning of the AlphaPose instance
(Fang et al., 2022), we employed the Alphapose v0.6 framework based
on the ResNet50 model. Specifically, we conducted two separate fine-
tuning for Ski2DPose and YouTube Skijump. Both training sessions ran
for 250 epochs, employing a batch size of 32 and a learning rate of
0.001 decreased by a 0.1 factor every 70 epochs. During both training
and testing, in the computation of the input image crop, a padding of
20% was added to the dimensions of the available bounding-box.

6.3. Implementation details

All the code used for this study was implemented in Python and run
on a machine with an Intel Xeon E5-2690 v4 @ 2.60 GHz CPU, 320 GB
of RAM, and 8 NVIDIA TITAN V GPUs.

7. Results

In this section, we report on the outcomes of the conducted study.

7.1. General tracking performance

Multi-camera tracking. Table 6 presents the tracking performance ex-
pressed by the F-Score ↑, Pr ↑, Re ↑ metrics achieved in the MC setting
y all selected trackers on the date-based test set of SkiTB. Among
eneric object trackers, STARK results the best. In terms of absolute
alues, its performance is comparable to the one achieved on tradi-
ional long-term benchmark datasets (Kristan et al., 2021; Fan et al.,
019). We also observe that long-term trackers (STARK, CoCoLoT,
TMU) surpass the more recent methodologies based on transformers
OSTrack, SeqTrack, MixFormer) that are not explicitly designed for
uch a setting. Unified methodologies for object localization tasks
e.g., UNICORN) exhibit promising performance in MC conditions.
everaging object detection training could be beneficial for re-detecting
he target. However, UNICORN does not surpass tracking algorithms
pecifically designed for long-term tracking problems. In general, these
esults indicate that generic object trackers struggle to generalize to
he application settings represented by SkiTB. These findings highlight
hat generic object trackers are not yet suitable for deployment in
omputer vision systems aimed at understanding skiing performance
omprehensively, covering the entire duration of the performance from
he beginning to the end. The observed low tracking accuracy has the
otential to negatively impact over 40% of the results in the analysis.

On the other hand, skier-specific trackers (YOLO-SORT, STARK𝙵𝚃,
TARK𝚂𝙺𝙸) perform significantly better, with STARK𝙵𝚃 improving
TARK’s F-Score ↑ by 40%. In the same score, STARK𝚂𝙺𝙸 achieves
n additional 2% increase over STARK𝙵𝚃. We observe that STARK𝚂𝙺𝙸

chieves a higher score in Pr ↑ rather than in Re ↑. This result indicates
hat the algorithm is accurate at 84.3% in localizing the target skier
hen the estimated target presence is high, while it is accurate at
2.9% when the target is actually present. Even though the difference
etween the two numbers is minimal, these findings suggest that
he bounding-box prediction of the algorithm is more accurate than
he target presence prediction. Overall, skier-specific trackers exhibit
uch more promising performance in consistently tracking the skier’s

ppearance throughout the entire skiing performance. But the results
mply that the best-performing method, STARK𝚂𝙺𝙸, is not flawless, and
pproximately 17% of the skiing performance understanding analysis

ight be affected by potentially incorrect target skier localizations.
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Table 6
Overall and per-discipline results in the multi-camera (MC) tracking setting. The F-Score ↑, Pr ↑, and Re ↑ scores are presented for each studied algorithm. Best, second-best, and third-best overall scores are highlighted in
gold, silver, and bronze, respectively. Bold highlights the best results among generic object trackers. The latters struggle to keep track of the skiers in this setting, while skier-specific trackers demonstrate promising capabilities.
Application-wise, we observe that ski jumping (JP) is the discipline in which trackers perform better, followed by alpine skiing (AL). Freestyle skiing (FS) offers the most challenging situations.
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All
0.093 0.061 0.248 0.338 0.493 0.494 0.510 0.526 0.527 0.528 0.534 0.546 0.554 0.559 0.562 0.584 0.740 0.818 0.835
0.092 0.061 0.270 0.419 0.493 0.487 0.503 0.518 0.555 0.520 0.538 0.538 0.565 0.559 0.572 0.595 0.730 0.832 0.843
0.094 0.062 0.235 0.301 0.495 0.503 0.519 0.535 0.508 0.537 0.533 0.556 0.545 0.560 0.555 0.576 0.751 0.806 0.829

AL
0.031 0.024 0.144 0.270 0.485 0.430 0.452 0.463 0.518 0.462 0.479 0.487 0.524 0.532 0.532 0.552 0.798 0.853 0.868
0.031 0.024 0.143 0.260 0.487 0.426 0.447 0.458 0.561 0.457 0.485 0.482 0.541 0.537 0.546 0.565 0.790 0.874 0.885
0.032 0.024 0.145 0.229 0.483 0.435 0.483 0.456 0.484 0.467 0.475 0.492 0.509 0.526 0.521 0.540 0.807 0.834 0.852

JP
0.155 0.098 0.281 0.373 0.504 0.535 0.546 0.574 0.536 0.577 0.590 0.586 0.576 0.598 0.584 0.603 0.818 0.880 0.896
0.153 0.097 0.310 0.451 0.507 0.529 0.540 0.567 0.576 0.571 0.598 0.580 0.591 0.602 0.606 0.630 0.807 0.892 0.898
0.157 0.099 0.262 0.338 0.502 0.542 0.553 0.581 0.510 0.584 0.584 0.594 0.565 0.596 0.569 0.582 0.830 0.871 0.896

FS
0.092 0.065 0.319 0.372 0.491 0.517 0.533 0.541 0.528 0.545 0.533 0.566 0.562 0.547 0.570 0.596 0.603 0.721 0.742
0.090 0.067 0.358 0.446 0.483 0.505 0.521 0.529 0.528 0.532 0.530 0.530 0.552 0.538 0.564 0.590 0.592 0.730 0.746
0.094 0.080 0.298 0.336 0.500 0.531 0.548 0.556 0.530 0.560 0.539 0.581 0.562 0.557 0.577 0.604 0.616 0.713 0.738

11
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Table 7
Overall and per-discipline results in the single-camera (SC) setting. The F-Score ↑, Pr ↑, and Re ↑ scores are presented for each studied algorithm. Best, second-best, and
third-best overall scores are highlighted in gold, silver, and bronze, respectively. Bold highlights the best results among generic object trackers. This setting is easier to tackle
by all the algorithms in general. Generic trackers perform much better in this scenario than in the multi-camera (MC) videos, but skier-specific trackers still perform better.
The different skiing discipline pose challenges to the trackers in the same way as in the MC setting.
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All
0.294 0.367 0.564 0.583 0.592 0.613 0.642 0.645 0.651 0.654 0.663 0.680 0.681 0.686 0.699 0.703 0.751 0.836 0.841
0.291 0.363 0.565 0.583 0.591 0.607 0.637 0.639 0.642 0.652 0.654 0.670 0.676 0.676 0.689 0.698 0.743 0.827 0.833
0.299 0.376 0.572 0.592 0.601 0.626 0.651 0.681 0.667 0.664 0.704 0.698 0.694 0.658 0.717 0.717 0.763 0.854 0.858

AL
0.220 0.267 0.518 0.536 0.585 0.572 0.623 0.578 0.605 0.640 0.594 0.627 0.652 0.637 0.651 0.671 0.819 0.875 0.882
0.218 0.265 0.524 0.542 0.595 0.570 0.622 0.576 0.600 0.641 0.590 0.623 0.650 0.634 0.646 0.672 0.814 0.876 0.886
0.222 0.269 0.516 0.534 0.578 0.575 0.625 0.580 0.609 0.640 0.599 0.633 0.655 0.643 0.656 0.672 0.825 0.876 0.881

JP
0.389 0.487 0.641 0.663 0.677 0.705 0.702 0.747 0.736 0.705 0.763 0.756 0.738 0.765 0.782 0.761 0.855 0.899 0.907
0.388 0.485 0.645 0.666 0.677 0.704 0.703 0.748 0.733 0.707 0.760 0.753 0.743 0.762 0.779 0.766 0.850 0.894 0.901
0.390 0.489 0.640 0.660 0.678 0.708 0.701 0.747 0.740 0.703 0.767 0.761 0.734 0.770 0.786 0.758 0.863 0.907 0.914

FS
0.274 0.347 0.531 0.550 0.514 0.563 0.599 0.612 0.612 0.617 0.633 0.655 0.654 0.654 0.663 0.676 0.578 0.734 0.735
0.268 0.338 0.525 0.540 0.502 0.547 0.586 0.595 0.593 0.607 0.612 0.634 0.636 0.633 0.642 0.656 0.566 0.711 0.713
0.285 0.370 0.560 0.582 0.548 0.595 0.627 0.647 0.652 0.647 0.676 0.701 0.692 0.698 0.709 0.721 0.601 0.780 0.780
Single-camera tracking. Comparing the latter findings with the results
btained for the SC setting available in Table 7, we observe that
amera shot-cuts introduce challenges that adversely affect the tracking
erformance of all the methods, skier-specific and non. The SC setting
esembles the problem of short-term visual object tracking (Wu et al.,
015; Lukeźič et al., 2020) where the videos are captured by the same
ideo camera and their duration is up to few seconds. Application-wise,
he conditions of SC tracking align with: the replays during broadcast-
ng transmission where just a specific section of the skiing performance
s captured by a single camera and played again later; videos acquired
uring training processes where a trainer captures a specific section
f the ski track/course with a smartphone for later video analysis.
rom the table, we observe that generic object trackers show a larger
mprovement in tracking performance by working on SC videos rather
han on MC ones. The performance of STARK improves by 20% in
his setting, achieving values that represent promising tracking perfor-
ances for application (Kristan et al., 2021; Fan et al., 2019). In this

cenario, short-term trackers such as ROMTrack, MixFormer, OSTrack
urpass long-term ones like CoCoLoT and KeepTrack. Nevertheless, the
racking accuracy of all the generic object tracking algorithms still
emains lower than the skier-specific methods. STARK𝚂𝙺𝙸 keeps the

top spot in the ranking, with a 0.6% improvement over STARK𝙵𝚃 and
12% over YOLO-SORT. The difference in F-Score ↑ between STARK𝚂𝙺𝙸

running in MC and SC conditions is merely 0.7%. This result implies
that, while camera shot-cuts do influence tracking behavior, the ac-
curacy of the skier-specific tracker remains affected by other domain
characteristics that hinder a perfectly accurate learning of the skier’s
appearance and motion patterns, as it has been showcase for MC videos
in the previous paragraph.

Length of temporal reference. Fig. 8 displays the proportion (as GSR ↑

scores) of the skiing performance that the trackers are able to consis-
tently cover before losing track of the target skier, starting from the
beginning of the skier’s performance. Overall, the skier-specific trackers
show to be able to keep a longer reference to the target than generic
object methods. STARK𝚂𝙺𝙸 demonstrates the most promising result.
With a recovery time of 1 s or longer, fractions scores exceed 80%. In
the same setting, the best generic object tracker, revUNICORN, achieves
values around 70%. Shorter recovery time thresholds result in shorter
target coverages. With a threshold of 1 frame (i.e., 0.03s), STARK𝚂𝙺𝙸

achieves successful continuous tracking for more than the first 40% of
the athlete’s performance. But this result is still better than UNICORN
which results in a coverage of around 25%. These results illustrate
that, even with skier-specific trackers, achieving consistently accurate
per-frame skier localization is not yet realized. In other words, at the
current state-of-the-art, incorrect and abrupt bounding-box predictions

may temporarily impact the output of computer vision systems utilizing

12
Fig. 8. Fraction of consistent skier tracking (length of temporal reference)
starting from the beginning of the ski performance. These plots depict the average
fraction of consecutive frames in which the target skier is accurately localized before
losing track, as measured by the GSR score (Dunnhofer et al., 2023a). Various time
thresholds in seconds are employed to assess the trackers’ ability to recover from
failures over time (Kristan et al., 2020). The plot reports the results obtained by both
skier-specific trackers and by the generic object trackers.

skier localization from these trackers. Although the trackers gener-
ally recover automatically after a few seconds, real-time continuously-
performing systems might experience negative effects that should be
mitigated with some filtering operations.

Attribute-dependent tracking performance. By analyzing the F-Score ↑

per the visual attributes characterizing the SC clips, as reported by
Fig. 9, we notice that the full occlusion (FOC), the small size (LR),
and the fast motion (FM) of skiers are the conditions that determine a

performance drop to both skier-specific and generic object trackers. It is
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Fig. 9. Tracking performance based on visual attributes. This plot reports the F-
Score ↑ for the different attributes used to characterize the single-camera (SC) clips. We
observe that the low resolution (LR), the full occlusion (FOC), and the fast motion (FM)
of skiers are the most difficult situations to address for all the trackers. The plot reports
the results obtained by both skier-specific trackers and the generic object trackers.

worth noticing that, the order of the LR and FOC attributes (that is ob-
tained by ordering in decreasing order the average F-Score ↑) changes
between skier-specific and generic trackers. This result suggests that
fine-tuning on skier appearance helps in resolving complete occlusions
of the target skiers. However, when applying these trackers in real-
world conditions inside computer vision systems, we recommend, if
feasible, avoiding situations that might pose the most severe challenges.
This can be achieved by carefully controlling the position and zoom
level of the camera relative to the skiing course. On the other hand,
situations involving scale change (SC), aspect ratio change (ARC), and
illumination variation (IV) are better addressed on average. Skier-
specific trackers demonstrate greater proficiency in handling camera
motion (CM) and background clutter (BC) compared to generic object
trackers. In deployment conditions, the presence of these scenarios can
be expected to exert limited influence on the accuracy of the skier
localization.

Weather-dependent tracking performance. The plots in Fig. 10 show that
both the skier-specific and generic object trackers work generally with
the same level of accuracy under the different weather conditions
considered in SkiTB. The STARK𝚂𝙺𝙸 and STARK𝙵𝚃 trackers demonstrate
a more balanced tracking accuracy between ‘‘Harsh’’, ’’Sunny’’, and
‘‘Cloudy’’ weather conditions. YOLO-SORT is more susceptible to the
last two conditions. Surprisingly, the trackers tend to perform better in
conditions of challenging weather conditions, while clear weather con-
ditions impact slightly more the tracking performance. This outcome
suggests that the high shadowing present in sunny weather and the
flat light in cloudy conditions are slightly more difficult to cope with.
Overall, these results demonstrate that, in scenarios of broadcasting
videos of professional athletes as represented by SkiTB, where camera

objectives are quite clear from snow, rain, or fog, the skier-specific n

13
Fig. 10. Impact of the weather conditions on tracking. This plot displays the
F-Score ↑ results conditioned on the weather conditions (harsh, sunny, cloudy)
characterizing the SC clips. Plot reports both the skier-specific trackers and the generic
object ones. In general, we observe that the tracking accuracy is not influenced much
by different weather conditions.

Table 8
Detector-based initialization. The F-Score ↑ of different trackers is compared in terms
of a ground-truth-based (left of →) and detection-based initialization (right of →).

verall, the skier-specific trackers show to be robust to the noise in the bounding-
ox used for initialization. The least performance drop, achieved with YOLO-SORT, is
ighlighted in bold.
Tracker AL JP FS All

STARK 0.552 → 0.544 0.603 → 0.590 0.596 → 0.497 0.584 → 0.544
YOLO-SORT 0.798 → 0.798 0.818 → 0.818 0.603 → 0.588 0.740 → 0.735
STARK𝙵𝚃 0.853 → 0.850 0.880 → 0.879 0.721 → 0.698 0.818 → 0.809
STARK𝚂𝙺𝙸 0.868 → 0.870 0.896 → 0.897 0.742 → 0.696 0.835 → 0.821

methodologies can be used reliably even in the case of challenging
image conditions caused by weather conditions.

Qualitative results. Fig. 12 gives visual illustration of the conclusions
made in the previous paragraph for of the top four methods STARK,
YOLO-SORT, STARK𝙵𝚃, STARK𝚂𝙺𝙸, in the MC tracking setting. Overall,

e can state that skier-specific trackers show promising performance
or the application in real-world, especially in videos acquired by the
ame camera. Fig. 13 instead shows qualitative examples in the case
f the particular image conditions depending on the weather. Fig. 14
epicts video frames of complex situations such as the low resolutions
f targets (identified by the LR attribute), the complete occlusions of
he skier (identified by the FOC attribute), the presence of skiers with
imilar appearance (i.e., distractors as present in the FS sub-discipline
f ski cross), that make the best trackers fail.

.2. In-depth analysis

In this section, we present a deeper analysis of the application do-
ain’s impact on the four most accurate methods presented in Table 6,
amely STARK, YOLO-SORT, STARK , and STARK . We also assess
𝙵𝚃 𝚂𝙺𝙸
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Fig. 11. Waiting time to obtain skier localizations. The plot illustrates at various
fractions of an MC sequence the average time that has to be waited to get the bounding-
boxes from the trackers. YOLO-SORT demonstrates the highest efficiency, with minimal
delay compared to the actual happening of the skiing performance.

the design and training choices’ effects of our proposed STARK𝙵𝚃 and
STARK𝚂𝙺𝙸 baselines on the tracking accuracy.

Ski-discipline-dependent tracking performance. From both Tables 6 and
7 it can noticed that ski jumping (JP) receives the best tracking per-
formance among the skiing disciplines, followed by alpine skiing (AL),
while freestyle skiing (FS) lead to more challenging situations. With
respect to AL, the performance of STARK𝚂𝙺𝙸 is reduced by 17%. This
may be attributed to the complex poses athletes perform in such a
discipline. Indeed, as evidenced by the last two rows of frames in
Fig. 12, FS athletes perform aerial maneuvers that significantly alter
their appearance in videos. Frequently, the intricate poses assumed
during these maneuvers can make the athlete’s appearance resemble
other objects in the scene, leading to instances of background clutter
and potential confusion with other objects. Furthermore, FS videos
exhibit characteristics such as the presence of other skiers (as observed
in the sub-disciplines of ski cross and dual moguls, depicted in the
last row of frames in Fig. 14) who perform concurrently with the
target skier. In such scenarios, the target athlete may be occluded
by other skiers, leading to potential confusion with athletes wearing
similar suit colors or graphics. Addressing this challenge may require
the development of tracking algorithms capable of discerning very
subtle appearance differences to accurately distinguish one skier from
another.

Initialization with a detector. Table 8 presents the impact, as reflected
in the change in F-Score ↑, of using the YOLOX detector (Ge et al.,
2021; Jocher et al., 2020) to initialize the tracker. It is observed that
the generic STARK is more sensitive to initialization noise as it loses
around 7% in F-Score ↑. Given that tracking the appearance of both the
skier’s body and skis might not be a common instance in the training
videos of generic object trackers, introducing noise into the initial-
ization box could further include background pixels that impact the
extraction of representative target features. This, in turn, may hinder
the precision of localization while predicting bounding-box coordinates
in successive video frames. Conversely, skier-specific methods exhibit
greater robustness to such initialization, with STARK𝚂𝙺𝙸 maintaining
good scores across all the disciplines and dropping the F-Score ↑ by only
% overall. Results from the YOLO-SORT skier-specific methodology
xperience minimal impact from noisy initialization information. This
s attributed to the methodology’s application of a previous-frame-
ndependent target localization, which does not rely on potentially
oisy visual appearance extracted from the first frame of the video. No-
ably, the initialization through a skier detection algorithm has a more
ignificant effect on the FS discipline, likely due to the initialization
o a wrong skier given by the detector in multi-athlete sub-disciplines
uch as ski cross and dual moguls. In this condition, the tracker should
e initialized by an human operator via an annotation tool to be sure
t can track the target skier of interest.
14
Efficiency. In terms of running speed, Fig. 11 analyzes the time taken
by trackers to provide skier localization at different fractions of the
observed skiing performance, so to provide information on how the
Delay ↓ increases while processing the video. YOLO-SORT gives the best
efficiency, offering minimal delay compared to the unfolding of the ski-
ing performance. STARK𝚂𝙺𝙸 is the least efficient tracker, it accumulates
delay while processing all the video frames and finally provides the last
localization of the skier over 15 s after his/her performance has ended.
More in general, STARK𝚂𝙺𝙸 processes an average of 22 FPS on SkiTB.
Notably, STARK𝚂𝙺𝙸 does not introduce modifications to the original
STARK’s neural network architecture in its STARK𝙵𝚃−𝚂𝙲 and STARK𝙵𝚃

nstances. Consequently, the number of operations performed by our
roposed tracker’s network is, at worst (when both STARK𝙵𝚃−𝚂𝙲 and
TARK𝙵𝚃 are run on the same frame), twice the number of operations
xecuted by STARK’s architecture, which is 10.9 GFLOPs (Yan et al.,
021). For comparison, STARK𝙵𝚃 processes 23 FPS on SkiTB and main-
ains the same GFLOPs as STARK, as the neural network architecture
emains unchanged. In light of this evaluation, we can state that
TARK𝚂𝙺𝙸 introduces minimal additional complexity compared to the
aseline STARK methodology (Yan et al., 2021).

These findings should be considered when utilizing visual trackers
n computer vision-based skiing performance analytics systems. A so-
ution based on faster tracking algorithms such as YOLO-SORT might
e more suitable for systems that have to provide real-time output,
uch as those needed during live broadcast transmission. On the other
and, more accurate solutions as represented by STARK𝚂𝙺𝙸 might be
etter suited for systems where a delay in producing the analytical
esults is acceptable, for instance, in the production of replays during
roadcasting or during video review activities conducted after the
onclusion of an athlete’s training session.

ideo frame-rate. We evaluated the tracking performance of different
racking algorithms to understand whether the increase of video FPS
an help in overcoming targets’ fast motion, a characteristic of the
kiing performance. SkiTB comprises videos captured at 30 FPS, align-
ng with broadcasting transmission conditions. Currently, we lack data
ith higher frame rates, preventing experiments in such conditions.
owever, we conducted experiments on the top four algorithms to
iscern the tracking accuracy trend with varying video FPS. Analyzing
he trend with lower frame-rate values gives us hints on what tracking
ccuracy to expect with higher frame-rates. Specifically, we conducted
xperiments in the default configurations by considering the SkiTB’s
C videos as if they were acquired at 5, 10, 15, 20, and 25 FPS.
he plot in Fig. 15 visually illustrates how performance changes across
hese diverse settings. As evident, the STARK-based trackers (STARK𝚂𝙺𝙸,
TARK𝙵𝚃, STARK) exhibit minimal sensitivity to frame-rate variations.
he F-Score ↑ for STARK𝚂𝙺𝙸 decreases from 0.835 at 30 FPS to 0.829
t 20 FPS, further to 0.823 at 10 FPS, and 0.817 at 5 FPS. The trend
ndicates a very light improvement in skier appearance localization
ith an increased frame-rate. While prior research (Galoogahi et al.,
017) suggests potential tracking accuracy enhancement with high-
rame rate videos, we hypothesize this improvement to be marginal
t 50 or 60 FPS videos, frame-rates used by some skiing performance
nalysis systems (Rhodin et al., 2018). Moreover, the frame-rate in-
rease needs careful consideration in relation to the tracker speed.
TARK𝚂𝙺𝙸, the best-performing algorithm, operates at an average of 22
PS. Applying it to every frame in 60 FPS videos as for the experiments
n Fig. 11 would nearly triple the processing time, diminishing the
verall efficiency of the skiing performance analysis pipeline.

onditioned fine-tuning. Table 9 presents the performance of STARK𝙵𝚃

ine-tuned on the different splits available in SkiTB (and described
n Section 4) which represent various real-world usage conditions.
he results indicate that generalizing to unseen athletes is the most
hallenging application case. In other terms, this implies that the track-
ng algorithm tends to slightly overfit to the features of the training
kier’s appearance — specifically, the visual characteristics of the skiing
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Fig. 12. Qualitative tracking performance. This figure shows bounding-box samples predicted by the top four trackers for frames of SkiTB’s test set. STARK𝙵𝚃 and STARK𝚂𝙺𝙸

exhibit high precision in localizing both the skier’s body and equipment.
Table 9
Tracking after different application-dependent fine-tuning conditions. The table
reports STARK𝙵𝚃 ’s F-Score ↑ under different generalization conditions. The overall result
of the best application condition is highlighted in bold. Generalizing to unseen athletes
is more challenging compared to unseen courses or newer skiing performances.

Generalization condition AL JP FS All

New performances 0.853 0.880 0.721 0.818
Unseen athletes 0.854 0.890 0.682 0.809
Unseen courses 0.861 0.917 0.808 0.862

suit and equipment, along with the body posture, and the motion
across frames. This aspect should be considered in the deployment
of fine-tuned trackers. It is advisable to explore alternative strategies
(e.g., domain adaptation (Wang and Deng, 2018; Dunnhofer et al.,
2021)) to prevent excessive adaptation to the athlete’s appearance dur-
ing training. Even though with less magnitude, generalizing to skiing
performances occurring after the training ones also proves to be a de-
manding application condition. Consistent with our previous findings,
this result indicates that fine-tuned tracking algorithms heavily rely on
the visual and motion characteristics of athletes. Over different seasons,
the IDs of skiers may change due to new athletes with distinct skiing
styles entering professional tournaments and others retiring. Further-
more, across seasons, athletes’ suits undergo changes in appearance,
15
introducing new colors and graphics that can alter the appearance
distribution, even for the same skiers. Unseen courses instead pose
fewer difficulties for generalization, as the results achieved by STARK𝙵𝚃

are higher. This outcome reveals that the visual characteristics of skiing
courses (i.e., gate positions, snow surface, country-specific advertising
banners), along with the motion patterns of the cameras whose place-
ment is influenced by the course’s conformation, exhibit a high level of
generality across various locations. Therefore, in practical application
scenarios and given the diverse representation of locations in SkiTB,
it is reasonable to anticipate that trackers will perform effectively in
different parts of the world.

Table 10 presents the evaluation of training STARK𝙵𝚃 on multiple
skiing disciplines simultaneously. Training on all the disciplines (AL,
JP, FS) yields the best tracking performance. This indicates that the
varied distributions of skier appearances and motion patterns across
different disciplines contribute to enhancing the learning process for
a more generic and generalizable representation of what a skier is
and how he/she is expected to behave in videos capturing his/her
performance. Notably, training and testing on separate disciplines have
different impacts. FS shows the highest generalization ability to AL and
JP, followed by training on AL. Indeed, FS videos encompass a higher
number of different sub-disciplines (5), contributing to an increased
variability in skiers’ appearances and motion patterns. This overall

enhancement in diversity aids in the learning process of the tracker
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Fig. 13. Qualitative tracking performance under different weather conditions.
This figure shows bounding-box samples predicted by the top four trackers for frames
affected by weather conditions. Generally, all the trackers exhibit good precision in
localizing both the skier’s body and equipment even in the case of challenging image
conditions.

Fig. 14. Qualitative examples of tracking failure cases. This figure depicts frames
on which the top trackers fail to localize the correct skier target. The first row of
images shows situations where the target skier appears very small. The second row of
frames in which the skier is occluded, while the third row presents frames where the
target skier is surrounded by other athletes with similar appearance (□ represents the
round-truth skier’s position as visible, □ as occluded).

or representing and matching skiers. Moreover, FS skiing performances
re characterized by numerous jumps, which could potentially benefit
he resulting motion patterns observed in ski jumping (JP). JP, with
ts limited diversity in courses and athlete poses, is the least helpful
n improving generalization across disciplines. In fact, JP performances
onsist of just two sub-disciplines, where the appearance and motion of
estures exhibit limited diversity. In contrast to AL and FS gestures, the
thletic gesture of ski jumping is highly repetitive. It is also executed
 h

16
Fig. 15. Impact of video frame-rate on tracking. The plot illustrates the F-Score
↑ achieved by the top four algorithms considering SkiTB’s videos at different frame-
rates measured as FPS. Generally, the STARK-based trackers’ tracking accuracy trend
is minimally altered by reducing the number of frames per second.

Table 10
Learning tracking on different skiing disciplines. This table reports the impact of
training STARK𝙵𝚃 on videos capturing the different disciplines present in SkiTB. The
overall result of the best set of disciplines for training is highlighted in bold. Indeed,
training over all disciplines improves generalization generally.

Train Test

AL JP FS AL JP FS All

0.552 0.603 0.596 0.584
✓ 0.859 0.682 0.584 0.708

✓ 0.669 0.873 0.541 0.694
✓ 0.758 0.717 0.706 0.727

✓ ✓ ✓ 0.853 0.880 0.721 0.818

on a standardized course, namely a ski jumping hill, which displays less
variation compared to the courses found in other disciplines.

Ablation study on STARK𝚂𝙺𝙸. Table 11 presents the results of an ab-
lation study performed over the improvements added to implement
STARK𝚂𝙺𝙸. The first row presents the performance of the baseline
STARK𝙵𝚃. The version with Improvement 1 does not execute the code
statements defined between lines 10–20 of Algorithm 1, and just ex-
ecutes STARK𝙵𝚃 when STARK𝙵𝚃−𝚂𝙲 is not confident. The version with
Improvement 2 does not execute the code statements defined between
lines 15–20, i.e. it performs the re-initialization step of STARK𝙵𝚃−𝚂𝙲
(lines 10–12) but does not re-localize the STARK𝙵𝚃 instance. The FS
videos are those that benefit the most from the improvements. Lighter
improvement is observed for the other disciplines, AL and JP. We also
report that in the SC settings, STARK𝙵𝚃−𝚂𝙲 achieves overall F-Score ↑,
Pr ↑, Re ↑scores of 0.843, 0.834, 0.863 that are higher than the scores
chieved by STARK𝙵𝚃 as reported in Table 7, thus demonstrating the

superiority of having a more focused search area localized around the
target. It can be noticed that STARK𝙵𝚃−𝚂𝙲 performs slightly better than
TARK𝚂𝙺𝙸 in the SC setting, suggesting that sometimes the STARK𝙵𝚃

nstance is executed inefficiently. But executing the only STARK𝙵𝚃−𝚂𝙲
n the MC settings results in an overall F-Score ↑ of 0.809, worse than
oth STARK𝙵𝚃 and STARK𝚂𝙺𝙸.

Fig. 16 depicts the performance of STARK𝚂𝙺𝙸 under different 𝛿
hresholds, governing the activation of both the STARK𝙵𝚃 instance
lines 8–13 of Algorithm 1) and the re-initialization of the STARK𝙵𝚃−𝚂𝙲
nstance (lines 16–20 of Algorithm 1). The overall trend, represented by
he black line, highlights that a 𝛿 value of 0.5 leads to optimal tracking
erformance, especially in videos characterized by the FS discipline. We
ropose that maintaining a well-balanced value is crucial, particularly
n scenarios where the STARK𝙵𝚃 instance is triggered more frequently
ue to errors in the STARK𝙵𝚃−𝚂𝙲 instance. For videos featuring the AL
nd JP disciplines, we observe that values of 𝛿 within the range [0.1,
.9] do not significantly affect STARK𝚂𝙺𝙸’s tracking performance. This
mplies that the method consistently maintains tracking accuracy with

igh confidence values in these scenarios.



M. Dunnhofer and C. Micheloni Computer Vision and Image Understanding 243 (2024) 103978

S
i

M
o
f
t
c
f

T
i
S
o
v
w
g
w
b
d
d
e
a
n
p
o
s
T
e
a
t
(

7

s
o
S
e

Table 11
Ablation study on the improvements introduced to implement STARK𝚂𝙺𝙸. This table presents the impact in terms of F-Score
↑ (Pr ↑/Re ↑) of the additions introduced to the baseline STARK𝙵𝚃 to develop STARK𝚂𝙺𝙸. The overall and per-discipline scores
related to the best configuration are highlighted in bold. We observe that FS is the discipline the benefits more of the introduced
components.

Version AL JP FS All

STARK𝙵𝚃 0.853 (0.874 / 0.834) 0.880 (0.892 / 0.871) 0.721 (0.746 / 0.738) 0.818 (0.832 / 0.806)

Improvement 1 0.866 (0.885 / 0.849) 0.896 (0.898 / 0.895) 0.726 (0.731 / 0.723) 0.829 (0.838 / 0.822)

Improvement 2 0.866 (0.883 / 0.850) 0.896 (0.898 / 0.895) 0.731 (0.734 / 0.728) 0.831 (0.842 / 0.828)

STARK𝚂𝙺𝙸 0.867 (0.885 / 0.852) 0.896 (0.898 / 0.896) 0.742 (0.746 / 0.738) 0.835 (0.843 / 0.829)
a
[

n
m
4
i
t

Table 12
Tracking skiers’ different appearance elements. The table displays STARK’s
F-Score ↑ (Pr ↑/Re ↑) when initialized to track target representations
(bounding-box) outlining different appearance elements of a skier. The top
result is highlighted in bold. As can be noticed, the score achieved by tracking
the appearance of both skier’s body and equipment is very close to the one
achieved by tracking the body only. Tracking the appearance of the skis
instead results more difficult.

Target bounding-box representation F-Score ↑ (Pr ↑/Re ↑)

Skier’s body and equipment 0.751 (0.751/0.751)

Skier’s body only 0.759 (0.759/0.759)

Skier’s skis only 0.512 (0.511/0.511)

We conducted experiments to assess the generalization of the
TARK𝚂𝙺𝙸 pipeline to other tracker instances. For this purpose, we
ntroduced MixFormer𝚂𝙺𝙸, comprising two instances, MixFormer𝙵𝚃−𝚂𝙲

and MixFormer𝙵𝚃, both implemented and fine-tuned with the same
configuration hyper-parameters as STARK𝙵𝚃 and STARK𝙵𝚃−𝚂𝙲. In the

C experimental setting, MixFormer𝚂𝙺𝙸 achieves an overall F-Score ↑

f 0.836, surpassing the baseline MixFormer𝙵𝚃 score of 0.829. These
indings emphasize the importance of developing algorithms tailored
o the specific scenarios present in broadcasting skiing videos with
onsistent skier appearance motions followed by abrupt and sudden
rame changes.

arget representation. We performed experiments to understand the
nfluence of background appearance within the initialization box that in
kiTB outlines both the skier’s body and equipment. The composition
f the human body and the skis form a particular appearance (like a
ertically reversed T, see the first frame of the 4th row in Fig. 2) that,
hen outlined with axis-aligned bounding-boxes results in much back-
round information be included in the resulting image patch. Hence,
e evaluated the tracking accuracy when the box delineating solely the
ody’s appearance is used. By leveraging the key-point annotations for
istinct human body parts, skis, and poles available in the Ski2DPose
ataset (Bachmann et al., 2019) we obtained tracks for such appearance
lements by considering the bounding-box that encloses their specific
ppearance, in the same fashion as described in Section 6.2. We could
ot execute this evaluation with SkiTB because it currently does not
rovide bounding-box nor pose key-points for such elements. Therefore,
n such sparsely annotated tracks the OPE protocol and F-Score ↑ mea-
ure were employed to evaluate the best generic object tracker STARK.
he outcomes, presented in Table 12, substantiate that the tracker
ncounters no pronounced difficulties when tracking the combined
ppearance of the body and equipment, relative to exclusively tracking
he body’s appearance. Conversely, tracking the equipment in isolation
e.g., the athlete’s skis) presents a considerably more challenging task.

.3. Impact on applications

Finally, Table 13 presents the impact of the trackers on the 2D
kier pose estimation tasks described in Section 6.2. Generally, we
bserve that employing skier-specific trackers (YOLO-SORT, STARK𝙵𝚃,
TARK𝚂𝙺𝙸) improves the skier tracking results as well as the pose
stimation results. For AL on Ski2DPose, STARK and STARK have
𝚂𝙺𝙸 𝙵𝚃

17
Fig. 16. Impact of 𝛿 threshold values on STARK𝚂𝙺𝙸. This plot depict the F-Score ↑

values achieved by STARK𝚂𝙺𝙸 on the different skiing discipline when different values
of 𝛿 are applied to the confidence 𝑐𝑡 predicted by STARK𝙵𝚃−𝚂𝙲 and STARK𝙵𝚃 inside
STARK𝚂𝙺𝙸. Generally, 𝛿 = 0.5 results to the highest tracking accuracy due to the clear
dvantage brought on the FS videos. For AL and JP, changing the values in the range
0.1, 0.9] leads to approximately the same tracking performance.

early the same impact on AlphaPose. They improve the pose esti-
ation based on the generic object STARK by 20% in PCK ↑ and by
4% in MPJPE ↓. STARK𝚂𝙺𝙸 and YOLO-SORT have comparable impact
n JP as represented by the YouTube Skijump dataset. With respect
o STARK, they improve the PCK ↑ and MPJPE ↓ scores by 15% and
∼20% respectively. Across disciplines, STARK𝚂𝙺𝙸 results in the best gen-
eralizing tracker by tracking and impact scores. Overall, these results
show that the trackers’ performances on SkiTB reflect the impact on
high-level skiing understanding tasks. Thus, we expect STARK𝚂𝙺𝙸 and
other skier-specific tracking methodologies to be beneficial as instance-
specific athlete appearance localizers in the development of computer
vision-systems for skiing performance analysis. It is worth mentioning
that these results are obtained with the limited annotations present in
the respective small-scale datasets. We hypothesize the relation with
the SkiTB’s results to become more evident on more densely-labeled
datasets.

8. Conclusions

This paper presented a comprehensive study on tracking skiing ath-
letes in monocular multi-camera broadcasting videos. Through the eval-
uation of established and newly introduced methodologies on the newly
released dataset SkiTB, the study revealed that fine-tuned application-
specific deep learning-based algorithms demonstrate consistent track-
ing performance and promising applicability throughout a skier’s per-
formance. These trackers exhibit robustness under various conditions
such as challenging weather, fast camera motion, scale changes, and
background clutter, and they generalize well to new locations of ap-
plication. However, the study also identified certain limitations that
prevent the methods to be perfect. Challenges arise in maintaining a
continuous per-frame reference to the target skier across camera shot-
cuts, in accurately localizing the skier in the presence of distractors,
small appearance, occlusion, and fast motion. Additionally, the general-
ization to unseen athletes poses particular difficulties. Top-performance
trackers should be also improved in their efficiency. Regarding generic
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Table 13
Impact of trackers on high-level skiing performance understanding tasks. We report the impact of the top trackers’ predictions in the task of 2D body and equipment pose
stimation for the alpine skiing (AL) and ski jumping (JP) disciplines. The Tracking and Pose Estimation results related to the best tracking algorithm are highlighted in bold. As

can be expected, more accurate trackers lead to a more accurate pose prediction in general. (GT boxes were extracted from the annotated pose key-points).

Discipline Dataset Task Metric STARK YOLO-SORT STARK𝙵𝚃 STARK𝚂𝙺𝙸 GT box

AL Ski2DPose Tracking F-Score ↑ 0.751 0.830 0.848 0.849 –
Pose Estimation PCK ↑/MPJPE ↓ 0.573/0.059 0.685/0.034 0.694/ 0.033 0.686/0.033 0.682/0.036

JP YouTube Skijump Tracking F-Score ↑ 0.670 0.748 0.768 0.775 –
Pose Estimation PCK ↑/MPJPE ↓ 0.516/0.029 0.598/0.026 0.574/0.023 0.596/0.026 0.571/0.026
object trackers, we observed that they struggle to generalize to the do-
main of interest, demonstrating that they are still not able to generalize
as well as humans to situations different from those observed in training
sets.

Future work should focus on addressing these limitations. Solu-
tions may involve refining skier-specific tracking methods, improving
their generalization, and developing strategies to better integrate with
high-level skiing performance understanding modules. Furthermore,
the SkiTB will be extended with new annotations (e.g. human poses)
to enable the research and development of more sophisticated and
effective skiing performance analysis tools.

CRediT authorship contribution statement

Matteo Dunnhofer: Conceptualization, Data curation, Formal anal-
sis, Methodology, Software, Validation, Writing – original draft. Chris-
ian Micheloni: Conceptualization, Funding acquisition, Project ad-
inistration, Supervision, Validation, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The data used will be made public upon the acceptance of the paper.

cknowledgments

Research supported by the project between the University of Udine
nd the organizing committee of EYOF 2023 Friuli-Venezia Giulia.

eclaration of Generative AI and AI-assisted technologies in the
riting process

During the preparation of this work the authors used ChatGPT (GPT
.5) in order to enhance the clarity and readability of part of the
ext. After using this tool/service, the authors reviewed and edited the
ontent as needed and take full responsibility for the content of the
ublication.

eferences

achmann, R., Spörri, J., Fua, P., Rhodin, H., 2019. Motion capture from pan-tilt
cameras with unknown orientation. In: International Conference on 3D Vision. 3DV.

ertasius, G., Soo Park, H., Yu, S.X., Shi, J., 2017. Am I a baller? basketball performance
assessment from first-person videos. In: CVPR.

ertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H., 2016.
Fully-convolutional siamese networks for object tracking. In: ECCVW.

ettadapura, V., Pantofaru, C., Essa, I., 2016. Leveraging contextual cues for generating
basketball highlights. In: ACM MM.

ewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime
tracking. In: ICIP.

hat, G., Danelljan, M., Van Gool, L., Timofte, R., 2019. Learning discriminative model
prediction for tracking. In: ICCV.

olme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M., 2010. Visual object tracking using
adaptive correlation filters. In: CVPR.
18
Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J., 2022. FEAR:
Fast, efficient, accurate and robust visual tracker. In: ECCV.

Cai, Y., Liu, J., Tang, J., Wu, G., 2023. Robust object modeling for visual tracking. In:
ICCV.

Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose
estimation using part affinity fields. In: CVPR.

Čehovin, L., Kristan, M., Leonardis, A., 2013. Robust visual tracking using an adaptive
coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell. http://dx.doi.
org/10.1109/TPAMI.2012.145.

Chappa, N.V.R., Nguyen, P., Nelson, A.H., Seo, H.-S., Li, X., Dobbs, P.D., Luu, K., 2023.
SPARTAN: Self-supervised spatiotemporal transformers approach to group activity
recognition. In: CVPRW.

Chen, X., Peng, H., Wang, D., Lu, H., Hu, H., 2023. SeqTrack: Sequence to sequence
learning for visual object tracking. In: CVPR.

Chen, F., Wang, X., Zhao, Y., Lv, S., Niu, X., 2022. Visual object tracking: A survey.
Comput. Vis. Image Underst.

Cheng, B., Li, J., Chen, Y., Zeng, T., 2023. Snow mask guided adaptive residual network
for image snow removal. Comput. Vis. Image Underst.

Choi, J., Kwon, J., Lee, K.M., 2018. Real-time visual tracking by deep reinforced
decision making. Comput. Vis. Image Underst.

Cioppa, A., Giancola, S., Deliège, A., Kang, L., Zhou, X., Cheng, Z., Ghanem, B.,
Van Droogenbroeck, M., 2022. SoccerNet-tracking: Multiple object tracking dataset
and benchmark in soccer videos. In: CVPRW.

Comaniciu, D., Ramesh, V., Meer, P., 2000. Real-time tracking of non-rigid objects
using mean shift. In: CVPR. http://dx.doi.org/10.1109/CVPR.2000.854761.

Cui, Y., Jiang, C., Wang, L., Wu, G., 2022. Mixformer: End-to-end tracking with iterative
mixed attention. In: CVPR.

Cui, Y., Zeng, C., Zhao, X., Yang, Y., Wu, G., Wang, L., 2023. SportsMOT: A large
multi-object tracking dataset in multiple sports scenes. arXiv preprint arXiv:2304.
05170.

Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X., 2020. High-performance long-term
tracking with meta-updater. In: CVPR.

Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., 2019. ATOM: Accurate tracking by
overlap maximization. In: CVPR.

Dendorfer, P., Osep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., Leal-
Taixé, L., 2021. Motchallenge: A benchmark for single-camera multiple target
tracking. Int. J. Comput. Vis.

Drory, A., Zhu, G., Li, H., Hartley, R., 2017. Automated detection and tracking of
slalom paddlers from broadcast image sequences using cascade classifiers and
discriminative correlation filters. Comput. Vis. Image Underst.

Dunnhofer, M., Furnari, A., Farinella, G.M., Micheloni, C., 2023a. Visual object tracking
in first person vision. Int. J. Comput. Vis.

Dunnhofer, M., Martinel, N., Luca Foresti, G., Micheloni, C., 2019. Visual tracking by
means of deep reinforcement learning and an expert demonstrator. In: ICCVW.

Dunnhofer, M., Martinel, N., Micheloni, C., 2020. Tracking-by-trackers with a distilled
and reinforced model. In: ACCV.

Dunnhofer, M., Martinel, N., Micheloni, C., 2021. Weakly-supervised domain adaptation
of deep regression trackers via reinforced knowledge distillation. IEEE RA-L.

Dunnhofer, M., Micheloni, C., 2022. CoCoLoT: Combining complementary trackers in
long-term visual tracking. In: ICPR.

Dunnhofer, M., Simonato, K., Micheloni, C., 2022. Combining complementary trackers
for enhanced long-term visual object tracking. Image Vis. Comput.

Dunnhofer, M., Sordi, L., Micheloni, C., 2023b. Visualizing skiers’ trajectories in
monocular videos. In: CVPRW.

Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H.,
2019. LaSOT: A high-quality benchmark for large-scale single object tracking. In:
CVPR.

Fan, H., Miththanthaya, H.A., Harshit, Rajan, S.R., Liu, X., Zou, Z., Lin, Y., Ling, H.,
2021. Transparent object tracking benchmark. In: ICCV.

Fang, H.-S., Li, J., Tang, H., Xu, C., Zhu, H., Xiu, Y., Li, Y.-L., Lu, C., 2022. Alphapose:
Whole-body regional multi-person pose estimation and tracking in real-time. IEEE
Trans. Pattern Anal. Mach. Intell.

Feng, N., Song, Z., Yu, J., Chen, Y.P.P., Zhao, Y., He, Y., Guan, T., 2020. SSET: a
dataset for shot segmentation, event detection, player tracking in soccer videos.
Multimedia Tools Appl. 28971–28992.

Gadde, C.A., Jawahar, C., 2022. Transductive weakly-supervised player detection using
soccer broadcast videos. In: WACV.

Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S., 2017. Need for speed:
A benchmark for higher frame rate object tracking. In: ICCV.

http://refhub.elsevier.com/S1077-3142(24)00059-6/sb1
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb1
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb1
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb2
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb2
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb2
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb3
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb3
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb3
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb4
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb4
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb4
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb5
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb5
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb5
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb6
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb6
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb6
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb7
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb7
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb7
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb8
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb8
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb8
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb9
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb9
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb9
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb10
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb10
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb10
http://dx.doi.org/10.1109/TPAMI.2012.145
http://dx.doi.org/10.1109/TPAMI.2012.145
http://dx.doi.org/10.1109/TPAMI.2012.145
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb12
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb12
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb12
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb12
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb12
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb13
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb13
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb13
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb14
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb14
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb14
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb15
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb15
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb15
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb16
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb16
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb16
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb17
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb17
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb17
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb17
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb17
http://dx.doi.org/10.1109/CVPR.2000.854761
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb19
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb19
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb19
http://arxiv.org/abs/2304.05170
http://arxiv.org/abs/2304.05170
http://arxiv.org/abs/2304.05170
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb21
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb21
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb21
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb22
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb22
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb22
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb23
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb23
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb23
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb23
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb23
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb24
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb24
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb24
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb24
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb24
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb25
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb25
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb25
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb26
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb26
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb26
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb27
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb27
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb27
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb28
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb28
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb28
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb29
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb29
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb29
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb30
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb30
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb30
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb31
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb31
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb31
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb32
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb32
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb32
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb32
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb32
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb33
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb33
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb33
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb34
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb34
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb34
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb34
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb34
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb35
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb35
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb35
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb35
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb35
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb36
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb36
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb36
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb37
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb37
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb37


M. Dunnhofer and C. Micheloni Computer Vision and Image Understanding 243 (2024) 103978
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J., 2021. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430.

Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M., Hicks, S.L., Torr, P.H., 2016.
Struck: Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach.
Intell. http://dx.doi.org/10.1109/TPAMI.2015.2509974.

Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision.
Cambridge University Press.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: CVPR.

Held, D., Thrun, S., Savarese, S., 2016. Learning to track at 100 FPS with deep
regression networks. In: ECCV.

Henriques, J.F., Caseiro, R., Martins, P., Batista, J., 2015. High-speed tracking with
kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell.

Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K., Naemura, T., 2022. Pass receiver
prediction in soccer using video and players’ trajectories. In: CVPRW.

Hu, S., Zhao, X., Huang, L., Huang, K., 2023. Global instance tracking: Locating target
more like humans. IEEE Trans. Pattern Anal. Mach. Intell.

Huang, L., Zhao, X., Huang, K., 2019. GOT-10k: A large high-diversity benchmark for
generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell.

Huang, L., Zhao, X., Huang, K., 2020. GlobalTrack: A simple and strong baseline for
long-term tracking. In: AAAI.

International Olympic Committee, 2023. History of alpine skiing. URL: https://
olympics.com/en/sports/alpine-skiing/.

International Ski and Snowboard Federation, URL: https://www.fis-ski.com.
Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L.,

Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG, AlexWang1900, Dia-
conu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ingham, F., Frederik, Guilhen,
Hatovix, Poznanski, J., Fang, J., Yu, L., changyu98, Wang, M., Gupta, N.,
Akhtar, O., PetrDvoracek, Rai, P., 2020. Ultralytics/yolov5: v3.1 - Bug fixes and
performance improvements. http://dx.doi.org/10.5281/zenodo.4154370.

Koshkina, M., Pidaparthy, H., Elder, J.H., 2021. Contrastive learning for sports video:
Unsupervised player classification. In: CVPRW.

Kou, Y., Gao, J., Li, B., Wang, G., Hu, W., Wang, Y., Li, L., 2023. ZoomTrack:
Target-aware non-uniform resizing for efficient visual tracking. In: NeurIPS.

Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K.,
Chang, H.J., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., et al., 2023. The
tenth visual object tracking VOT2022 challenge results. In: ECCVW.

Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.K.,
Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., He, L., Zhang, Y., Yan, S.,
Yang, J., Fernández, G., et al., 2020. The eighth visual object tracking VOT2020
challenge results. In: Bartoli, A., Fusiello, A. (Eds.), ECCVW.

Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K.,
Chang, H.J., Danelljan, M., Cehovin, L., Lukežič, A., Drbohlav, O., Käpylä, J.,
Häger, G., Yan, S., Yang, J., Zhang, Z., Fernández, G., 2021. The ninth visual
object tracking VOT2021 challenge results. In: ICCVW.

Kristan, M., Perš, J., Perše, M., Kovačič, S., 2009. Closed-world tracking of multiple
interacting targets for indoor-sports applications. Comput. Vis. Image Underst.

Li, X., Chuah, M.C., 2018. Rehar: Robust and efficient human activity recognition. In:
WACV.

Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J., 2019. SIAMRPN++: Evolution
of siamese visual tracking with very deep networks. In: CVPR.

Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H., 2022. Swintrack: A simple and strong
baseline for transformer tracking. In: NeurIPS.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd:
Single shot multibox detector. In: ECCV.

Liu, J., Carr, P., Collins, R.T., Liu, Y., 2013. Tracking sports players with
context-conditioned motion models. In: CVPR.

Lu, J., Li, S., Guo, W., Zhao, M., Yang, J., Liu, Y., Zhou, Z., 2023. Siamese graph
attention networks for robust visual object tracking. Comput. Vis. Image Underst.

Ludwig, K., Harzig, P., Lienhart, R., 2022. Detecting arbitrary intermediate keypoints
for human pose estimation with vision transformers. In: WACVW.

Ludwig, K., Kienzle, D., Lorenz, J., Lienhart, R., 2023. Detecting arbitrary keypoints on
limbs and skis with sparse partly correct segmentation masks. In: WACVW.

Lukeźič, A., Zajc, L.Č., Vojíř, T., Matas, J., Kristan, M., 2020. Performance evaluation
methodology for long-term single-object tracking. IEEE Trans. Cybern.

Maresca, M.E., Petrosino, A., 2013. MATRIOSKA: A multi-level approach to fast tracking
by learning. In: International Conference on Image Analysis and Processing. ICIAP.

Matsumura, S., Mikami, D., Saijo, N., Kashino, M., 2021. Spatiotemporal motion
synchronization for snowboard big air. In: 1st Workshop on Computer Vision for
Winter Sports at WACV 2022.

Mauthner, T., Koch, C., Tilp, M., Bischof, H., 2007. Visual tracking of athletes in beach
volleyball using a single camera. Int. J. Comput. Sci. Sport.

Mayer, C., Danelljan, M., Bhat, G., Paul, M., Paudel, D.P., Yu, F., Van Gool, L., 2022.
Transforming model prediction for tracking. In: CVPR.

Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V., 2021. Learning target candidate
association to keep track of what not to track. In: ICCV.

Morimitsu, H., Bloch, I., Cesar-Jr, R.M., 2017. Exploring structure for long-term tracking
of multiple objects in sports videos. Comput. Vis. Image Underst.

Mueller, M., Smith, N., Ghanem, B., 2016. A benchmark and simulator for UAV
tracking. In: ECCV.

Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B., 2018. TrackingNet: A
Large-Scale Dataset and Benchmark for Object Tracking in the Wild. In: ECCV.
Springer Verlag.
19
Nam, H., Han, B., 2016. Learning multi-domain convolutional neural networks for visual
tracking. In: CVPR.

Pidaparthy, H., Dowling, M.H., Elder, J.H., 2021. Automatic play segmentation of
hockey videos. In: CVPRW.

Pidaparthy, H., Elder, J., 2019. Keep your eye on the puck: Automatic hockey
videography. In: WACV.

Qi, J., Li, D., Zhang, C., Wang, Y., 2022. Alpine skiing tracking method based on deep
learning and correlation filter. IEEE Access.

Quiroga, J., Carrillo, H., Maldonado, E., Ruiz, J., Zapata, L.M., 2020. As seen on TV:
Automatic basketball video production using Gaussian-based actionness and game
states recognition. In: CVPRW.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified,
real-time object detection. In: CVPR.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS.

Rhodin, H., Meyer, F., Spörri, J., Müller, E., Constantin, V., Fua, P., Katircioglu, I., Salz-
mann, M., 2018. Learning monocular 3D human pose estimation from multi-view
images. In: CVPR. http://dx.doi.org/10.1109/CVPR.2018.00880.

Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C., 2016. Performance measures
and a data set for multi-target, multi-camera tracking. In: ECCV.

Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., TOs-
manov, Kruchinin, D., Zankevich, A., DmitriySidnev, Markelov, M., Johannes222,
Chenuet, M., a-andre, telenachos, Melnikov, A., Kim, J., Ilouz, L., Glazov, N.,
Priya4607, Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., vugia truong,
zliang7, lizhming, Truong, T., 2020. Opencv/cvat: v1.1.0. http://dx.doi.org/10.
5281/zenodo.4009388.

Steinkellner, P., Schöffmann, K., 2021. Evaluation of object detection systems and
video tracking in skiing videos. In: 2021 International Conference on Content-Based
Multimedia Indexing. CBMI, http://dx.doi.org/10.1109/CBMI50038.2021.9461905.

Štepec, D., Skočaj, D., 2022. Video-based ski jump style scoring from pose trajectory.
In: WACVW.

The Nielsen Company, 2022a. FIS alpine skiing world cup report 2021-
22. URL: https://assets.fis-ski.com/image/upload/v1653461303/fis-prod/assets/
FIS_Alpine_Skiing_World_Cup_Report_2021-22_short.pdf.

The Nielsen Company, 2022b. FIS freestyle ski world cup report 2021-22.
URL: https://assets.fis-ski.com/image/upload/v1653461304/fis-prod/assets/
FIS_Freestyle_Ski_World_Cup_Report_2021_22_short.pdf.

The Nielsen Company, 2022c. Viessmann FIS ski jumping world cup men 2021–
2022. URL: https://assets.fis-ski.com/image/upload/v1653461308/fis-prod/assets/
Viessmann_FIS_Ski_Jumping_World_Cup_Men_2022_short.pdf.

Theiner, J., Ewerth, R., 2023. TVCalib: Camera calibration for sports field registration
in soccer. In: WACV.

Theiner, J., Gritz, W., Müller-Budack, E., Rein, R., Memmert, D., Ewerth, R., 2022.
Extraction of positional player data from broadcast soccer videos. In: WACV.

Thomas, G., Gade, R., Moeslund, T.B., Carr, P., Hilton, A., 2017. Computer vision for
sports: Current applications and research topics. Comput. Vis. Image Underst.

Vanat, L., 2022. 2022 International report on snow & mountain tourism. URL: https:
//www.vanat.ch/RM-world-report-2022.pdf.

Vandeghen, R., Cioppa, A., Van Droogenbroeck, M., 2022. Semi-supervised training to
improve player and ball detection in soccer. In: CVPRW.

Vats, K., Fani, M., Clausi, D.A., Zelek, J., 2021. Puck localization and multi-task event
recognition in broadcast hockey videos. In: CVPRW.

Vats, K., McNally, W., Walters, P., Clausi, D.A., Zelek, J.S., 2022. Ice hockey player
identification via transformers and weakly supervised learning. In: CVPRW.

Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B., 2021. Canonpose:
Self-supervised monocular 3d human pose estimation in the wild. In: CVPR.

Wang, M., Deng, W., 2018. Deep visual domain adaptation: A survey. Neurocomputing
312.

Wang, J., Qiu, K., Peng, H., Fu, J., Zhu, J., 2019. Ai coach: Deep human pose estimation
and analysis for personalized athletic training assistance. In: ACM MM.

Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y., 2023. Autoregressive visual tracking. In:
CVPR.

Wu, Y., Lim, J., Yang, M.-H., 2015. Object tracking benchmark. IEEE Trans. Pattern
Anal. Mach. Intell.

Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., Lu, H., 2022. Towards grand
unification of object tracking. In: ECCV.

Yan, B., Peng, H., Fu, J., Wang, D., Lu, H., 2021. Learning spatio-temporal transformer
for visual tracking. In: ICCV.

Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X., 2019. ’Skimming-perusal’ tracking: A
framework for real-time and robust long-term tracking. In: ICCV.

Ye, B., Chang, H., Ma, B., Shan, S., Chen, X., 2022. Joint feature learning and relation
modeling for tracking: A one-stream framework. In: ECCV.

Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y., 2017. Action-decision networks for visual
tracking with deep reinforcement learning. In: CVPR.

Zhu, Y., Yan, W.Q., 2022. Ski fall detection from digital images using deep learning.
In: International Conference on Control and Computer Vision.

Zwölfer, M., Heinrich, D., Schindelwig, K., Wandt, B., Rhodin, H., Spoerri, J.,
Nachbauer, W., 2021. Improved 2D keypoint detection in out-of-balance and fall
situations – combining input rotations and a kinematic model. In: 1st Workshop
on Computer Vision for Winter Sports at WACV 2022.

http://arxiv.org/abs/2107.08430
http://dx.doi.org/10.1109/TPAMI.2015.2509974
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb40
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb40
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb40
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb41
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb41
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb41
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb42
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb42
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb42
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb43
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb43
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb43
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb44
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb44
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb44
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb45
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb45
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb45
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb46
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb46
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb46
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb47
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb47
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb47
https://olympics.com/en/sports/alpine-skiing/
https://olympics.com/en/sports/alpine-skiing/
https://olympics.com/en/sports/alpine-skiing/
https://www.fis-ski.com
http://dx.doi.org/10.5281/zenodo.4154370
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb51
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb51
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb51
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb52
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb52
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb52
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb53
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb53
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb53
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb53
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb53
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb54
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb55
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb56
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb56
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb56
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb57
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb57
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb57
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb58
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb58
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb58
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb59
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb59
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb59
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb60
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb60
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb60
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb61
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb61
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb61
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb62
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb62
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb62
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb63
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb63
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb63
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb64
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb64
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb64
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb65
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb65
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb65
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb66
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb66
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb66
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb67
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb67
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb67
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb67
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb67
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb68
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb68
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb68
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb69
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb69
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb69
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb70
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb70
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb70
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb71
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb71
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb71
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb72
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb72
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb72
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb73
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb73
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb73
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb73
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb73
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb74
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb74
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb74
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb75
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb75
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb75
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb76
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb76
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb76
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb77
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb77
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb77
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb78
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb78
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb78
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb78
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb78
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb79
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb79
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb79
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb80
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb80
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb80
http://dx.doi.org/10.1109/CVPR.2018.00880
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb82
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb82
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb82
http://dx.doi.org/10.5281/zenodo.4009388
http://dx.doi.org/10.5281/zenodo.4009388
http://dx.doi.org/10.5281/zenodo.4009388
http://dx.doi.org/10.1109/CBMI50038.2021.9461905
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb85
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb85
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb85
https://assets.fis-ski.com/image/upload/v1653461303/fis-prod/assets/FIS_Alpine_Skiing_World_Cup_Report_2021-22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461303/fis-prod/assets/FIS_Alpine_Skiing_World_Cup_Report_2021-22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461303/fis-prod/assets/FIS_Alpine_Skiing_World_Cup_Report_2021-22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461304/fis-prod/assets/FIS_Freestyle_Ski_World_Cup_Report_2021_22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461304/fis-prod/assets/FIS_Freestyle_Ski_World_Cup_Report_2021_22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461304/fis-prod/assets/FIS_Freestyle_Ski_World_Cup_Report_2021_22_short.pdf
https://assets.fis-ski.com/image/upload/v1653461308/fis-prod/assets/Viessmann_FIS_Ski_Jumping_World_Cup_Men_2022_short.pdf
https://assets.fis-ski.com/image/upload/v1653461308/fis-prod/assets/Viessmann_FIS_Ski_Jumping_World_Cup_Men_2022_short.pdf
https://assets.fis-ski.com/image/upload/v1653461308/fis-prod/assets/Viessmann_FIS_Ski_Jumping_World_Cup_Men_2022_short.pdf
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb89
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb89
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb89
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb90
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb90
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb90
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb91
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb91
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb91
https://www.vanat.ch/RM-world-report-2022.pdf
https://www.vanat.ch/RM-world-report-2022.pdf
https://www.vanat.ch/RM-world-report-2022.pdf
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb93
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb93
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb93
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb94
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb94
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb94
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb95
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb95
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb95
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb96
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb96
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb96
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb97
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb97
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb97
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb98
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb98
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb98
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb99
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb99
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb99
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb100
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb100
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb100
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb101
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb101
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb101
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb102
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb102
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb102
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb103
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb103
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb103
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb104
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb104
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb104
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb105
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb105
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb105
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb106
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb106
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb106
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107
http://refhub.elsevier.com/S1077-3142(24)00059-6/sb107

	Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing
	Introduction
	Related Work
	Visual Object Tracking
	Visual Tracking in Sport Videos
	Applications of Computer Vision to Skiing

	Problem Formulation
	The SkiTB Dataset
	Video Collection
	Frame-level Annotations
	Video-level and Clip-level Annotations
	Training-Test Splits
	Data Quality

	Trackers
	Generic Object Trackers
	Skier-specific Trackers

	Evaluation
	Tracking Performance
	Tracking Impact
	Implementation Details

	Results
	General Tracking Performance
	In-depth Analysis
	Impact on Applications

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Declaration of Generative AI and AI-assisted technologies in the writing process
	References


