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1 Introduction

The inherent non-uniqueness of canonical quantization for fields on Riemannian spacetime
leads to an ambiguity in defining a fundamental vacuum state. This ambiguity arises due to
the intricate relationship between the choice of spacetime coordinates and their association
with the Hamiltonian in relativistic quantum field theory. Even in Minkowski spacetime,
the traditional vacuum state ceases to be the ground state when observed in a non-inertial
coordinate system [1]. As a consequence, in adopting uniformly accelerated coordinates, the
ordinary Minkowski vacuum is no longer void but encompasses radiation. Ideally, such a
phenomenon might be probed by a detector experiencing acceleration within the vacuum,
registering a non-empty state due to a radiation exhibiting a thermal spectrum. Quantitatively,
an accelerated idealized thermometer records a non-vanishing temperature TU proportional
to the acceleration a (measured from an inertial rest frame), expressed by the equation

TU = aℏ
2πkc, (1.1)

where, as usual, ℏ denotes the reduced Planck constant, k Boltzmann’s constant and c the
speed of light.1 This observation fundamentally highlights that the temperature of a system
undergoing acceleration in vacuum experiences a substantial increase due to interactions
with quantum fluctuations. This phenomenon encapsulates the core of the Unruh effect,
with TU defining the Unruh temperature [2].

The intriguing similarity between acceleration and temperature has opened avenues for
investigating the interplay among gravity, thermodynamics and quantum field theory. This
connection has spurred the notion that elementary particles could serve as effective radiation
detectors. An early proposal ventured to relate the polarization effects of electrons circulating

1For the sake of notational convenience, subsequent calculations consider ℏ = c = k = 1, simplifying the
expression to TU = a/(2π).
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in a magnetic field, akin to uniform circular accelerated motion, with the temperature
effect outlined in the Unruh effect [3–5]. This proposal sought to interpret the incomplete
polarization of electrons within a storage ring through the lens of the Unruh effect.

The concept of utilizing elementary particles as thermometers takes a turn when consid-
ering spontaneous symmetry breaking within the mechanism of heating by acceleration in
vacuum. The prospect arises from the realization that thermal effects can potentially trigger
the restoration of a spontaneously broken symmetry [6]. By naively extending this idea, the
analogy between acceleration and temperature might suggest the possibility that acceleration,
a proxy of temperature in the Unruh effect, could induce a transition between a broken and a
restored symmetry phase for a specific critical acceleration and fixed interaction strength.

Building upon this intuitive concept, investigating the potential induction of a transition
within an interacting system through acceleration — akin to the process of melting a
condensate — emerges as a pivotal inquiry in elucidating the intricate relationship between
quantum field theory and general relativity. In particular, this hypothesis implies that a
condensate might operate as an effective thermometer, offering a means to measure the
critical acceleration of the associated phase transition. However, this intriguing proposition
has been met with varied conclusions over the years, following the seminal work by ref. [7].
Subsequent studies have revisited this question with differing outcomes [8–21].

The purpose of this work is to address this problem by means of a covariant renormaliza-
tion scheme. The aim is to scrutinize the relationship between acceleration, thermodynamics,
and quantum field theory, probing the potential of accelerated systems as thermodynamic
analogs while grappling with the implications and varying conclusions drawn from extensive
investigations in this domain. In particular, we consider a scalar theory where spontaneous
symmetry breaking is present according to an inertial-frame description; we rephrase the
description according to the perspective of a uniformly accelerated observer, wondering if,
for sufficiently high proper acceleration, the thermal bath predicted by Unruh is able to
restore the broken symmetry of the system. We pass through the comparison of two different
approaches, already present in the scientific literature, which seemingly lead to different
answers [7, 13]. By retracing one of the two procedures with some variations, we show that
it can be reconciled with the other.

Outline. The plan of the paper is as follows. In section 2 we remind some basic facts about
the quantization of a free scalar field in a uniformly accelerated frame. These results set up
our notation and are a useful starting point for the discussion of the interacting case to be
addressed in section 3. In particular, in section 3.1 we review the original result concerning
the invariance of the vacuum (n-point) Green’s functions presented in ref. [7], from which it
follows straightforwardly that symmetry cannot be restored as an effect of acceleration, at
least for the set-up that we consider in this paper. Furthermore, in section 3.2 we inspect
the same problem using the effective action formalism and using a different implementation
than those discussed before. Renormalization is one of the crucial points of our approach
and it is discussed in detail in section 4, where we recover the conclusion of ref. [7] using a
covariant renormalization scheme. Our conclusions are that, at least for the system that we
consider in this work, acceleration does not trigger a restoration of symmetry. This result
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is clarified in section 5 from the point of view of a covariant, point-splitting approach to
regularization. We conclude with some comments and remarks in section 6.

2 Rindler quantization in a free-field scalar theory

In this work, we are interested in an interacting relativistic scalar field theory described
by the action

S =
∫
d4x

(1
2∂

µϕ∂µϕ− 1
2m

2ϕ2 − λ

4!ϕ
4
)
. (2.1)

The underlying background geometry is assumed to be Minkowski spacetime with signature
(+, −, −, −) and xµ = (t, x, x⊥), where x⊥ = (y, z), represents the conventional Cartesian
coordinates.

We begin assuming the system described by the action (2.1) to be at rest in an inertial
reference frame with m2 < 0, meaning that in the absence of acceleration, the theory is in
a broken symmetry phase at zero temperature. In particular, the action (2.1) is invariant
under the Z2-transformation ϕ → −ϕ, but the vacuum expectation value ⟨ϕ(x)⟩ is not.
Therefore, in the quantum theory there must be two degenerate vacuum states, |0M+⟩ and
|0M−⟩. To the tree-level one has that

⟨0M±|ϕ(x) |0M±⟩ ≃ φ±
cl, (2.2)

where

φ±
cl = ±

(
−6m2

λ

)1/2
(2.3)

are the minima of the potential V (φ) = 1
2m

2φ2 + λ
4!φ

4. The two vacua are such that
|0M+⟩ ↔ |0M−⟩ under ϕ → −ϕ, and are equivalent in principle, but only one of the two is
chosen when the theory is perturbed in a Z2-breaking way. Details can be found e.g. in [22].

The broken symmetry can in principle be restored at high temperature, e.g. by putting
the system in a thermal bath at a temperature T larger than a critical one Tcr; in this regime,
one has Tr [ϕ(x) e−H/T ]/Tr [e−H/T ] = 0, being H the Hamiltonian of the system [6].

The question that we wish to address is whether an accelerated observer (who sees the
Minkowski vacuum as a thermal state) can see a transition into a phase of restored symmetry,
provided that his/her proper acceleration exceeds a critical value.

To describe the perspective of a uniformly accelerated observer with proper acceleration
a, we perform a coordinate transformation to Rindler coordinates x̄µ = (τ, ρ, x⊥)t = ρ sinh aτ, x = ρ cosh aτ, ρ > 0 (R)

t = −ρ sinh aτ, x = −ρ cosh aτ, ρ > 0 (L)
(2.4)

where the right (R) and left (L) wedges are defined in Minkowski spacetime [23–25]. We
shall refer to the union R ∪ L as the Rindler space (figure 1). The line element in these
coordinates takes the following static form

ds2 = ρ2 a2 dτ2 − dρ2 − dy2 − dz2. (2.5)
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Figure 1. Rindler wedges in the plane (t, x). Rindler coordinates are defined in the regions R and
L: time coordinates τ = const are straight lines passing through the origin, and space coordinates
ρ = const are branches of hyperbolae, corresponding to the worldlines of different Rindler observers.

Before moving on to the interacting case, we shall briefly discuss the quantization of the free
theory (action (2.1) with λ = 0) in order to establish some elementary results to be used later.
The Klein-Gordon equation corresponding to Rindler coordinates is( 1

(ρ a)2∂
2
τ − 1

ρ
∂ρ ρ ∂ρ − ∂2

y − ∂2
z +m2

)
ϕ = 0. (2.6)

Solutions to eq. (2.6) can be found in the right R wedge in the form

fR
ωk⊥

= 1
(2π)2

[4
a
sinh

(
ωπ

a

)] 1
2
Ki ω

a
(µk⊥ρ)e

−iωτ eik⊥·x⊥ (2.7)

where Kν is the modified Bessel function of the second kind, and µk⊥ =
√

k2
⊥ +m2. These

modes (2.7) are orthonormal with respect to the Klein-Gordon inner product, which, given
two solutions f1 and f2 of (2.6), can be written as

(f1, f2) ≡ i

∫
ρ>0

dρ

|ρ a|
d2x⊥(f∗1∂τf2 − f2∂τf

∗
1 ), (2.8)

in Rindler coordinates over R.
Canonical quantization can be carried out in the standard way by expanding the field

operator in terms of the set {fR
ωk⊥

} ∪ {fR∗
ωk⊥

}, which is complete over the wedge R:

ϕ =
∫

ω>0
dω d2k⊥(aR

ωk⊥
fR

ωk⊥
+ aR†

ωk⊥
fR∗

ωk⊥
). (2.9)

Imposing the following commutation relations between the (annihilation and creation) op-
erators aR

ωk⊥
and aR†

ω′k′
⊥

,

[aR
ωk⊥

, aR
ω′k′

⊥
] = [aR†

ωk⊥
, aR†

ω′k′
⊥
] = 0,

[aR
ωk⊥

, aR†
ω′k′

⊥
] = δ(ω − ω′) δ(2)(k⊥ − k′

⊥),
(2.10)
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allows one to define the (Fulling-Rindler) vacuum state |0R⟩ in the R wedge as follows:

aR
ωk⊥

|0R⟩ = 0 ∀ω, k⊥. (2.11)

The quantization procedure can be carried out similarly over the left wedge, L, by expanding
the field in modes2 as

ϕ =
∫

ω>0
dω d2k⊥(aL

ωk⊥
fL∗

ωk⊥
+ aL†

ωk⊥
fL

ωk⊥
), (2.12)

and by imposing commutation relations between the aL
ωk⊥

and aL†
ω′k′

⊥
operators analogous to

the (2.10). This allows one to define another vacuum state |0L⟩ in the wedge L, which satisfies

aL
ωk⊥

|0L⟩ = 0 ∀ω, k⊥. (2.13)

The union of the two sets of L-modes and R-modes is complete over the whole Rindler space
R ∪ L (here the L/R-modes are assumed to vanish in the region R/L, respectively), with
the corresponding expansion taking the form:

ϕ =
∫

ω>0
dω d2k⊥(aR

ωk⊥
fR

ωk⊥
+ aR†

ωk⊥
fR∗

ωk⊥
+ aL

ωk⊥
fL∗

ωk⊥
+ aL†

ωk⊥
fL

ωk⊥
). (2.14)

We explicitly remark that Rindler modes do not share the same analyticity properties as
the standard Minkowski modes used in inertial frames: this implies that the two quantization
procedures lead to inequivalent particle structures (or unitarily inequivalent constructions) [1,
2]. However, it is possible to construct two independent linear combinations of Rindler modes
with the appropriate analyticity properties [2]; these take the following normalized expressions

fA
ωk⊥

= 1
|2 sinh(ωπ

a )|1/2 (e
πω
2a fR

ωk⊥
+ e−

πω
2a fL

ωk⊥
), (2.15)

fB
ωk⊥

= 1
|2 sinh(ωπ

a )|1/2 (e
−πω

2a fR∗
ωk⊥

+ e
πω
2a fL∗

ωk⊥
) (2.16)

with ω > 0. Using these A and B combinations as basis, one can express the decompo-
sition (2.14) as:

ϕ =
∫

ω>0
dω d2k⊥(aA

ωk⊥
fA

ωk⊥
+ aA†

ωk⊥
fA∗

ωk⊥
+ aB

ωk⊥
fB

ωk⊥
+ aB†

ωk⊥
fB∗

ωk⊥
). (2.17)

This construction is unitarily equivalent (i.e., it leads to an equivalent quantization) to the
standard inertial one, i.e. its annihilation operators define a vacuum state |0M ⟩ corresponding
to the one that we obtain in Minkowski spacetime. Moreover, the A-operators commute
with the B-operators defined in (2.17), and the two sets separately satisfy commutation
relations that are analogous to (2.10).

3 Interacting quantum field theories

We can now examine what happens in the presence of interactions. First, we briefly remind
the reader of the original result of ref. [7], whose conclusions will be later recovered using
a different approach.

2Here modes fL
ωk⊥ have the same form as in (2.7).

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
2
1
8

3.1 Green function approach

The generalization of the Unruh effect for an interacting quantum field theory was first
examined by Sewell in ref. [26] with an axiomatic scheme, for a class of manifolds including
Schwarzschild spacetime as well as Minkowski spacetime, and later by Unruh and Weiss in [7]
in the path integral approach. The latter work considers both scalars and fermions with a
polynomial interaction; here, without restrictions, we only consider the case of scalars. Let
us first consider the following Rindler Hamiltonian restricted to the right wedge

HR =
∫

ρ>0
dρ d2x⊥ (ρ a)

((πR)2

2 + (∂ρϕ)2

2 + (∇⊥ϕ)2

2 + V (ϕ)
)

(3.1)

where πR is the canonically conjugate momentum to ϕ. The Hamiltonian (3.1) is the generator
of τ -translations in R (it could be analogously defined for the left wedge L, up to a sign
change due to the fact that the vector field ∂τ is past-directed in L). This is not the usual
Minkowski Hamiltonian (the one studied e.g. in chapter 2 of [27]), but it corresponds, instead,
to a times the generator of Lorentz-boosts, restricted to the right Rindler wedge. The main
result obtained in ref. [7] is the proof of the following equality

⟨0M | (ϕ(x1) . . . ϕ(xn))t |0M ⟩ = Tr[e−βU HR(ϕ(x̄1) . . . ϕ(x̄n))τ ]
Tr[e−βU HR ]

, (3.2)

where βU = T−1
U . In (3.2) the points xi have to be within the same Rindler wedge (e.g.,

R), and so does the trace Tr . This technical subtlety is also emphasized in [26], and it is
an important detail in the parallel between relations like (3.2) and the idea of thermofield
dynamics [28], as first noted in [29]. Moreover, the time ordering in (3.2) can be taken,
equivalently, with respect to t or τ . What eq. (3.2) implies is that all vacuum Green’s
functions between spacetime points in the same Rindler wedge in Minkowski coordinates are
the same as the real-time Green’s functions of the Rindler observer in thermal equilibrium at
a temperature TU [7]: physically, the accelerated observer sees a thermal spectrum at the
Unruh temperature in the Minkowski vacuum state. From this result, ref. [7] argues that,
given a theory with multiple vacua and where a phase transition is expected to occur as
a function of temperature, the same does not occur as a function of acceleration (ref. [7]
considers as an example a scalar theory of the form (2.1)). Concretely, this is done by
assuming that the λϕ4 theory (2.1), which has two degenerate vacua, is perturbed by a
symmetry-breaking term J , in order for the resulting ground state to be unique (i.e., it is a
unique vacuum |0M ⟩). Hence, an inertial observer measures

⟨0M |ϕ(x) |0M ⟩ ̸= 0. (3.3)

The above is a statement that for an inertial observer, symmetry is spontaneously broken.
The question is whether, for a Rindler (accelerated) observer with proper acceleration a, the
symmetry can be restored for some sufficiently large value of the acceleration. This is the case if

Tr[e−βU HR
ϕ(x̄)]/Tr[e−βU HR ] = 0. (3.4)

However, from (3.2) and from (3.3) it follows that

Tr[e−βU HR
ϕ(x̄)]/Tr[e−βU HR ] = ⟨0M |ϕ(x) |0M ⟩ ̸= 0. (3.5)

– 6 –
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The above relation has to be understood in the limit of a vanishing perturbation J . Hence,
ref. [7] concludes that there is no threshold value of a beyond which the Rindler observer
detects a symmetry restoration. The same conclusion is reached, for example, in ref. [18, 19].

3.2 Effective action approach

An alternative way to address the same problem is by computing the effective potential, as
we describe below. This approach has been taken in a number of works, see for example
refs. [13, 15–17], where a different conclusion is reached.

We shall take the point of view of an accelerated observer located in the R wedge, who
measures a (Unruh) temperature locally proportional to his/her own proper acceleration.
The action of our system as seen by the accelerated observer (in Rindler coordinates) is

SR =
∫
d4x̄

√
−g
(
gµν 1

2 ∂µφ∂νφ− 1
2m

2φ2 − λ

4!φ
4
)

(3.6)

with
gµν = diag(ρ2a2, −1, −1, −1),
g = det gµν = −ρ2a2.

(3.7)

The difference between the above action SR and expression (2.1) is the explicit presence in (3.6)
of the metric tensor. Starting from (3.6), we can (i) evaluate the one-loop effective action
ΓR at finite (Unruh) temperature by expanding the action around a constant background
field φ0, and (ii) compute the quadratic path integral with periodic boundary conditions,
φ(τ − iβU ) = φ(τ), which are consistently imposed on the field in a scalar thermal state at
temperature TU . This leads to the well-known general expression

ΓR(φ0) = SR(φ0) +
i

2Tr ln[∂µ
√
−ggµν∂ν +

√
−gM2], (3.8)

where M2 = m2 + λφ2
0/2. The trace of the differential operator can be evaluated by

spanning the related Hilbert space in terms of a basis of position eigenstates |x⟩ (see e.g. [36]
for reference), satisfying the Dirac orthonormality property ⟨x|x′⟩ = δ(x − x′), and the
completeness relation 1 =

∫
d4x |x⟩ ⟨x|. Thus, it is possible to rewrite the 1-loop contribution

to the effective action as follows

Tr ln[∂µ(
√
−ggµν∂ν) +

√
−gM2]

=
∫
d4x̄′

∫ M2

0
dq

d

dq

(
⟨x̄′| ln

[
∂µ

√
−ggµν∂ν +

√
−gq

]
|x̄′⟩

)
+
∫
d4x̄′ ⟨x̄′| ln

[
∂µ

√
−ggµν∂ν

]
|x̄′⟩ ,

(3.9)
or equivalently, using the fact that G(x̄, x̄′, m) = ⟨x̄|

[
∂µ

√
−ggµν∂ν +

√
−gM2]−1 |x̄′⟩, equa-

tion (3.9) takes the form

Tr ln[∂µ(
√
−ggµν∂ν) +

√
−gM2]

=
∫
d4x̄′

√
−g

∫ M2

0
dq lim

x̄→x̄′
G(x̄, x̄′, m) +

∫
d4x̄′ ⟨x̄′| ln

[
∂µ

√
−ggµν∂ν

]
|x̄′⟩ ,

(3.10)

where
G(x̄, x̄′, m) ≡ iTr[e−βU HR

(ϕ(x̄)ϕ(x̄′))τ ]/Tr[e−βU HR
]|free theory (3.11)

– 7 –
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is the free-field thermal propagator in the R wedge. In the r.h.s. of (3.10), the integral of
the logarithm is a purely kinetic term, therefore independent of φ2

0, so it can be neglected
since we are interested in the φ2

0 differentiation of the effective potential. From the definition
of the effective potential V R(φ0),

ΓR(φ0) = −
∫
d4x̄

√
−g V R(φ0), (3.12)

and using (3.10) in (3.8), we obtain

V R(φ0) =
1
2m

2φ2
0 +

λ

4!φ
4
0 −

i

2

∫ M2

0
dq2 lim

x̄→x̄′
G(x̄, x̄′, q). (3.13)

Knowledge of the effective potential allows us to obtain the necessary conditions for symmetry
restoration: the coefficient of the quadratic term in the effective action must be positive
(with λ ≥ 0), i.e.,

0 ≤ ∂V R

∂φ2
0

∣∣∣∣
φ0=0

. (3.14)

In our case, we obtain

∂V R

∂φ2
0

∣∣∣∣
φ0=0

= m2

2 − i
λ

4 lim
x̄→x̄′

G(x̄, x̄′, q). (3.15)

Up to this point, we have closely followed the procedure discussed in the existing literature,
and the result agrees with existing calculations. However, in the following we depart from
previous calculations and choose to carry out the computation of the Green’s function using
the canonical formalism: we, then, take the expansion of the field operator in terms of the
analytic modes (2.17), where, as we know, aA

ω k⊥
and aB

ω k⊥
annihilate |0M ⟩. As long as the

equality (3.2) holds, we should have

G(x̄, x̄′, m) = i ⟨0M | (ϕ(x̄)ϕ(x̄′))τ |0M ⟩ . (3.16)

(In the case τ > τ ′, the Feynman propagator is reduced to ⟨0M |ϕ(x̄)ϕ(x̄′) |0M ⟩.) Upon
substitution of the mode expansion (2.17), the only nonzero contributions in the r.h.s.
of (3.16) come from the terms containing aA

ω k⊥
aA†

ω k⊥
or aB

ω k⊥
aB†

ω k⊥
. Using the commutation

rules for these operators, we have

⟨0M | aA
ω k⊥

aA†
ω k⊥

|0M ⟩ = ⟨0M | aB
ω k⊥

aB†
ω k⊥

|0M ⟩ = δ(ω − ω′)δ(2)(k⊥ − k′
⊥). (3.17)

Using the above relations, along with (2.15), (2.16), (2.17), in the Feynman propagator (3.16)
yields

G(x̄, x̄′, m) =i
∫ ∞

0

dω

aπ2 cosh
(
πω

a
− iω|τ − τ ′|

)
×∫

d2k⊥
(2π)2 ei k⊥·(x⊥−x′

⊥)Ki ω
a
(µk⊥ρ)Ki ω

a
(µk⊥ρ

′).
(3.18)

This result is consistent with [30]. Similarly, we compute the Feynman propagator evaluated
on the Rindler vacuum,

G0(x̄, x̄′, m) ≡ i ⟨0R| (ϕ(x̄)ϕ(x̄′))τ |0R⟩ . (3.19)
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The procedure is analogous, but here we expand the field operators on the Rindler modes
fR

ωk⊥
using (2.9), which leads to

G0(x̄, x̄′, m) =i
∫ ∞

0

dω

aπ2 sinh
(
πω

a

)
e−iω|τ−τ ′|×∫

d2k⊥
(2π)2 ei k⊥·(x⊥−x′

⊥)Ki ω
a
(µk⊥ρ)Ki ω

a
(µk⊥ρ

′),
(3.20)

and is consistent with, both, [30] and [31].
In order to obtain the effective potential, we need to compute the coincidence limit x̄→ x̄′

of the Green’s function. In this limit the two propagators G0(x̄, x̄′, m) and G(x̄, x̄′, m) both
diverge, as it can be seen by performing the integration in d2k⊥. This can be explicitly
calculated in the limit mρ ≪ 1, leading to

lim
x̄→x̄′

G(x̄, x̄′, m) = i

(2π)2
1

(aρ)2

∫ ∞

0
dω ω coth

(
πω

a

)
(3.21)

lim
x̄→x̄′

G0(x̄, x̄′, m) = i

(2π)2
1

(aρ)2

∫ ∞

0
dω ω. (3.22)

By substituting (3.21) in (3.15), we obtain

∂V R

∂φ2
0

∣∣∣∣
φ0=0

= m2

2 + λ

16π2
1

(aρ)2

∫ ∞

0
dω ω coth

(
πω

a

)
(3.23)

= m2

2 + λ

16π2
1

(aρ)2

∫ ∞

0
dω ω

(
1 + 2

e
2πω

a − 1

)
. (3.24)

We now explicitly note that taking ρ = 1/a considers points on the Rindler observer’s
worldline only, and gives a result identical to that of ref. [13], which in the reference is
obtained through the resummation of Matsubara frequencies. The integrals in the above
expressions diverge,3 therefore regularization and renormalization procedures are necessary.
We discuss them in the following section.

4 Renormalization schemes

In order to renormalize the effective potential, i.e., to remove the divergences in (3.24), we
define m2 = m2

R + δm2, where m2
R is the renormalized squared-mass, and δm2 is the mass

counterterm. The renormalization procedure can be carried out in different ways, but only
a frame-independent scheme yields a definition of m2

R which all observers agree on (let us
say a universal definition). If, on the contrary, frame-dependent counterterms are adopted,
renormalized quantities are not universal anymore: this decisive fact has been overlooked
in some past discussions of the physical outcomes of the theory under exam, and this is the
fundamental reason why different conclusions exist about it in the literature.

In this section, we will discuss two possible renormalization schemes: scheme I, as
considered, e.g., in [13], where the counterterm is related to the Rindler vacuum state,

3In particular, in (3.24), the divergence is confined to the first term of the integrand, which diverges
quadratically.
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and a second scheme, which we will call scheme II, in which the counterterm is obtained
as a Minkowski-vacuum expectation value. In particular, in our discussion, we wish to
point out, also conceptually, that the first option is frame-dependent, while the second
is not. We also wish to clarify the related physical consequences. An explicit form for
the counterterms will be computed in the next section, by making use of the geodesic
point-splitting regularization method.

Let us start with the first choice I, which, as we already anticipated, is consistent, for
example, with [13]. We have

δm2
I = i

λ

2 lim
x̄→x̄′

G0(x̄, x̄′, m) = −λ2 lim
x̄→x̄′

⟨0R| (ϕ(x̄)ϕ(x̄′))τ |0R⟩ . (4.1)

This choice, as apparent from (3.22), cancels the quadratic divergence in (3.24), and yields

∂V R

∂φ2
0

∣∣∣∣
φ0=0

=
m2

RI(ρ)
2 + λ

4 lim
x̄→x̄′

(⟨0M | (ϕ(x̄)ϕ(x̄′))τ |0M ⟩ − ⟨0R| (ϕ(x̄)ϕ(x̄′))τ |0R⟩)

=
m2

RI(ρ)
2 + λ

48

( 1
2πρ

)2
.

(4.2)

The definition of the renormalized quantities, i.e. the renormalized mass in the above expres-
sion, involves the subtraction of a vacuum expectation value, which in the above expression
is taken to be the Rindler vacuum state. Since points corresponding to a worldline with
constant ρ are associated with a Rindler observer undergoing a proper acceleration a′ = ρ−1,
the second term in (4.2) can be interpreted as a thermal correction (analogous to the case of
a finite-temperature theory in inertial coordinates) at the Unruh temperature Ta′ = a′/2π.
Thus, the condition of symmetry restoration for a larger than a critical acceleration, ac,
occurs only when (4.2) becomes positive. We emphasize that, if one insisted on considering
the renormalized mass m2

RI as constant (i.e., the same for each Rindler observer), then one
would be led to conclude that such a critical acceleration would exist [13], and, with it,
symmetry restoration. But, let us go back to the renormalization scheme: we observe that the
Rindler vacuum state is a concept that explicitly depends on the worldline ρ = const we are
considering (i.e. on the acceleration a′), which means that each Rindler observer has his/her
own Rindler vacuum state. As a consequence, we can say that the renormalization scheme we
have adopted here is frame-dependent, because it comes with a mass counterterm depending
on the observer, through the choice of ρ. So, the resulting renormalized squared-mass m2

RI
hides a dependence on ρ. In other words, we can say that each Rindler observer, locally,
measures a different m2

RI. With this remark in mind, we conclude that, in (4.2), when
acceleration increases, also the m2

RI(ρ) changes according to the renormalization scheme, and
the symmetry restoration is not guaranteed (in fact, as we will see, it does not take place).

A less intricate conclusion may be reached following a physical argument coming with a
different choice of the renormalization scheme. In particular, we consider the mass counterterm
defined as a Minkowski-vacuum expectation value (this is possibility II anticipated above):

δm2
II = i

λ

2 lim
x̄→x̄′

G(x̄, x̄′, m) = −λ2 lim
x̄→x̄′

⟨0M | (ϕ(x̄)ϕ(x̄′))τ |0M ⟩ . (4.3)
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This choice, as we can see from (3.21), exactly cancels the integral in (3.23), leading to

∂V R

∂φ2
0

∣∣∣∣
φ0=0

=
m2

RII
2 . (4.4)

The definition of δm2 made just above corresponds to the one used in the renormalization
procedure performed in inertial frames. Since the Minkowski vacuum state is the same over
the whole spacetime (in particular, on each worldline ρ = const), this choice is consistent
with a frame-independent renormalization scheme. This fact allows one to interpret m2

RII as
a constant independent of the specific Rindler observer, including the limiting case ρ→ ∞
of an inertial observer. The physical outcome of this is that as long as m2

RII is a negative
constant, there is no way for a Rindler observer to experience a symmetry restoration, no
matter how big a is, in agreement with [7].

From the above discussion, we see that the details of the renormalization procedure, in any
case, do not affect the answer to the question of whether a Rindler observer detects symmetry
restoration for a super-critical acceleration, provided that one interprets the renormalized
quantities correctly. The difference between the two approaches in the definition of the
counter-terms δm2 can be traced back to the choice of the vacuum state between the Rindler
vacuum state (definition I), and the Minkowski vacuum state (definition II). With the former
choice (I), corresponding to a frame-dependent renormalization prescription, the derivative of
the effective potential (4.2) is the sum of the renormalized squared-mass, which is negative,
and a finite (Unruh) temperature term, which is positive. At this point one could be led to
conclude that, by taking a sufficiently high acceleration, the second term would dominate
on the first, thus realizing the symmetry restoration condition. But such an analysis would
implicitly assume that the squared-mass term is the same for every accelerated observer, which
is not the case. Indeed, a frame-dependent renormalization condition induces frame-dependent
renormalized quantities: in our case, the squared mass will depend on acceleration. In this
way, one cannot vary acceleration without also affecting the squared-mass.

While from approach I it is not yet clear, this hidden acceleration-dependence, in fact,
exactly cancels the Unruh term, and the truly frame-independent quantity is the derivative
of the effective potential as a whole, which remains negative regardless of acceleration. This
fact is immediately apparent following approach II. Being this second approach based on a
frame-independent renormalization scheme, the resulting renormalized mass is constant (as
measured by any Rindler observer). In this case, the finite temperature corrections cancel
out in the one-loop effective potential (4.4), leaving the renormalized squared mass as the
only contribution left: then we can conclude that symmetry restoration never takes place.

On this point, additionally, we have to comment that the effective action approach, used
to determine the occurrence of a phase transition/symmetry restoration, has been defined
in inertial systems, where renormalized quantities result to be the same for all the inertial
observers. There is no reason, a priori, to insist that such a procedure can be applied in the
same way to a (uniformly) accelerated system. Our result shows at a technical level how it is
always possible to obtain a physically consistent interpretation in the two different frames,
i.e., the inertial one and the uniformly accelerated one. This confirms that one can always
support the conclusion in [7], and ties different results obtained by other authors to the fact
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that a renormalization procedure based on the observer’s vacuum state is formally applied to
an accelerated frame in complete analogy with inertial frames, without taking into account
the dependence of the renormalized quantities on the acceleration.4 Additionally, we wish to
comment that, while in this case it is always possible to uphold the result obtained in an
inertial system, we have this possibility only because spacetime respects a large symmetry
group. In a more general situation, in particular, on a curved background, we would not
have this way out of the problem. Also with this generalization in mind, it is important
to understand in more detail the differences between schemes I and II. For instance, in the
framework of a λϕ4 theory, such differences have been shown to play a role also in the context
of secular growth [32]. What we are going to do in the next section is to compute the two
squared-mass counterterms explicitly, using a regularization method often applied to QFT
in curved backgrounds: the covariant point-splitting method.

5 Regularization and covariant point-splitting method

It is worthwhile to further explore the different nature and properties of the previously defined
mass counterterms, which correspond to the two different and inequivalent renormalization
schemes, I and II. At first, we are going to study these terms expressed as functions of
propagators, and we will regularize them in the limit of vanishing geodesic distance (in what
follows, the square of the geodesic distance will be denoted as −2σ). This regularization
method goes under the name of covariant point-splitting [33–35]. In this way, we will show
that δm2

I explicitly depends on the acceleration, while δm2
II does not. Afterward, the form of

such counterterms will be compared with the more general case of curved spacetime. It is
worth noting that the point-splitting method is not the one and only covariant scheme, but
it proves to be convenient when propagators are expressed in position space, as a function
of geodesic distance.

First of all, we consider the well-known expression of the massive, scalar, quantum field
propagator in Minkowski spacetime

G
(
x, x′

)
= i

m

4π2 (2σ)
1
2
K1

(
m (2σ)

1
2
)

(5.1)

with (2σ)
1
2 =

√
(x − x′)2 − (t− t′)2, being the geodesic distance a covariant quantity, the

propagator takes the same form in every coordinate system. In Rindler coordinates (2.4)
we can state that

G
(
x̄, x̄′

)
= G

(
x, x′

)
(5.2)

and
(2σ)

1
2 =

√
ρ2 + ρ′2 − 2ρρ′ cosh (a (τ − τ ′)) +

(
x⊥ − x′

⊥
)2
.

4This situation, while possibly clouded by technical aspects, is not new in physics. In an inertial reference
system Newton’s equation equals the change in time of the linear momentum to the net active force acting
on the system. This procedure, however, is not the correct way to proceed in a non-inertial system, as the
net active force measured in such a system needs to be supplemented by inertial forces. In this sense, the
descriptions of the same system in the two different frames are not conceptually equivalent. The same reasoning
could be applied to the case that we are considering here.
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At this point, it is possible to obtain the regularized expression (4.3) for δm2
II through series

expansion of G (x̄, x̄′) for σ → 0 as

G
(
x̄, x̄′

)
= i

(
1

8π2σ
+ m2

8π2

[
γE + 1

2 log
(
m2σ

2

)]
− m2

16π2

)
+O (σ) , (5.3)

where γE is the Euler-Mascheroni constant. To achieve the regularized expression (4.1) for
δm2

II, we need to start from the propagator evaluated with respect to the Rindler vacuum, in
position space, i.e., G0 (x̄, x̄′) (3.20). Refs. [30] and [31] calculate it explicitly, by performing
the integration over the momenta, and obtain

G0
(
x̄, x̄′

)
= G

(
x̄, x̄′

)
+ i

m

8π3

∫ ∞

−∞
duF

(
u, iaτ − iaτ ′

) K1 (mR4(u))
R4(u)

, (5.4)

with
R4(u) =

√
2ρρ′ cosh (u) + ρ2 + ρ′2 +

(
x⊥ − x′

⊥
)2
,

and
F (u, ψ) = − π + ψ

(π + ψ)2 + u2
+ ψ − π

(ψ − π)2 + u2
. (5.5)

Evaluating (5.4) in the coincidence limit, x̄ → x̄′, we obtain

lim
x̄→x̄′

G0
(
x̄, x̄′

)
= lim

x̄→x̄′
G
(
x̄, x̄′

)
− i

m

4π2

∫ ∞

−∞

du

π2 + u2
K1

(
2mρ′ cosh

(
u
2
))√

2ρ′2 (1 + cosh(u))
, (5.6)

where we have used the relation
√
1 + cosh (u) =

√
2 cosh (u/2).

If we take the limit mρ ≪ 1, as done before in order to obtain (3.22) and (3.21), the
integral can be calculated explicitly. This requirement means that the energy scale of
acceleration, and the relative Unruh temperature, is much higher than the mass scale; this is
exactly the typical behaviour that we assume for symmetries to be restored at, finite, high
enough temperatures. Refs. [13, 16] and [17] assume the same limit. In this way, we can
perform the following expansion for small mρ

K1

(
2mρ′ cosh

(
u

2

))
= 1

2mρ′ cosh
(

u
2
) +O

(
mρ′

)
, (5.7)

and the propagator in the coincidence limit becomes

lim
x̄→x̄′

G0
(
x̄, x̄′

)
= lim

x̄→x̄′
G
(
x̄, x̄′

)
− i

8π2ρ2

∫ ∞

−∞

du

π2 + u2
1

1 + cosh (u) . (5.8)

It is possible to further simplify this expression by evaluating the integral on the r.h.s. ,∫ ∞

−∞

du

π2 + u2
1

1 + cosh (u) = 1
6 , (5.9)

to finally obtain

lim
x̄→x̄′

G0
(
x̄, x̄′

)
= lim

x̄→x̄′
G
(
x̄, x̄′

)
− i

48π2ρ2 . (5.10)
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Summarizing the results obtained so far and using the expansion (5.3), we can write
the mass counterterms in (4.1) and (4.3) as

δm2
I = −λ2

(
1

8π2σ
+ m2

8π2

[
γE + 1

2 log
(
m2σ

2

)]
− m2

16π2 − 1
48π2ρ2

)
, (5.11)

δm2
II = −λ2

(
1

8π2σ
+ m2

8π2

[
γE + 1

2 log
(
m2σ

2

)]
− m2

16π2

)
. (5.12)

We observe that, whereas choice II is frame-independent, in choice I, observer-dependence
arises because of the last term: as we discussed above, the counterterm changes according
to the wordline ρ = 1/a that one considers.

At the very least, we want to compare these expressions with a set of counterterms
derived with the geodesic point-splitting method in the more general case of curved spacetime
in ref. [36]. Such a method is one of the most popular and used regularization procedures
in curved spacetimes, because it allows to express divergent terms in a covariant form. In
curved spacetime, the divergent limit limx→x′ GCS(x, x′) of the propagator is regularized as

lim
x→x′

GCS
(
x, x′

)
= i

( 1
8π2σ

+
m2 +

(
ξ − 1

6

)
R

8π2

[
γE + 1

2 log
(
m2σ

2

)]
+

− m2

16π2 + 1
96π2Rαβ

σασβ

σ

)
, (5.13)

where Rαβ is the Ricci tensor, R is the Ricci scalar, ξ is the coupling constant to gravity, and
σα are the components of the vector field tangent to the geodesic, oriented in the x → x′

direction and have a length equal to the geodesic distance. In flat spacetime, which is our case,
Ricci-tensor terms in (5.13) vanish, and using it to calculate the mass counterterms yields

δm2
CS = −λ2

(
1

8π2σ
+ m2

8π2

[
γE + 1

2 log
(
m2σ

2

)]
− m2

16π2

)
, (5.14)

which is exactly (5.12). We conclude that choice II is the correct one to preserve covariance,
while choice I introduces a frame-dependent term that spoils this property.

6 Conclusion

We have revisited the analysis of a scalar field theory with spontaneous symmetry breaking
in a Minkowski spacetime from the point of view of an accelerated observer. The issue of
accelerated observers experiencing or not a symmetry restoration above a critical proper
acceleration has been dealt with in a seminal work by Unruh and Weiss, who concluded
with a negative answer, motivated by the invariance properties of vacuum Green functions.
We have recovered the same result using the effective action method, where the issue of
renormalization is crucial. We have shown that the counterterms that one defines are vacuum
expectation values and that the choice of the vacuum state between the Rindler vacuum and
the Minkowski vacuum leads to different renormalization schemes, reflecting the different
invariance properties of the two vacua. While the Rindler vacuum brings to a frame-dependent
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scheme, whose physical interpretation can be misleading, the Minkowski vacuum corresponds
to a frame-independent renormalization scheme, whose natural consequence is to rule out
any symmetry restoration, in agreement with the conclusion by Unruh and Weiss.

We note that our approach considers a given system, and the “accelerated” case cor-
responds to an accelerated observer that performs measurements on this system. We do
not consider more sophisticated setups, e.g. those of systems with moving boundaries, or
those where the relative acceleration is obtained by switching on some interaction between
the system and the observer. In particular, exponentially receding mirrors as viewed by
stationary observers, have been shown to share similarities with radiating black holes, in an
even stronger physical sense than the Unruh effect [37]. It is possible that the conclusion
in this work may have to be reconsidered in these more general setups, i.e., in these cases
the acceleration could potentially induce symmetry restoration, at least in principle. The
technical subtleties in treating the problem are exemplified in this work by the two possible
renormalization schemes that we have considered. Of course, it would be interesting to extend
this analysis to the case in which general covariance is considered as the relevant symmetry
from the beginning. Indeed, while it is natural that, if we start with global Lorentz invariance,
there has always to be a way to reconcile the, possibly different, physical interpretations of
the accelerated observers with that of the inertial ones, the situation changes drastically, e.g.,
in a genuinely curved spacetime. In this case, in general, it may not be possible to define a
privileged class of reference frames (and this is, in fact, the reason why general covariance
is the appropriate setup in this more general case) and, indeed, the effect of curvature on
symmetry breaking/restoration lifts the problem to a completely different level. We think,
however, that our analysis shows a reasonable approach that could be considered to develop
a consistent treatment of these more complex situations, as, for instance, theories involving
gauge fields or spinor fields, also on curved backgrounds.
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