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Abstract: Nanotechnology, the art of engineering structures on a molecular level, offers the opportu-
nity to implement new strategies for the diagnosis and management of pregnancy-related disorders.
This review aims to summarize the current state of nanotechnology in obstetrics and cancer in preg-
nancy, focusing on existing and potential applications, and provides insights on safety and future
directions. A systematic and comprehensive literature assessment was performed, querying the
following databases: PubMed/Medline, Scopus, and Endbase. The databases were searched from
their inception to 22 March 2022. Five independent reviewers screened the items and extracted those
which were more pertinent within the scope of this review. Although nanotechnology has been
on the bench for many years, most of the studies in obstetrics are preclinical. Ongoing research
spans from the development of diagnostic tools, including optimized strategies to selectively confine
contrast agents in the maternal bloodstream and approaches to improve diagnostics tests to be used
in obstetrics, to the synthesis of innovative delivery nanosystems for therapeutic interventions. Using
nanotechnology to achieve spatial and temporal control over the delivery of therapeutic agents (e.g.,
commonly used drugs, more recently defined formulations, or gene therapy-based approaches) offers
significant advantages, including the possibility to target specific cells/tissues of interest (e.g., the ma-
ternal bloodstream, uterus wall, or fetal compartment). This characteristic of nanotechnology-driven
therapy reduces side effects and the amount of therapeutic agent used. However, nanotoxicology
appears to be a significant obstacle to adopting these technologies in clinical therapeutic praxis.
Further research is needed in order to improve these techniques, as they have tremendous potential
to improve the accuracy of the tests applied in clinical praxis. This review showed the increasing
interest in nanotechnology applications in obstetrics disorders and pregnancy-related pathologies
to improve the diagnostic algorithms, monitor pregnancy-related diseases, and implement new
treatment strategies.

Keywords: nanotechnology; nanoparticle; pregnancy; fetal therapy; preterm birth; preterm labor;
preeclampsia; fetal growth restriction; fetal growth; diabetes; assisted reproduction technology

1. Introduction

Over the previous decades, significant advances in obstetrics have led to a reduction
in mortality and morbidity associated with pregnancy complications [1,2]. Fundamental
advances in neonatology have also ameliorated pregnancy outcomes and improved the
survival rate of newborns delivered at earlier gestational ages, although not without an
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economic impact [1,3,4]. Fetal growth restriction, preterm birth, and cancer management
during pregnancy still require research advancements to improve the quality of life of
mothers and newborns, and possibly to reduce the costs of the postnatal management of
newborns resulting from particularly problematic pregnancies.

For instance, the global average rate of preterm delivery was estimated in 2014 to be
around 10.6% (9.0–12.0%) [5], representing a considerable concern in terms of morbidity
(immediate and long-term sequels) and mortality [6,7]. Hypertensive disorders of preg-
nancy and preeclampsia are also potentially harmful pathologies [8,9], with a prevalence
varying from 5% in low-risk to 20% in high-risk pregnancies [10]. Fetal growth restriction,
which complicates approximately 10% of all pregnancies, alongside preeclampsia, is a
contributing factor to preterm deliveries [11]. Gestational diabetes mellitus and pregesta-
tional diabetes mellitus significantly impact pregnancy, maternal, and offspring outcomes
(e.g., favoring pregnancy complications, abnormal fetal growth trajectories, or long-term
sequels) [12–14].

Furthermore, with the progressive aging of the female population and the childbearing
delay [15], a significant increase in the incidence of pregnancy-associated breast (and other)
cancers has been observed [16,17]. This increase boosts the demand for targeted and safe
technologies that can also be used during pregnancy to improve the accuracy of diagnosis
and the treatment of neoplastic pathologies.

The advancement of precision medicine strategies to manage these pathologies relies
on a cornerstone that requires a more comprehensive understanding of the pathogeneses of
these conditions, which is expected to lead to the implementation of current strategies and
the development of new ones, with diagnostic and therapeutic applications [18,19]. As the
science of engineering structures on a molecular level, nanotechnology offers a significant
opportunity to achieve this goal [18,20].

Conceptually introduced in the 1950s, nanotechnology refers to the use of nanoscopic
particles and devices with the potential to specifically integrate electronic, optical, fluid,
and mechanical functions. In the biological field, these approaches are primarily applied
in diagnostics and therapy [21,22]. The main purpose of nanotechnologies in the medical
field is to improve the biodistribution, specificity, and targeting of bioactive molecules, in
order to induce a desired therapeutic outcome while reducing potentially threatening side
effects [22].

This review proposes a survey of the state of knowledge on the application of nan-
otechnology to obstetrics, focusing on its current and potential applications and safety. We
will discuss the most recent discoveries in the early diagnosis, prevention, and treatment
of maternal–fetal pathologies. Moreover, we will also highlight the issues associated with
managing pregnancy-related malignancies, which represent a growing issue of our times, and
provide insights on the role nanotechnology may play in developing intervention options.

2. Materials and Methods

A systematic and comprehensive literature assessment was performed, querying the
following databases: PubMed/ Medline, Scopus, and Endbase. The databases were searched
from their inception to 22 March 2022. Five authors independently screened the items and
extracted those which were more pertinent within the scope of this review. The screened
items which fall within the scope of this review should be peer-reviewed full-text articles
discussing nanotechnology in the obstetric field. The following words were used in combi-
nation to identify the literature: pregnancy, pregnancies, gestation, pregnant, maternal–fetal,
mother–fetus, mother fetus, obstetric*, tumor*, neoplasm*, neoplasia, neoplasias, cancer*,
malignant, malignancy, malignancies, nanotechnology, nanomedicine, nanoparticle*, nan-
otherapeutic*, nanoformulation*, liposome*, micelle*, exosome*, nano theranostic*, nanoflu-
idics, drug delivery, precision medicine, nano-obstetric*, and nanoobstetric*. Details about
the queries are shown in Supplemental Table S1. In total, 11,982 items were found, with
7613 remaining upon the removal of duplicates. After the manual screening of the titles and
abstracts, 674 items were considered relevant for this review, and were assessed for their
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full text. Selected articles included in this review are based on their relevance and scientific
merit. The scientific merit assessment was based on full-text publication in peer-reviewed
journals, excluding eventually retracted items. Meanwhile, relevance was based on the
following principles: pragmatism to include the most valuable articles to give a comprehen-
sive overview starting from literature reviews, pluralism to have as many perspectives as
possible, and contestation to discuss conflicting data and debate arguments. A bibliomet-
ric investigation was also performed using data extracted from the Scopus database and
saved in BibTeX format. The bibliometric analysis was carried out using the bibliometrix
package (version 4.0.0) and R (version 4.2.1; R Core Team-2022. R: A language and environ-
ment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
https://www.R-project.org/, accessed on 23 June 2022) [23,24]. The Scopus database was
chosen because the references of each item were available, and it was possible to calculate a
local citation ranking. We also assessed country collaborations, the keyword frequency over
time, and word co-occurrences in titles and abstracts.

3. Nanotechnologies and Pregnancy

The use of drugs during pregnancy has increased significantly over time, probably
due to the greater confidence that modern pharmacology has allowed us to acquire re-
garding the use of specific medication classes [25–27]. In spite of the greater awareness of
medication use in pregnancy and lactation, information about indications and contraindi-
cations is not always available, especially in the case of newly introduced active principles
or formulations. This paucity of information somewhat depends on the fact that trials
seeking to ascertain drug effects on the fetus are performed solely in particular cases (e.g.,
treatments targeted explicitly for pregnancy or fetal in utero therapy), and pregnant women
are willingly excluded in most studies due to ethical issues [28].

From this perspective, nanotechnology has only recently been applied to pregnancy and
lactation, resulting in a new branch of medicine known as “nano-obstetrics”. Nanomedicine-
based therapies are currently gaining great interest for what concerns the treatment of conditions
affecting the mother, the placenta, and the fetus, and to improve the prognosis for both mothers
and newborns [29]. A common fear of potentially damaging gametes, embryos, and fetuses,
or even negatively impacting a woman’s reproductive potential, affects the development of
innovative therapeutics in reproductive medicine and obstetrics. Modern delivery systems
may provide alternative targeted intervention strategies by precisely targeting the source of
the disease while minimizing short- and long-term consequences for the mother and the
progeny [18,30,31].

Despite the evident success of nanotechnologies in the last few decades and the
growing interest in the development of strategies which are able to temporally and spatially
deliver drugs and retain them at the targeted site, pregnancy still represents a challenge for
the application of these novel medications [31]. On the one hand, as introduced above, there
is often a lack of data regarding the possible adverse effects on the mother and fetus, as for
classical drugs [28,31]. Consequently, only phase IV observations allow us subsequently
to draw definitive conclusions relating to any secondary effects in the female gender or
specific conditions such as pregnancy. On the other hand, specific design and chemical
features make nanoparticles capable of overcoming physiological barriers, such as the
blood–placental barrier [32], and potentially to be active also on the fetus.

4. The Placental Barrier, Therapeutic Perspectives of Nanoparticles, and
Nanotoxicology

During pregnancy, the blood–placental barrier regulates the transport of oxygen, nutri-
ents, and residual products between the maternal and fetal bloodstreams. It also prevents
fetal exposure to possibly harmful molecules from the maternal circulation. Therefore, the
essential role that the blood–placental barrier plays in supporting the interaction between
the mother and the fetus represents an interesting opportunity for the delivery of nanoth-
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erapeutics to treat various pathologies (e.g., targeting a drug specifically to the maternal
compartment only, without entering the fetal compartment) [33].

During its intrauterine development, the fetus is vulnerable to chemicals and other
substances that can impair its development [34]. A major limitation for the application of
nanomedicine in the field of maternal and fetal health is the lack of established and reliable
in vitro and ex vivo models which are available to adequately simulate the pregnant patient
scenario [29]. Experimental models of the placenta have been developed to address the
function of the placental barrier, which can be classified into in vivo, ex vivo, and in vitro
models (Table 1) [35–37]. As expected, any of these models presents some strengths and
some limitations. In vivo animal models can be costly and limited because of species differ-
ences [36,38]. Ex vivo explants and perfused placentae are optimal models of the placental
interface but are unfortunately burdened with a short viability [36]. The static in vitro mod-
els based on cell cultures frequently use cancer cell lines with no variability, unlike in vivo
models [35,36]. Recently, a better understanding has been promised by implementing new
study models such as the placenta on-a-chip models, or organoids [35–37] (Table 1). The
effect of nanoparticles on cell viability and biological barrier integrity has also been studied
in many different epithelial barriers, such as the lungs, intestines, kidneys, and skin. All of
this information can be helpful to better understand the interaction of nanoparticles with
maternal and fetal tissues.

Table 1. Experimental models of the placenta.

Models Advantages Disadvantages

In vivo

Mouse models • Pathological models
• Bio-distribution data
• Dynamic

• Costly
• Species differencesRat models

Ex vivo

Villous explants • Intervariability between samples
• Transplacental passage data
• Dynamic

• Short viability
Perfused placenta

In vitro

Primary cell culture
• Economical
• Primary throphoblastic culture with

intervariability between samples

• Only trophoblast cells
• Static model

Cell lines
• Economical
• Well-known models

• Only trophoblast cells
• No variability (tumoral immortalized

cell lines)
• Static model

Placenta-on-a-chip model

• Trophoblast and endothelial cells
• Economical
• Transplacental passage data
• Dynamic model

• Low variability (tumoral immortalized
cell lines to simulate maternal
compartment)

Co-colture

• Trophoblast and endothelial cells
• Economical
• Transplacental passage data

• Low variability (tumoral immortalized
cell lines to simulate maternal
compartment)

• Static model

Organoids

• Economical
• Transplacental passage data
• Dynamic model
• Symulate placenta development

• Limited data available about placental
barrier testing.

Nanoparticles can transit through the ordinary placental trans-cellular transport mech-
anisms such as pinocytosis, active transport, facilitated diffusion, and passive diffusion.
The exact pathway is likely to be dependent on the particle size and the surface chem-
istry [36,39]. For example, gold nanoparticles could cross the placenta, arriving at the fetal
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circulation employing endocytosis, whether clathrin-mediated or caveolin-mediated [40].
Meanwhile, polystyrene nanoparticles were found to cross the placenta through passive
diffusion [41]. Furthermore, polyethylene glycol-coated liposomes were shown to be mostly
impermeable to the placental barrier [36,42]. Additionally, the CNKGLRNK peptide-coated
liposomes specifically target the placental interface [43]. They do not pass into the fetal
circulation, allowing therapies to be delivered right at the placental interface (i.e., the
endothelium of the uterine spiral arteries and placental labyrinth) [43]. Various effects
have been observed to depend on the chemical nature of the nanomaterial, nanoparticle
size, surface coatings, and concentration, as well as on transepithelial electrical resistance
and paracellular permeability [44]. Specific examples supporting the supposition that the
modifications generated by specific nanomaterials on the placental barrier could lead to
severe fetal growth impairment and development consequences are listed below.

High concentrations of polystyrene nanoparticles reduced in vitro the cell viability of
choriocarcinoma cells (BeWo cell line) [45]. The authors attributed the effect to a previously
known positive association between a high polystyrene dosage and a pro-inflammatory
effect [45,46]. The in vivo administration of cobalt and chromium 80 nm nanoparticles
resulted in neurodevelopmental abnormalities, and increased DNA damage in the fetal
hippocampus [47]. Maternal–fetal oxygen transfer and the production of human chorionic
gonadotropin were not modified by polyamidoamine dendrimer exposure in an ex vivo
placenta perfusion experiment [48].

Another example is represented by silica nanoparticles, which reduced BeWo cell
viability at high concentrations, possibly due to lipid peroxidation [44,49]. The application
of transepithelial electrical resistance (TEER) could provide helpful information concern-
ing the integrity of the epithelial cell layer, taking into account that its values before and
after silica nanoparticle exposition did not change at low concentrations, suggesting that
the barrier function remained undamaged [44,49]. Measuring TEER across a barrier is
a non-destructive real-time method to assess barrier integrity [50]. In mice, an exper-
iment showed that silica nanoparticles had significant adverse effects on the placental
barrier, such as spiral artery impairment, blood flow reduction, and apoptotic cell death in
spongiotrophoblasts [51].

Some authors excluded any short-term direct embryotoxic or teratogenic effects of
quantum dots, whereas they observed that their long-term accumulation in the maternal
organism might increase the risk of adverse effects on embryo development [52]. Fur-
thermore, other authors excluded toxic silver accumulation in embryos/fetuses after the
intravenous injection of silver nanoparticles in pregnant mice, despite a notable silver
accumulation in the maternal liver, spleen, and visceral yolk sac [53]. This accumulation
has been subsequently observed to affect embryonic growth and to delay physical and cog-
nitive development in the offspring, likely through the induction of epigenetic changes in
the embryo and the abnormal development of the placenta [54,55]. Consequently, perinatal
exposure to silver nanoparticles should be limited or prevented in any case [56,57].

Nanoparticle permeability through the placental barrier may be affected by the disrup-
tion of tight junctions, which can compromise its physiological regulatory processes. Wang
and coworkers demonstrated in an in vivo animal model that zirconium dioxide nanoparti-
cles translocated through the placental barrier and accumulated in the fetal brain [58]. This
process was mediated by receptor-based endocytosis and the tight-junction breakdown in
the maternal and fetal blood placental barrier [58].

Different organic, inorganic, or hybrid nanoparticles have been previously tested
(Table 2) [36,37,44,45,47–49,51,58]. Shojaei and coworkers reviewed the literature in detail
on different placental models and the fetal risk assessment, considering various organic
and inorganic nanoparticles [36]. Inorganic nanoparticles have been demonstrated to
easily cross the blood–placental barrier and induce several toxicological effects [59]. In
contrast, organic nanoparticles can be more selective in their target potential and show
less toxicological effects [18,59]. However, additional studies are still required in order to
broaden their application in the obstetric field [18,59].



J. Pers. Med. 2022, 12, 1324 6 of 20

Table 2. Types of nanoparticles.

Types of Nanoparticles Examples

Inorganic

Silver nanoparticles; gold nanoparticles; superparamagnetic iron oxide nanoparticles; cobalt
and chromium nanoparticles; cadmium telluride nanoparticles; copper oxide nanoparticles;

titanium dioxide nanoparticles; silicon dioxide; silica nanoparticles; zinc oxide
nanoparticles; zirconium dioxide nanoparticles.

Organic

Dexamethasone-loaded polymeric nanoparticles; polyamidoamine dendrimers; polystyrene
nanoparticles; carboxylate modified polystyrene nanoparticles; polyethylene glycol coated

liposomes; polylactic-co-glycolic acid nanoparticles; fullerenes; liposomes nanoparticles;
engineered exosomes.

Hybrid Antibody conjugated with magnetic nanoparticles;liposomal gadolinium;
superparamagnetic iron oxide nanoparticle; zinc oxide resveratrol encapsulated in Chitosan.

Surface-functionalized nanoparticles can prevent transplacental passage and promote
placental-specific drug delivery, thus enhancing medication safety and efficacy. Optimal
results have been achieved, for instance, by combining nanoparticles with specific pro-
teins which are exclusively expressed in the placenta, such as the placental chondroitin
sulfate A-binding peptide or oxytocin receptor [60–65]. Among surface-functionalized
nanoparticles, Zhang and coworkers proposed the use of placenta-specific exosomes as
potential carriers for the placental targeted therapy of pregnancy complications [62]. The
exosomes are extracellular vesicles with an endosomal origin physiologically produced by
cells which are yet to be wholly characterized [66]. Their isolation, too, presents significant
challenges, and the optimal methodology has yet to be developed [66]. Delorme-Axford
and coworkers, in an ex-vivo study using human trophoblasts in primary cell cultures,
found placental-derived trophoblastic exosomes to induce in non-placental cell defense
against viral infections such as human cytomegalovirus by delivering exosomal miRNA
(chromosome 19 miRNA cluster, C19MC) [67]. In two different time-series studies, the
quantity and characteristics of exosomes through normal pregnancies were analyzed using
maternal peripheral blood samples [68,69]. They found that placental-derived exosomes
increase during the first trimester of pregnancy, and then gradually declined until de-
livery [68–70]. The same research group also found a differential release and function
of exosomes in gestational diabetes mellitus [70,71]. Moreover, their therapeutic use is
promising because they were found to be well tolerated after repeated treatments [66].
Furthermore, they are efficient at entering other cells with minimal immune clearance, and
can be engineered to target specific cell types [66].

Other surface-functionalized nanoparticles can prevent transplacental passage and
limit the exposure to the mother compartment. For example, doxorubicin is an anticancer
agent that crosses the placenta and can harm the fetus. Soininen and coworkers demon-
strated that polyethylene glycol-coated liposomes encapsulating doxorubicin exhibited,
both in vitro (BeWo cells) and ex vivo (perfused a placental model), a lower placental
permeability than the pH-sensitive liposomal formulation of doxorubicin and free doxoru-
bicin [42].

Although the characteristics of nanoparticles could be predictive of their maternal, pla-
cental, or fetal uptake, the achievement of a comprehensive understanding of nanoparticle
uptake, accumulation, and translocation, as well as of how their size, shape, surface chem-
istry, and charge affect biodistribution and therapeutic efficacy through predictive placental
transfer models, is absolutely mandatory in order to determine how the timing and route
of nanoparticle administration impact their distribution, effectiveness, and safety [72].

5. Point-of-Care Testing and Other Applications in Diagnostics

Along with therapeutic nanoparticles, novel nanotechnologies have been designed
to improve diagnostic accuracy. Point-of-care testing is a medical concept to describe
diagnostic testing at or near the point of care, which is the place and time of the patient
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care. This kind of advanced testing can be used in remote locations or outpatient facilities,
reducing the costs of traditional medical laboratories, specialized operators, and complex
equipment. One of the most prominent examples in obstetrics is the introduction of the
home pregnancy test in the 1970s [73]. Through the years, the test has been modified,
opening the way to the paper-based diagnostic technologies [74,75]. Generally, paper-based
diagnostics, including lateral flow assays and microfluidic paper-based analytical devices,
are affordable, user-friendly, rapid, robust, and scalable for manufacturing [74]. These
diagnostics are optimal for the improvement of clinical pathways in remote settings and
resource-limited areas. Nanotechnology was proposed to strengthen test performance
in lateral flow assays or microfluidic paper-based analytical devices [74]. As previously
mentioned, the introduction of a point-of-care test for pregnancy has modified the clinical
management of early pregnancy, allowing the wide spread of the prompt detection of
early pregnancy and the better planning of the following management. Moreover, using
a β-HCG point-of-care test while assessing fertile women with low abdominal pain in
outpatient facilities allows us, with low resources, to rapidly exclude from the possible
causes of pain a life-threatening situation such as extra-uterine pregnancy. The widespread
use of these types of test has changed clinical management, and has the potential to
change clinical pathways further. Nanotechnology has recently been applied to human
chorionic gonadotropin testing to improve detection sensitivity and widen the application
of these tests in clinical management [76–79]. For example, Cai and coworkers assessed the
possibility of using a nanotechnology-based test to detect β-hCG levels in peripheral blood
and in uterine cervix secretions quantitatively [76]. In addition to the accuracy of the test,
they proved that the cervical β-hCG/serum β-hCG ratio was predictive of spontaneous
miscarriage and ectopic pregnancy diagnosis [76]. These advances can be essential in order
to improve and simplify the diagnostic algorithms, which are standardized step-by-step
procedures for reaching a diagnosis or management decision.

Nanotechnology-based approaches were also used to retrieve and isolate trophoblasts
from the human cervix during pregnancy, allowing an early attempt at prenatal diagnosis
starting from 5 weeks of gestation [80,81]. In particular, Bolnick and coworkers collected a
cervical specimen with a brushing system for liquid-based cytology [80]. The cells were
marked with an antibody specific for trophoblastic cells (anti-HLA-G) [80]. A secondary
antibody conjugated with magnetic nanoparticles was used for the immunomagnetic
isolation of the trophoblastic cells [80]. Other applications in the field of diagnostics include
cell-free fetal DNA isolation for prenatal screenings [82–85].

Nanoparticles have been designed to improve imaging techniques which are tradition-
ally considered off-limits during pregnancy. For example, the classical contrast medium
of magnetic resonance imaging, gadolinium, is blamed for possible teratogenic and chro-
mosomal damages. In order to overcome this issue, the use of superparamagnetic iron
oxide nanoparticle ferumoxytol has been tested, with encouraging results and no impact
at the maternal–fetal interface in pregnant rhesus macaques [86]. Moreover, liposomal
gadolinium has also been proposed as a promising tool in the obstetrics field [87]. In
particular, Shetty and coworkers found, in a mouse model, that liposomal gadolinium
nanoparticles were confined to the maternal compartment without passing to the fetal
compartment [88]. In addition, Badachhape and coworkers, in a mouse model, were able
to visualize and study the retroplacental clear space through gestation using liposomal
gadolinium nanoparticles [89]. Finally, microbubble contrast-enhanced ultrasound agents
are also promising for the in vivo study of placental pathologies [90]. Even if microbubbles’
content and composition can vary, they are typically formed of an inert gas core stabilized
by an outer shell assembled with lipids, carbohydrates, proteins, or polymers [90]. In
particular, the advantage of microbubble contrast agents is their use in the study of the
microcirculation (which is not accessible with ordinary Doppler-based studies) using an
easy-to-use and cost-effective instrument such as the diagnostic ultrasound. Furthermore,
it has no tissue toxicity, like gadolinium; meanwhile, it allows an adequate microcirculation
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study that can be useful in the imaging of the differential diagnosis of the malignant lesion
without exposing the pregnant women to radiation or tissue toxicity.

6. Preterm Birth

The use of nanotechnology has been proposed for the treatment of preterm labor.
This technology was suggested to improve the accuracy and cost-effectiveness of preterm
delivery diagnosis by implementing a fibronectin test using magnetic nanoparticles coated
with anti-fibronectin antibodies [91]. Furthermore, it was also applied to improve drug
treatment. In the current practice, the use of drugs to reduce uterine contractions and
prevent preterm birth is limited due to the systemic or fetal effects of currently available
medications such as ritodrine or indomethacin [7,92]. Nanotechnology-based approaches
have been developed to prevent the drug’s passage in the fetal bloodstream, and to target its
localization at the uterine-wall level [60–65]. To this end, liposomes coated with antibodies
or specific receptor antagonists were developed (e.g., placental chondroitin sulfate A-
binding peptide, oxytocin receptor antagonist, or oxytocin receptor antibody) [60–65].
Moreover, nanotechnology was also used to improve the effectiveness of preterm-delivery-
preventive drugs via the vaginal administration of progesterone, significantly reducing the
prevalence of preterm birth in a mouse model and lengthening the time-to-delivery outcome
by 39% [93]. In addition to the implementation of new devices for the administration of
already known drugs, nanotechnology has also been exploited to optimize the delivery of
innovative medicines, in order to counteract the mechanisms of inflammation known to
be involved in preterm labor and offspring complications (e.g., improving the delivery of
N-acetylcysteine) [94,95].

7. Preeclampsia and Fetal Growth Restriction

Both preeclampsia and fetal growth restriction are associated with aging and dysfunc-
tional placentae [96]. In this field, nanotechnology was also applied with different intents:
(1) to improve diagnostic management and (2) to implement treatment strategies. New
nanotechnology-based point-of-care tests are being developed to improve the assessment of
preeclampsia development risk [97–99]. For instance, recent advancements have been made
in the development of electrochemical immunosensors for the early clinical diagnosis of
preeclampsia within the 18–20th gestational weeks [100]. In particular, the aim would be to
establish a high-specificity immuno-diagnostic platform which is able to detect and analyze
multiple molecules simultaneously (at the picomolar resolution), which could be highly
predictive for preeclampsia onset to anticipate and improve its further treatment. There
is also a tremendous effort in the development of nanotechnology-based approaches to
target the placental tissue in order to prevent or mild the consequences of preeclampsia and
fetal growth restriction [101–107]. Another field of interest was the development of new
disease-specific models [108]. In a recent article, Yu and coworkers precisely silenced a long
non-coding RNA (lncRNA H19) in the placental tissue of a mouse model, obtaining in vivo
the occurrence of pre-eclampsia-like symptoms [108]. This result is extremely important,
and opens the path to future discoveries. First, the previous models of pre-eclampsia were
mainly established by the systemic administration of drugs or surgery, hence inducing
unwanted systemic toxicity and limiting the possible understanding of pre-eclampsia.
Pre-eclampsia is supposed to be an obstetric pathology of placental origin [96]. Removing
the placenta will bring back normal homeostasis in the mother, healing pre-eclampsia. This
model lets us start pre-eclampsia from the placenta and not from a systemic interference,
allowing us to understand the disease better. This result also means the possible develop-
ment of new therapeutic strategies. In addition, this kind of model will allow the testing of
possible etiopathogenic pathways in vivo, corroborating an eventual causative hypothesis.

8. Diabetes Mellitus

Nanotechnology has been proposed for the implementation of highly accurate tests
for the diagnosis and monitoring of diabetes mellitus [109]. Recently, a nanotechnology-
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based point-of-care test was developed with the intent to monitor glycated albumin in
gestational diabetic pregnancies [110]. In addition, different approaches (e.g., Cerium
nanoparticles or zinc oxide resveratrol encapsulated in Chitosan) were also developed
to treat gestational diabetes and its comorbidities [109,111–113]. For example, Du and
coworkers found, in a streptozocin-induced diabetes rat model, that zinc oxide resveratrol
encapsulated in Chitosan improves the diabetic biological signs, including a reduction in
insulin resistance [112]. Moreover, recently in the same diabetes animal model, it was found
that selenium nanoparticles could mitigate diabetic nephropathy during pregnancy [114].

9. In Utero Gene Therapy

In 2019, a viral-vector-based gene therapy for spinal muscular atrophy that delivers a
functional copy of the survival of motor neuron gene cDNA was approved by the FDA.
Since then, the interest in this field has grown [115], and nanoparticles have been exploited
as carriers of nucleic acids in utero during embryonic or fetal life [116–119]. Although no
human studies have been carried out until now for in utero gene therapy, many in vitro
and in vivo studies have been performed [120]. In utero gene therapy is a potential game-
changer for monogenic diseases because the treatment can prevent disease inception,
avoiding early damage to the tissues. Another advantage is the prevention of immune
system reactions to the gene therapy approach, limiting or overcoming its effectiveness, as
it occurs in post-natal genetic therapy. Other potential benefits are the capacity to cross the
blood–brain barrier or deliver the treatment with a high vector-to-target-cell ratio [120].

The broad container of gene therapy comprises endogenous gene editing, gene re-
placement or augmentation, and the use of antisense oligonucleotides to regulate protein
expression [120]. However, these techniques bring some risks, such as insertional muta-
genesis (observed in post-natal treatment) or the threat of germline transfer. In particular,
insertional mutagenesis results from off-target gene insertion with the disruption of another
biological pathway. An example of insertional mutagenesis was the development of T-cell
leukemia several years after gene therapy for X-linked severe combined immunodeficiency
in four patients [121]. In these four cases, the retroviral vector had inserted within the
LMO-2 locus, which is known to be involved in T-cell leukemia development [120,121].
However, the potential is high, and preclinical studies focus on various pathologies such as
spinal muscular atrophy, thalassemia, neuronopathic Gaucher disease, congenital retinal
blindness, and cystic fibrosis [120].

10. Assisted Reproductive Technology

Another fascinating application field of nanomedicine related to pregnancy is as-
sisted reproductive technology. With the progressive delay of first pregnancies due to
contemporary social and working habits, modern society is now experiencing its highest
infertility rate [15,122]. Novel techniques have been consequently developed to improve
the conception rate in couples utilizing assisted reproductive technology. Exploring nan-
otechnology in non-human models is stimulating, as they make it possible to optimize
newly developed protocols using nanomaterials against the impairments still faced by
reproductive medicine [123,124]. For example, Abreu and coworkers used a non-invasive
nanotechnology-based system to find the embryos with the highest chances of successful
implantation among a pool of morphologically identical viable embryos [124]. In a pre-
liminary study, they used an immunosensor to detect the embryo beta-HCG production,
allowing improved embryo selection before implantation (the detection vs. no detection
of beta-HCG was found to be a favorable prognostic factor for the establishment of a
pregnancy) [124].

11. Cancer in Pregnancy

The increase of pregnancy-related cancer prevalence is a critical issue, partly due to
the progressive delay of first pregnancies in high-income countries for work and social
reasons [15]. Pregnant cancer patients represent a major concern in the modern maternal
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and fetal health field [125,126]. However, nowadays, many intervention options exist
which can dramatically change patients’ prognosis, and consequently positively improve
the therapeutic outcomes [19,127]. In most cases, patients require a personalized and
integrated treatment which is necessarily drawn within a multidisciplinary setting in
order to prevent the iatrogenic pregnancy complications which could be caused by cancer
treatment, such as preterm delivery or impaired fetal growth [125].

The most frequent malignancy diagnosed during pregnancy is breast cancer [125,126].
Nanomedicine improvements can allow the safe administration of antiblastic agents during
pregnancy, avoid improper therapeutic delays, and enable highly effective and safe treat-
ment for the mother and the offspring [126]. An example is represented by the worldwide
commercially available nanoformulations of paclitaxel, which are adopted against breast
cancer due to their recognized favorable dosing regimens and low side effect profiles.
However, transplacental transport and resultant fetal exposure to this nanoformulation
remains an issue of debate, and ongoing studies are still drawing the future development
of rational and safe treatment strategies for pregnancy-associated breast cancer and other
perinatal diseases [128,129]. Additional formulations exist, such as polylactic glycolic-acid-
encapsulated paclitaxel associated with Vitamin D3, liposomal doxorubicin, nanosomal
docetaxel lipid suspension, or pegylated liposomal doxorubicin [42,126,130,131]. Recently,
Ramaswamy and coworkers found that using, in a combination chemotherapy, the nanoso-
mal docetaxel lipid suspension during pregnancy in a pregnant woman with fourth-stage
breast cancer disease was safe and effective [126]. Liposome nanoparticles were also used
to carry other drugs (e.g., NSAIDs or indomethacin) and limit their access to the fetal
compartment [132]. Although rarer than breast cancer, other cancer types can also be
diagnosed during pregnancy, such as hematological, skin, or ovarian cancer [125]. Recently,
a review clearly outlined how nanotechnology has ushered in a new era of treatment in
many different types of cancers [133]. Nanotechnology has allowed the improvement of
pharmacokinetics, biocompatibility, and tumor targeting; the overcoming drug resistance;
and the reduction of systemic toxicity [133].

In addition, several monoclonal antibodies have been developed that target the Her2
protein, expressed in several breast cancer patients, and with a notoriously poor progno-
sis [134]. The efficacy of these drugs in both the neoadjuvant and adjuvant setting has
been one of the greatest successes of the last few decades against this frequent and life-
threatening disease. Monoclonal antibodies represent a prime example of the most efficient
modalities of targeted drug delivery we have today against malignancies, and probably
represent the future of personalized medicine in the oncological field. Unfortunately, there
is insufficient evidence to justify their use during pregnancy, which is why their adminis-
tration is generally delayed in the puerperium. However, we can imagine that in the future,
we will likely be able to offer monoclonal antibodies in formulations which are capable of
sparing the fetus while battling the pregnant woman’s neoplastic disease. In fact, targeted
liposomal carriers are an emerging field of research, and are capable of targeting a compart-
ment or tissue specifically [63–65,132]. For example, Refuerzo and coworkers demonstrated
in a mouse model that delivering indomethacin within multilamellar liposomes prevents
the drug from passing the placental barrier, significantly reducing fetal exposure [132].

12. Bibliometric Analysis

A total of 4031 items were available in the Scopus database. The annual growth rate
was 7.73%, the average number of citations per item was 26.55, the average number of
citations per item per year was 3.30, and the total number of references cited by the 4031
included items was 230,112. Among the top five sources, two were obstetrics and gyneco-
logical journals (Placenta and American Journal of Obstetrics and Gynecology), and three
were more generalist journals (International Journal of Molecular Sciences, Plos One, and
Scientific Reports). Figure 1A,B illustrates the countries’ collaboration networks. The net-
work shows active collaborations between high-income and low-income countries where
some obstetrical pathologies’ prevalence is high, as are their detrimental consequences
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(e.g., Sub-Saharan Africa) (Figure 1B). Many efforts have been established in low-income
countries to reduce maternal mortality and achieve the WHO Sustainable Development
Goals [135]. Despite significant structural changes, still more work is needed in order to
reduce maternal mortality due to pre-eclampsia and other obstetric complications [135].
The collaborations between high-income and low-income countries are essential in nan-
otechnology because of the possible advantages of the development of highly accurate and
affordable point-of-care tests that can be cost-effectively implemented in a low-resource
setting. Figure 2 shows the relative frequency of some keywords over the years. Figure 2A
shows how the reference to humans has grown over time, as has the reference to controlled
studies and clinical trials. However, the latter has slowed down over the last decade. At the
same time, the reference to animal models is the most frequent, and has increased further in
the last decade. Figure 2B shows the zenith of pharmacological safety and efficacy keyword
frequency around 2010. Only since the end of the last decade has there emerged an in-
creased reference to pre-eclampsia and diabetes in pregnancy (Figure 2B). Figure 2C shows
the growing literature concerning drug delivery systems up to 2010; meanwhile, interest
in exosomes has increased since then. Figure 3A shows the co-occurrence of words in the
item titles showing five major clusters: one focused on drug delivery, one focused on fetal
exposure, one focused on placental vesicles, one focused specifically on placental exosomes,
and one focused on diabetes. Figure 3B shows the co-occurrence of words in the abstracts
where two clusters were found, and one was focused on disease treatment. Among the top
five most cited articles among the 4031 analyzed items in the Scopus database that were
already discussed in this narrative review, three were about exosomes [68–70], one was
about placental barrier capacity [32], and one was about metal nanoparticle toxicity [51].
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Figure 3. Panel (A): This network plot shows the title word co-occurrences from the Scopus database,
considering the top 30 most frequent words. Panel (B): This network plot shows the abstract word
co-occurrences from the Scopus database, considering the top 30 most frequent words. Panel (C):
Main applications of nanotechnology in obstetrics.

13. Limitations

Despite this field’s tremendous interest and promises, nanotoxicity is the primary
hindrance. Before using nanotechnology in the therapeutic management of pregnancy
complications, more evidence should be collected in this field. However, it should be
highlighted that this point is less limiting in diagnostic applications where there is no direct
contact between the nanotechnology device and the pregnant patient, nor is there a risk
of long-term adverse effects. A promising and emerging topic is the use of engineered
exosomes as carriers. However, there are some limitations for the widespread adoption
of exosomes. First, isolation technology should be improved. Second, their physiologic
processes still need to be cleared entirely.

14. Implications for Clinicians and Policy-Makers/Healthcare Providers

The interest in nanotechnology is high because of the expected benefits to global
society. The studies included in this review support these expectations, and we foresee
growing support from the stakeholders for the expansion of research into the development
of nanotechnology to improve healthcare in general and during pregnancy. Consequently,
this increases exposure to nanomaterials, which also have potential toxic effects. For
the foreseeable future, a universal set of guidelines for the nanotoxicity assessment of
nanomaterials used in pregnancy by regulatory agencies will become mandatory in order
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to allow pregnant women to safely reap the benefits of nanotechnology-enabled products
while assisting in the implementation of exposure controls to ensure maternal and fetal
safety [136].

15. Unanswered Questions and Future Research

Nanotechnology in obstetrics is an evolving field, and the main suggested applications
are shown in Figure 3C. In our opinion, the main impending questions to be answered in the
future are presented in Table 3. In particular, we believe that the leading two open questions
are the following: whether nanotechnology will allow for the early diagnosis (as soon as
five weeks of gestation) of the major obstetrics pathologies and prenatal screening, and
whether nanotechnology-based therapies will safely and specifically target the maternal
compartment, the placenta, or the fetal compartment while minimizing therapy side effects.

Table 3. Open questions.

Topic Open Question

Diagnostic

• Will nanotechnology permit the early diagnosis (as soon as five weeks gestation) of major
obstetrics pathologies and prenatal screening?

• Can a cost-effective, highly accurate point-of-care test be implemented in clinical praxis in
low-income and remote settings?

Placental models
• Are the emerging placental models allowing a dynamic and accurate evaluation of the

nanocarriers on the placental tissue, considering their distribution, accumulation, and toxicity?

Pathology models

• Can nanotechnology-based animal models improve our knowledge about the pathophysiology
of placenta-driven obstetric pathologies?

• Can emerging placental models improve our knowledge about nanotechnology’s effect on
obstetrics pathologies driven by the placenta?

Treatment

• Will nanotechnology-based therapies safely and specifically target the maternal compartment,
the placenta, or the fetal compartment while minimizing therapy side effects?

• Will nanotechnology-based therapies improve the management of major obstetric pathologies
such as pre-eclampsia, fetal growth restriction, or preterm delivery?

16. Conclusions

In summary, this review showed the increasing interest in the application of nanotechnology-
based strategies in obstetrics, such as improving the diagnostic algorithms, monitoring pregnancy-
related diseases, and implementing new treatment approaches. However, their clinical appli-
cation is yet to achieve maturity, despite the growing interest in the literature in the targeting
of specific pregnancy pathologies in recent years. An emergent and promising approach is
the use of exosomes to specifically target the therapeutic agents and avoid the toxicity of inor-
ganic nanocarriers. Although the bibliometric analysis revealed a broad collaboration between
high-income and low-income countries, in the future, the greater involvement of low-income
countries would be desirable. Nanotechnology-based point-of-care tests have the potential
to spread in low-resource settings, as beneficial instruments to improve the management of
high-risk pregnancies and help to achieve the WHO Sustainable Development Goals Agenda.
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