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Abstract. A classic result by Stockmeyer [Sto74] gives a non-elementary lower bound to
the emptiness problem for generalized ∗-free regular expressions. This result is intimately
connected to the satisfiability problem for the interval temporal logic of the chop modality
under the homogeneity assumption [HMM83]. The chop modality can indeed be viewed as
the inverse of the concatenation operator of regular languages, and such a correspondence
enables reductions between the two problems.

In this paper, we study the complexity of the satisfiability problem for suitable weaken-
ings of the chop interval temporal logic, that can be equivalently viewed as fragments of
Halpern and Shoham interval logic. We first introduce the logic BDhom featuring modalities
B (for begins), corresponding to the prefix relation on pairs of intervals, and D (for during),
corresponding to the infix relation, whose satisfiability problem, under the homogeneity
assumption, has been recently shown to be PSpace-complete [BMPS21b]. The homoge-
neous models of BDhom naturally correspond to languages defined by restricted forms of
generalized ∗-free regular expressions, that feature operators for union, complementation,
and the inverses of the prefix and infix relations. Then, we study the extension of BDhom

with the temporal neighborhood modality A, corresponding to the Allen relation Meets,
and prove that such an addition increases both the expressiveness and the complexity of
the logic. In particular, we show that the resulting logic BDAhom is ExpSpace-complete.

1. Introduction

Interval temporal logics (ITLs for short) are versatile and expressive formalisms to specify
properties of sequences of states and their duration. When it comes to fundamental problems
like satisfiability, their high expressive power is often obtained at the price of undecidability.
As an example, the satisfiability problem of the most widely known ITLs, namely, Halpern
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and Shoham’s HS [HS91] and Venema’s CDT [Ven91a], turn out to be highly undecidable.
Despite these negative results, a number of decidable ITLs have been identified by suitably
weakening HS (see [BMM

+
14] for a complete classification of HS fragments). Here the term

“weakening” is intended as a set of syntactic and/or semantics restrictions imposed on the
formulas of the logic and/or the temporal structures on which such formulas are interpreted,
respectively. Among the plethora of possible weakenings, here we focus on (the combination
of) the following two natural and well-studied restrictions:

• Restrict the set of interval relations.
A number of decidable fragments of HS and CDT have been obtained by considering a
restricted set of Allen’s relations over pairs of intervals. This approach naturally induces
fragments of HS with modalities corresponding to the selected subset of interval relations.
As an example, the logic of temporal neighborhood (PNL for short) features only two
modalities, corresponding to two interval relations among the thirteen possible ones,
namely, A (adjacent to the right) and its inverse Ā (adjacent to the left) [CH97]. PNL has
been shown to be decidable over all meaningful classes of linear orders [BMSS11, MS12].

• Restrict the class of models.
As an alternative, it is possible to tame the complexity of ITLs by restricting to classes
of models that satisfy some specific assumptions. An example of such an approach can
be found in a recent series of papers that study the model checking problem for ITLs
(see, e.g., the seminal paper [MMM

+
16]), as well as their expressiveness compared to

that of classical point-based temporal logics, like LTL, CTL, and CTL
∗
[BMM

+
19a]. In

this setting, models are represented as Kripke structures, and are inherently point-based
rather than interval-based. The very same models can be obtained from interval temporal
structures by making the so-called homogeneity assumption, i.e., by assuming that every
proposition letter holds over an interval if and only if it holds at all its points [Roe80].
Under such an assumption, full HS has a decidable satisfiability problem (as a matter
of fact, the model checking procedures proposed in the aforementioned series of papers
can be easily turned into satisfiability procedures, often retaining the same complexity)

[MMM
+
16]. In the light of the above, the focus in studying HS fragments under the

homogeneity assumption was shifted from decidability to complexity.

Under the homogeneity assumption, a natural connection to generalized ∗-free regular
languages emerges from the analysis of the complexity of ITLs over finite linear orders.
A classic result by Stockmeyer states that the emptiness problem for generalized ∗-free
regular expressions is non-elementarily decidable (tower-complete) for unbounded nesting of
negation [Sch16, Sto74] (it is (K-1)-ExpSpace-complete for expressions where the nesting

of negation is at most K ∈ N+). Such a problem can be easily turned into the satisfiability
problem for the logic C of the chop modality, over finite linear orders, under the homogeneity
assumption [HMS08, Mos83, Ven91b], and vice versa. C is a proper fragment of CDT with
a single binary modality, the so-called chop operator, that allows one to split the current
interval in two parts and to state what is true over the first part and what over the second
one. It can be easily shown that there is a reduction, that operates in logarithmic space, of
the emptiness problem for generalized ∗-free regular expressions to the satisfiability problem
for C with unbounded nesting of the chop operator, and vice versa.

The close relationships between formal languages and ITLs have been already pointed
out in [MS13a, MS13b, DMS23], where the ITL counterparts of regular languages, ω-
regular languages, and extensions of them (ωB-, ωS-, and ωT -regular languages) have
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been provided. Here, we focus on some meaningful fragments of C under the homogeneity
assumption. Hereafter, for any ITL X, we write Xhom to point out that we are considering
X under the homogemeity assumption. Modalities for the prefix, suffix, and infix relations
over (finite) intervals can be easily defined in C. It holds that a formula holds over a prefix
of the current interval if and only if it is possible to split the interval in such a way that the
formula holds over the first part and the second part contains at least two points. The case
of suffixes is completely symmetric. Infixes can be defined in terms of prefixes and suffixes:
a proper sub-interval of the current interval is a suffix of one of its prefixes or, equivalently,
a prefix of one of its suffixes.

The satisfiability problem for the logic Dhom of the infix relation has been shown to
be PSpace-complete by a suitable contraction method [BMM

+
17, BMM

+
22]. PSpace

completeness has been recently proved also for the logic BDhom (resp., DEhom) that extends
Dhom with modality B (resp., E) for the prefix (resp., suffix) relation [BMPS21b, BMPS23].

A lot of work has been done on the logic BEhom of prefixes and suffixes. In [BMM
+
19b], its

satisfiability problem has been shown to be ExpSpace-hard by a polynomial-time reduction
from a domino-tiling problem for grids with rows of single exponential length. Moreover, all
the other HShom fragments whose satisfiability problem is known to be ExpSpace-hard
feature BEhom as a proper fragment. As for the upper bound, a trivial one is given by
the non-elementary decision procedure for full HShom devised in [MMM

+
16] (BEhom is a

small fragment of HShom). In [BMP19], Bozzelli et al. showed that it is not possible to

improve such a bound by tailoring the proof techniques exploited for HShom in [MMM
+
16],

which are based on the notion of BE-descriptor, to BEhom, as it is not possible to give
an elementary upper bound on the size of BE-descriptors for BEhom [BMP19]. ExpSpace
membership (from which ExpSpace completeness immediately follows) of the satisfiability
problem for BEhom has been very recently shown by devising an equi-satisfiable normal form
with boundedly many nested modalities [DMPS23]. The normalization technique somehow
resembles Scott’s quantifier elimination, but it turns out to be much more involved due to
the limitations enforced by the homogeneity assumption.

In this paper, we focus on the logic BDAhom, that extends BDhom with the meet modality
A, and prove that its satisfiability problem is ExpSpace-complete by a model-theoretic
argument. As a matter of fact, BDAhom turns out to be the first ExpSpace-complete
fragment of HShom that does not feature BEhom as a proper fragment. As a preparatory
step, we apply the proposed model-theoretic proof technique to the simpler fragment BDhom,
and then we show how to extend it to BDAhom without any increase in complexity.

The paper is organized as follows. In Section 2, we provide a gentle introduction to
ITLs. We first give an informal account of the two main propositional ITLs, namely CDT
and HS, interpreted over finite linear orders. Then, by making use of a simple example,
we compare their expressive power with that of Linear Temporal Logic (LTL). In Section
3, we introduce the logic BDhom. We specify its syntax and semantics, and we point out
some interesting connections between its formulas and restricted forms of generalized ∗-
free regular expressions. In the following three sections, we prove a small model theorem
for the satisfiability of BDhom formulas over finite linear orders, which provides a doubly
exponential bound (in the size of the formula) on their models, and exploit it to devise a
satisfiability checking procedure that works in exponential space with respect to the size of
the input BDhom formula. More precisely, in Section 4, we introduce and discuss a spatial
representation of the models of BDhom formulas, called compass structure. Then, in Section 5,
we prove a series of meaningful spatial properties of these structures. Finally, in Section 6, we
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prove a small model theorem for BDhom, that allows us to prove the ExpSpace membership
of the problem of checking the satisfiability of BDhom formulas over finite linear orders1 In
Section 7, we define the logic BDAhom, that extends BDhom with modality A; then, we show
that the properties stated for BDhom in Section 5 holds for BDAhom as well, and, building
on them, we prove the ExpSpace membership of the problem of checking the satisfiability
of BDAhom formulas over finite linear orders. The decision procedure for BDAhom can be
obtained from that for BDhom by making a few small adjustments. ExpSpace-hardness of
the satisfiability problem for BDAhom, over finite linear orders, is proved in Section 8, by a
reduction from the acceptance problem for (non-deterministic) Turing Machines working in
exponential space, thus allowing us to conclude that the complexity bound for BDAhom finite
satisfiability is tight. Section 9 concludes the paper with an assessment of the work done
and an outline of future research directions. Supplementary material, including additional
examples and some of the most technical proofs, that will be referenced throughout the
paper, is provided in the appendices. In particular, proofs are reported in Appendix B.

2. A gentle introduction to Interval Temporal Logics

In this section, we provide a gentle introduction to Interval Temporal Logics (ITLs), focusing
on the features that distinguish them from point-based ones. As a natural term of comparison,
we choose LTL, and, for the sake of simplicity, we restrict our attention to totally ordered
finite temporal structures, that is, finite prefixes of N (finite traces or models). With a little
abuse of notation, we denote the ordered set {0, 1, 2, . . . , N} by N . LTL over finite traces is
often referred to as LTLf in the literature [GV13, GMM14].

Let Prop be a set of proposition letters. The first, crucial difference between ITLs and
LTLf is the way in which Prop is interpreted over models. Let IN = {[x, y] ∶ 0 ≤ x ≤ y ≤ N}
be the set of all and only the intervals on N . In the case of LTLf , the valuation function

is π ∶ N → 2
Prop

, while, in the case of ITLs, it is V ∶ IN → 2
Prop

. It is immediate to see
that V is a generalization of π, as the point-based semantics π can be embedded into the
interval-based one V by assuming π(x) = V([x, x]), for all x ∈ N . From now on, we will refer
to intervals of the forms [x, x] and [x, y], with x < y, as point-intervals and strict-intervals,
respectively. Whenever we will not need to distinguish between point- and strict-intervals,
we will simply refer to them as intervals.

In its full generality, ITL interval-based semantics does not impose any constraint
on the relationships between the proposition letters that hold over a strict-interval and
those that hold over the point-intervals that it includes, i.e., the set of proposition letters
V([x, y]) that hold over the strict-interval [x, y] may differ from the sets of proposition
letters V([x, x]), . . . ,V([y, y]) that hold on the point-intervals in [x, y] (which, obviously,

may differ from each other). Similarly, the set of proposition letters V([x′, y′]) that hold

on a proper subinterval [x′, y′] of [x, y], that is, x ≤ x
′
< y

′
≤ y and [x′, y′] ≠ [x, y], may

differ from those that hold on [x, y]. Consider the example of Figure 1, where π and V
agree on the labelling of points 0, . . . , 4 (they are interpreted as the intervals [0, 0], . . . , [4, 4]
in the ITL semantics). The evaluation of proposition letters p and q on strict-intervals
does not depend on that on their sub-intervals. As an example, the label of the interval

1It is worth noticing that, in view of the results in [BMPS21b], where PSpace membership is shown, the
proposed decision procedure is sub-optimal. However, it plays a fundamental instrumental role in the proof
of the main result of the paper about BDAhom.
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p 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0
q 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1

Figure 1. Point-based (π) vs. interval-based (V) labelling over the same
finite linear order.

[1, 4] in Figure 1 is V([1, 4]) = {p, q} and it features all the possible subsets of {p, q} as
the labels of its point intervals [1, 1], . . . [4, 4]. As for its proper subintervals, it holds that
V([1, 2]) = V([2, 3]) = V([3, 4]) = ∅, V([1, 3]) = {p}, and V([2, 4]) = {p, q}.

One of the first ITLs proposed in literature was CDT [Ven90], whose name comes from
its three binary modalities C (Chopping), D (Dawning), and T (Terminating). Their
semantics is graphically depicted in Figure 2. Intuitively speaking, if we take a point z inside
an interval [x, y] and we consider the ternary relation [x, y] may be split into [x, z] and
[z, y], the three CDT modalities allow one to talk about the properties of such a relation
starting from any of the three intervals. More precisely, a formula ψ1 C ψ2 (chopping between
ψ1 and ψ2) holds over an interval [x, y] if [x, y] can be split into [x, z] and [z, y], ψ1 holds
over [x, z], and ψ2 holds over [z, y] (topmost part of Figure 2). A formula ψ1 D ψ2 (ψ1

dawning ψ2) holds over an interval [x, y] if there exists an interval [z, x] such that ψ1 holds
over [z, x] and ψ2 holds over the interval [z, y] covering both [z, x] and [x, y] (middle part
of Figure 2). A formula ψ1 T ψ2 (ψ1 terminating ψ2) holds over an interval [x, y] if there
exists an interval [y, z] such that ψ1 holds over [y, z] and ψ2 holds over the interval [x, z]
covering both [x, y] and [y, z] (bottom part of Figure 2).

CDT turns out to be very expressive. It can be easily checked that it allows one to
specify a number of meaningful properties in a rather straightforward way. As an example,
it is easy to write a CDT formula that forces one or more proposition letters to behave like
an equivalence relation over the points of the underlying linear order. However, such an
expressivity is paid with an undecidable satisfiability problem on every interesting linear
order, that is, any linear order but finite, bounded ones, where the problem is trivially
decidable. The same undecidability results hold for any of the CDT fragments that feature
just one modality among C , D , and T [GMSS06, HMS08].

A representative fragment of CDT is HS [HS91], which includes a unary modality for
each ordering relation between a pair of intervals (the so-called Allen’s relations [All81]).
A graphical account of Allen’s relations and the corresponding HS modalities is given in
Figure 3. For the sake of simplicity, we deliberately omitted the modality for the inverse of
each of the depicted relations, namely ⟨A⟩, ⟨B⟩, ⟨D⟩, ⟨E⟩, ⟨L⟩, and ⟨O⟩. The semantics of
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Figure 2. The semantics of the three CDT binary modalities C, D, and T.

each HS modality can be expressed by means of a suitable combination of CDT modalities as
shown in Appendix A. The converse is not true. In Figure 17, we make an extensive use of
the modal constant π, which holds over an interval [x, y] if and only if x = y, that is, [x, y]
is a point-interval. It immediately follows that ¬π holds on all and only strict intervals. It is
worth pointing out that some HS modalities can be defined as suitable combinations of other
ones (a complete account of definability equations for the most significant classes of linear

orders is given in [BMM
+
14, BMM

+
19c]). For what concerns the HS fragments we focus

on in this paper, namely those featuring unary modalities ⟨A⟩, ⟨B⟩, and ⟨D⟩ (not to be
confused with the binary modality D of CDT), it holds that modality ⟨L⟩ can be defined
in terms of modality ⟨A⟩ and modality ⟨D⟩ can be expressed as a suitable combination of
modalities ⟨B⟩ and ⟨E⟩. Notice that the opposite is not true, e.g., modality ⟨A⟩ cannot be
defined in terms of modalities ⟨L⟩, ⟨D⟩, and ⟨B⟩ and it is not possible to define modality
⟨B⟩ (resp., ⟨D⟩) in terms of modalities ⟨A⟩ and ⟨D⟩ (resp., ⟨B⟩).

We conclude the section by showing that LTLf modalities Until (ψ1 U ψ2) and Next
(,ψ) can be easily encoded by means of a combination of modalities ⟨A⟩ and ⟨B⟩ (no need
to bring up modality ⟨D⟩). Formulas that define ψ1 U ψ2 and ,ψ in AB, together with a
graphical account of how they “operate” on an interval model, are given in Figure 4. The
LTLf formula into which ψ1 U ψ2 is mapped is the conjunction of formulas [B]⟨A⟩(π ∧ ψ1)
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[x, y] MEETS [v, z] ⇔ y = v
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[x, y] CONTAINS [v, z] ⇔ x < v ≤ z < y

[x, y] FINISHED-BY [v, z] ⇔ x < v ≤ z < y
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[x, y] OVERLAPS [v, z] ⇔ x < v ≤ z < y
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v z

v z

v z

zv

v z

v z

Figure 3. Allen’s relations and the corresponding HS modalities (the
relations/modalities considered in this work are highlighted).

and ⟨A⟩(π ∧ ψ2). By definition, ψ1 U ψ2 holds at a point x if there is a point y, with x ≤ y,
where ψ2 holds and ψ1 holds at xi, for all x ≤ xi < y. The proposed encoding forces the
translation of ψ1 U ψ2 to hold over the interval [x, y]. The second conjunct of the resulting
formula constrains ψ2 to hold on [y, y] (the right endpoint of [x, y]). The formula ⟨A⟩(π∧ψ2)
indeed states that there is an interval [y, y′], that starts where [x, y] ends (modality ⟨A⟩),
which is a point-interval (constant π) and satisfies ψ2. It immediately follows that [y, y′] is
equal to [y, y]. The first conjunct [B]⟨A⟩(π ∧ ψ1) forces the formula ⟨A⟩(π ∧ ψ1) to hold
on each proper prefix ([B] = ¬⟨B⟩¬) of the interval [x, y], that is, on each interval [x, xi],
with x ≤ xi < y. Then, by the argument we already used for ⟨A⟩(π ∧ ψ2), we can conclude
that ψ1 holds at each point-interval [xi, xi], with x ≤ xi < y. As for modality ,, the LTLf
formula ,ψ is mapped into the AB formula ⟨A⟩(¬π ∧ [B]π ∧ ⟨A⟩(π ∧ ψ)). By definition,
,ψ holds at a point x if and only if ψ holds at the point x+1. For the sake of generality and
simplicity, the proposed encoding of ,ψ holds on an interval [x, y] if and only if ψ holds at
the point-interval [y+1, y+1] regardless of the fact that [x, y] is a strict- or a point-interval
([x, y] can be forced to be a point-intervals by adding π as a conjunct of the resulting formula,
i.e., π∧ ⟨A⟩(¬π∧ [B]π∧ ⟨A⟩(π∧ψ))). Whenever ⟨A⟩(¬π∧ [B]π∧ ⟨A⟩(π∧ψ)) holds over

an interval [x, y], the outermost modality ⟨A⟩ imposes the existence of an interval [y, y′],
with y ≤ y

′
, where ¬π, [B]π, and ⟨A⟩(π ∧ ψ) hold. The first two conjuncts respectively

force y
′
> y (¬π) and all proper prefixes [y, y′′] of [y, y′] to be point-intervals ([B]π). The

only way to satisfy them is to constrain y
′
to be equal to y + 1. The truth of ⟨A⟩(π ∧ ψ)

on [y, y + 1] implies that there is an interval [y + 1, y
′] where both π and ψ hold, which

amounts to say that ψ holds over the point-interval [y + 1, y + 1].
It is worth pointing out that the truth values of proposition letters on strict-intervals do

not come into play in the proposed encoding. It immediately follows that such an encoding
still properly works under the homogeneity assumption.

In the appendix (see Figure 18), we show how to exploit such an encoding to translate
formulas p U (¬p ∧ ¬q) and ,(¬p ∧ ¬q)) into equivalent AB formulas and, by means of
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ψ1 U ψ2 = [B]⟨A⟩(π ∧ ψ1) ∧ ⟨A⟩(π ∧ ψ2)
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Figure 4. The encoding of LTLf modalities U and , in AB.

the example of Figure 1, we show how the interval model is constrained when the resulting
formula holds over an interval.

3. The logic BD of prefixes and infixes

In this section, we introduce the logic BD of prefixes and infixes, we formally state the
homogeneity assumption, and we define the relation of finite satisfiability under such an
assumption. We conclude the section with a short analysis of the relationships between such
a logic and a suitable restriction of generalized ∗-free regular expressions.

BD formulas are built up from a countable set Prop of proposition letters according to
the grammar: φ ∶∶= p ∣ ¬ψ ∣ ψ ∨ ψ ∣ ⟨B⟩ψ ∣ ⟨D⟩ψ, where p ∈ Prop and ⟨B⟩ and ⟨D⟩ are
the modalities for Allen’s relations Begins and During, respectively. In the following, we
denote by ∣φ∣ the size of the parse tree for a formula φ generated by the above grammar. It
is easy to show that ∣φ∣ is less than or equal to the number of symbols used to encode φ.

Let N ∈ N be a natural number and let IN be the set of all intervals over the prefix

0 . . . N of N. A (finite) model for BD formulas is a pair M = (IN ,V), where V ∶ IN → 2
Prop

is a valuation that maps intervals in IN to sets of proposition letters. Given a model M and
an interval [x, y], the semantics of a BD formula is defined as follows:
• M, [x, y] ⊧ p iff p ∈ V([x, y]);
• M, [x, y] ⊧ ¬ψ iff M, [x, y] /⊧ ψ;
• M, [x, y] ⊧ ψ1 ∧ ψ2 iff M, [x, y] ⊧ ψ1 and M, [x, y] ⊧ ψ2;

• M, [x, y] ⊧ ⟨B⟩ψ iff there is y
′
, with x ≤ y

′
< y, such that M, [x, y′] ⊧ ψ;

• M, [x, y] ⊧ ⟨D⟩ψ iff there exist x
′
, y
′
, with x < x

′
≤ y

′
< y, such that M, [x′, y′] ⊧ ψ.
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(a)

0

{p, r}

1

{p}

2

{p, q, r}

3

{p, q, r}

4

{p, q, r}

5

{q, r}

6

{q}

7

{q}

{p}

{p, q, r}

{q}

[x, y] Va(x, y)

[0, 0] {p, r}
[0, 1] {p}
[0, 2] {p}
[0, 3] {p}
[0, 4] {p}
[0, 5] ∅
[0, 6] ∅
[0, 7] ∅
[1, 1] {p}
[1, 2] {p}
[1, 3] {p}
[1, 4] {p}

[x, y] Va(x, y)

[1, 5] ∅
[1, 6] ∅
[1, 7] ∅
[2, 2] {p, q, r}
[2, 3] {p, q, r}
[2, 4] {p, q, r}
[2, 5] {q, r}
[2, 6] {q}
[2, 7] {q}
[3, 3] {p, q, r}
[3, 4] {p, q, r}
[3, 5] {q, r}

[x, y] Va(x, y)

[3, 6] {q}
[3, 7] {q}
[4, 4] {p, q, r}
[4, 5] {q, r}
[4, 6] {q}
[4, 7] {q}
[5, 5] {q, r}
[5, 6] {q}
[5, 7] {q}
[6, 6] {q}
[6, 7] {q}
[7, 7] {q}

(b)

0

{p, r}

1

{p}

2

{p, q, r}

3

{p, q, r}

4

{p, q, r}

5

{q, r}

6

{q}

7

{q}

{r}

{p}

{q}

[x, y] Vb(x, y)

[0, 0] {p, r}
[0, 1] {p}
[0, 2] {p}
[0, 3] {p}
[0, 4] {p}
[0, 5] ∅
[0, 6] ∅
[0, 7] ∅
[1, 1] {p}
[1, 2] {p}
[1, 3] {p}
[1, 4] {r}

[x, y] Vb(x, y)

[1, 5] ∅
[1, 6] ∅
[1, 7] ∅
[2, 2] {p, q, r}
[2, 3] {p, q, r}
[2, 4] {p}
[2, 5] {q, r}
[2, 6] {q}
[2, 7] {q}
[3, 3] {p, q, r}
[3, 4] {p, q, r}
[3, 5] {q, r}

[x, y] Vb(x, y)

[3, 6] {q}
[3, 7] {q}
[4, 4] {p, q, r}
[4, 5] {q, r}
[4, 6] {q}
[4, 7] {q}
[5, 5] {q, r}
[5, 6] {q}
[5, 7] {q}
[6, 6] {q}
[6, 7] {q}
[7, 7] {q}

Figure 5. A homogeneous model (a - left) vs. a general one (b - right).

The logical constants ⊤ (true) and ⊥ (false), the Boolean connectives ∨,→, and ↔, and the
(universal) dual modalities [B] and [D] are defined in the usual way. The modal constant
π, that has been introduced in Section 2, is defined as [B]⊥.

We say that a BD formula φ is finitely satisfiable if and only if there exist a (finite)
model M and an interval [x, y] such that M, [x, y] ⊧ φ W.l.o.g., [x, y] can be assumed to
be the maximal interval [0, N]. Hereafter, whenever we use the term satisfiable, we always
mean finite satisfiability, that is, satisfiability over the class of finite linear orders.

Definition 3.1 (Homogeneity). We say that a model M = (IN ,V) satisfies the homogeneity
property (M is homogeneous for short) if and only if

∀p ∈ Prop ∀[x, y] ∈ IN (p ∈ V([x, y]) ⇔ ∀z ∈ [x, y] p ∈ V([z, z])).

Example 3.2. In Figure 5, we give an example of a homogeneous model (a) and of an

arbitrary non-homogeneous one (b). For the sake of readability, we will refer to them as
Ma = (I7,Va) and Mb = (I7,Vb), respectively. The complete definitions of Va and Vb are
given in Figure 5 below the respective models. It is easy to check that the definition of Va

satisfies the homogeneity property as stated by Definition 3.1.
To begin with, we observe that, in homogeneous models, the labelling V of the intersection

of two intervals contains the labellings of the two intervals. This is the case, e.g., with
intervals [1, 4] and [2, 6] in Figure 5 (a), whose intersection is the interval [2, 4]. This is
not the case with arbitrary models. Consider, e.g., the very same intervals in Fig. 5 (b).
Interval [1, 4] violates the homogeneity property because r ∈ Vb(1, 4) but r ∉ Vb(1, 1), thus
violating the left-to-right direction of Definition 3.1. Interval [2, 4] violates the homogeneity
property as well, because q ∈ Vb(2, 2)∩ Vb(3, 3)∩ Vb(4, 4), but q ∉ Vb(2, 4) (the same for r),
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thus violating the right-to-left direction of Definition 3.1. All the other intervals in Figure 5
(b), including [2, 6], satisfy the homogeneity property, but this is obviously not sufficient to
consider the model homogeneous, since each interval of the model must satisfy it.

It is worth pointing out that the homogeneity property does not entail, in general, a
similar containment property for formulas ψ ∉ Prop. As an example, it is easy to check that in
the homogeneus model of Figure 5 (a) Ma, [1, 4] ⊧ ⟨B⟩(p∧¬q), but Ma, [2, 4] ⊧̸ ⟨B⟩(p∧¬q),
and Ma, [2, 6] ⊧ ⟨D⟩(q ∧ ¬r), but Ma, [2, 4] ⊧̸ ⟨D⟩(q ∧ ¬r).

To conclude, notice that, in homogeneous models, for proposition letters it holds that
the labelling of point-intervals determines that of all intervals. This is not the case with
arbitrary models. Counterexamples are intervals [1, 4] and [2, 4] in Figure 5 (b).

Satisfiability can be relativized to homogeneous models as follows. We say that a
BD formula φ is satisfiable under homogeneity if there is a homogeneous model M such
that M, [0, N] ⊧ φ. Satisfiability under homogeneity is clearly more restrictive than plain
satisfiability. We know from [MM14, MMK10] that dropping the homogeneity assumption
makes D undecidable. This is not the case with the fragment B, whose expressive power
is quite limited, which remains decidable [GMS04]. Hereafter, we will always refer to BD
under the homogeneity assumption, denoted by BDhom.

We conclude the section by giving a short account of the relationships between BDhom

and generalized ∗-free regular expressions. Let Σ be a finite alphabet. A generalized ∗-free
regular expression (hereafter, simply expression) e over Σ is a term of the form:

e ∶∶= ∅ ∣ a ∣ ¬e ∣ e + e ∣ e ⋅ e, for any a ∈ Σ.

We exclude the empty word ϵ from the syntax, as it makes the correspondence between
finite words and finite models of BDhom formulas easier (such a simplification is quite common

in the literature). An expression e defines a language Lang(e) ⊆ Σ
+
, which is inductively

defined as follows:

• Lang(∅) = ∅;
• Lang(a) = {a}, for every a ∈ Σ;

• Lang(¬e) = Σ
+ \ Lang(e);

• Lang(e1 + e2) = Lang(e1) ∪ Lang(e2);
• Lang(e1 ⋅ e2) = {w1w2 ∶ w1 ∈ Lang(e1), w2 ∈ Lang(e2)}.

In [Sto74], Stockmeyer shows that the problem of deciding the emptiness of Lang(e),
for a given expression e, is non-elementary hard.

Let us consider now the logic C of the chop operator (under the homogeneity assumption),
that we introduced in Section 2. C features the chop modality C and the modal constant
π. BDhom is a small fragment of C, whose modalities ⟨B⟩ and ⟨D⟩ can be defined in C as
follows (see Appendix A for details): ⟨B⟩ψ = ψ C ¬π and ⟨D⟩ψ = ¬π C (ψ C ¬π).

It can be shown that, for any expression e over Σ, there exists a formula φe of C whose set
of models is the language Lang(e), that is, Lang(e) = {V(0, 0) . . .V(N,N) ∶ (IN ,V) ⊧ ψe}.
Such a formula is the conjunction of two sub-formulas ψΣ and ψe. ψΣ guarantees that each
point interval [x, x] of the model is labelled by exactly one proposition letter from Σ; ψe

constrains the valuation on the basis of the inductive structure of (the translation of) e. As
an example, if e = e1 ⋅ e2, then ψe = ψe1 C ((¬π ∧ ¬(¬π C ¬π)) C ψe2).

Such a mapping of expressions in C formulas allows one to conclude that the satisfiability
problem for C is non-elementary hard (its non-elementary decidability follows from the
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opposite mapping). A careful look at the expression-to-formula mapping reveals that
modality C only comes into play in the translation of expressions featuring the operator
of concatenation. In view of that, it is worth looking for subclasses of generalized ∗-free
regular expressions where the concatenation operation is used in a very restricted manner,
so as to avoid the need of modality C in the translation.

Let us focus our attention on the following class of restricted expressions:

e ∶∶= ∅ ∣ a ∣ ¬e ∣ e + e ∣ Pre(e) ∣ Inf(e), for any a ∈ Σ,

where Pre(e) and Inf(e) are respectively a shorthand for e ⋅(¬∅) (thus defining the language

Lang(Pre(e)) = {wv ∶ w ∈ Lang(e), v ∈ Σ
+}), and (¬∅) ⋅ e ⋅ (¬∅) (thus defining the

language Lang(Inf(e)) = {uwv ∶ u, v ∈ Σ
+
, w ∈ Lang(e)}). Every restricted expression e of

the above form can be mapped into an equivalent formula φe of BDhom by applying the
usual constructions for empty language, letters, negation, and union, plus the following two
rules: (i) φPre(e) = ⟨B⟩ψe, and (ii) φInf(e) = ⟨D⟩ψe.

In the following sections, we will show that the satisfiability problem for BDhom belongs
to ExpSpace. From the above mapping, it immediately follows that the emptiness problem
for the considered subclass of expressions, that only uses prefixes and infixes, can be decided
in exponential space (rather than in non-elementary time).

4. Homogeneous compass structures

In this section, we introduce a spatial representation of homogeneous models, called homoge-
neous compass structures, that will considerably simplify the proofs of the next sections.

Let φ be a BDhom formula. We define the closure of φ, denoted by Cl(φ), as the set of
all its sub-formulas and of their negations, plus formulas ⟨B⟩⊤ and [B]⊥. For every BDhom

formula φ, it holds that Cl(φ) ≤ 2∣φ∣ + 2.

Definition 4.1. A φ-atom (atom for short) is a maximal subset F of Cl(φ) that, for all
ψ ∈ Cl(φ), satisfies the following two conditions (as usual, we identify every formula of the
form ¬¬ψ as ψ):
ψ ∈ F if and only if ¬ψ ∉ F (consistency), and
if ψ = ψ1 ∨ ψ2, then ψ ∈ F if and only if {ψ1, ψ2} ∩ F ≠ ∅ (completeness).

Let At(φ) be the set of all φ-atoms. We have that ∣At(φ)∣ ≤ 2
∣Cl(φ)∣

2 , and, from

Cl(φ) ≤ 2∣φ∣ + 2, we have ∣At(φ)∣ ≤ 2
∣φ∣+1

.
It is easy to see that, given a model M = (IN ,V), we can uniquely associate an atom

F
[x,y]

in At(φ) with each interval [x, y] ∈ IN by simply letting F
[x,y]

= {ψ ∈ Cl(φ) ∶
M, [x, y] ⊧ ψ}. An example of such an extension of the labelling V to atoms is given in
Figure 6 both in a graphical (top) and in a tabular (bottom) form.

A distinctive feature of atoms is that any atom F is uniquely determined by its subset
of formulas (F ∩ Prop) ∪ (F ∩ {⟨B⟩ψ ∈ Cl(φ)}) ∪ (F ∩ {⟨D⟩ψ ∈ Cl(φ)}), that is, once we
establish which proposition letters, ⟨B⟩ sub-formulas, and ⟨D⟩ sub-formulas belong to it, we
can automatically derive all the other formulas ψ ∈ Cl(φ) belonging to it. This subset of its
formulas can be viewed as the fingerprint of the atom. In Figure 6, we exploit such a feature
to identify the atoms associated with the various intervals (we simply specify the formulas in
(F ∩ Prop) ∪ (F ∩ {⟨R⟩ψ ∈ Cl(φ)}) belonging to them – boxes in the middle of intervals).

The next definition introduces three functions that characterize the temporal behavior
of atoms.
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φ = ⟨B⟩( p ∧ ¬r ) ∧ ⟨D⟩( ¬q ∧ ⟨D⟩q )

ψ1 ψ2

0 1 2 3 4
0

1

2

3

4
F

[0,4]
F

[1,4]
F

[2,4]
F

[3,4]

F
[0,3]

F
[0,2]

F
[0,1]

F
[1,3]

F
[1,2]

F
[2,3]

F
[0,0]

F
[1,1]

F
[2,2]

F
[3,3]

F
[4,4]

0

p, q, r

1

p ψ1

2

p, q, r

3

p, r

4

r

p ψ1

p, ⟨B⟩ψ1 ψ1

p, ⟨B⟩ψ1, ⟨D⟩q ψ1, ψ2

⟨B⟩ψ1, ⟨D⟩q, ⟨D⟩ψ2 ψ2, φ

p, ⟨B⟩ψ1 ψ1

p, ⟨B⟩ψ1, ⟨D⟩q ψ1, ψ2

⟨B⟩ψ1, ⟨D⟩q ψ2

p, r

r

r

F
[x,y] p

¬p
q
¬q

r
¬r

⟨B⟩ψ1

[B]¬ψ1

⟨D⟩q
[D]¬q

⟨D⟩ψ2

[D]¬ψ2

ψ1

¬ψ1

ψ2

¬ψ2

φ
¬φ

ReqB(F [x,y]) ObsB(F [x,y]) ReqD(F [x,y]) ObsD(F [x,y])

[0, 0] 1 1 1 0 0 0 0 0 0 ∅ ∅ ∅ {q}
[0, 1] 1 0 0 0 0 0 1 0 0 ∅ {ψ1} ∅ ∅
[0, 2] 1 0 0 1 0 0 1 0 0 {ψ1} {ψ1} ∅ ∅
[0, 3] 1 0 0 1 1 0 1 1 0 {ψ1} {ψ1} {q} {ψ2}
[0, 4] 0 0 0 1 1 1 0 1 1 {ψ1} ∅ {q, ψ2} {ψ2}
[1, 1] 1 0 0 0 0 0 1 0 0 ∅ {ψ1} ∅ ∅
[1, 2] 1 0 0 1 0 0 1 0 0 {ψ1} {ψ1} ∅ ∅
[1, 3] 1 0 0 1 1 0 1 1 0 {ψ1} {ψ1} {q} {ψ2}
[1, 4] 0 0 0 1 1 0 0 1 0 {ψ1} ∅ {q} {ψ2}
[2, 2] 1 1 1 0 0 0 0 0 0 ∅ ∅ ∅ {q}
[2, 3] 1 0 1 0 0 0 0 0 0 ∅ ∅ ∅ ∅
[2, 4] 0 0 1 0 0 0 0 0 0 ∅ ∅ ∅ ∅
[3, 3] 1 0 1 0 0 0 0 0 0 ∅ ∅ ∅ ∅
[3, 4] 0 0 1 0 0 0 0 0 0 ∅ ∅ ∅ ∅
[4, 4] 0 0 1 0 0 0 0 0 0 ∅ ∅ ∅ ∅

Figure 6. A graphical (top) and tabular (bottom) account of ReqR(F )
and ObsR(F ), with F ∈ At(φ) and R ∈ {B,D}, for the formula φ =

⟨B⟩(p ∧ ¬r) ∧ ⟨D⟩(¬q ∧ ⟨D⟩q).

Definition 4.2. Let φ be a BDhom formula and let R ∈ {B,D}. We associate with each
atom F ∈ At(φ) three subsets of Cl(φ) defined as follows:
• ReqR(F ) = {ψ ∈ Cl(φ) ∶ ⟨R⟩ψ ∈ F} (temporal requests);
• ObsR(F ) = {ψ ∈ Cl(φ) ∶ ⟨R⟩ψ ∈ Cl(φ) ∧ ψ ∈ F} (observables);
• BoxR(F ) = {ψ ∈ Cl(φ) ∶ [R]ψ ∈ F} (universal conditions).



Vol. 20:1 THE LOGIC OF PREFIXES, SUB-INTERVALS, AND TEMPORAL NEIGHBORHOOD 23:13

Let us now give a short account of the roles of the sets ReqR(F ), ObsR(F ), and BoxR(F ),
and of their relationships. To start with, we observe that if an atom F associated with an
interval [x, y] contains a formula ⟨R⟩ψ (that is, ⟨R⟩ψ is true at [x, y]), then there must

be another interval [x′, y′] such that [x, y] and [x′, y′] satisfy relation R and ψ belongs to

the atom F
′
associated with [x′, y′] (i.e., ψ is true at [x′, y′]). According to Definition 4.2,

this amounts to say that ψ ∈ ReqR(F ) and ψ ∈ ObsR(F ′). Notice that, for each atom F , if
ψ ∈ ObsR(F ), then ψ ∈ F as well, that is, ObsR(F ) ⊆ F . In other words, ObsR(F ) allows
us to “mark” the formulas in (the atom associated with) an interval which can possibly
be used to satisfy some ⟨R⟩-requests of another interval. It is worth pointing out that
ψ ∈ ObsR(F ) and ψ ∉ ReqR(F ), i.e., ⟨R⟩ψ ∉ F , is a perfectly legitimate configuration
for an atom, where ψ holds on the corresponding interval [x, y], but not on any interval
which is reachable from [x, y] via relation R. In such a case, according to Definition 4.1
(consistency) and Definition 4.2, we have that ¬ψ ∈ BoxR(F ), i.e., ¬ψ belongs to every

atom F
′
associated with an interval [x′, y′] such that [x, y] and [x′, y′] satisfy relation R,

and thus, again by consistency of atoms, ψ ∉ ObsR(F ′). Last but not least, we observe

that for each F ∈ At(φ) and ψ ∈ {ψ′ ∶ ⟨B⟩ψ′ ∈ Cl(φ)}, by consistency and completeness of
atoms, either ψ ∈ ReqB(F ) or ¬ψ ∈ BoxB(F ). Hence, BoxB(⋅) is not strictly necessary; we

introduced it to simplify some proofs. The same holds with ψ ∈ {ψ′ ∶ ⟨D⟩ψ′ ∈ Cl(φ)}.
Let [x, y] be an interval. We denote the atom associated with [x, y] by F

[x,y]
. In Fig-

ure 6 (top), for each interval [x, y], we report the values of ObsB(F [x,y]) and ObsD(F [x,y])
to the right of the box containing the fingerprint of F

[x,y]
; moreover, we add the for-

mula φ if (and only if) it holds on [x, y]. In Figure 6 (bottom), we give a tabular

account of the whole atom, e.g., the atom F
[1,2]

associated with the interval [1, 2] is
{p,¬q,¬r, [D]¬q, ψ1,¬ψ2, ⟨B⟩ψ1, [D]¬ψ2,¬φ}, where ψ1 = p ∧ ¬r and ψ2 = ¬q ∧ ⟨D⟩q.

Since sets ReqR(F ), ObsR(F ), and BoxR(F ) will be exploited to prove most of the
results of the paper, we further illustrate their behavior by means of the example in Figure 6.

Example 4.3. To start with, we observe that ReqR(F ), ObsR(F ), and BoxR(F ) are
univocally determined by their argument F . However, while ObsR(F ) ⊆ F , this is not the
case with ReqR(F ) and BoxR(F ). With reference to the example in Figure 6, it holds that

q ∈ ReqD(F [1,4]), but q ∉ F [1,4]
.

Let us focus on ReqB(F ), which extracts the arguments of the ⟨B⟩-formulas in F . In

the considered example, ψ1(= p∧¬r) ∈ ReqB(F [0,2]), as ⟨B⟩ψ1 ∈ F
[0,2]

. Hence, there must

be a proper prefix [0, y] of [0, 2] such that ψ1 ∈ F
[0,y]

(equivalently, ψ1 ∈ ObsB(F [0,y])),
and this is actually the case with y = 1. In general, for each ψ ∈ ReqB(F [x,y]) (resp.,

ReqD(F [x,y])), there must be a prefix [x, y′] (resp., infix [x′, y′] ) of [x, y] such that ψ ∈

ObsB(F [x,y′]) (resp., ObsD(F [x′,y′])). On the contrary, if ⟨R⟩ψ ∈ Cl(φ) and ψ ∉ ReqR(F ),
then, necessarily, [R]¬ψ ∈ F and thus ¬ψ ∈ BoxR(F ), i.e., ψ /∈ BoxR(F ). Consider,

for instance, the interval [1, 4] in Figure 6. We have that ReqD(F [1,4]) = {q} and, since

{ψ ∶ ⟨D⟩ψ ∈ Cl(φ)} = {q, ψ2(= ¬q ∧ ⟨D⟩q)}, it holds that BoxD(F [1,4]) = {¬ψ2}.
Finally, unlike the case of ReqR, for every interval [x, y], formula ¬ψ ∈ BoxB(F [x,y])

(resp., ¬ψ ∈ BoxD(F [x,y])), and prefix [x, y′] (resp., infix [x′, y′] ) of [x, y], ψ∉ObsB(F [x,y′])
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(resp., ObsD(F [x′,y′])). As an example, since ¬ψ2 ∈ BoxD(F [1,4]), we can conclude that

ψ2 ∉ ObsD(F [2,2]) ∪ObsD(F [2,3]) ∪ObsD(F [3,3]).
In order to further explain the relation between ReqR and ObsR, let us consider the

example in Figure 6 from another angle. Suppose that, for a fixed N ∈ N (in the example,

N = 4), one wants to find, for each [x, y] in IN , a “labelling” F
[x,y]

∈ At(φ) such that

(∗1) M, [x, y] ⊧ ψ if and only if ψ ∈ F
[x,y]

,

where M = (I4,V) and V([x, y]) = F [x,y] ∩ Prop, and

(∗2) φ ∈ F
[0,N]

,

Such a problem is the bounded satisfiability problem, which is simpler than the finite
satisfiability problem we are addressing in this paper, where N is not given as a parameter.

It can be shown that the labelings that, for all [x, y] ∈ IN , satisfy the property:

(∗3) ReqB(F [x,y]) = ⋃
x≤y′<y

ObsB(F [x,y′]) and ReqD(F [x,y]) = ⋃
x<x′≤y′<y

ObsD(F [x′,y′])

are all and only those labellings that satisfy property (∗1). Notice that these labellings
may only differ on interval [0, N].

This means that all the requests that we associate with an interval [x, y] by means of its

labelling F
[x,y]

must be satisfied (fulfilled). Consider, for instance, the prefix relation. It holds

that ReqB(F [x,y]) ⊆ ⋃x≤y′<y ObsB(F [x,y′]). Moreover, there cannot be a formula ψ such

that ψ ∈ ⋃x≤y′<y ObsB(F [x,y′]) and ψ ∉ ReqB(F [x,y]), as, from the latter, it immediately

follows that ¬ψ ∈ BoxB(F [x,y]) which implies ψ ∉ ⋃x≤y′<y ObsB(F [x,y′]) (contradiction).

This allows us to conclude that ReqB(F [x,y]) ⊇ ⋃x≤y′<y ObsB(F [x,y′]) as well (consistency),

and thus ReqB(F [x,y]) = ⋃x≤y′<y ObsB(F [x,y′]). The same holds for modality D as well as
for all the other modalities of HShom. In fact, this is a fairly general property whose validity
does not depend on the homogeneity assumption. Thus, we can conclude that (∗2) and
(∗3) are necessary and sufficient conditions for M to satisfy φ.

Let us now introduce two meaningful binary relations →B and →D over At(φ).
Definition 4.4. For all F,G ∈ At(φ) we let:
• F →B G iff ReqB(F ) = ReqB(G) ∪ObsB(G);
• F →D G iff ReqD(F ) ⊇ ReqD(G) ∪ObsD(G).

Relations →B and →D are often referred to as view-to-type dependencies since they
constrain the labelling of an interval on the basis of the labellings of the intervals that it can

access via certain (interval) relations. As already pointed out, for every ψ ∈ {ψ′ ∶ ⟨B⟩ψ′ ∈
Cl(φ)}, either ψ ∈ ReqB(F ) or ¬ψ ∈ BoxB(F ) (and vice versa). Given two atoms F and
G, with F →B G, and a formula ¬ψ ∈ BoxB(F ) it immediately follows that ψ ∉ ReqB(F ),
and thus, from ReqB(F ) = ReqB(G) ∪ ObsB(G), it follows ψ ∉ ObsB(G). Now, from
¬ψ ∈ BoxB(F ), it follows that ⟨B⟩ψ ∈ Cl(φ), and from ⟨B⟩ψ ∈ Cl(φ) and ψ ∉ ObsB(G),
it follows that ψ ∉ G. For the maximality of atoms, it follows that ¬ψ ∈ G. This allows us
to conclude that for every pair of atoms F and G, with F →B G, BoxB(F ) ⊆ G. The same
argument can be applied to the relation →D, and thus for every pair of atoms F and G, with
F →D G, it holds that BoxD(F ) ⊆ G. In addition, relation →D is transitive (by definition of
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φ = ⟨B⟩( r ∧ ¬p ∧ ¬q ) ∧ ⟨B⟩( ¬p ∧ ¬q ∧ ¬r ) ∧ ⟨B⟩⟨D⟩( r ∧ ¬p ∧ ¬q )

ψ1 ψ2 ψ1

0

p, q, r

1

p, r

2

q, r

3

ψ2

4

ψ2

p, r

r ψ1

⟨B⟩ψ1, ⟨D⟩ψ1 ψ2

⟨B⟩ψ1, ⟨B⟩ψ2, ⟨D⟩ψ1, ⟨B⟩⟨D⟩ψ1 ψ2, φ

r ψ1

0 1 2 3 4
0

1

2

3

4

B

B

B

B

B

��@@B

��@@B

B

B

��@@B

��@@B

��@@B

��@@B

��@@B
B

D

D

F
[x,y] p

¬p

q

¬q

r

¬r

⟨B⟩ψ1

[B]¬ψ1

⟨B⟩ψ2

[B]¬ψ2

⟨B⟩⟨D⟩ψ1

[B][D]¬ψ1

⟨D⟩ψ1

[D]¬ψ1

ψ1

¬ψ1

ψ2

¬ψ2

φ

¬φ
ReqB(F [x,y]) ObsB(F [x,y]) ReqD(F [x,y]) ObsD(F [x,y])

[0, 0] 1 1 1 0 0 0 0 0 0 0 ∅ ∅ ∅ ∅

[0, 1] 1 0 1 0 0 0 0 0 0 0 ∅ ∅ ∅ ∅

[0, 2] 0 0 1 0 0 0 0 1 0 0 ∅ {ψ1} ∅ {ψ1}
[0, 3] 0 0 0 1 0 0 1 0 1 0 {ψ1} {ψ2, ⟨D⟩ψ1} {ψ1} ∅

[0, 4] 0 0 0 1 1 1 1 0 1 1 {ψ1, ψ2,

⟨D⟩ψ1
} {ψ2, ⟨D⟩ψ1} {ψ1} ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1, 2] 0 0 1 0 0 0 0 1 0 0 ∅ {ψ1} ∅ {ψ1}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(0, 4) →B L(0, 4) L(0, 4) →B L(0, 3) L(0, 4)��HH→BL(0, 2) L(0, 4)��HH→BL(0, 1) L(0, 4)��HH→BL(0, 0)
L(0, 3)��HH→BL(0, 3) L(0, 3) →B L(0, 2) L(0, 3)��HH→BL(0, 1) L(0, 3)��HH→BL(0, 0) L(0, 2)��HH→BL(0, 2)
L(0, 2) →B L(0, 1) L(0, 2) →B L(0, 0) L(0, 1) →B L(0, 1) L(0, 1) →B L(0, 0) L(0, 0) →B L(0, 0)

Figure 7. An account of the relation →B from both the interval point of
view (left) and the spatial one (right).

atom, from ReqR(F ) ⊇ ReqR(G), it immediately follows that BoxR(F ) ⊆ BoxR(G)), while
→B is not. Finally, we call an atom which is →B-related to itself a B-reflexive atom (the
notion of D-reflexive atom is defined in an analogous way). Atoms which are not B-reflexive
are called B-irreflexive (D-irreflexive atoms are defined analogously). Reflexive atoms will
play a crucial role in the proof of the results of the next sections.

An account of relations →B and →D is given by the examples in Figure 7 and Figure 8,
respectively. In Figure 7 (resp., Figure 8), we denote B-reflexive (resp., D-reflexive) atoms
by self-loops.

Example 4.5. We exemplify the behavior of the relation →B by the example in Figure 7.

First of all, we observe that it constrains the relationship between the ReqB(F [x,y]) part of
the labelling of an interval [x, y] and that of its maximal proper prefix [x, y− 1] (if any). In
any “consistent model”, for any strict-interval [x, y], it indeed holds that F

[x,y]
→B F

[x,y−1]

(→B constrains the maximal prefix of an interval, not all its prefixes). By “unravelling’ the
definition of →B, we can show that the following three conditions are satisfied:
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(1) from ReqB(F [x,y−1]) ⊆ ReqB(F [x,y]), it follows that BoxB(F [x,y]) ⊆ BoxB(F [x,y−1]),
that is, F

[x,y−1]
features at least the universal requests in F

[x,y]
;

(2) from ObsB(F [x,y−1]) ⊆ ReqB(F [x,y]), it follows that F [x,y−1]
possibly satisfies some of

the requests in ReqB(F [x,y]) and it does not violate any of the universal requests in

BoxB(F [x,y]); otherwise, we would have ObsB(F [x,y−1]) \ ReqB(F [x,y]) ≠ ∅;
(3) from ReqB(F [x,y]) = ReqB(F [x,y−1]) ∪ ObsB(F [x,y−1]), we have that, for each ψ ∈

ReqB(F [x,y]), either F [x,y−1]
satisfies ψ (ψ ∈ ObsB(F [x,y−1])) or it delegates its satisfac-

tion to its prefixes (ψ ∈ ReqB(F [x,y−1])). In the former case, F
[x,y−1]

might potentially

ask for ψ again (whenever ψ ∈ ReqB(F [x,y−1]) as well). This is actually the behaviour
that one may expect from the labelling of the maximal prefix [x, y − 1] of an interval

[x, y]: a request in ReqB(F [x,y]) is either satisfied locally in F
[x,y−1]

(possibly once and
for all) or delegated to its prefixes.
In Figure 7 (both in the interval model to the left and in its graphical counterpart to the

right), we show the labelling of the pairs of atoms/intervals that satisfy the relation →B. The
example formula features three ⟨B⟩ requests, namely, ψ1 = r ∧¬p∧¬q, ψ2 = ¬p∧¬q ∧¬r,
and ψ3 = ⟨D⟩ψ1. Let us focus our attention on the intervals starting at point 0, namely,
[0, 0], [0, 1], [0, 2], [0, 3], and [0, 4]. In Figure 7 (bottom), we report the atoms associated
with these intervals, plus the one for the interval [1, 2], which satisfies the request ⟨D⟩ψ1

of intervals [0, 3] and [0, 4]. In addition, at the very bottom of Figure 7, we show when

F
[0,x]

→B F
[0,x′]

, with 0 ≤ x ≤ x
′
≤ 4, is true and when it is not (a graphical account of the

same pieces of information is given in the top right part of Figure 7).

We now analyse the behavior of ReqB(F [0,x]) and ObsB(F [0,x]) for x = 0 up to x = 4.

We first observe that both F
[0,0]

and F
[0,1]

satisfy neither ψ1 nor ψ2 (it suffices to

observe that p holds on both of them). Moreover, both ReqB(F [0,0]) = ReqB(F [0,1]) = ∅
and ObsB(F [0,0]) = ObsB(F [0,1]) = ∅, and thus both F

[0,1]
→B F

[0,0]
and F

[0,0]
→B F

[0,1]

trivially hold, that is, the two labellings can be swapped without any consequence on the

consistency of B requests. For the very same reason, it holds that F
[0,1]

→B F
[0,1]

as well

as F
[0,0]

→B F
[0,0]

.

Atoms F
[0,0]

and F
[0,1]

are trivially B-reflexive because both their B-requests and
their B-observables are empty. However, there may exist B-reflexive atoms F whose sets
of B-requests and B-observables are both non-empty. A necessary and sufficient condition
for an atom F to be B-reflexive is indeed that ObsB(F ) ⊆ ReqB(F ). In such a case, the
B-requests that F possibly satisfies by means of its observables are immediately reproduced

by the B-requests themselves. This is the case with atom F
[0,4]

in Figure 7 where both

ObsB(F [0,4]) and ReqB(F [0,4]) are non-empty and ObsB(F [0,4]) ⊆ ReqB(F [0,4]).
Atom F

[0,2]
is a different story: it features ψ1 and thus ψ1 ∈ ObsB(F [0,2]). However,

ψ1 ∉ ReqB(F [0,2]) and thus F
[0,2]

is not B-reflexive. Clearly, F
[0,2]

→B F
[0,1]

, since both
of them have no ⟨B⟩-requests.

Atom F
[0,3]

is the first atom with at least one ⟨B⟩ request, namely, ReqB(F [0,3]) =

{ψ1}. It holds that F
[0,3]

→B F
[0,2]

, since ReqB(F [0,3]) = ReqB(F [0,2]) ∪ ObsB(F [0,2])
({ψ1} = ∅ ∪ {ψ1}). On the contrary, F

[0,3]
→B F

[0,1]
does not hold, since F

[0,1]
neither

features ⟨B⟩ψ1 nor satisfies ψ1 ({ψ1} ≠ ∅∪∅). As for the observables, compared to F
[0,2]

,
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F
[0,3]

“loses” ψ1, which is transferred to its ⟨B⟩ψ1 request, but both ψ2 and ⟨D⟩ψ1 are in

ObsB(F [0,3]), and they may satisfy ⟨B⟩-requests coming from atoms labelling intervals that
feature [0, 3] as a proper prefix.

As for F
[0,4]

, ObsB(F [0,4]) = ∅ and ReqB(F [0,4]) = {ψ1, ψ2, ⟨D⟩ψ1}. It can be eas-

ily checked that F
[0,4]

→B F
[0,3]

, i.e., ReqB(F [0,4]) = ReqB(F [0,3]) ∪ ObsB(F [0,3]), as
{ψ1, ψ2, ⟨D⟩ψ1} = {ψ1} ∪ {ψ2, ⟨D⟩ψ1}. By ReqB(F [0,3]), ψ1 is transferred to the proper

prefixes of [0, 3], while both ψ2 and ⟨D⟩ψ1 are in ObsB(F [0,3]) and thus are locally satisfied.
We conclude by noticing that there may be atoms F and G such that ReqB(F ) =

ReqB(G) ∪ObsB(G) (i.e., F →B G), and ReqB(G) ∩ObsB(G) ≠ ∅, that is, a ⟨B⟩-request
may be at the same time locally satisfied by G and featured as request for its proper prefixes.

The next important proposition determines, for any atom F
[x,y]

, the number of atoms

F
[x,y+k]

, with k ≥ 1 and (ReqB(F [x,y+k]),ObsB(F [x,y+k])) ≠ (ReqB(F [x,y]),ObsB(F [x,y])),
that may have F

[x,y]
as (the labeling of) a prefix. Its proof is given in Appendix B.

Proposition 4.6. Let φ be a BDhom formula. For any atom F ∈ At(φ) and any sequence of
atoms Fh →B . . . →B F1 →B F0 = F , where, for each 0 ≤ i ≠ j ≤ h, ReqB(Fi) ≠ ReqB(Fj)
or ObsB(Fi) \ReqB(Fi) ≠ ObsB(Fj) \ReqB(Fj), it holds that h ≤ 2∣{ψ ∶ ⟨B⟩ψ ∈ Cl(φ)}∣−
(2∣ReqB(F )∣ + ∣ObsB(F ) \ ReqB(F )∣).

Intuitively, Proposition 4.6 provides a linear bound on the number of distinct atoms that
may appear in a →B chain of atoms.

Let us consider now relation →D. We first observe that, according to Definition 4.4,
given two atoms F and G, the condition imposed by F →D G is weaker than the one imposed
by →B, that is, containement (superset) instead of full equality of the two sets. The reason

is that by F →D G we state that G may label any sub-interval [x, y] of an interval [x′, y′]
(x
′
< x ≤ y < y

′
) and not just its maximal proper sub-interval [x′ + 1, y

′ − 1], while G in

F →B G only refers to the maximal proper prefix [x′, y′ − 1] of [x′, y′]. We exemplify the
behaviour of →D by means of the following example.

Example 4.7. In Figure 8, we illustrate the labelling of intervals which are required to
satisfy relation →D. We refer both to the interval model and to its graphical counterpart.
Let us consider the following three ⟨D⟩-requests: ψ1 = p ∧ q, ψ2 = ¬p ∧ q, and ψ3 = p ∧ ¬q,
and all the proper sub-intervals of the largest interval in the model, namely, sub-intervals
[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], and [3, 3] of interval [0, 4]. In Figure 8 (bottom), we report

the cases where F
[x,y]

→D F
[x′,y′]

, for 0 < x
′
≤ y

′
< 4 and [x, y] = [0, 4], is true and those

where it is not. A graphical account of these relations is given in Figure 8 (top right).

Let us now describe the behavior of ReqD(F [x,y]) and ObsD(F [x,y]) moving from
interval [x, y] to its maximal sub-interval [x + 1, y − 1] starting from the largest interval

[0, 4]. First, we observe that, since ObsD(F [0,4]) = ∅, it trivially holds that ReqD(F [0,4]) ⊇
ReqD(F [0,4])∪ObsD(F [0,4]), and thus F

[0,4]
→D F

[0,4]
, that is, F

[0,4]
is D-reflexive. Hence,

its labeling F
[0,4]

may possibly be associated with a proper sub-interval of any interval

labelled by F
[0,4]

. The same holds with the D-reflexive atom F
[1,3]

. On the contrary,

the relation F
[0,4]

→D F
[1,3]

cannot be turned into the relation F
[1,3]

→D F
[0,4]

, as

ReqD(F [1,3])(= {ψ1}) /⊇ ObsD(F [0,4]) ∪ ReqD(F [0,4])(= ∅∪ {ψ1, ψ2, ψ3}).
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φ = ⟨D⟩( p ∧ q ) ∧ ⟨D⟩( ¬p ∧ q ) ∧ ⟨D⟩( p ∧ ¬q )

ψ1 ψ2 ψ3

0 1

p ψ3

2

p, q ψ1

3

q ψ2

4

⟨D⟩ψ1, ⟨D⟩ψ2, ⟨D⟩ψ3 φ

p ψ3

⟨D⟩ψ1

q ψ2

0 1 2 3 4 . . .
0

1

2

3

4

D D
D

D

DD

D

D

D

��ZZD

��ZZD

��ZZD

��ZZD

��ZZD

F
[x,y] p

¬p

q

¬q

⟨D⟩ψ1

[D]¬ψ1

⟨D⟩ψ2

[D]¬ψ2

⟨D⟩ψ3

[D]¬ψ3

ψ1

¬ψ1

ψ2

¬ψ2

ψ3

¬ψ3

φ

¬φ
ReqD(F [x,y]) ObsD(F [x,y])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0, 4] 0 0 1 1 1 0 0 0 1 {ψ1, ψ2, ψ3} ∅

[1, 1] 1 0 0 0 0 0 0 1 0 ∅ {ψ3}
[1, 2] 1 0 0 0 0 0 0 1 0 ∅ {ψ3}
[1, 3] 0 0 1 0 0 0 0 0 0 {ψ1} ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2, 2] 1 1 0 0 0 1 0 0 0 ∅ {ψ1}
[2, 3] 0 1 0 0 0 0 1 0 0 ∅ {ψ2}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3, 3] 0 1 0 0 0 0 1 0 0 ∅ {ψ2}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(0, 4) →D L(0, 4) L(0, 4) →D L(1, 3) L(0, 4) →D L(1, 2) L(0, 4) →D L(2, 3) L(0, 4) →D L(1, 1)

L(0, 4) →D L(2, 2) L(0, 4) →D L(3, 3) L(1, 3) →D L(1, 3) L(1, 2)��XX→DL(1, 2) L(2, 3)��XX→DL(2, 3)

L(1, 1)��XX→DL(1, 1) L(2, 2)��XX→DL(2, 2) L(3, 3)��XX→DL(3, 3)

Figure 8. An account of relation →D from both the interval point of view
(left) and the spatial one (right). For the sake of readability, we only highlight
the sub-intervals of [0, 4].

It is worth pointing out that the following stronger consistency property, involving
equality in place of containment, actually holds for ⟨D⟩-requests: for all [x, y], it holds

that ReqD(F [x,y]) = ReqD(F [x+1,y])∪ReqD(F [x,y−1])∪ObsD(F [x+1,y])∪ObsD(F [x,y−1])∪
ObsD(F [x+1,y−1]). It states that the ⟨D⟩-requests that hold over an interval [x, y] must be
completely “covered” by those holding over its maximal proper prefix [x+ 1, y], its maximal
proper suffix [x, y − 1], and the union of all the observables of its maximal proper prefix, its
maximal proper suffix, and its maximal proper sub-interval [x + 1, y − 1]. As an example,

in Figure 8, we have that ReqD(F [0,4]) = ReqD(F [1,4]) ∪ ReqD(F [0,3]) ∪ ObsD(F [1,4]) ∪
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ObsD(F [0,3]) ∪ ObsD(F [1,3]) = {ψ1, ψ2} ∪ {ψ1, ψ3} ∪ ∅ ∪ ∅ ∪ ∅ = {ψ1, ψ2, ψ3}. Finally,
notice that since both the maximal prefix [x, y − 1] and the maximal suffix [x+ 1, y]) of an
interval [x, y] are not proper sub-intervals of it, it may be the case that F

[x,y]
→B F

[x,y−1]

and/or F
[x,y]

→B F
[x+1,y]

do not hold in a consistent model. For instance, in Figure 8,

neither F
[1,3]

→D F
[1,2]

nor F
[1,3]

→D F
[2,3]

holds.

The next proposition shows that to check the equality of atoms it suffices to check
the equality of their propositional components and of their respective sets of ⟨B⟩- and
⟨D⟩-requests.
Proposition 4.8. Let F,G ∈ At(φ). It holds that F = G if and only if ReqB(F ) = ReqB(G),
ReqD(F ) = ReqD(G), and F ∩ Prop = G ∩ Prop.

The statement of Proposition 4.8 immediately follows from the fact that, for each atom

F and each ψ ∈ F , either ψ ∈ Prop∪ {⟨B⟩ψ′ ∶ ψ′ ∈ ReqB(F )}∪ {⟨D⟩ψ′ ∶ ψ′ ∈ ReqD(F )} or

ψ is a Boolean combination of Prop ∪ {⟨B⟩ψ′ ∶ ψ′ ∈ ReqB(F )} ∪ {⟨D⟩ψ′ ∶ ψ′ ∈ ReqD(F )}.
Given a formula φ, a φ-compass structure (compass structure, when φ is clear from

the context) is a pair G = (GN ,L), where N ∈ N, GN = {(x, y) ∶ 0 ≤ x ≤ y ≤ N}, and
L ∶ GN → At(φ) is a labelling function that satisfies the following conditions:

• (initial formula) φ ∈ L(0, N);
• (B-consistency) for all 0 ≤ x ≤ y < N , L(x, y + 1) →B L(x, y), and for all 0 ≤ x ≤ N ,
ReqB(L(x, x)) = ∅;

• (D-consistency) for all 0 ≤ x < x
′
≤ y

′
< y ≤ N , L(x, y) →D L(x′, y′);

• (D-fulfilment) for all 0 ≤ x ≤ y ≤ N and all ψ ∈ ReqD(L(x, y)), there exist x < x
′
≤ y

′
< y

such that ψ ∈ L(x′, y′).
An example of compass structure is given in Figure 6 (top right), where the labelling

with atoms of the second octant of a finite cartesian plane is graphically depicted. Notice
that the definition of →B and B-consistency guarantee that all B-requests are fulfilled.

Let G = (GN ,L) be a compass structure and let P ∶ GN → 2
Prop

such that P(x, y) =
{p ∈ Prop ∶ p ∈ L(x′, x′) for all x ≤ x

′
≤ y}. We say that G is homogeneous if for all

(x, y) ∈ GN , L(x, y) ∩ Prop = P(x, y). The proof of the next theorem is straightforward
and thus omitted.

Theorem 4.9. A BDhom formula φ is satisfiable if and only if there is a homogeneous
φ-compass structure.

Hereafter, we will often write compass structure for homogeneous φ-compass structure.
In the next sections, we will prove a small model theorem about compass structures for an
input BDhom formula φ. In particular, we will prove that a model can be built by contracting
a larger one in such a way that the resulting model is still a compass structure for φ. To this
end, we need to preliminarily state some spatial properties of compass structures where the
distinction between B-reflexive (resp., D-reflexive) and B-irreflexive (resp., D-irreflexive)
atoms plays a major role. Intuitively, if a point is labelled with an atom which is both
B-reflexive and D-reflexive, its only purpose is to “fill the gaps” in the model, as each B/D-
request that it possibly solves for other points are transferred to its prefixes/sub-intervals.
On the other hand, a B-irreflexive, D-irreflexive, or both B-irreflexive and D-irreflexive
point must be dealt with carefully since its observables includes at least one B- or D-request
that is solved once and for all, and it is not transferred to its prefixes/sub-intervals.
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5. Spatial properties of compass structures for BDhom formulas

In this section, we state a series of spatial properties of compass structures that turn out to
be quite useful to prove the results of Sections 6 and 7. Each property is proved by making
use of the previous one as follows.

In Section 5.1, we show that for any compass structure and any of its X-axis coordinates
x, the sequence L(x, 0) . . .L(x,N) is monotonic, i.e., for any triplet 0 ≤ y1 < y2 < y3 ≤ N , it
cannot be the case that L(x, y1) = L(x, y3) and L(x, y2) ≠ L(x, y1). Such a property allows
us to represent relevant information associated with any column x in space (polynomially)
bounded in ∣φ∣. Next, in Section 5.2, we define an equivalence relation over columns such
that two columns are equivalent if they feature the same set of atoms. It is easy to check
that such an equivalence relation is of finite index and its index is exponentially bounded
in ∣φ∣. By exploiting the representation of Section 5.1, we first define a partial order over
equivalent columns, and then we prove that, in a compass structure, such a relation totally
orders them. Finally, in Section 5.3, by exploiting the total order of the elements of each
equivalence class, we show a crucial property of the rows of a compass structure, which is the
cornerstone of the proof. First, we associate with each point (x, y) on row y, with 0 ≤ x ≤ y,
a tuple consisting of (i) L(x, y), (ii) the equivalence class ∼x of column x, and (iii) the set

of pairs (L(x′, y),∼x′), for all x < x
′
≤ y, and then we prove that, for every pair of points

(x, y), (x′, y) that feature the same tuple, L(x, y′) = L(x′, y′) for all y
′
> y, that is, columns

x and x
′
behave the same way (i.e., exhibit the same labelling) from y to the upper end.

5.1. A finite characterisation of columns and of their relationships. In this section,
we first show that, in every compass structure, the atoms that appear in a column x must
respect a certain order, that is, they cannot be interleaved. Let F,G, and H be three
pairwise distinct atoms. In Figure 9(a), we give a graphical account of the property that we
are going to prove, while, in Figure 9(b), we show a violation of it (atom H appears before
and after atom G moving upward along the column). To start with, we state a fundamental
property of B-irreflexive atoms (the proof is given in Appendix B).

Lemma 5.1. Let G = (GN ,L) be a compass structure. For all x ≤ y < N , if ReqB(L(x, y)) ⊂
ReqB(L(x, y + 1)), then L(x, y) is B-irreflexive.

Observe that, from Lemma 5.1, it follows that, given any sequence of points (x, x)(x, x+
1) . . . (x, x+k) in a compass structure, whenever we encounter a B-irreflexive atom, we have
to drop at least one B-request, and thus the number of irreflexive atoms in the sequence is
bounded by ∣{⟨B⟩ψ ∈ Cl(φ)}∣.

Pairing such an observation with the statement of Lemma 4.6, it is possible to provide
a bound on the number of distinct atoms that can be placed above a given atom F in a
column, taking into account B-requests, D-requests, and negative literals in F .

Formally, we define a function ∆↑ ∶ At(φ) → N as follows:

∆↑(F ) = (2∣{⟨B⟩ψ ∈ Cl(φ)}∣ − (2∣ReqB(F )∣ + ∣ObsB(F ) \ ReqB(F )∣))+
(∣{⟨D⟩ψ ∈ Cl(φ)}∣ − ∣ReqD(F )∣)+
(∣{¬p ∶ p ∈ Cl(φ) ∩ Prop}∣ − ∣{¬p ∶ p ∈ Cl(φ) ∩ Prop ∧ ¬p ∈ F}∣)

The proof of Proposition 4.6 (see Section 4) helps us to understand why the factor 2 comes
into play in the case of B-requestes. Informally, from (the proof of) Proposition 4.6, it
immediately follows that, in order to move down from an atom featuring ⟨B⟩ψ to an atom
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featuring ¬ψ, [B]¬ψ, one must pass through an atom featuring ψ, [B]¬ψ. It can be easily
checked that, for each F ∈ At(φ), it holds that 0 ≤ ∆↑(F ) ≤ 4∣φ∣ + 1.

To illustrate how ∆↑ works, we give a simple example.

Example 5.2. Let {ψ ∶ ⟨B⟩ψ ∈ Cl(φ)} = {ψ1} and let F3 →B F2 →B F1, with ReqB(F3) =
{ψ1} and ReqB(F2) = ReqB(F1) = ∅ (by definition of →B, it immediately follows that
ObsB(F2) = {ψ1} and ObsB(F3) = ∅). For simplicity, let us assume that {ψ ∶ ⟨D⟩ψ ∈

Cl(φ)} = ∅, and thus ReqD(F3) = ReqD(F2) = ReqD(F1) = ∅, and (F3∩F2∩F1)∩Prop =

Prop = {p}. It holds that ∆↑(F1) = (2 ⋅ 1 − (2 ⋅ 0 + 0)) + (0 − 0) + (1 − 0) = 3, ∆↑(F2) =
(2 ⋅1−(2 ⋅0+1))+(0−0)+(1−0) = 2, and ∆↑(F3) = (2 ⋅1−(2 ⋅1+0))+(0−0)+(1−0) = 1.

We say that an atom F is initial if and only if ReqB(F ) = ∅. A B-sequence is a sequence
of atoms ShB = F0 . . . Fn such that F0 is initial and for all 0 < i ≤ n we have Fi →B Fi−1,
ReqD(Fi) ⊇ ReqD(Fi−1), and Fi ∩ Prop ⊆ Fi−1 ∩ Prop. It is worth pointing out that atoms
in a B-sequence are monotonically non-increasing in ∆↑, that is, ∆↑(F0) ≥ . . . ≥ ∆↑(Fn).
Definition 5.3. Let ShB = F0 . . . Fn be a B-sequence. We say that ShB is flat if and only

if it can be written as a sequence F
k0
0 . . . F

km
m , where ki > 0, for all 0 ≤ i ≤ m, and F i ≠ F j ,

for all 0 ≤ i < j ≤ m.

For the sake of clarity, it is worth mentioning that here and in the following F it is not used
to denote the complement of F , but as a simple alias for atoms.

We say that a flat B-sequence F
k0
0 . . . F

km
m is decreasing if and only if ∆↑(F 0) > . . . >

∆↑(Fm). Flat (decreasing) B-sequences are the key ingredient of the following important
lemmas. They indeed provide a suitable abstraction of the labelling of a sequence of intervals
[x, y1], . . . , [x, yn] with the same left endpoint. In particular, as we will show, if we ignore
the ki exponents, the representation of a flat (decreasing) B-sequence is bounded by the size
of the input formula φ.

The following definition is at the basis of the abstraction of the sequence of inter-
vals/points [x, y1], . . . , [x, yn] of a compass structure into a flat (decreasing) B-sequence.

Definition 5.4. Let G = (GN ,L) be a compass structure for φ and 0 ≤ x ≤ N . We define

the shading of x in G, written Sh
G(x), as the sequence of atoms L(x, x) . . .L(x,N).

A shading Sh
G(x) is nothing else but the word of atoms obtained “by reading the atoms

along the column” (x, x) . . . (x,N) from bottom to top in a compass structure. As an

example, in Figure 6, Sh
G(1) = F

[1,1]
F

[1,2]
F

[1,3]
F

[1,4]
. The next lemma easily follows from

Definition 5.3 and Definition 5.4. It allows us to abstract the shadings in a compass structure
into flat B-sequences. The easy proof is omitted.

Lemma 5.5. Let G = (GN ,L) be a compass structure and 0 ≤ x ≤ N . It holds that Sh
G(x)

is a B-sequence.

The next lemma is the missing piece that allows us to restrict our attention to decreasing
flat B-sequences when abstracting shadings in a compass-structure.

Lemma 5.6. Let G = (GN ,L) be a compass structure for a formula φ. For all x ≤ y < N ,
it holds that L(x, y) = L(x, y + 1) if and only if L(x, y) is B-reflexive, Prop ∩ L(x, y) =

Prop ∩ L(x, y + 1), and ReqD(L(x, y)) = ReqD(L(x, y + 1)).
The proof of Lemma 5.6 is given in Appendix B. From Lemma 5.6, it follows that, given

a shading Sh
G(x) = L(x, x) . . .L(x,N), to change the atom moving from (x, y) to (x, y+ 1)
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Figure 9. (a) Monotonicity of atoms along a column in a compass structure,
together with a graphical account of the corresponding intervals and of how
proposition letters and B- and D-requests must behave. (b) An example of
a violation of monotonicity.

we need to “sacrifice” at least one element in Prop ∩ L(x, y) or to “acquire” one element in
ReqD(x, y) or in ReqB(x, y).

The next corollary immediately follows from Lemma 4.6 and Lemma 5.6. It allows us
to give a bound on the distinct atoms that may appear in a shading. More precisely, it
states that the shading of each column x in G is a flat decreasing B-sequence, and it gives a
polynomial bound on the number of distinct atoms occurring in it.

Corollary 5.7. Let G = (GN ,L) be a compass structure for a formula φ. Then, for all

0 ≤ x ≤ N , Sh
G(x) is a flat decreasing B-sequence F

k0
0 . . . F

km
m , with 0 ≤ m ≤ 4∣φ∣ + 1.

5.2. A suitable equivalence relation over columns of a compass structure. By
exploiting the above (finite) characterisation of columns, we can define a natural equivalence
relation of finite index over columns.

First, we observe that, thanks to Corollary 5.7, if multiple copies of the same atom
are present in a column, their occurrences are consecutive, and thus can be represented
as blocks. Moreover, if two columns feature the same set of atoms, the (blocks of) atoms
appear in the same order in the two columns because of the monotonicity of ReqB, ReqD,
and Prop, the latter being forced by the homogeneity assumption (see Figure 9 (a)).

We will consider two columns x, x
′
equivalent if and only if they feature the same set

of atoms. Moreover, we will define a partial order relation over the shadings of equivalent
columns that will allow us to totally order them. More precisely, for any two equivalent

columns x and x
′
, we will say that Sh

G(x) < Sh
G(x′) if and only if for every row y, with

y ≥ x
′
, the atom L(x′, y) is equal to the atom L(x, y′) for some row y

′
, with x ≤ y

′
≤ y.

Intuitively, this means that moving up along column x
′
an atom cannot appear until it has

appeared on column x. In Fig. 10 (a), we depict two equivalent columns that satisfy such a

condition. In general, when moving upward, atoms on column x
′
are often “delayed” with

respect to atoms in column x, the limit case being when atoms on the same row are equal.
In Fig. 10 (b), a violation of the condition (boxed atoms) is shown. In the following, we will
prove that the latter situation never occurs in a compass structure.

Let us now define an equivalence relation ∼ over flat decreasing B-sequences as follows.
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Figure 10. Two equivalent columns that respect the order (a) and two
equivalent columns that violate it (b).

Definition 5.8. Two flat decreasing B-sequences ShB = F
k0
0 . . . F

km
m and Sh

′
B = G

h0

0 . . . G
hm′

m′

are equivalent, written ShB ∼ Sh
′
B, if and only if m = m

′
and, for all 0 ≤ i ≤ m, F i = Gi.

Definition 5.8 says that two flat decreasing B-sequences are equivalent if and only if they
feature exactly the same sequence of atoms regardless of their exponents. We choose as the
representative of an equivalence class a flat decreasing B-sequence where each exponent is

equal to one, e.g., the B-sequence F
k0
0 . . . F

km
m belongs to the equivalence class [F 0 . . . Fm]∼.

Given an equivalence class [F 0 . . . Fm]∼ and 0 ≤ i ≤ m, we denote by [F 0 . . . Fm]i∼ the i
th

atom in its sequence, that is, [F 0 . . . Fm]i∼ = F i for all 0 ≤ i ≤ m. In addition, we define a

function next that, given an equivalence class [F 0 . . . Fm]∼ and one of its atom F i, returns

the successor of F i in the sequence [F 0 . . . Fm]∼ (for i = n, it is undefined). It can be easily
checked that ∼ is of finite index. From Corollary 5.7, it follows that its index is (roughly)

bounded by ∣At(φ)∣4∣φ∣+2 = 2
(∣φ∣+1)(4∣φ∣+2)

= 2
4∣φ∣2+6∣φ∣+2

.

Let ShB = F
k0
0 . . . F

km
m be a flat decreasing B-sequence. We define the length of ShB,

written ∣ShB∣, as ∑0≤i≤m ki. A partial order < over the elements of each equivalence class
[ShB]∼ can be defined as follows.

Definition 5.9. Let ShB = F
k0
0 . . . F

km
m and Sh

′
B = F

h0

0 . . . F
hm

m be two equivalent flat

decreasing B-sequences. We say that ShB is dominated by Sh
′
B, written ShB < Sh

′
B, if and

only if (i) ∣ShB∣ > ∣Sh′B∣ and, (ii) for all 0 ≤ i ≤ m, Σ0≤j≤ikj ≤ (∣ShB∣ − ∣Sh′B∣) + Σ0≤j≤ihj .

Example 5.10. Let us consider the equivalent flat decreasing B-sequences in Figure 10.

From left to right, they are Sh
0
B = F1F2F

3
3F

2
4 , Sh

1
B = F1F2F

2
3F4, Sh

2
B = F1F2F

4
3F4, and

Sh
3
B = F1F2F3F

2
4 (for the sake of clarity, the exponent 1 is omitted). Let us consider first

Sh
0
B and Sh

1
B. By condition (i) of Definition 5.9, the only possible domination relation is

Sh
0
B < Sh

1
B. Let us now check if condition (ii) of Definition 5.9 is satisfied. To this end,

let us consider the following representation of flat shadings. In general, whenever Sh
0
B is

equivalent to Sh
1
B, in order to prove that Sh

0
B < Sh

1
B, it suffices to take the alignment of

Sh
1
B (the shorter sequence) as a suffix of Sh

0
B (the longer sequence). Such an alignment is

obtained by prefixing Sh
1
B with a word of length ∣Sh0B∣ − ∣Sh1B∣ only featuring the blank

symbol ‘ ’. In the example, the required alignment of Sh
1
B is Ŝh

1
B =

2
F1F2F

2
3F4. It holds

that Sh
0
B < Sh

1
B if and only if the position of the first occurrence of each atom Fi in Sh

0
B is
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not strictly smaller than that of the first occurrence of Fi in Ŝh
1
B. In the considered case,

we have that:
• F1 occurs for the first time at position 0 in Sh

0
B and at position 2 in Ŝh

1
B;

• F2 occurs for the first time at position 1 in Sh
0
B and at position 3 in Ŝh

1
B;

• F3 occurs for the first time at position 2 in Sh
0
B and at position 4 in Ŝh

1
B;

• F4 occurs for the first time at position 5 in Sh
0
B and at position 6 in Ŝh

1
B.

Hence, we can conclude that Sh
0
B < Sh

1
B. On the contrary, we have that Sh

2
B is equivalent to

Sh
3
B , but Sh

2
B /< Sh

3
B . Indeed, if we consider the alignment Ŝh

3
B =

2
F1F2F3F

2
4 ,it holds that

atom F4 occurs for the first time at position 5 in Ŝh
3
B and at position 6 in Sh

2
B . Lemma 5.11

below proves that such a scenario cannot occur in the case of compass structures.

Let ShB = F
k0
0 . . . F

km
m be a flat decreasing B-sequence and let 0 ≤ i ≤ ∣ShB∣. We

introduce a notation for atom retrieval by letting ShB[i] = F j , where j is such that
∑0≤j ′<j kj ′ < i ≤ ∑0≤j ′≤j kj ′ . The next lemma constrains the relationships between pairs of

equivalent shadings (flat decreasing B-sequences) that appear in a compass structure.

Lemma 5.11. Let G = (GN ,L) be a compass structure. For every pair of columns 0 ≤ x <

x
′
≤ N such that Sh

G(x) ∼ Sh
G(x′), it holds that Sh

G(x) < Sh
G(x′).

Proof. Let ∆ = x
′ − x, ShG(x) = F k0

0 . . . F
km
m , and Sh

G(x′) = F h0

0 . . . F
hm

m . By contradiction,

let us assume that Sh
G(x) /< Sh

G(x′). From Sh
G(x) ∼ Sh

G(x′), it follows that both
B-sequences feature the same atoms in the same order; they may only differ in their

numerousness, i.e., in the exponents of some atoms. Since ∣ShG(x)∣ > ∣ShG(x′)∣ (x′ is closer
to N than x and thus it is a shorter column), from Sh

G(x) ∼ Sh
G(x′) and Sh

G(x) /< Sh
G(x′),

it follows that there exists 0 < i ≤ N − x′ such that one of the following conditions holds:

(1) Sh
G(x)[∆ + i] ∩ Prop ⊃ Sh

G(x′)[i] ∩ Prop;

(2) ReqD(ShG(x)[∆ + i]) ⊂ ReqD(ShG(x′)[i]);
(3) Sh

G(x)[∆ + i] is B-irreflexive;

(4) ReqB(ShG(x)[∆ + i]) ⊂ ReqB(ShG(x′)[i]).
The above cases stem from the fact that we are assuming, by contradiction, that for a

certain index i there exists an index j such that Sh
G(x′)[i] = F j and Sh

G(x)[∆+ i] = F j−1

(and thus Sh
G(x′)[i] ≠ Sh

G(x)[∆ + i]). This is the case, for instance, with x and x
′
in

Figure 10 (b), where ∆ = 2, Sh
G(x′)[3] = F4, and Sh

G(x)[5] = F3.
Let i is the minimum index which satisfies one of the above conditions. In the following,

we will assume that Sh
G(x′)[i] = F j and Sh

G(x)[∆ + i] = F j−1 for some 0 < j ≤ m.
Before proving that all the above cases lead to a contradiction, we would like to

explain how they have been identified. Since Sh
G(x) ∼ Sh

G(x′), but ShG(x) /< Sh
G(x′), and

∣ShG(x)∣ < ∣ShG(x′)∣, the situation is analogous to the one depicted in Figure 10 (b). By

construction, Sh
G(x) is the first starting the unraveling of the sequence of atoms F 0 . . . Fm

(F1 . . . F4 in Figure 10 (b)), later followed by Sh
G(x′), that unravels the same sequence of

atoms (since Sh
G(x) ∼ Sh

G(x′)). Then, either (i) for every i there exists k
′
≤ k such that

Sh
G(x′)[i] = F k′ and Sh

G(x)[i+∆] = F k, i.e., Sh
G(x′) “waits” for Sh

G(x) before displaying

any new atom in the sequence, or (ii) there exist i and k
′
> k such that Sh

G(x′)[i] = F k′ and

Sh
G(x)[i+∆] = F k. As an example, this is the case with i = 3, k = 3, and k

′
= 4 in Figure 10
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(b). Condition (i) suffices to conclude that Sh
G(x) < Sh

G(x′), while Sh
G(x) /< Sh

G(x′) when
condition (ii) holds. One can easily check that if i is the minimal index that satisfies condition

(ii), then k
′
= k + 1. Hence, it holds that Fk′ →B Fk, but Fk′ ≠ Fk.

Cases (1)-(4) above are all the possible ways in which we may have Fk′ →B Fk and

Fk′ ≠ Fk, with the additional constraint that Fk′ = L(x′, x′ + i) and Fk′ = L(x, x +∆ + i).
Let Sh

G(x)[i +∆](= F j−1) = L(x, x +∆ + i) and Sh
G(x′)[i](= F j) = L(x′, x′ + i).

As for case (1), since the considered compass structures satisfy the homogeneity as-

sumption and [x′, x′ + i] finishes [x, x + ∆ + i], it holds that Prop ∩ L(x′, x′ + i) ⊇

Prop ∩ L(x, x + ∆ + i). On the other hand, since k
′
> k, there is i

′
> i such that

Prop∩L(x, x+∆+ i′) = Prop∩L(x′, x′ + i), and, since [x, x+∆+ i] begins [x, x+∆+ i′],
Prop ∩ L(x + ∆ + i) ⊇ Prop ∩ L(x, x + ∆ + i

′) = Prop ∩ L(x′, x′ + i). It follows that

Prop ∩ L(x +∆ + i) = Prop ∩ L(x′, x′ + i) (contradiction).

As for case (2), since [x′, x′ + i] is a proper suffix of [x, x + ∆ + i], all the proper

sub-intervals of [x′, x′ + i] are proper sub-intervals of [x, x+∆+ i] as well, and, since G is a

homogeneous compass structure, ReqD(L(x′, x′+i)) ⊆ ReqD(L(x, x+∆+i)) (contradiction).
As for case (3), let us assume that Sh

G(x)[∆+ i] = L(x, x+∆+ i) is B-irreflexive. From

Sh
G(x) ∼ Sh

G(x′) and minimality of i, it follows that Sh
G(x)[∆+ i− 1](= Sh

G(x′)[i− 1]) =
L(x, x +∆ + i) = F j−1. From Lemma 5.6 (left-to-right direction), it immediately follows
that L(x, x +∆ + i) is B-reflexive (contradiction).

Finally, let us assume ReqB(ShG(x)[∆ + i])(= F j−1) ⊂ ReqB(ShG(x′)[i])(= F j) (case
4). We prove that such an assumption contradicts minimality of i. We distinguish two cases:

either (i) Sh
G(x′)[i − 1] = F j−1 or (ii) Sh

G(x′)[i − 1] = F j . In case (i), from Lemma 5.1, it

follows that F j−1 is B-irreflexive. Hence, Sh
G(x)[∆+ i− 1] ≠ Sh

G(x)[∆+ i](= F j−1), thus
violating minimality of i. In case (ii), it immediately follows that the minimum index must
be less than or equal to j − 1.

Even if it is susceptible to a quite straightforward spatial interpretation, the statement
of Lemma 5.11 is rather technical, and its role in the general picture may be a little obscure.
As a matter of fact, it is an intermediate result that contributes a specific tile to the whole
puzzle. The next example summarizes the properties of compass structures we proved so
far, and gives a preview of the property we are going to demonstrate in the next subsection.

Example 5.12. In Figure 11, we represent the shading of some columns belonging to the
same equivalence class from a certain row y up to the top row N of a compass structure.

More precisely, we consider 5 columns x1, . . . , x5, with Sh
G(x1) ∼ . . . ∼ Sh

G(x5) and
x1 < . . . < x5, and a row y ≤ N , with xi ≤ y for all i ∈ {1 . . . 5}. Then, for i ∈ {1, . . . , 5},
we restrict our attention to the suffix of length N − y of column xi, that is, Sufy(xi) =

Sh
G(xi)[y] . . . ShG(xi)[N], for i ∈ {1, . . . , 5}. In Figure 11, we have Sufy(x1) = F

4
3F

3
4 ,

Sufy(x2) = F2F
4
3F

2
4 , Sufy(x3) = Sufy(x4) = F 3

2F
2
3F

2
4 , and Sufy(x5) = F 5

2F3F4.
First, we observe that a natural weakening of relation < of Definition 5.9, where condition

(i) is dropped, can be exploited to compare suffixes of equal length. The resulting relation is
no more asymmetric, and to distinguish it from the original one, we replace the symbol < by ≤.
From Lemma 5.11, it immediately follows that, in a compass structure, Sufy(xi) ≤ Sufy(xj)
whenever Sh

G(xi) ∼ Sh
G(xj) and xi < xj .

In Figure 11, the lowest occurrences of atoms F3 and F4 on each suffix have been
connected by a broken line. We observe that, by moving from x1 to x5, the two broken
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Figure 11. A graphical account of the property stated by Lemma 5.11 for
suffixes of equal length belonging to columns in the same equivalence class.

lines do not intersect, that is, the broken line for F3 is always below the broken line for
F4, and both are non-decreasing. This does not happen by chance, as we will prove in the
next section (see Lemma 5.15). Moreover, Lemma 5.11 guarantees that identical suffixes are
contiguous in the equivalence class, and can thus be grouped together as one unique block.
This is the case with Sufy(x3) and Sufy(x4) in Figure 11. These features of column suffixes
will be exploited to obtain a finite characterization of rows bounded by some function of ∣φ∣.

In general, the number of distinct suffixes depends on the distance N − y. Such a
dependency may be problematic for a finite characterization of rows, as N can be arbitrary
large. Think of a scenario where y is far away from N and all suffixes belong to the same
equivalence class and differ from each other, that is, Sufy(0) < . . . < Sufy(y). Luckily, in
the next section, we will prove that for every row y and every set of points x1 < . . . < xn ≤ y,
whose columns belong to the same equivalence class, the length of the maximum strictly
ascending chain Sufy(xj1) < . . . < Sufy(xjm), with {j1, . . . jm} ⊆ {1, . . . , n} (that is, the
maximum number of distinct suffixes), is bounded by some function of ∣φ∣.

5.3. A spatial property of rows in homogeneous compass structures. We conclude
the section by stating a covering property of points in a row of a compass structure that
allows us provide a characterization of rows bounded in the size of the formula φ under
consideration. A graphical account of such a property is given in Figure 12.

To begin with, we introduce the fundamental notions of intersection and fingerprint.

Definition 5.13. Let G = (GN ,L) be a compass structure and let 0 ≤ x ≤ y. The intersection

of row y and column x is the pair ([ShG(x)]∼,L(x, y)) consisting of the equivalence class of
x and the labelling of (x, y).

The intersection (x, y) is basically the equivalence class of x, that is, [ShG(x)]∼, where
we have pinpointed the atom in Sh

G(x) that appears at height y. As an example, in the

example of Figure 6, the intersection of (1, 3) is the pair ([F [1,1]
F

[1,2]
F

[1,3]
F

[1,4]]∼, F [1,3]).
Let us now define the notion of fingerprint for a given a point (x, y), which basically pairs

the intersection of row y and column x with the set of intersections of row y and column x
′
, for

all x < x
′
≤ y, that is, the intersections of row y with the columns occurring to the “right” of



Vol. 20:1 THE LOGIC OF PREFIXES, SUB-INTERVALS, AND TEMPORAL NEIGHBORHOOD 23:27

⋯

y

y
′

⋯

N
x

⋯

x0

⋯

xn

⋯

∼ ∼ . . . ∼

F . . .F

L(x, y′) = L(x0, y′)

F

S→(xn, y)
S→(xi, y)

S→(x0, y)
S→(x, y)

S→(x, y) = S→(x0, y) = . . . = S→(xi, y) = . . . = S→(xn, y)

Figure 12. A graphical account of the behaviour of covered points: x is
covered by x0 < . . . < xn on row y, and thus the labelling of points on column
x above (x, y) is exactly the same as that of the corresponding points on

column x0 above (x0, y), that is, L(x, y′) = L(x0, y′), for all y ≤ y
′
≤ N .

column x. Formally, let S→(x, y) be the set {([ShG(x′)]∼,L(x′, y)) ∶ x′ > x}. As an example,

in Figure 6, we have that S→(1, 3) = {([F [2,2]
F

2,3
F

[2,4]]∼, F [2,3]), ([F [3,3]
F

[3,4]]∼, F [3,3])}.
As a general rule, S→(x, y) collects the equivalence classes of ∼ which are witnessed to the
right of x on row y plus a “pointer” to the “current atom”, that is, the atom they are
exposing on y. If G = (GN ,L) is homogeneous (as it is in our setting), for all 0 ≤ x ≤ y ≤ N ,

the number of possible sets S→(x, y) is bounded by 2
2
4∣φ∣2+6∣φ∣+2⋅2∣φ∣+1

= 2
2
4∣φ∣2+7∣φ∣+3

, that is,
it is doubly exponential in the size of ∣φ∣. Such a bound is obtained as follows. The number
of possible equivalence classes for columns, that is, the number of possible flat decreasing

B-sequences, is 2
4∣φ∣2+6∣φ∣+2

and the number of possible atoms is 2
∣φ∣+1

. Their product gives

a bound on the number of pairs ([ShG(x′)]∼,L(x′, y)). Then, the number of all possible

sets on such pairs is bounded by 2
2
4∣φ∣2+6∣φ∣+2⋅2∣φ∣+1

.

Definition 5.14. Let G = (GN ,L) be a compass structure and let 0 ≤ x ≤ y. The fingerprint
of (x, y), denoted by fp(x, y), is the triplet consisting of the intersection of row y and column

x plus the set S→(x, y), that is, fp(x, y) = ([ShG(x)]∼,L(x, y),S→(x, y)).
As an example, the fingerprint of row 3 and column 1 in Figure 6 is:

fp(1, 3) = ( [F [1,1]
F

[1,2]
F

[1,3]
F

[1,4]]∼, F [1,3]
,

{([F [2,2]
F

[2,3]
F

[2,4]]∼, F [2,3]), ([F [3,3]
F

[3,4]]∼, F [3,3])}
) .

The next lemma constrains the way in which two columns x, x
′
, with x < x

′
and

Sh
G(x) ∼ Sh

G(x′), evolve from a given row y on when S→(x, y) = S→(x′, y).

Lemma 5.15. Let G = (GN ,L) be a compass structure and let 0 ≤ x < x
′
≤ y ≤ N . If

fp(x, y) = fp(x′, y) and y
′
is the smallest point greater than y such that L(x, y′) ≠ L(x, y),

if any, and N otherwise, then, for all y ≤ y
′′
≤ y

′
, L(x, y′′) = L(x′, y′′).

From Lemma 5.15, the next corollary easily follows.

Corollary 5.16. Let G = (GN ,L) be a compass structure and let 0 ≤ x < x
′
≤ y ≤ N . If

fp(x, y) = fp(x′, y) and y
′
is the smallest point greater than y such that L(x, y′) ≠ L(x, y),
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if any, and N otherwise, then, for every pair of points x, x
′
, with x < x < x

′
< x

′
, with

L(x, y) = L(x′, y) and Sh
G(x) ∼ Sh

G(x′) /∼ Sh
G(x), it holds that L(x, y′′) = L(x′, y′′), for

all y ≤ y
′′
≤ y

′
.

The above results lead us to the identification of those points (x, y) whose behaviour

perfectly reproduces that of a number of points (x′, y) on their right with fp(x, y) = fp(x′, y).
These points (x, y), like all points “above” them, are useless with respect to fulfilment in a
compass structure. We call them covered points.

Definition 5.17. Let G = (GN ,L) be a compass structure and let 0 ≤ x ≤ y ≤ N . We say
that (x, y) is a covered point if and only if there exist n + 1 = ∆↑(L(x, y)) distinct points
x0 < . . . < xn ≤ y, with x < x0, such that for all 0 ≤ i ≤ n, fp(x, y) = fp(xi, y). In such a
case, we say that x is covered by x0 < . . . < xn on y.

The following lemma holds.

Lemma 5.18. Let G = (GN ,L) be a compass structure and let 0 ≤ x ≤ y ≤ N be

such that x is covered by x0 < . . . < xn on y. Then, for all y ≤ y
′
≤ N , it holds that

Sh
G(x)[y′] = Sh

G(x0)[y′].

Proof. Let Sh
G(x, y) = F k0

0 . . . F
km
m . The proof is by induction on n = ∆↑(L(x, y)).

If n = 0, then L(x, y) = Fm, and since L(x, y) = L(x0, y), Fm = L(x0, y). Since we

are on the last atom of the sequence Sh
G(x, y) and Sh

G(x, y) ∼ Sh
G(x0, y), it holds that

L(x, y′) = L(x0, y′) for all y < y
′
≤ N .

If n > 0, let L(x, y) = Fi, with 0 ≤ i < m (if i = m, we can follow the same reasoning

path as of the inductive basis). By Lemma 5.15, there exists a minimum point y
′
> y such

that L(x, y′) = L(x0, y′) = . . . = L(xn, y′) = Fi+1, and thus, for all y ≤ y
′′
≤ y

′
, it holds that

L(x, y′′) = L(x0, y′′). Moreover, by Corollary 5.16, for every x > xn such that Sh
G(x) /∼

Sh
G(x) if there exists x < x

′
< xn such that Sh

G(x′) ∼ Sh
G(x) and L(x, y) = L(x′, y),

it holds that L(x, y′) = L(x′, y′). Then, it follows that S→(x, y′) = S→(xi, y′) for every
0 ≤ i < n (every one but xn). Since ∆↑(Fi) < ∆↑(Fi+1), and x is covered by x0 < . . . < xn−1
on y

′
, we can apply the inductive hypothesis and conclude that, for every y

′
≤ y

′′
≤ N ,

L(x, y′′) = L(x0, y′′).
In Figure 13, we give an intuitive account of the notion of covered point and of the

statement of Lemma 5.18. First of all, we observe that, since S→(x, y) = S→(x0, y) = . . . =
S→(xn, y) and, for all 0 ≤ j, j

′
≤ n, it holds that (ShG(xj),L(xj , y)) = (ShG(xj ′),L(xj ′ , y)),

there exists xn < x̂ ≤ y such that x̂ is the smallest point greater than xn that satisfies the

condition (ShG(xn),L(xn, y)) = (ShG(x̂), L(x̂, y)). Now, it can be the case that S→(xn, y) ⊃
S→(x̂, y), and all points x

′
> xn such that (ShG(x′),L(x′, y)) = (ShG(x),L(x, y)), for some

x < x < xn, are in between xn and x̂, that is, xn < x
′
< x̂. Then, it may happen that, for all

0 ≤ i ≤ n, L(xi, y′) = Fi+1, as all points (xi, y′) satisfy some D-request ψ that only belongs

to L(x′, y′ − 1). In such a case, as shown in Figure 13, L(x̂, y′) = Fi, because for all points

(x̂′, ŷ′), with x̂ < x̂
′
≤ ŷ

′
< y

′
, ψ ∉ L(x̂′, ŷ′). Hence, (ShG(xn), Fi+1) ∈ S→(xj , y′) for all

0 ≤ j < n, but (ShG(xn), Fi+1) ∉ S→(xn, y′). Then, by applying Corollary 5.16, we have that

S→(x0, y′) = S→(xn−1, y′). Since ∆↑(Fi+1) < ∆↑(Fi)(= n), it holds that ∆↑(Fi+1) ≤ n − 1

The same argument can then be applied to x, x0, . . . , xn−1 on y
′
, and so on.
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Figure 13. An intuitive account of the statement of Lemma 5.18.

6. The satisfiability problem for BDhom belongs to ExpSpace

In this section, by exploiting the properties proved in Section 5, we show that the problem
of checking whether a BDhom formula φ is satisfied by some homogeneous model can be
decided in exponential space. First, by means of a suitable small model theorem, we prove
that either φ is unsatisfiable or it is satisfied by a model (a compass structure) of at most
doubly-exponential size in ∣φ∣; then, we show that this model of doubly-exponential size can
be guessed in single exponential space.

Theorem 6.1. The problem of deciding whether or not a BDhom formula φ is satisfiable,
over finite linear orders, belongs to ExpSpace.

The proof of Theorem 6.1 follows from Corollary 6.2, Lemma 6.3, and Lemma 6.4 below.
First of all, thanks to the property proved in Section 5.3, we know that, for every row

y, there is a bounded number of columns Cy = {x0, x1, . . . , xn} that may behave pairwise
differently for the portion of the compass structure above y, where n only depends on
∣φ∣. This means that each column 0 ≤ x ≤ y, with x ∉ Cy, behaves exactly as some

xi ∈ Cy above y, that is, for all y
′
> y, L(x, y′) = L(xi, y′). Moroever, by exploiting Lemma

5.18, we can show that, for each row y, the cardinality of the set of columns x0, x1, . . . , xm
which are not covered on y is at most exponential in ∣φ∣. Then, the bound on the length
of the sequence of triplets for non-covered points that appear on y is exponential in ∣φ∣.
The latter claim stems from the fact that the third component S→(x, y) of each triplet

fp(x, y) = ([ShG(x)]∼,L(x, y), S→(x, y)) satisfies the condition S→(x, y) ⊆ S→(x′, y) for all

x
′
≤ x. Thanks to such a monotonic behavior of the third component of fingerprints on any

row y, there are at most an exponential number of distinct S→(x, y). Finally the number of

identical non-covered points associated with the same triplet ([ShG(x)]∼,L(x, y), S→(x, y))
is (polynomially) bounded by ∆↑(L(x, y)).

The set of possible characterizations of rows in a compass structure may thus vary in
the set of possible sequences of triplets, which are exponentially long in ∣φ∣. Since the
latter can be viewed as symbols of a finite alphabet, whose cardinality is exponential in ∣φ∣,
we can conclude that the number of distinct characterizations/sequences is bounded by a
double exponential in ∣φ∣. It immediately follows that, in a compass structure whose size
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Figure 14. An example of contraction, where compass structure (a) is
contracted into compass structure (b).

is more than doubly exponential in ∣φ∣, there exist two rows y, y
′
, with y < y

′
, such that

the sequences of the triplets for non-covered points that appear on y and y
′
are exactly the

same. This allows us to apply a “contraction” between y and y
′
on the compass structure.

An example of how contraction works is given in Figure 14. First of all, notice that
rows 7 and 11 feature the same sequences for triplets of non-covered points. Notice that the

two sequences are the same even though the second occurrence (from the right) of (Sh′, F2)
precedes the second occurrence (from the right) of (Sh, F3) on row 7 and follows it on row
11. Moreover, on any row, each covered point is connected by an edge to the non-covered
point that “behaves” in the same way. More precisely, we have that column 2 behaves

as column 4 between y = 7 and y
′
= 15, columns 3, 5, and 7 behave as column 8 between

y = 11 and y
′
= 15, and column 4 behaves as column 6 between y = 11 and y

′
= 15. The

compass structure in Figure 14.(a) can thus be shrinked into the compass structure in Figure

14.(b), where each column of non-covered points x on y
′
is copied above the corresponding

non-covered point x
′
on y. Moreover, the column of a non-covered point x on y

′
is copied

over all the points which are covered by the non-covered point x
′
corresponding to x on y.

This is the case with point 2 in Figure 14.(b) which takes the new column of its “covering”

point 4. The resulting compass structure is y
′ − y shorter than the original one, and we can

repeatedly apply such a contraction until we achieve the desired bound.
The next corollary, which easily follows from Lemma 5.18, is crucial for the proof of

Theorem 6.1. It basically states that the property of “being covered” propagates upward.
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Corollary 6.2. Let G = (GN ,L) be a compass structure. Then, for every covered point

(x, y), it holds that, for all y ≤ y
′
≤ N , point (x, y′) is covered as well.

From Corollary 6.2, it immediately follows that, for every covered point (x, y) and

every y ≤ y
′
≤ N , there exists x

′
> x such that L(x′, y′) = L(x, y′). Hence, for all x, y,

with x < x ≤ y
′
< y, and any D-request ψ ∈ ReqD(L(x, y)) ∩ObsD(L(x, y)), we have that

ψ ∈ L(x′, y), with x′ > x. This allows us to conclude that if (x, y) is covered, then all points

(x, y′), with y′ ≥ y, are “useless” from the point of view of D-requests.
Let G = (GN ,L) be a compass structure and 0 ≤ y ≤ N . We define the set of witnesses

of y as the set WitG(y) = {x ∶ (x, y) is not covered}. Corollary 6.2 guarantees that, for any

row y, the shading Sh
G(x) and the labelling L(x, y) of witnesses x ∈ WitG(y) are sufficient,

bounded, and unambiguous pieces of information that one needs to maintain about y.
Given a compass structure G = (GN ,L) and 0 ≤ y ≤ N , we define the row blueprint

of y in G, written RowG(y), as the sequence RowG(y) = ([Sh0B]∼, F0) . . . ([ShmB ]∼, Fm) such
that m + 1 = ∣WitG(y)∣ and there exists a bijection b ∶WitG(y) → {0, . . . ,m} such that, for

every x ∈ WitG(y), it holds that ShG(x) ∈ [Shb(x)B ]∼ and Fb(x) = L(x, y), and for every x, x
′

in WitG(y), b(x) < b(x′) ↔ x < x
′
.

Let G = (GN ,L) be a compass structure. The next lemma proves that if G features two

distinct rows y < y
′
which share the same blueprint, then there exists a compass structure

G = (GN ′ ,L′) with N
′
< N .

Lemma 6.3. Let G = (GN ,L) be a compass structure. If there exist two points y, y
′
, with

0 ≤ y < y
′
≤ N , such that RowG(y) = RowG(y′), then there exists a compass structure

G ′ = (GN ′ ,L′) with N
′
= N − (y′ − y).

Proof. From RowG(y) = RowG(y′), by composing bijections,it follows that there exists a

bijection b ∶ WitG(y) → WitG(y′) such that, for every x ∈ WitG(y), L(x, y) = L(b(x), y′),
Sh

G(x) ∼ Sh
G(b(x)), and S→(x, y) = S→(b(x), y′). Moreover, for every x, x

′
∈ WitG(y),

x ≤ x
′
↔ b(x) ≤ b(x′). For every point 0 ≤ x ≤ y, we define the function Closestwit ∶

{0, . . . , y} → {0, . . . , y} as follows:

Closestwit(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x if x ∈ WitG(y)

min{ x
′ ∶ x′ > x, x′ ∈ WitG(y),L(x′, y) = L(x, y),

Sh
G(x′) ∼ Sh

G(x), S→(x′) = S→(x) } otherwise.

Let δ = y
′ − y. We define L′ as follows:

(1) L′(x, y) = L(x, y), for all 0 ≤ x ≤ y ≤ y;

(2) L′(x, y) = L(x + δ, y + δ), for all y < x ≤ y ≤ N ;

(3) L′(x, y) = L(Closestwit(x), y + δ), for all points (x, y) with 0 ≤ x ≤ y and y < y ≤ N .

To complete the proof it suffices to show that the resulting structure G ′ = (GN ′ ,L′)
is a homogeneous compass structure. This part is omitted, since it is pretty simple,
but extremely long (it can be proved by exploiting Corollary 6.2 and the definition of
witnesses for a row y).

To conclude the proof of Theorem 6.1, we only need to show that if a BDhom formula is
satisfiable, then it is satisfied by a doubly exponential compass structure, whose existence
can be checked in exponential space. The following lemma provides both the small model
theorem and the ExpSpace membership.
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Lemma 6.4. Let φ be a BDhom formula. It holds that φ is satisfiable if and only if there

is a compass structure G = (GN ,L) for it such that N ≤ 2
2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6

,
whose existence can be checked in ExpSpace.

The proof of Lemma 6.4 can be found in Appendix B. To compute the bound, it heavily
relies on the small model property stated by Lemma 6.3, while the argument of the proof of
the ExpSpace membership is a suitable adaptation of the classical on-the-fly reachability
check used, for instance, to prove that LTL satisfiability belongs to PSpace [CVWY92].

7. The satisfiability problem for BDAhom is decidable in ExpSpace

In this section, we focus on the logic BDAhom, that extends BDhom with modality ⟨A⟩. We
first specify its syntax and semantics; then, we go through the definitions and proofs of
Sections 5.1, 5.2, and 5.3, and show what changes must be done to transfer them from
BDhom to BDAhom.

Formally, syntax and semantics of BDAhom are obtained from those of BDhom by simply
adding the syntactic rule and the semantic clause for modality ⟨A⟩, respectively. BDAhom

formulas are built up from a countable set Prop of proposition letters according to the
grammar: φ ∶∶= p ∣ ¬ψ ∣ ψ ∨ ψ ∣ ⟨B⟩ψ ∣ ⟨D⟩ψ ∣ ⟨A⟩ψ. The semantics of a BDAhom for-
mula is specified by the semantic clauses for BDhom, given in Section 3, plus the following one:

• M, [x, y] ⊧ ⟨A⟩ψ iff there is y
′
, with y

′
≥ y, such that M, [y, y′] ⊧ ψ.

Hereafter, we will denote by TF
φ
A the set {ψ ∶ ⟨A⟩ψ ∈ Cl(φ)}.

Notice that modality ⟨A⟩ allows one to refer to the formulas that hold at the right
endpoint of an interval. As an example, to force formula ψ to hold at the right endpoint of
the current interval [x, y] (point-interval [y, y]), it suffices to state that ⟨A⟩(π ∧ ψ) holds
at [x, y] (it is useful to remark that BDhom already allowed us to constrain a formula ψ to
hold at the left endpoint [x, x] of an interval [x, y] by means of the formula ⟨B⟩(π ∧ ψ)).

Such an ability to force formulas to hold at the left or the right endpoint of an interval
makes a significant difference between BDhom and BDAhom. It will play a crucial role in
proving that the ExpSpace complexity bound for the satisfiability problem of BDAhom is
tight. In fact, it is possible to show that it is the only capability that we need to add to
BDhom to prove ExpSpace hardness (to make it clear, we would need to suitably rewrite
the encoding of Section 8 into a lengthier one).2

In Appendix C, we give an example of a model of a BDAhom formula that make use of
all the three operators of BDAhom. Moreover, in Appendix D, we show that BDAhom may
encode a very expressive fragment of generalized ∗-free regular expressions that features
prefix, infix, and lookahead. In contrast to its non-elementarily-hard complexity in the case
of full generalized ∗-free regular expressions [Sto74], the emptiness problem turns out to be
ExpSpace-complete for such a fragment.

Let us now prove decidability of BDAhom in ExpSpace. To begin with, we state a
lemma that establishes a basic property of modality ⟨A⟩, which will be extensively used in
the following definitions and proofs.

2In [BMPS21b], the satisfiability problem for BDhom has been shown to be PSpace-complete.
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Figure 15. A graphical account of the statement of Lemma 7.1 from both
an interval point of view and a spatial one.

Lemma 7.1. For every interval structure M = (IN ,V), every triplet of points x ≤ y ≤ z in
{0, . . . , N}, and every HS formula ψ M, [x, z] ⊧ ⟨A⟩ψ if and only if M, [y, z] ⊧ ⟨A⟩ψ.

A proof of Lemma 7.1 can be found in [BMS07]. Here we give a graphical account of it
in Figure 15, which shows that intervals (resp., points) sharing their right endpoint (resp.,
laying on the same row) must feature the same A-requests.

Before moving to formal definitions, let us dig deeper in the consequences of Lemma 7.1,
the constraints that can be imposed by means of modality ⟨A⟩ in a compass structure, and
the way in which we can deal with them by extending the labelling of a compass structure.

First, for every row y in a compass structure, Lemma 7.1 states that all the points
(0, y) . . . (y, y) share the very same set of A-requests, which must be satisfied on the column
starting in y, that is, by points (y, y) . . . (y,N). Intuitively, if we consider the 90 degree
angle with vertex in (y, y) we have a set of A-requests associated with its horizontal edge
which must be satisfied on its vertical edge. Notice that modality ⟨A⟩ alone is not able to
constrain the order according to which requests have to be satisfied on column x. To impose
it, a suitable combination of modalities ⟨A⟩ and ⟨B⟩ is necessary.

Let us focus our attention on the sequence of points (y, y) . . . (y,N) on column y. For

each y ≤ y
′
≤ N and each ψ ∈ TF

φ
A , the following cases are the only admissible ones in a

consistent compass structure:

• ψ ∈ ReqA(L(y, y)) and ψ belongs to the atom L(y, y′′), for some y ≤ y
′′
≤ y

′
. In such a

case, there are not pending requests for the suffix (y, y′) . . . (y,N) (as far as ψ is concerned).

We add the symbol ψ
✓

to the labelling of point (y, y′) to record that ψ has been fulfilled
on column y.
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Figure 16. An example of how the additional labels ↑, ✓, and ∉ behave in a
compass structure. To the left of the highlighted points (x, y) we put the set
L(x, y) ∩ {ψ1, ψ2, ψ3}, while to their right we put their additional marking.

• ψ ∈ ReqA(L(y, y)) and ψ does not belong to the atom L(y, y′′), for all y ≤ y
′′
≤ y

′
. In

such a case, ψ is not satisfied in the prefix (y, y) . . . (y, y′) and, in order to guarantee the
fulfillment of the A-requests of (y, y) we have to impose that ψ appears in the labelling of

some point in the suffix (y, y′ + 1) . . . (y,N). We add the symbol ψ
↑
to the labelling of

point (y, y′) to record that the fulfillment of ψ on the column y has been delegated to the

suffix (y, y′ + 1) . . . (y,N), i.e., the “upward” part of column y.
• ψ ∉ ReqA(L(y, y)). In such a case, from the consistency of atoms, it follows that

[A]¬ψ ∈ L(y, y), and thus ψ ∉ L(y, y′′), for all y ≤ y
′′
≤ y

′
. We add the symbol ψ

∉
to

the labelling of point (y, y′) to record that ψ does not belong to L(y, y′) because of the
constraint [A]¬ψ ∈ L(y, y) (in fact, such a constraint must be associated with all points
in the sequence (y, y) . . . (y,N)).
It is worth noticing that the above three conditions are mutually exclusive. The next

example gives a graphical account of the behaviour of the labellings ψ
↑
, ψ

✓
, and ψ

∉
.

Example 7.2. In Figure 16, we show how the additional marking of atoms behave in
a compass structure. Let TF

φ
A = {ψ1, ψ2, ψ3}. For the sake of brevity, we restrict our

attention to the A-requests transferred to points (1, 1), (3, 3), and (5, 5). Let ReqA(L(1, 1)) =
{ψ1, ψ2}, ReqA(L(3, 3)) = {ψ2, ψ3}, and ReqA(L(5, 5)) = {ψ1, ψ2}. By Lemma 7.1, it holds
that ReqA(L(0, 1)) = ReqA(L(1, 1)), ReqA(L(0, 3)) = ReqA(L(1, 3)) = ReqA(L(2, 3)) =

ReqA(L(3, 3)), and ReqA(L(0, 5)) = ReqA(L(1, 5)) = ReqA(L(2, 5)) = ReqA(L(3, 5)) =

ReqA(L(4, 5)) = ReqA(L(5, 5)). The above requests must be satisfied on columns 1, 3, and
5, respectively.

Let us consider the case of column 1. To start with, we label point (1, 1) with the

set {ψ↑
1, ψ

↑
2, ψ

∉

3 }. The presence of ψ
∉

3 in the labelling stems from ψ3 ∉ ReqA(L(1, 1)). By
consistency of atoms, it follows that [A]¬ψ3 ∈ L(1, 1), and thus ¬ψ3 ∈ L(1, y), for all

1 ≤ y ≤ 7. By associating ψ
∉

3 with all points on column 1, we make it explicit that ¬ψ3, and
not ψ3, must belong to all atoms. Notice that, in general, for every column x and ψ ∈ TF

φ
A ,
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either ψ∉ labels all points on the column or it labels none of them. Besides ψ
∉

3 , point (1, 1)
is labeled by ψ

↑
1 and ψ

↑
2, to keep track of the fact that ψ1, ψ2 ∈ ReqA(L(1, 1)). Both ψ1

and ψ2 must indeed be witnessed by at least one point on column 1. Climbing the column,

we mark all points (1, y) above (1, 1) with ψ
↑
1 (resp., ψ

↑
2) until we encounter the first point

that satisfies ψ1 (resp., ψ2). In Figure 16, ψ1 (resp., ψ2) is satisfied “for the first time” at

point (1, 3) (resp., point (1, 6)). From point (1, 3) (resp., (1, 6)) on, the label ψ
✓
1 (resp.,

ψ
✓
2 ), instead of the label ψ

↑
1 (resp., ψ

↑
2), is used to make it explicit that formula ψ1 (resp.,

ψ2) has already been satisfied on column 1. Additional occurrences of ψ1 in the labelling
above (1, 3), like, for instance, the one at point (1, 5), does not affect the additional labelling.
Similar considerations apply to columns 3 and 5.

We conclude the illustration of the example by highlighting some points of interests.

• While the presence of ψ
∉
in the additional labelling of a point (x, y) forces ¬ψ to belong to

atom L(x, y), the presence of either ψ↑
or ψ

✓
implies neither ψ ∈ L(x, y) nor ¬ψ ∈ L(x, y)

(see, e.g., the cases of points (1, 4), (1, 5), and (1, 7) in Figure 16).

• When ψ
↑
is associated with on the bottom of a column, sooner or later we make a transition

from ψ
↑
to ψ

✓
, that is, the labelling is monotone (such a behavior can be observed on

columns 1, 3, and 5 in Figure 16.
• For every column x, the set of all the requests ψ in TF

φ
A that must be satisfied on the

column (as recorded by the additional labels ψ
↑
/ψ

✓
) is given by the set ReqA(L(x, x))

at the bottom of the column. Different columns may obviously feature different sets of
requests (this is the case with columns 1 and 3 in Figure 16), and columns with the same
set of requests may fulfil them in a different order (this is the case with columns 1 and 5
in Figure 16).

• For each column x and request ψ ∈ TF
φ
A , either ψ

∉
or ψ

✓
belongs to the label of the

top point (x,N). Indeed, to guarantee that all the requests transferred to ReqA(x, x) are
sooner or later fulfilled, no A-request can be still pending on the top row (x,N). Such a
condition is exemplified by points (1, 7), (3, 7), and (5, 7) in Figure 16.

We now refine the notion of φ-atom (see Section 4) into that of marked-φ-atom.

Definition 7.3. A marked φ-atom (hereafter simply atom) is a pair Fα = (F, α), where:
(1) F is a maximal subset of Cl(φ) that, for all ψ ∈ Cl(φ), satisfies the following 3

conditions: (i) ψ ∈ F if and only if ¬ψ ∉ F , (ii) if ψ = ψ1 ∨ ψ2, then ψ ∈ F if and only
if {ψ1, ψ2} ∩ F ≠ ∅, and (iii) if π ∈ F , then, for all [A]ψ ∈ F , ψ ∈ F ;

(2) α is a function α ∶ TF
φ
A → {↑,✓, ∉} that, for all ψ ∈ TF

φ
A , satisfies the following 4

conditions: (i) if α(ψ) = ∉, then ¬ψ ∈ F ; (ii) if ψ ∈ F , then α(ψ) = ✓; (iii) if π ∈ F and
α(ψ) = ↑, then ⟨A⟩ψ ∈ F and ψ ∉ F ; (iv) if π ∈ F and α(ψ) = ✓, then ψ ∈ F .

It is worth pointing out that we can safely characterize the additional labelling as a
function, because labels are mutually exclusive.

The second component of an atom keeps track of formulas ψ that are forced to appear
negated in every interval starting at x due to the presence of [A]ψ in the labelling of [x, x]
that is, formulas marked by ↑. Since we cannot consider a model fulfilled until all A-requests
are satisfied for all points x in the model, we introduce the notion of final atom. An atom
Fα is final if and only if for every ψ ∈ TF

φ
A , it holds that α(ψ) ∈ {✓, ∉}.

For the sake of simplicity, from now on, when we refer to Fα as a set, we refer to its
first component F , e.g., when we write ψ ∈ Fα, we mean ψ ∈ F .
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Let At(φ) be the set of all φ-atoms. We have that ∣At(φ)∣ ≤ 2
∣φ∣+1 ⋅2∣φ∣−1 = 2

2∣φ∣
, where

∣φ∣ = ∣Cl(φ)∣/2. When we restrict our attention to the first component of Fα, functions
ReqR, ObsR, and BoxR, with R ∈ {A,B,D}, can be defined exactly as in Section 4. In
addition, we specialize the relations →B and →D: as follows:
• Fα →B Gβ if and only if ReqB(Fα) = ReqB(Gβ) ∪ ObsB(Gβ) and for all ψ ∈ TF

φ
A ,

α(ψ) = β(ψ) if β(ψ) ∈ {✓, ∉} or ψ ∉ F ;
• Fα →D Gβ if and only if ReqD(Fα) ⊇ ReqD(Gβ) ∪ObsD(Gβ).

The statement about labelings made in Section 4 can be extended to BDAhom formulas
by claiming that the labelings that satisfy condition (∗1) are all and only those claims that
satisfy the following property:

(∗3-b) ReqB(F [x,y]) = ⋃x≤y′<y ObsB(F [x,y′]), ReqD(F [x,y]) = ⋃x≤x′≤y′<y ObsD(F [x′,y′]),
and ReqA(F [x,y]) = ⋃y≤y′ ObsA(F [y,y′]), for all [x, y] ∈ IN .

Compass structures for BDAhom formulas can be defined by extending those for BDhom

ones with the following requirements:
• (initial formula) φ ∈ L(0, N);
• (A-consistency) for all 0 ≤ x ≤ y ≤ N , ReqA(L(x, y)) = ReqA(L(y, y));
• (A-fulfilment) for every 0 ≤ x ≤ N , atom L(x,N) is final.

The result about compass structures for BDhom formulas can be lifted to BDAhom ones.

Theorem 7.4. A BDAhom formula φ is satisfiable if and only if there is a homogeneous
φ-compass structure.

In Appendix C, we give a couple of examples of a consistent atom labelling in the case of
BDAhom formulas.

We are now ready to illustrate the (minor) changes that must be done in order to adapt
the small model theorem proved in Section 5 to the logic BDAhom.

First of all, by exploiting Lemma 7.1, it can be easily proved that Lemma 5.1 holds for
BDAhom homogeneous compass structures as well.

Second, to take into account the second component of atoms, we redefine the function
∆↑ ∶ At(φ) → N as follows:

∆↑(Fα) = (2∣{⟨B⟩ψ ∈ Cl(φ)}∣ − 2∣ReqB(Fα)∣−
∣ObsB(Fα) \ ReqB(Fα)∣)+
(∣{⟨D⟩ψ ∈ Cl(φ)}∣ − ∣ReqD(Fα)∣)+
(∣{¬p ∶ p ∈ Cl(φ) ∩ Prop}∣−
∣{¬p ∶ p ∈ Cl(φ) ∩ Prop ∧ ¬p ∈ Fα}∣)+
∣{ ψ ∈ TF

φ
A ∶ α(ψ) = ↑}∣

The main complication caused by the introduction of modality ⟨A⟩ is that a B-sequence
sequence in a compass structure may be not flat (while it is still forced to be decreasing).
To cope with such a complication, we introduce the concept of minimal B-sequence. A B-

sequence ShB = F
0
α0
. . . F

n
αn

isminimal if and only if for every 0 ≤ i < n, ∆↑(F i
αi
) > ∆↑(F i+1

αi+1
).

Let us observe that for every minimal B-sequence ShB = F
0
α0
. . . F

n
αn

, it holds that n ≤ 5∣φ∣,
that is, the length of a minimal B-sequence is at most 5∣φ∣+ 1. A minimal B-sequence does
not represent the whole sequence of atoms on a “column” x of a given compass structure,
as it happened for flat decreasing B-sequences in Section 5. Here, a minimal B-sequence
represents the labellings of the sequence of points sharing the same “column” x where the
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function ∆↑(F i
αi
) decreases as long as we move up on y. To capture such a behaviour, we

define the following notion of shading.
Let G = (N,L) be a compass structure for φ and 0 ≤ x ≤ N . The shading of x in G,

written Sh
G(x), is the sequence of pairs (L(x, y0), y0) . . . (L(x, ym), ym) such that:

(1) yi < yi+1 for all 0 ≤ i < m;
(2) {∆↑(L(x, y)) ∶ 0 ≤ y ≤ N} = {∆↑(L(x, yi)) ∶ 0 ≤ i ≤ m};
(3) for all 0 ≤ i ≤ m, yi = min {0 ≤ y ≤ N ∶ ∆↑(L(x, yi)) = ∆↑(L(x, y))}, that is, yi is the

minimum height on the column x that exhibits its value for ∆↑.

For all 0 ≤ x ≤ N , let Sh
G(x) = L(x, y0) . . .L(x, ym). We denote by Sh

G
B(x) the

sequence of atoms L(x, y0) . . .L(x, ym), and by Sh
G
N(x) the sequence of natural numbers

y0 . . . ym, that is, the projections of Sh
G(x) on its first and second component, respectively.

The next lemma is the BDAhom counterpart of Lemma 5.5.

Lemma 7.5. Let G = (N,L) be a compass structure and 0 ≤ x ≤ N . Then, Sh
G
B(x) is a

minimal B-sequence.

The above (finite) characterisation works just as well as the one provided in Section 5
to define a natural equivalence relation of finite index over columns: we say that two

columns x, x
′
are equivalent, written x ∼ x

′
, if and only if Sh

G
B(x) = Sh

G
B(x

′). Then, by
using Lemma 7.1, we can prove that Lemma 5.11 also holds for BDAhom compass structures.
The definitions of S→(x, y) and of fingerprint fp(x, y), for all 0 ≤ x ≤ y ≤ N , are the
same as the ones given in Section 5. Given the specialization of atoms, the number of

possible sets S→(x, y) turns out to be bounded by 2
6
5∣φ∣2+2∣φ∣⋅ 2

3

5∣φ∣+2
. Given two atoms Fα

and Gβ, we say that they are equivalent modulo A, written Fα ≡¬A Gβ if and only if
F \ ReqA(Fα) = G \ ReqA(Gβ) and α = β, that is, Fα and Gβ may only differ in their
⟨A⟩ requests. We can prove the analogous of Lemma 5.15 and Corollary 5.16 for BDAhom

compass structures.

Lemma 7.6. Let G = (N,L) be a compass structure and 0 ≤ x < x
′
≤ y ≤ N . If

fp(x, y) = fp(x′, y) and y′ is the smallest point greater than y such that L(x, y′) ≢¬A L(x, y),
if any, and N otherwise, then, for all y ≤ y

′′
≤ y

′
, L(x, y′′) = L(x′, y′′).

Corollary 7.7. Let G = (N,L) be a compass structure and 0 ≤ x < x
′
≤ y ≤ N . If

fp(x, y) = fp(x′, y) and y′ is the smallest point greater than y such that L(x, y′) ≢¬A L(x, y),
if any, and N otherwise, then, for all pairs of points x, x

′
, with x < x < x

′
< x

′
, with

L(x, y) = L(x′, y) and x ∼ x
′ /∼ x, it holds that L(x, y′′) = L(x′, y′′), for all y ≤ y

′′
≤ y

′
.

The definitions of covered point, set of witnesses (WitG(y)), and row blueprint (RowG(y))
for BDAhom compass structures are exactly the same as the ones for BDhom ones (see Defini-
tion 5.17 and Section 6). As a consequence, Lemma 5.18, Corollary 5.16, and Theorem 6.3
hold for BDAhom compass structures as well. Thanks to them, we can devise an algorithm
very similar to the one exploited in the proof of Theorem 6.4, that yields the following result.

Theorem 7.8. Let φ be a BDAhom formula. It holds that φ is satisfiable if and only if there

is a compass structure G = (N,L) for it, with N ≤ 2
5∣φ∣⋅(610∣φ∣2+4∣φ∣⋅ 2

3

10∣φ∣+4)
, whose existence

can be checked in EXPSPACE.

It is not difficult to show that the doubly-exponential upper bound on the size of models

of satisfiable formulas is tight. One can indeed build a satisfiable formula of size O(∣n∣2),
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featuring n + 1 propositional letters, whose models are all of size at least 2
2
n

. Such a
formula φ can be obtained by making use of the notions introduced in Section 6, which were
instrumental in proving the ExpSpace-hardness of the satisfiability problem for BDAhom.

8. ExpSpace-hardness of BDAhom

In this section, we prove that the satisfiability problem for BDAhom is ExpSpace-hard. The
proof consists of a reduction from the acceptance problem for (non-deterministic) Turing
Machines working in exponential space.3

Let Tm = (Σ, Q,∆, q0, qf) be a Turing machine, where the alphabet Σ contains the
special blank symbol #, q0, qf ∈ Q, and ∆ ⊆ ((Q × Σ) × (Q,×Σ \ {#}) × {←,→}). As an

example, the transition ((q, σ), (q′, σ′),→) is enabled if Tm is at state q and its head points

to a cell containing σ, and if it is fired, then symbol σ is replaced by symbol σ
′
, state q is

replaced by state q
′
, and the head is moved to the next cell.

Notice that, according to the above definition, Tm never writes the symbol #, that
can only be rewritten/consumed when encountered. Then, if we assume that the initial
configuration of Tm consists of the input word win ∈ (Σ \ {#})∗, written in the first
0, . . . , ∣win∣− 1 cells of the (infinite) tape, and all the other cells contain the symbol #, each
configuration of Tm can be represented as a tuple (w, q, i), where w is the word consisting of
all and only the symbols different from # in the tape, q is the current state, and 0 ≤ i ≤ ∣w∣
is the current position of the head (if i = ∣w∣, then the symbol in the underlying cell is #).

Let →∆ be the standard transition relation over configurations and →
∗
∆ be its transitive

and reflexive closure. Given win ∈ (Σ \ {#})∗, Tm accepts win if and only if (win, q0, 0) →∗
∆

(w, qf , i) for some w ∈ (Σ \ {#})∗ and some i ∈ N. Notice that ∣w∣ at the end of the
computation is exactly the number of used cells, that is, the space consumption.

The language of Tm is the set L(Tm) = {w ∈ (Σ \ {#})∗ ∶ Tm accepts w}. We say
that Tm works in exponential space if and only if for every win ∈ L(Tm) there exists a

computation (win, q0, 0) →
∗
∆ (w, qf , i) such that ∣w∣ ≤ 2

∣win∣.4 From now on, we assume
∣win∣ = n, and thus the computation must take at most 2

n
cells. Moreover, we assume that

Tm never writes on the left of the cell 0 when it starts from the configuration (w, q0, 0). It
is trivial to check that we can make all these assumptions without any loss of generality.

We are now ready to provide the reduction. More precisely, given a word win ∈ (Σ\{#})∗
and a Turing Machine which works in exponential space, we write a BDAhom formula φ
which is satisfiable if and only if win ∈ L(Tm).

To start with, we introduce some useful shorthands and some basic formulas that will
be used as the building blocks of the proposed encoding. First, let len1 be the formula [B]π,
which holds at [x, y] if and only if y = x + 1, that is, the length of [x, y] is exactly 1 (the
constant π for 0-length intervals has been introduced in Section 3). Then, we introduce
the global modality [G]ψ, whose semantics is as follows: given a model M = (IN ,V),
M, [0, y] ⊧ [G]ψ if and only if ψ ∈ V([x′, y′]) for every 0 ≤ x

′
≤ y

′
≤ N , i.e., [G]ψ holds at

an initial interval of the model (an interval whose left endpoint is 0) if and only if ψ holds
at every interval of the model. In BDAhom, [G]ψ can be expressed by means of the formula

3An alternative reduction from a well-known tiling problem can be found in [BMPS21a].
4We do not care of words w ∉ L(Tm). In those cases, Tm either would exceed the exponential space

bound without reaching qf or would get stuck in a loop without passing through qf .
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ψ∧ [A]ψ∧ [A][A]ψ∧ [B]ψ∧ [B][A]ψ. Finally, we write ⟨B⟩πψ and ⟨A⟩πψ for ⟨B⟩(π∧ψ)
and ⟨A⟩(π ∧ ψ) to directly access the first and the last point of an interval, respectively.

Let us consider now the problem of identifying (indexing) the cells of every configuration.
Let N = 2

n
. We make use of n bits represented as proposition letters b0, . . . , bn−1. For each

(point-)interval [x, x] in the model, the index of the cell it represents in a configuration is

binary-encoded as idx = ∑bi∈V([x,x]) 2
i
. The first and the last cell of a computation are the

cells indexed by 0 and with 2
n − 1, respectively. We will refer to them by means of the

shorthands cell0 = π ∧⋀n−1
0 ¬bi and cellN = π ∧⋀n−1

0 bi, respectively.
To encode both the correct order of the cells, mimicking the tape on a linear temporal

model, and the transitions of TM , we make use of the following formulas that check basic
arithmetic properties of the bits associated with the endpoints of an interval:

• ψ
i
= = (⟨B⟩πbi ↔ ⟨A⟩πbi) ∧ ψi+1

= for 0 ≤ i < n − 1 and ψ
n−1
= = (⟨B⟩πbn−1 ↔ ⟨A⟩πbn−1).

It is easy to check that ψ
i
= holds over an interval [x, y] if the bits from i to N for the

cell associated with [x, x] are equal to the bits for the cell associated with [y, y]. Hence,

ψ
0
= holds at [x, y] if and only if the cells [x, x] and [y, y] have the same index, that is,

idx = idy;

• ψ
i
+ = (⟨B⟩π¬bi ∧ ⟨A⟩πbi ∧ ψ

i+1
= ) ∨ (⟨B⟩πbi ∧ ⟨A⟩π¬bi ∧ ψ

i+1
+ ) for 0 ≤ i < n − 1 and

ψ
n−1
+ (⟨B⟩π¬bn−1 ∧ ⟨A⟩πbn−1). It can be easily checked that ψ

0
+ holds over an interval

[x, y] if and only if idy = idx + 1;

• ψ
i
− = (⟨B⟩πbi ∧ ⟨A⟩π¬bi ∧ ψ

i+1
= ) ∨ (⟨B⟩π¬bi ∧ ⟨A⟩πbi ∧ ψ

i+1
− ) for 0 ≤ i < n − 1 and

ψ
n−1
− = (⟨B⟩πbn−1 ∧ ⟨A⟩π¬bn−1). We have that ψ

0
+ holds over an interval [x, y] if and

only if idy = idx − 1.
By means of the above formulas, we use point x to encode the value of the cell of index
x mod N , where mod denotes the remainder of the integer division, in the configuration
whose number is given by the integer division x/N .

We now write a formula φ whose models encodes all and only the successful computations
of Tm on w, thus guaranteeing that φ is satisfiable if and only if w ∈ L(Tm)

First, for each computation we encode the correct indexing of the tape by means of the

formula ψtape = [G](len1 → ψ
0
+ ∨ (⟨B⟩cellN ∧ ⟨A⟩cell0) ∨ [A](π ∧ cellN)).

We constrain each cell/point to be labelled by exactly one element of Σ by means of the

formula ψΣ = [G](π → (⋁σ∈Σ σ) ∧ (⋀σ∈Σ(σ → ⋀σ′∈Σ\{σ}¬σ
′)).

To encode the transitions in ∆, we introduce some convenient notation. Let δ =

((σ, q), (σ′, q′),∗) be any transition in ∆, with ∗ ∈ {←,→}. We put Σin(δ) = σ, Σout(δ) = σ′,
Qin(δ) = q, Qout(δ) = q

′
. Moreover, we add some symbols for some meaningful subsets

of ∆: (i)
←−
∆ = {((σ, q), (σ′, q′),←) ∈ ∆}; (ii) −→∆ = {((σ, q), (σ′, q′),→) ∈ ∆}; (iii) ∆0 =

{(σ, q0), (σ′, q′),∗) ∈ ∆,∗ ∈ {←,→}}, and (iv) ∆f = {(σ, q), (σ′, qf),∗) ∈ ∆,∗ ∈ {←,→}}.
For all ∆ ∈ {∆,−→∆,←−∆,∆0,∆f}, we denote by ∆ the formula π ∧⋁δ∈∆ δ. Finally, we define
a relation Next∆ ⊆ ∆ ×∆ that includes all and only those pairs of transitions that can be

fired one after the other, that is, Next∆ = {(δ, δ′) ∈ ∆ ×∆ ∶ Qout(δ) = Qin(δ′)}.
We will also make use of ∣∆∣ additional proposition letters δ ∈ ∆ to identify the

transition which is fired in the current configuration. More precisely, we will impose the
following condition: if δ ∈ V([x, x]), then transition δ is fired in configuration x/N , where
the head is at position x mod N .
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Next, we constrain every cell to be labelled by at most one element of ∆ by means

of the formula ψ∆1
= [G](π → ⋀δ∈∆(δ → ⋀δ′∈∆\{δ}¬δ

′)). Moreover, we constrain every
configuration to contain exactly one point labelled by an element in ∆, which identifies the
position of the head of Tm in the current configuration. Such a condition is forced by the
formula ψ∆2

= [G](⟨B⟩cell0 ∧ ⟨A⟩cellN → (⟨B⟩⟨A⟩∆) ∧ [B](⟨A⟩∆ → [B][A]¬∆)).5
Then, we encode the correct transition among consecutive configurations by means of

the formula

ψ∆3
= [G] (

⟨B⟩∆ ∧ ⟨A⟩∆ ∧ [B](¬π → [A]¬∆) →
(⋁(δ,δ′)∈Next∆

⟨B⟩δ ∧ ⟨A⟩δ′) ∧ (⟨B⟩←−∆ → ψ
0
−) ∧ (⟨B⟩−→∆ → ψ

0
+))

) .

Finally, we correctly reproduce the symbols between any two consecutive configurations
and we guarantee that each δ ∈ ∆ labelling a point is consistent with its σin(δ) (resp.,
σout(δ)) symbol in the current (resp., next) configuration. This is encoded by means of the
formula

ψΣ∆ = [G]
⎛
⎜⎜
⎝

ψ
0
= ∧ [B]¬ψ0

= →

( (¬⟨B⟩∆ ∧⋀σ∈Σ(⟨B⟩σ ↔ ⟨A⟩σ))∨
(⟨B⟩∆ ∧⋀δ∈∆(⟨B⟩δ → ⟨B⟩σin(δ) ∧ ⟨A⟩σout(δ)) )

⎞
⎟⎟
⎠
.

To complete the encoding, it suffices to specify the initial configuration and the accepting
condition. Let win = w0 . . . wn−1. The former is captured by the formula

ψinit =
⟨B⟩π(w0 ∧∆0) ∧⋀i=n−1

i=1 ⟨B⟩(⟨A⟩wi ∧ [B]i+1⊥ ∧ ⟨B⟩i⊤)∧
[B]([B][A]¬cellN ∧ ⟨B⟩n⊤ → ⟨A⟩#) ,

where, for any k ∈ N, ⟨B⟩kψ (resp., [B]kψ) is recursively defined as follows: ψ if k = 0,

and ⟨B⟩⟨B⟩k−1ψ (resp., [B][B]k−1ψ), otherwise. As for the latter, it suffices the formula
ψaccept = ⟨B⟩⟨A⟩∆f . It is easy to prove that w ∈ L(Tm) if and only if the BAhom formula

φ = ψtape ∧ ψΣ ∧ ψ∆1
∧ ψ∆2

∧ ψ∆3
∧ ψΣ∆ ∧ ψinit ∧ ψaccept

is satisfiable. Moreover, it is easy to prove that each conjunct can be generated in LogSpace.

Theorem 8.1. The satisfiability problem for the logic ABhom over finite linear orders is
ExpSpace-hard.

9. Conclusions

In this paper, we proved that the addition of modality ⟨A⟩ to the logic BDhom of prefixes
and sub-intervals increases the complexity of the problem of satisfiability checking over
finite linear orders, under the homogeneity assumption. Indeed, while the addition of either
modality ⟨B⟩ or modality ⟨E⟩ to the logic Dhom of sub-intervals [BMM

+
22] does not affect

the complexity of the problem, that remains PSpace-complete [BMPS23], we showed that
the addition of modality ⟨A⟩ to BDhom makes the problem for the resulting logic BDAhom

ExpSpace-complete. The same complexity has been recently proved, following a rather
different path, for the logic BEhom [DMPS23].

The emerging picture is as follows. Both the addition of modality ⟨A⟩ to the logic
BDhom and the replacement of modality ⟨D⟩ with modality ⟨E⟩ make the resulting logics

5To simplify the encoding, w.l.o.g, we assume that the last cell, that is, the cell of index N , of each
configuration is never reached in a successful computation.
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BDAhom and BEhom ExpSpace-complete. However, as for expressiveness, the two logics
turn out to be not comparable [BMM

+
14]. As a matter of fact, BDAhom captures a fragment

of BEhom, that is, BDhom extended with a weaker variant ⟨E⟩π of modality ⟨E⟩, defined
as ⟨E⟩πψ = ⟨A⟩(π ∧ ψ), that allows one to constrain the truth of formulas on the right
endpoint of an interval. As shown in Section 8, such an ability is the key property that
causes the increase in complexity from PSpace-complete to ExpSpace-complete.

As for future work, we aim at addressing the problem of establishing the exact complexity
of the problem of satisfiability checking for full HShom over finite linear orders, under the
homogeneity assumption. At the moment, we only know that it is non-elementarily decidable
[MMM

+
16]. We would also like to determine whether the problem remains ExpSpace-

complete for the logic BEAhom, that merges BDAhom and BEhom. Finally, we would like
to study the model checking problem for the logics BDAhom and BEhom as well as BDAhom

and HShom.
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Appendix A. About the encoding of HS in CDT and of LTLf in AB

In this appendix, we focus on the encoding of HS in CDT and of LTLf in AB. As for HS, in
Figure 17, we show how to encode HS modalities in CDT. The encoding of LTLf modalities in
AB has been already illustrated in Section 2. Here, we show how to exploit it in order to deal
with the example model in Figure 1. Let us first consider the LTLf formula p U (¬p ∧ ¬q)
(Figure 18 - top), which is true at time point 0 (according to the point-based semantics π),
which is mapped into the AB formula ψ = ([B]⟨A⟩(π ∧ p) ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q)). We show
that the latter holds over the interval [0, 3] (according to the interval-based semantics V).
Let us evaluate the formula ψ over the interval [0, 3]. The second conjunct ⟨A⟩(π∧¬p∧¬q)
forces the existence of an interval [3, y], with y ≥ 3, where π, ¬p, and ¬q hold. The truth of
π on [3, y] restricts the number of candidate intervals to [3, 3] only. Since V([3, 3]) = ∅, it
immediately follows that both ¬p and ¬q hold over [3, 3] as well. The outermost modality
of the first conjunct [B]⟨A⟩(π∧p) forces the formula ⟨A⟩(π∧p) to be true over each proper
prefix of [0, 3], namely, [0, 2], [0, 1], and [0, 0]. This amounts to say that, for each interval

[0, x′], with x
′
∈ {0, 1, 2}, ⟨A⟩(π ∧ p) holds on [0, x′] if and only if there is an interval

[x′, y], with y ≥ x
′
, which makes both π and p true. Since π is true over [x′, y] if and only

if y = x
′
, it immediately follows that p belongs to V([x′, x′]) for all point-intervals [x′, x′],

with x
′
∈ {0, 1, 2}, that is, p belongs to V([0, 0]),V([1, 1]), and V([2, 2]).

Let us consider now the LTLf formula ,(¬p∧¬q) (Figure 18 - bottom), which is true at
time point 2, which is mapped into the ABf formula ψ = ⟨A⟩(¬π∧[B]π∧⟨A⟩(π∧¬p∧¬q)).
We prove that the latter holds over the interval [0, 2]. The outermost modality ⟨A⟩ constrains
the three conjuncts ¬π, [B]π, and ⟨A⟩(π∧¬p∧¬q) to simultaneously hold over an interval
[2, y]. The truth of ¬π imposes y > 2, and that of [B]π allows us to conclude that y = 3.
From the truth of ⟨A⟩(π ∧ ¬p ∧ ¬q) over [2, 3], it follows that there is 3 ≤ y such that the
conjuncts π, ¬p, and ¬q simultaneously hold over [3, y]. Once more, π is true on [3, y] if
and only if y = 3 [3, 3], and thus both ¬p and ¬q hold over [3, 3].

Appendix B. Proofs of Auxiliary Results

In this section, we provide the proofs of some technical lemmas and propositions which are
instrumental to the demonstration of the main results in the paper.

Proposition 4.6. Let φ be a BDhom formula. For any atom F ∈ At(φ) and any sequence of
atoms Fh →B . . . →B F1 →B F0 = F , where, for each 0 ≤ i ≠ j ≤ h, ReqB(Fi) ≠ ReqB(Fj)
or ObsB(Fi) \ReqB(Fi) ≠ ObsB(Fj) \ReqB(Fj), it holds that h ≤ 2∣{ψ ∶ ⟨B⟩ψ ∈ Cl(φ)}∣−
(2∣ReqB(F )∣ + ∣ObsB(F ) \ ReqB(F )∣).
Proof. Let us consider the sequence of pairs (ReqB(Fh), ObsB(Fh) \ ReqB(Fh)) . . . (ReqB(
F0),ObsB(F0) \ ReqB(F0)) induced by Fh →B . . . →B F1 →B F0 = F . By Definition 4.4,
it holds that ReqB(Fi) = ReqB(Fi−1) ∪ ObsB(Fi−1), for every 0 < i ≤ h. Moreover, by

http://arxiv.org/abs/http://oup.prod.sis.lan/logcom/article-pdf/1/4/453/3817096/1-4-453.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/logcom/article-pdf/1/4/453/3817096/1-4-453.pdf
https://doi.org/10.1093/logcom/1.4.453
https://doi.org/10.1093/logcom/1.4.453
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Figure 17. A graphical account of the encoding of HS modalities in CDT.
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p U (¬p ∧ ¬q) = [B]⟨A⟩(π ∧ p) ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q)

0
p

⟨A⟩( π ∧ p )

π ∧ p

1
p

π ∧ p

2
p, q

π ∧ p

3

π ∧ ¬p ∧ ¬q

4
q

⟨A⟩( π ∧ p )

p, q

⟨A⟩( π ∧ p )

q

[B] ⟨A⟩(π ∧ p) ∧⟨A⟩( π ∧ ¬p ∧ ¬q )

p

p, q

p, q

,(¬p ∧ ¬q) = ⟨A⟩(¬π ∧ [B]π ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q))

0
p

1
p

2
p, q

π

⟨A⟩( ¬π ∧ [B]π ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q) )

3

π ∧ ¬p ∧ ¬q

4
q

p, q

⟨A⟩( ¬π ∧ [B]π ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q) )

q

⟨A⟩( ¬π ∧ [B]π ∧ ⟨A⟩(π ∧ ¬p ∧ ¬q) )

p

p, q

¬π ∧ [B] π ∧⟨A⟩( π ∧ ¬p ∧ ¬q )

p, q

Figure 18. The proposed translation at work on the model of Figure 1.

recursively unravelling the right part of the equation ReqB(Fi) = ReqB(Fi−1)∪ObsB(Fi−1)
by replacing ReqB(Fi−j) by ReqB(Fi−j−1) ∪ ObsB(Fi−j−1), for 1 ≤ j < i, we obtain an
alternative formulation of ReqB(Fi) as ReqB(F0) ∪⋃0≤j<iObsB(Fj).

Now, for each ψ ∈ ReqB(Fh), let us define the request index reqIdx ∶ ReqB(Fh) →

{0, . . . , h} as the function:

reqIdx(ψ) = {0 if ψ ∈ ReqB(F0);
i if there exists i > 0 s.t. ψ ∈ ReqB(Fi) \ ReqB(Fi−1).
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The fact that reqIdx is well defined immediately follows from ReqB(Fi) ⊇ ReqB(Fi−1),
for all 0 < i ≤ h.

Similarly, for each ψ ∈ ReqB(Fh) ∪ ObsB(Fh), let us define the observable index
obsIdx ∶ ReqB(Fh) ∪ObsB(Fh) → {0, . . . , h} as the function:

obsIdx(ψ) = {0 if ψ ∈ ObsB(F0) ∪ ReqB(F0)
i if there exists i > 0 s.t. ψ ∈ ObsB(Fi) \ ReqB(Fi).

The fact that reqObs is well defined follows from ReqB(Fi) ⊇ ReqB(Fi−1), for all
0 < i ≤ h, and ReqB(Fi) = ReqB(F0) ∪⋃0≤j<iObsB(Fj), for all 0 ≤ i ≤ h.

For both functions reqIdx and obsIdx we define their images the standard way as
follows: (i) Img(reqIdx) = {i ∶ ∃ψ ∈ ReqB(Fh) s.t. reqIdx(ψ) = i}; (ii) Img(obsIdx) =

{i ∶ ∃ψ ∈ ReqB(Fh) ∪ObsB(Fh) s.t. obsIdx(ψ) = i}.
We now prove that there does not exist an index i > 0 such that i ∉ Img(reqIdx) ∪

Img(obsIdx). By contradiction, let us assume that such an index exists (let us assume i > 0;
the case i = 0 is symmetric). It follows that:
• from i ∉ Img(reqIdx), it follows that, for each ψ ∈ ReqB(Fh), either reqIdx(ψ) > i, and
thus ψ ∉ ReqB(Fi)∪ReqB(Fi−1), or i > reqIdx(ψ), and thus ψ ∈ ReqB(Fi)∩ReqB(Fi−1),
and then ReqB(Fi) = ReqB(Fi−1);

• from i ∉ Img(obsIdx), it follows that, for each ψ ∈ ReqB(Fh) ∪ ObsB(Fh), either
obsIdx(ψ) > i, and thus ψ ∉ ObsB(Fi) ∪ ObsB(Fi−1) ∪ ReqB(Fi) ∪ ReqB(Fi−1), or
i > obsIdx(ψ), and then i−1 > obsIdx(ψ), because if ψ ∈ ObsB(Fi−1)\ReqB(Fi−1), then
reqIdx(ψ) = i (contradiction). Hence, ObsB(Fi)\ReqB(Fi) = ObsB(Fi−1)\ReqB(Fi−1) =
∅.
From the above two cases, we can conclude that (ReqB(Fi),ObsB(Fi) \ ReqB(Fi)) =

(ReqB(Fi−1),ObsB(Fi−1) \ ReqB(Fi−1)), and thus we obtain a contradiction. Finally, we
have that h ≤ ∣Img(reqIdx)∣ + ∣Img(obsIdx)∣, with ∣Img(reqIdx)∣ ≤ ∣{ψ ∶ ⟨B⟩ψ ∈

Cl(φ)}∣−∣ReqB(F0)∣ and ∣Img(obsIdx)∣ ≤ ∣{ψ ∶ ⟨B⟩ψ ∈ Cl(φ)}∣−∣ReqB(F0)∣−∣ObsB(F0)
\ReqB(F0)∣, and thus h ≤ 2∣{ψ ∶ ⟨B⟩ψ ∈ Cl(φ)}∣− 2∣ReqB(F0)∣− ∣ObsB(F0) \ReqB(F0)∣.

Lemma 5.1. Let G = (GN ,L) be a compass structure. For all x ≤ y < N , if ReqB(L(x, y)) ⊂
ReqB(L(x, y + 1)), then L(x, y) is B-irreflexive.

Proof. Let us assume by contradiction that L(x, y)) is B-reflexive. This means that BoxB(
L(x, y)) ⊆ L(x, y). Since ReqB(L(x, y)) ⊂ ReqB(L(x, y + 1)), there exists a formula
ψ ∈ ReqB(L(x, y + 1)) \ ReqB(L(x, y)) and thus we have ¬ψ ∈ BoxB(L(x, y)) and, by B-
reflexivity of L(x, y), ¬ψ ∈ L(x, y). Since G is a compass structure, it holds that L(x, y) →B

L(x, y − 1) →B . . . →B L(x, x), and thus ¬ψ ∈ BoxB(L(x, y′)) and ¬ψ ∈ L(x, y′), for all
x ≤ y

′
≤ y. Since, by definition of →B, all B-requests are fulfilled in a compass structure, we

can conclude that ψ ∉ ReqB(L(x, y + 1)) (contradiction).

Lemma 5.6. Let G = (GN ,L) be a compass structure for a formula φ. For all x ≤ y < N ,
it holds that L(x, y) = L(x, y + 1) if and only if L(x, y) is B-reflexive, Prop ∩ L(x, y) =

Prop ∩ L(x, y + 1), and ReqD(L(x, y)) = ReqD(L(x, y + 1)).

Proof. The left-to-right direction is proved via a case analysis. If P(x, y) ≠ P(x, y + 1) or
ReqD(x, y) ≠ ReqD(x, y + 1), then L(x, y) ≠ L(x, y + 1) immediately follows. If L(x, y) is
B-irreflexive, then one gets a contradiction by observing that having two occurrences of the
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same B-irreflexive atom stacked one above the other violates the consistency of the compass
structure (with respect to the →B relation).

Let us prove now the right-to-left direction. Suppose, by way of contradiction, that
L(x, y) ≠ L(x, y+ 1). Then, there exists a formula ψ ∈ Cl(φ) such that ψ ∈ L(x, y+ 1) and
¬ψ ∈ L(x, y). By Lemma 4.8, for all 0 ≤ x ≤ y ≤ N , the truth of ψ ∈ L(x, y) is uniquely
determined by the truth values of P(x, y), ReqB(x, y), and ReqD(x, y). By the assumption,
we get ReqB(x, y + 1) ⊃ ReqB(x, y). To reach the contradiction, we then proceed as in the
proof of Lemma 5.1.

Lemma 5.15. Let G = (GN ,L) be a compass structure and let 0 ≤ x < x
′
≤ y ≤ N . If

fp(x, y) = fp(x′, y) and y
′
is the smallest point greater than y such that L(x, y′) ≠ L(x, y),

if any, and N otherwise, then, for all y ≤ y
′′
≤ y

′
, L(x, y′′) = L(x′, y′′).

Proof. Let y be the minimum point y > y such that L(x′, y) ≠ L(x′, y). Let us assume by

contradiction that y ≠ y
′
. By Lemma 5.11 we have that y > y

′
. Let Sh

G(x) = F
k0
0 . . . F

km
m ,

and let 0 ≤ i < m be the index such that Sh
G(x)[y − x] = Sh

G(x)[y − x′] = F i. Then

we have L(x, y) = F i = L(x′, y), L(x, y′) = F i+1, and L(x′, y′) = F i. Moreover for

every y ≤ y
′′
< y

′
we have L(x, y′′) = L(x′, y′′) = F i, then F i is B-reflexive. Let us

notice that P(x, y′ − 1) = P(x′, y′) = F i ∩ Prop then we have that P(x, y′) = P(x′, y′).
Since L(x, y′ − 1) is B-reflexive we have that ReqD(L(x, y′)) ⊃ ReqD(L(x, y′ − 1)) =

ReqD(L(x′, y′)) = ReqD(L(x′, y′ − 1)), otherwise conditions for Lemma 5.6 apply and

L(x, y′) = L(x, y′ − 1) (contradiction). This means that there exists x < x < x
′
such that

ψ ∈ (L(x, y′ − 1)∩ReqD(L(x, y′)) \ReqD(L(x′, y′))) and for every x
′
≤ x

′′
≤ y

′ − 1 we have

ψ /∈ L(x′′, y′−1). The simpler case is when y
′
= y+1. In such a case from S→(x, y) = S→(x′, y)

we have that there exists x
′
> x

′
such that L(x′, y) = L(x, y) (contradiction). Let us consider

now the case in which y
′
> y+ 1. Since ¬ψ ∈ BoxD(L(x, y′− 1)) we have that ψ ∉ L(x′′, y′′)

for every x < x
′′
≤ y

′′
< y

′ − 1. Two cases arise:

• there exists y ≤ y
′′
< y

′ − 1 such that L(x, y′′) is B-reflexive. If it is the case since

F i∩Prop = P(x, y′) ⊆ P(x, y′) ⊆ P(x′, y′) = F i∩Prop and ReqD(F i) = ReqD(L(x, y′) ⊇
ReqD(L(x, y′)) ⊇ ReqD(L(x′, y′)) = ReqD(F i) for every y ≤ y ≤ y

′− 1 we have P(x, y′) =
P(x, y′) = P(x′, y′) and ReqD(L(x, y′)) = ReqD(L(x, y′)) = ReqD(L(x′, y′)) for every

y
′′
≤ y ≤ y

′−1. Then for Lemma 5.6 we have that L(x, y′−1) = L(x, y′−2) = . . . = L(x, y′′)
this means that L(x, y′−1) is not the first atom featuring ψ on the column x (contradiction);

• for every y ≤ y
′′
< y

′ − 1 we have that L(x, y′′) is B-irreflexive. Then, from S→(x, y) =

S→(x′, y) there exists x
′
> x

′
such that Sh

G(x′) ∼ Sh
G(x) and L(x′, y) = L(x, y). Let us

observe that, by definition of B-sequence, for every B-sequence F
h0

0 . . . F
hn
n and for every

1 ≤ i ≤ n if Fi is B-irreflexive then hi = 1 (i.e., B-irreflexive atoms are unique in every

B-sequence). Then, we have that for every y ≤ y
′′
≤ y

′ − 1 we have L(x, y′′) = L(x′, y′′)
and thus ψ ∈ L(x′, y′ − 1) this implies ψ ∈ ReqD(L(x′, y′)) (contradiction).

Lemma 6.4. Let φ be a BDhom formula. It holds that φ is satisfiable if and only if there

is a compass structure G = (GN ,L) for it such that N ≤ 2
2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6

,
whose existence can be checked in ExpSpace.

Proof. To start with, let us consider the problem of determining how many possible different
RowG(y) we can have in a compass structure G = (GN ,L). Let us first observe that for the
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monotonicity of the function S→ we have, for every 0 ≤ y ≤ N , S→(0, y) ⊇ . . . ⊇ S→(y, y).
Then, since we cannot have two incomparable, w.r.t. ⊆ relation, S→(x, y) and S→(x′, y)
we have at most 2

4∣φ∣2+6∣φ∣+2 ⋅ 2∣φ∣+1 = 2
4∣φ∣2+7∣φ∣+3

possible distinct S→(x, y), that is an
upper bound of the length of the longest possible ⊆-ascending sequence in the set of pairs

([ShG]∼, F ) (i.e., equivalence class and atom).

Moreover, each one of the possible witnesses is a pair ([ShG]∼, F ) and, since WitG(y)
does not contain covered points, each fingerprint fp(x, y) = ([ShG(x)]∼,L(x, y),S→(x, y))
can be associated to at most 4∣φ∣ + 2 (i.e., the maximum value for ∆↑ plus one) distinct
points in WitG(y). Summing up, we have that the maximum length for RowG(y) is bounded

by 2
4∣φ∣2+7∣φ∣+3 ⋅ 24∣φ∣

2+7∣φ∣+3 ⋅ (4∣φ∣+ 2) = (4∣φ∣+ 2)28∣φ∣
2+14∣φ∣+6

. In each of such position

we can put a pair ([ShG]∼, F ) and thus the cardinality of the set of all possible RowG(y) is

bounded by (24∣φ∣
2+7∣φ∣+3)(4∣φ∣+2)2

8∣φ∣2+14∣φ∣+6
that is 2

2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6
which is

doubly exponential in ∣φ∣. Finally, given a φ-compass structure G = (GN ,L), by repeatedly

applying Theorem 6.3, we can obtain a φ-compass structure G = (GN ′ ,L′) such that

for every 0 ≤ y < y
′
≤ N we have RowG(y) ≠ RowG(y′), then, by means of the above

considerations on the maximum cardinality for the set of all possible RowG(y), we may
conclude that φ is satisfiable iff there is a compass structure G = (GN ,L) for it such that

N ≤ 2
2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6

.
To complete the proof, it suffices to show that checking the existence of such a doubly

exponential compass structure can be done in exponential space.

Let M = 2
2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6

+ 1 be the bound (plus 1) on the size of a
candidate compass structure for the input BDhom formula φ, according to the small model
theorem just proved. In the following, we briefly describe a decision procedure that decides,
for some N ≤ M , whether or not there exists a compass structure G = (GN ,L) for the
input BDhom formula φ. If such a procedure works in exponential space with respect to
∣φ∣, we can immediately conclude that the satisfiability problem for BDhom belongs to the
EXPSPACE complexity class. The decision procedure begins at step y = 0 by guessing

RowG(y) = ([Sh0B]∼, F 0) where F
0
= [Sh0B]0∼ and updates y to y + 1. For every y > 0, the

procedure proceeds inductively as follows (let RowG(y) = ([Sh0B]∼, F 0) . . . ([ShkB]∼, F k)):
(1) if there exists i for which φ ∈ F

i
, then return true;

(2) if y =M , then return false;

(3) non-deterministically guess a pair ([Shk+1B ]∼, F
k+1) such that F

k+1
= [Shk+1B ]0∼;
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(4) for every 0 ≤ i ≤ k, let

F
i
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
i

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ReqD(F i) = ⋃
i<j≤k

ObsD(F j) ∪ ReqD(F j)

∧
ReqB(F i) = ObsB(F i) ∪ ReqB(F i)

∧

F
i ∩ Prop = F

k+1
∩ F i ∩ Prop

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F̂
where F̂ = next([ShiB]∼, F i), ReqD(F̂ ) = ⋃

i<j≤k

ObsD(F j) ∪ ReqD(F j),

ReqB(F̂ ) = ReqB(F i) ∪ObsB(F i), and F̂ ∩ Prop = F
k+1

∩ F̂ ∩ Prop

⊥ otherwise.

By Lemma 5.6, F
i
is well defined.

(5) if there exists i for which F
i
= ⊥, then return false;

(6) let i0 < . . . < ih be the maximal sub-sequence of indexes in 0 . . . k + 1 such that, for

every 0 ≤ j ≤ h, ([ShijB]∼, F
ij) is not covered in ([Sh0B]∼, F

0) . . . ([Shk+1B ]∼, F
k+1), then

we define RowG(y + 1) = ([Shi0B]∼, F
i0) . . . ([ShihB ]∼, F

ih);
(7) update y to y + 1 and restart from step 1.
Soundness and completeness of the above procedure can be proved using the result given in
this section. In particular, Corollary 6.2 comes into play in the completeness proof (item 6
keeps track of all and only the not covered points on row y + 1). Moreover, notice that, for
each step 0 ≤ y ≤M , we have to keep track of:

(1) the current value of y, which cannot exceed 2
2(∣φ∣+1)(4∣φ∣2+7∣φ∣+3)28∣φ∣2+14∣φ∣+6

+ 1 and can
be logarithmically encoded using an exponential number of bits;

(2) two rows, namely RowG(y) and RowG(y + 1), whose maximum length is bounded

by 2
4∣φ∣2+7∣φ∣+3 ⋅ 24∣φ∣

2+7∣φ∣+3 ⋅ (4∣φ∣ + 2) = (4∣φ∣ + 2)28∣φ∣
2+14∣φ∣+6

(exponential in

∣φ∣). Moreover, each position in such sequences holds a pair ([F 0 . . . Fm], F i). Since
m ≤ 4∣φ∣ + 1, we have that each position holds at most 4∣φ∣ + 3 atoms. Each atom
can be represented using exactly ∣φ∣ + 1 bits. Summing up, we have that the total
space needed for keeping the two rows y and y + 1 (step 0 ≤ y ≤ M) consists of

2 ⋅ (∣φ∣+1)(4∣φ∣+3) ⋅24∣φ∣
2+7∣φ∣+3 ⋅24∣φ∣

2+7∣φ∣+3 ⋅ (4∣φ∣+2) bits, which, simplified, turns

out to be 4(8∣φ∣3 + 18∣φ∣2 + 13∣φ∣ + 3)28∣φ∣
2+14∣φ∣+6

bits that is still exponential in ∣φ∣.
This shows that we can decide the satisfiability of φ in exponential space regardless of the
fact that the above procedure is non-deterministic thanks to Savitch’s Theorem [Sav70].

Appendix C. An example of a model for a BDAhom formula

Let us consider Figure 19, which provides an example of a consistent atom labelling of a
model of a BDAhom formula φ. For what concerns ReqR(⋅),BoxR(⋅), and ObsR(⋅), with
R ∈ {B,D}, the same considerations we made in describing the example of Figure 6 in
Section 4 apply. We now explain how the behaviour of sets ReqA(⋅),BoxA(⋅), and ObsA(⋅)
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φ = [A]( ⟨B⟩⟨B⟩q ⟶ ⟨D⟩p )

ψ1

¬φ = ⟨A⟩( ⟨B⟩⟨B⟩q ∧ [D]¬p )

¬ψ1

0

ψ1

1

q, ψ1

2

p, q, ψ1, ⟨A⟩¬ψ1

3

q, ψ1

4

p, ψ1

ψ1

ψ1, ⟨A⟩¬ψ1

⟨D⟩p, ψ1

⟨D⟩p, ψ1

q, ⟨B⟩q, ψ1, ⟨A⟩¬ψ1

q, ⟨B⟩q, ⟨D⟩p, ⟨B⟩⟨B⟩q, ψ1

⟨B⟩q, ⟨D⟩p, ⟨B⟩⟨B⟩q, ψ1

q, ⟨B⟩q, ψ1

⟨B⟩q, ⟨B⟩⟨B⟩q
⟨B⟩q, ψ1

F
[x,y] p

¬p

q

¬q

⟨B⟩q
[B]¬q

⟨D⟩p
[D]¬p

⟨B⟩⟨B⟩q
[B][B]¬q

ψ1

¬ψ1

⟨A⟩¬ψ1

[A]ψ1
ReqA(F [x,y]) ObsA(F [x,y]) ReqB(F [x,y]) ObsB(F [x,y]) ReqD(F [x,y]) ObsD(F [x,y])

[0, 0] 0 0 0 0 0 1 0 ∅ ∅ ∅ ∅ ∅ ∅

[0, 1] 0 0 0 0 0 1 0 ∅ ∅ ∅ ∅ ∅ ∅

[0, 2] 0 0 0 0 0 1 1 {¬ψ1} ∅ ∅ ∅ ∅ ∅

[0, 3] 0 0 0 1 0 1 0 ∅ ∅ ∅ ∅ {p} ∅

[0, 4] 0 0 0 1 0 1 0 ∅ ∅ ∅ ∅ {p} ∅

[1, 1] 0 1 0 0 0 1 0 ∅ ∅ ∅ {q} ∅ ∅

[1, 2] 0 1 1 0 0 1 1 {¬ψ1} ∅ {q} {q, ⟨B⟩q} ∅ ∅

[1, 3] 0 1 1 1 1 1 0 ∅ ∅ {q, ⟨B⟩q} {q, ⟨B⟩q} {p} ∅

[1, 4] 0 0 1 1 1 1 0 ∅ ∅ {q, ⟨B⟩q} {⟨B⟩q} {p} ∅

[2, 2] 1 1 0 0 0 1 1 {¬ψ1} ∅ ∅ {q} ∅ {p}
[2, 3] 0 1 1 0 0 1 0 ∅ ∅ {q} {q, ⟨B⟩q} ∅ ∅

[2, 4] 0 0 1 0 1 0 0 ∅ {¬ψ1} {q, ⟨B⟩q} {⟨B⟩q} ∅ ∅

[3, 3] 0 1 0 0 0 1 0 ∅ ∅ ∅ {q} ∅ ∅

[3, 4] 0 0 1 0 0 1 0 ∅ ∅ {q} {⟨B⟩q} ∅ ∅

[4, 4] 1 0 0 0 0 1 0 ∅ ∅ ∅ ∅ ∅ {p}

α[x,y] [0, 0] [0, 1] [0, 2] [0, 3] [0, 4] [1, 1] [1, 2] [1, 3] [1, 4] [2, 2] [2, 3] [2, 4] [3, 3] [3, 4] [4, 4]

¬ψ1 ∉ ∉ ∉ ∉ ∉ ∉ ∉ ∉ ∉ ↑ ↑ ✓ ∉ ∉ ∉

Figure 19. A graphical (above) and tabular (below) account of the
behaviour of ReqR(F ), ObsR(F ), and BoxR(F ), with F ∈ At(φ) and
R ∈ {A,B,D}, for the formula φ = [A](⟨B⟩⟨B⟩q → ⟨D⟩p).

differ from their counterparts ReqR(⋅),BoxR(⋅), and ObsR(⋅), with R ∈ {B,D}, and on
giving an initial account of the behaviour of the marking functions α[x,y].

We first observe that, while ReqR, with R ∈ {B,D}, is “monotone” for atoms labelling
intervals which are in the same R-relation, this is is not true when R = A. This is a direct
consequence of the fact that Allen’s relations STARTED-BY and CONTAINS are transitive, while
relation MEETS is not. As an example, in Figure 19, we have that [0, 1] MEETS [1, 2] MEETS [2, 3],
but ReqA(F [0,1]) = ReqA(F [2,3]) = ∅ and ReqA(F [0,1]) = {¬ψ1}.

Let us now focus on the newly introduced second component α[x,y] of each atom which
is reported on the very bottom of Figure 19. In the example of Figure 19, it holds that
TF

φ
A = {¬ψ1} and thus α[x,y] assigns to the interval [x, y] the “status” of ¬ψ1 on it. In
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q

4

q
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[A]¬q
⟨A⟩⟨D⟩q

q ⟨D⟩q
α ∉ ↑

q ⟨D⟩q
α ∉ ✓

⟨D⟩q

q ⟨D⟩q
α ∉ ✓

L(2, 5) →B L(2, 4) L(2, 4) →B L(2, 3) L(2, 3) →B L(2, 2)

1 2 3 4 5 . . .
1

2

3

4

5

[A]¬q
⟨D⟩q

⟨D⟩q

q

¬q

q

q

¬q

Figure 20. A graphical account of the extension of the →B relation to
A-marked atoms both from the interval point of view (left) and the spatial
one (right).

particular, if ¬ψ1 /∈ ReqA(F [x,x]), then [A]ψ1 ∈ F
[x,x]

, which forces the formula ψ1 to

belong to F
[x,x′]

, for all the intervals [x, x′], with x ≤ x
′
, according to Lemma 7.1.

In general, it holds that α[x,y](¬ψ1) = ∉ if and only if ¬ψ1 ∉ ReqA(F [x,y]), which
means that ¬ψ1 is not requested by F

[x,x]
and thus ψ1 must be satisfied on all the

intervals [x, y]. This is the case, for instance, with intervals [0, 0], [1, 1], [3, 3], and [4, 4]
in Figure 19, which impose that α[x,y](¬ψ1) = ∉, and, consequently, ψ1 ∈ F

[x,y]
, for all

[x, y] ∈ {[x, y] ∶ 0 ≤ x ≤ y ≤ 4, x ≠ 2}. If α[x,x](¬ψ1) ≠ ∉, then α[x,y](¬ψ1) ∈ {↑,✓},
for every y ≥ x, which means that the request ⟨A⟩¬ψ1 is pending on [x, x], that is,

¬ψ1 ∈ ReqA(F [x,y]), and must be satisfied by some interval of the form [x, y], for some

y ≥ x. If we take the minimum y such that ¬ψ1 ∈ ObsA(F [x,y]), we have that:

• α[x,y′](¬ψ1) = ↑, for every x ≤ y
′
< y, which means that the pending ⟨A⟩-request ¬ψ1 is

not fulfilled by the intervals ending in x, if we consider the model up to y
′
;

• α[x,y′](¬ψ1) = ✓, for every x ≤ y ≤ y
′
, which means that the pending-⟨A⟩ request ¬ψ1 is

fulfilled for the intervals ending in x, if we consider the model up to y
′
, and, obviously, it

stays fulfilled for such intervals ever after.

In Figure 19, this is the case with interval [2, 2] for which ¬ψ1 ∈ ReqA(F [2,2]) holds.

However, since we have ¬ψ1 ∉ ObsA(F [2,2]) and ¬ψ1 ∉ ObsA(F [2,3]), it turns out that
α[2,2](¬ψ1) = α[2,3](¬ψ1) = ↑. On the other hand, ¬ψ1 appears “for the first time” in

ObsA(F [2,y]) when y = 4, and thus α[2,4](¬ψ1) = ✓.
To conclude, in Figure 20, we give an intuitive account of how the second component of

an atom behaves with respect to the relations →B and →D. Intuitively, it is associated with
an interval [x, y] to keep track of the A-requests featured by [x, x] which have been satisfied

by intervals [x, y′], with y′ ≤ y, that is, the ones marked with ✓, against those which are
still pending, that is, those marked with ↑.
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Appendix D. Adding modality A to BDhom: the logic BDAhom

In this appendix, in analogy to what we did for modalities ⟨B⟩ and ⟨D⟩ in Section 3, we
investigate the counterpart of modality ⟨A⟩ in terms of a suitable extension of generalized
∗-free regular expressions. Basically, we enrich the semantics of generalized ∗-free regular
expressions with what we call a “right context”. We will prove that the resulting semantics
subsumes the original one, that is, the notion of generalized ∗-free regular expression given in
Section 3 is just a specialization of it. In particular, the encoding of both Pre(e) and Inf(e)
directly transfers to this new semantics without any modification. We will conclude the
appendix by giving an example that shows how the operator corresponding to modality ⟨A⟩
has an explicit counterpart in the generalized ∗-free regular expressions used for real-world
programming languages.

As a preliminary remark, we would like to observe that one may be tempted to inter-
pret modality ⟨A⟩ as a logical counterpart of the concatenation operator. This is wrong.
Intuitively, modality ⟨A⟩ characterizes words with a specific “right context”. Such an idea
can be formalized as follows.

In order to identify the right generalized ∗-free regular expression for modality ⟨A⟩, we
provide an alternative, yet equivalent, semantics for these expressions. In such a semantics,

the language
−−−→
Lang(e) of a generalized ∗-free regular expression e is interpreted over pairs of

finite words, that is,
−−−→
Lang(e) ⊆ Σ

+ × Σ
∗
. A pair (w,w′) ∈ −−−→

Lang(e) represents the word w
belonging to the language Lang(e), according to the semantics given in Section 3, together

with its “right context” word w
′
, which is the word that must appear immediately after w.

Formally, generalized ∗-free regular expressions of Section 3 are extended as follows:

e ∶∶= ∅ ∣ a ∣ ¬e ∣ e + e ∣ Pre(e) ∣ Inf(e) ∣ −−→Con(e), for any a ∈ Σ

Their semantics is defined as follows:

(i)
−−−→
Lang(∅) = ∅;

(ii)
−−−→
Lang(a) = {(a,w) ∶ w ∈ Σ

∗};
(iii)

−−−→
Lang(¬e) = Σ

+ × Σ
∗ \ −−−→Lang(e);

(iv)
−−−→
Lang(e + e′) = Lang(e) ∪ Lang(e′);

(v)
−−−→
Lang(Pre(e)) = {(wv, u) ∶ v ∈ Σ

+
, (w, vu) ∈ −−−→

Lang(e)};
(vi)

−−−→
Lang(Inf(e)) = {(uwv, z) ∶ u, v ∈ Σ

+
, (w, vz) ∈ −−−→

Lang(e)};
(vii)

−−−→
Lang(−−→Con(e)) = {(w, u) ∶ u ∈

−−−→
Lang(e)}.

Let us denote the empty word by ϵ. With a little abuse of notation, we say that, for

every w ∈ Σ
+
, w ∈ Lang(e) if and only if (w, ϵ) ∈ −−−→

Lang(e). Then, it is easy to prove that,
for any expression e ∶∶= ∅ ∣ a ∣ ¬e ∣ e + e ∣ Pre(e) ∣ Inf(e), w ∈ Lang(e) if and only

if (w, ϵ) ∈
−−−→
Lang(e). In such a way, the original (restricted) semantics turns out to be a

specialization of the extended one.
It can be easily shown that the extended semantics preserves the mapping from a

restricted expression e to an equivalent BDhom formula φe given in Section 3. In order to

capture the language
−−−→
Lang(−−→Con(e)) in BDAhom, we extend the mapping with the rule:

φ−−−→
Con(e) = ⟨A⟩(⟨B⟩⊤ ∧ [B][B]⊥ ∧ ⟨A⟩ψe).

Let us assume that φ−−−→
Con(e) holds over an interval [x, y]. Then, it predicates over “the right

context” of [x, y] by stating that there exists an interval [y, y + 1] (the constraint on the
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length of such an interval is imposed by the first two conjuncts ⟨B⟩⊤ ∧ [B][B]⊥) which

has an adjacent-to-the-right interval [y + 1, y
′] where ψe holds (third conjunct ⟨A⟩ψe).

In order to show the significance of the proposed extension of generalized ∗-free regular

expression, we explore an interesting correspondence between the operator
−−→
Con (and thus,

indirectly, modality ⟨A⟩) and an operator of the regular expressions typically used in popular

programming languages like, for instance, Python [VRDJ95]. It is easy to see that the
−−→
Con

operator corresponds to the lookahed operation. Such an operation is usually implemented
as positive lookahead, whose syntax is (? = e), and negative lookahed, whose syntax is (? ! e),
where e is a regular expression. In many real-world applications, regular expressions are
used to execute pattern matching inside a long text as an effective alternative to the task of
checking whether such a long text belongs to a certain language. This is the case especially in
the domain of natural language processing from which the following toy example is borrowed.
Let us suppose that we want to capture a pattern that consists of an English word followed
by a list of words in English separated by commas and whose last word is prefixed by the
word “and”. An example of a sentence containing such a pattern is the following: “This
paper deals with HS operators meetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeetsmeets, beginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbeginsbegins, and duringduringduringduringduringduringduringduringduringduringduringduringduringduringduringduringduring under homogeneity assumption.”

In such a toy example, a motivation for matching the word operators may be related
to the fact that the noun preceding a natural language description of items may represent
their type. In the above sentence, “meets”, “begins”, and “during” are indeed of type
“operators”. In such an interpretation, we are assuming that the word denoting the type
is put immediately before the list of words and thus conjunctions like, e.g., “such as” or
“like” are not contemplated. However, they may be captured by longer, but not much more
complex than the one we are going to show, regular expressions. For the sake of simplicity,
we assume that the number of words in the list is greater than or equal to 3 and each word
is a single one. As an example, the pattern “Concepts such as atomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatomsatoms, compass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structurescompass structures,
and requestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequestsrequests will be introduced in this section” is not captured. A regular expression re,
which works in any modern programming language, that captures such a pattern is:

re = (\w+)(? = (? ∶ \w+, ){2, }and \w+)
where is used to highlight the single white space “ ”. Since it is outside the scope of this
paper, we will not delve too much into the syntax of this kind of regular expressions. For that
matter, wonderful websites, such as [Reg], exist (they provide a quick reference for syntax
and semantics together with examples and, more importantly, a full on-line environment for
testing and debugging regular expressions).

Let us briefly explain how re captures the desired pattern. First of all, we have that
(e) is used to capture any pattern in e. The (? = e) operator checks whether the current
position is followed by a pattern belonging to the language of e. The \w variable represents
any word-character, both lower and upper case. The operator + is analogous to the operator
e
+
= ee

∗
in standard regular expressions. Thus, \w+ means any single word. The operator

(e){n, }, with n ≥ 0, captures a sequence of n or more occurrences of pattern e. Finally, the
operator (? ∶ e) represents just standard parentheses. A graphical account of the various
parts of regular expression re is shown in Figure 21.

Let Σ = W ∪ S, where W = {a, . . . , z, A, . . . , Z} (word symbols) and S = { , ., ‘,’}
(separator symbols). For the sake of brevity, we omit the intermediate phase of translating
re into our ∗-free restricted fragment and we jump directly to the translation into BDAhom.
For the sake of simplicity, we do not apply the literal translation here; instead, we make
use of a shorter, more understandable encoding which is tailored to the structure of the



Vol. 20:1 THE LOGIC OF PREFIXES, SUB-INTERVALS, AND TEMPORAL NEIGHBORHOOD 23:55

(\w+) (? = (? ∶ \w+, ){2, } and \w+ )

A single word is matched

if and only if it is

immediately followed by

a concatenation of the following

three elements:

(i) a whitespace;

(ii)

a sequence of two or more
concatenations of a single
word, a comma, and
a whitespace;

(iii)
the concatenation of
the word “and”, a whitespace,
and a single word.

Figure 21. A graphical account of re and its sub-expressions.

specific regular expression re. As a preliminary step, we provide some shorthands and
assumptions that make the encoding formulas more compact. In the encoding, we will
make use of the shorthands len≥n and lenn for any n ∈ N, that constrain the length of
the interval on which they hold to be greater than or equal to n and exactly equal to n,
respectively. More precisely, given a model M = (IN ,V), we have that [x, y] ⊧ len≥n if and
only if y − x ≥ n, and M, [x, y] ⊧ lenn if and only if y − x = n. In BDAhom, we may capture

the semantics of len≥n and lenn by means of the formulas ⟨B⟩nπ and len≥n ∧ [B]n+1⊥,
respectively.6 Since in the proposed encoding we will make use of proposition letters in Σ
to represent words as points of an interval model (Figure 22), we need to force each point
to hold exactly one symbol σ ∈ Σ. Such a constraint is imposed by putting the formula

[G](π → ⋁σ∈Σ(σ ∧⋀σ′∈Σ\{σ′}¬σ
′)) in conjunction with the encoding of re. For the sake of

brevity, we will tacitly assume that this is the case. Finally, with a little abuse of notation,
in the encoding of re we will make use of W as a shorthand for ⋁σ∈W σ, which basically
allows us to state that a certain (point-)interval holds a word symbol.

Now, we are ready to encode re by a formula ψre. More precisely, we will make use of
⟨D⟩ψre as the main formula, where ψre just encodes the matching part. Thus, by “reading”
a model M = (IN ,V) for ⟨D⟩ψre, we can easily retrieve every matching by taking all and
only those intervals [x, y] such that M, [x, y] ⊧ ψre. As an example, in Figure 22 we have
that M, [0, 90] ⊧ ⟨D⟩ψre, while [24, 34] ⊧ ψre. In fact, [24, 34] is the only interval that
satisfies ψre in the model of Figure 22 and, as we will see when we will discuss ψre in more
detail, this is determined both by the points belonging to [24, 34] and by the formulas that
hold in its “right context”, that is, the intervals [x, y], with 34 ≤ x ≤ 90.

6Notice that we provide a unary encoding of the length constraints. It is possible to make a binary
encoding analogous to the one proposed in [BMM

+
22].
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Let ψre = ψ
gm

w+ ∧ ⟨A⟩(ψ (w, )2+ ∧ ⟨A⟩ψgm

and w+). Intuitively, ψre requires the presence

of three adjacent intervals [x, y], [y, z], and [z, w] such that M, [x, y] ⊧ ψ
gm

w+ , M, [y, z] ⊧
ψ (w, )2+ , and M, [z, w] ⊧ ψgm

and w+ . These sub-formulas constrain the three regular expres-
sions whose concatenation forms re as follows:

• ψ
gm

w+ = ⟨B⟩¬W ∧ [B](len≥1 → ⟨A⟩W )∧ ⟨B⟩⟨A⟩W ∧ ⟨A⟩¬W . This formula holds over an
interval [x, y] if and only if point-intervals [x, x] and [y, y] do not hold a word symbol
(conjuncts ⟨B⟩¬W and ⟨A⟩¬W , respectively), but a word symbol holds at all the internal

point-intervals [x′, x′], with x < x
′
< y (conjunct [B](len≥1 → ⟨A⟩W )). Finally, it

constrains the interval [x, y] to contain at least one word symbol (conjunct ⟨B⟩⟨A⟩W ).
Intuitively, ψ

gm

w+ encodes the greedy match (gm) of a single non-empty word preceeded
and followed by two singleton separator symbols. As an example, in Figure 22, we have
that ψ

gm

w+ holds over the interval [24, 34].
• ψ (w+, )2+ = ⟨A⟩ ∧⟨B⟩(len1∧⟨B⟩ ∧⟨A⟩W )∧[D](len1→(⟨B⟩ ∧⟨A⟩W )∨(⟨B⟩,∧⟨A⟩ )∨
(⟨B⟩W ∧ ⟨A⟩W ) ∨ (⟨B⟩W ∧ ⟨A⟩, )) ∧ ⟨B⟩(⟨A⟩,∧⟨B⟩⟨A⟩, ). This formula holds over an
interval [x, y] if and only if the following conditions hold:

(1) the symbol holds at point-interval [x, x] and a word symbol holds at point-interval
[x + 1, x + 1] (conjunct ⟨B⟩(len1 ∧ ⟨B⟩ ∧ ⟨A⟩W ));

(2) the symbol holds at point-interval [y, y] (conjunct ⟨A⟩ );

(3) for every strict sub-interval of [x, y] of the form [x′, x′+1], we have that either [x′, x′]
is labelled with and [x′ + 1, x

′ + 1] by a word symbol (disjunct ⟨B⟩ ∧ ⟨A⟩W ), or

[x′, x′] is labelled by “,” and [x′+1, x
′+1] by (disjunct ⟨B⟩,∧⟨A⟩ ), or both [x′, x′]

and [x′ + 1, x
′ + 1] are labelled by a word symbol (disjunct ⟨B⟩W ∧ ⟨A⟩W ), or [x′, x′]

is labelled by a word symbol and [x′ + 1, x
′ + 1] with “,” (disjunct ⟨B⟩W ∧ ⟨A⟩,);

(4) the symbol “,” appears as a label of at least two distinct point-intervals [x′, x′] and
[x′′, x′′] in [x, y], i.e., with x < x

′
< x

′′
< y (conjunct ⟨B⟩(⟨A⟩,∧⟨B⟩⟨A⟩, )). In

Figure 22, such a condition is satisfied by point-intervals [40, 40] and [48, 48], which
are included in the interval [34, 49].

Intuitively, the conjunct [D](len1 → (⟨B⟩ ∧⟨A⟩W )∨(⟨B⟩,∧⟨A⟩ )∨(⟨B⟩W∧⟨A⟩W )∨
(⟨B⟩W ∧ ⟨A⟩, )) constrains the word underlying [x + 1, y + 1] to belong to the language
of ((w)+, )∗, while the conjunct ⟨B⟩(⟨A⟩, ⟨B⟩⟨A⟩, ) forces at least two iterations of the
∗ operation in such a language. Thus, together they force such a word to belong to

((w)+, )2+;
• ψ

gm

and w+ = ⟨B⟩a∧⟨B⟩(len1∧⟨A⟩n)∧⟨B⟩(len2∧⟨A⟩d)∧⟨B⟩(len3∧⟨A⟩ )∧⟨B⟩(len≥4 →
⟨A⟩W ) ∧ ⟨A⟩¬W . This formula holds over an interval [x, y] if and only if the word
underlying the interval [x, x + 3] is exactly “and ” (conjuncts ⟨B⟩a, ⟨B⟩(len1 ∧ ⟨A⟩n),
∧⟨B⟩(len2 ∧ ⟨A⟩d), and ∧⟨B⟩(len3 ∧ ⟨A⟩ )) followed by an uninterrupted sequence of
word symbols underlying the interval [x + 4, y − 1] (conjunct ⟨B⟩(len≥4 → ⟨A⟩W )). In
addition, it imposes the word underlying the interval [x + 4, y − 1] to be a greedy match,
that is, an entire word is captured, since we force a separator symbol on [y + 1, y + 1] by
means of the conjunct ⟨A⟩¬W .

We conclude this appendix with some remarks about the practical use of regular
expressions. To the best of our knowledge, in their implementation the majority of existing
programming languages do not support the free use of negation in regular expressions, but
they allow for positive/negative lookahead/lookbehind. In this section, we showed how to
deal with positive/negative lookahead by means of modality ⟨A⟩. Moreover, we argued that
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Figure 22. a graphical account of how a ⟨D⟩ψre holds over an interval
model representing a text.

positive/negative lookbehind may be captured by adding modality ⟨A⟩, which is the converse

of modality ⟨A⟩, to BDAhom, thus obtaining the logic BDAAhom. For the sake of simplicity,

we did not take modality ⟨A⟩ into consideration in this work, as its introduction involves
a number of technicalities. However, in view of the results established in the paper, we

conjecture that, under the homogeneity assumption, the satisfiability problem for BDAAhom

belongs to the same complexity class as its proper fragment BDAhom.
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