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Abstract: Despite recent advances, prognosis of acute myeloid leukemia (AML) remains unsatisfac-
tory due to poor response to therapy or relapse. Among causes of resistance, over-expression of
multidrug resistance (MDR) proteins represents a pivotal mechanism. ABCG2 is an efflux transporter
responsible for inducing MDR in leukemic cells; through its ability to extrude many antineoplastic
drugs, it leads to AML resistance and/or relapse, even if conflicting data have been reported to date.
Moreover, ABCG2 may be co-expressed with other MDR-related proteins and is finely regulated by
epigenetic mechanisms. Here, we review the main issues regarding ABCG2 activity and regulation in
the AML clinical scenario, focusing on its expression and the role of polymorphisms, as well as on the
potential ways to inhibit its function to counteract drug resistance to, eventually, improve outcomes
in AML patients.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive heterogenous disease arising from
the accumulation and clonal expansion of somatic-driven mutations in CD34+/CD38-
hematopoietic progenitors, which demonstrate increased proliferation, survival, and im-
paired maturation capacity [1,2]. It is the most common form of acute leukemia in adults,
with a median age at diagnosis of 68 years and a sharp increase in incidence in the fol-
lowing decades [3]. In addition, AML prevalence is increased by therapy-related AML,
which accounts for 10–15% of newly diagnosed AML, an effect of improved survival after
anti-cancer therapies [4]. The estimated 5-year overall survival (OS) of AML is around 30%,
with great differences between age groups (≈50% in younger patients and only ≈10% in
elderly patients) and with disappointing progress over the past five decades, particularly in
the older population [5,6]. In recent years, however, a large amount of information has been
acquired on the molecular landscape of AML, on its morphologic and immunophenotypic
heterogeneity, and on inherited germline predisposition. These data led to a refinement
of genetic risk classification and highlight the prognostic importance of initial response to
chemotherapy and of the persistence of minimal residual disease [7]. Moreover, moving
from the newly identified molecular alterations, various target drugs have been recently
developed and approved, and preliminary but increasing evidence suggests the potential
for a significant effect on AML outcomes [7,8].

Despite this, the occurrence of intrinsic or acquired drug resistance still results in
AML being an aggressive disease and a major challenge for clinicians. Clinical multidrug
resistance (MDR) is a multi-factorial phenomenon depending on host variations, drug–drug
interaction, deregulation of cell death mechanisms, failure of DNA damage response and
repair, epigenetic alterations, intratumor heterogeneity, and microenvironment alteration.
MDR protects leukemia cell from immune surveillance and from the alteration in intracel-
lular drug concentrations due to overexpression of membrane drug transporter proteins [9].
Acquired MDR has been intensively studied, and the molecular basis of this phenomenon
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is well established [10]. The cross-resistance to different, structurally unrelated anti-cancer
drugs, such as vinblastine, vincristine, and daunomycin, developed by Chinese hamster
lung cells grown in actinomycin D to select resistant cells, was first described more than
50 years ago [11]. A few years later, another study reported that daunomycin was ac-
tively transported out of multidrug-resistant cells [12]. The hypothesis of a promiscuous
membrane transporter able to confer MDR was confirmed by the identification in Chinese
hamster ovary cells of the “P-glycoprotein”, so called for the altered membrane permeability
associated with its expression in resistant cells [13] and by characterization of its encoding
gene [14]. The human homologue gene was soon identified and referred to as ATP-binding
cassette (ABC) subfamily B1, ABCB1 [15]. Its recognition paved the way to studies of ABC
transporters, leading to the identification of 48 human membrane proteins, grouped into
7 subfamilies, involved in different physiological biochemical and developmental processes
beyond cancer drug transport [16,17]. The ABC superfamily is highly conserved among
plant and animal species, mainly acting as import pumps in prokaryotes [18]. In eukaryotic
cells, they act as exporters, pumping out substances from the cytoplasm or entrapping them
into intracellular organelles, such as peroxisome, endoplasmic reticulum, or lysosomes,
using an energy-dependent process involving binding and hydrolysis of ATP [19,20].

The general architecture of ABC proteins consists of two cytoplasmic nucleotide-
binding domains (NBDs), which bind and hydrolyze ATP, and of two sets of hydrophobic
transmembrane domains (TMDs), which transport substrates. ABC genes encode either a
full transporter or a half transporter with a single TMD domain and a single NBD. Half
transporters must dimerize as either homo- or heterodimers to form an active protein [17].
Whereas the structure and function of NBDs are similar throughout ABC subfamilies,
TMDs are highly heterogeneous, thus permitting the recognition of different substrates and
their translocation across membranes, irrespective of concentration gradient [21]. Despite
the huge amount of data on ABC structure obtained by electron microscopy, the precise
translocation mechanism remains elusive. It should be underlined that among the 48 ABC
members, some have “narrow” substrate specificity, while others (19 of the 48) have broad
specificity and are able to transport a wide range of anticancer drugs and to cause drug
resistance if overexpressed in tumor cells [22]. The study of “null” mutants established
via germline mutations has underscored the diversity of their physiological role and the
consequences of their dysfunction. So, at present, more than 20 ABC proteins, belonging to
all the identified sub-families, have been associated with human diseases [17,19]. The most
important steps in ABC family discoveries are reported in Figure 1.
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The present paper will focus on the role of one specific MDR protein, ABCG2, in
AML, summarizing the current knowledge on the impact of its overexpression on disease
outcome and on the possibility to counteract its action to improve the efficacy of anti-
leukemic therapies.

2. ABCG Subfamily

The ABCG subfamily includes five ABC half transporters: ABCG1, ABCG2, ABCG4,
ABCG5, and ABCG8.

2.1. ABCG1

ABCG1 is coded on chromosome 21q.22.3 and contributes to cholesterol transport
and to cellular cholesterol homeostasis [23]. The protein is expressed in many cell types,
including endothelial cells, lymphocytes, and myeloid cells on the cell membrane and in
endosomes [24]. ACBG1 seems to regulate T cell development in the thymus by regulating
intracellular cholesterol levels [25,26]. Moreover, ABCG1 is involved in innate immune
response by the regulation of inflammation via reduction of inflammatory cytokines, and in
anti-tumor immunity by favoring IL-4–mediated macrophage M2 polarization, producing
a pro-cancer effect [27]. Moreover, it seems to be upregulated in lung cancer tissue, and
aberrant expression of ABCG1 in lung cancer cells promotes proliferation, migration, and
tumor invasion [28]. Roundhill et al., demonstrated ABCG1 expression in osteosarcoma
cancer stem cells, suggesting that targeting ABCG1 could improve clinical outcomes [29].
Pan et al., found ABCG1 expression in triple-negative breast cancer, suggesting that it could
be used as biomarker in this subset [30]. No data are available at present on the expression
of ABCG1 in leukemic cells.

2.2. ABCG4

ABCG4 is mainly localized in the central nervous system (CNS) and seems to have
a protective role in Alzheimer’s disease through inhibitory effects on amyloid β produc-
tion [31]. Furthermore, ABCG4 overexpression seems to confer drug resistance, despite the
mechanism not being completely understood [32].

2.3. ABCG5 and ABCG8

ABCG5 and ABCG8 form an obligated heterodimeric complex (G5/G8), highly ex-
pressed on epithelial cells of the intestine and liver, where it mediates sterol transport [33].
Gene variations are associated with hypercholesterolemia, platelet dysfunction, sitos-
terolemia, cardiovascular disease, and gallstones [34–36].

2.4. ABCG2

ABCG2 is the most studied among ABCG members. In the early 1990s, the observation
of MDR in cell lines selected with mitoxantrone lacking MDR1 and MRP1 expression
led to identification of a new transporter protein. The gene responsible for the novel
resistance phenotype, first cloned by Doyle et al., in the MCF-7 Adr/Vp cell line, was
named BCRP for breast cancer resistance protein, from the cell line origin [37–39], and
further designed as ABCG2 by the Human Genome Organization Committee. The ABCG2
gene is highly conserved among species, most of which have a single gene present [40]. The
exceptions are rodent and fish, which have more ABCG2 genes [41]. The human ABCG2
gene is located on chromosome 4, band 4q21–4q22, and extend over 66 kb containing
16 exons (range size from 60 to 532 bp) and 15 introns. The translational start site is on
exon 2, ABC signature motif in exon 6, and the ATP binding sites (Walker motif A and
B) in exon 3 and exon 6. The promoter region is located approximately 312 bp from the
transcriptional start site [42]. The molecular mechanisms controlling ABCG2 expression are
not completely understood, but cell lines with high ABCG2 expression harbor multiple gene
rearrangements in chromosome 4, including gene amplification and translocations [43].
Moreover, there could be a transcriptional regulation, supported by the presence of cis
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regulatory elements in the promoter regions, including an estrogen response element (ERE),
a progesterone response element (PRE), a hypoxia response element (HRE), an antioxidant
response element (ARE), an aryl carbon response element (AhRE), and the active nuclear
factor kB (NFkB) response element [44].

In vitro studies demonstrated the upregulation of the ABCG2 gene under hypoxic
conditions by estradiol progesterone and by aryl hydrocarbon receptor agonists [45–48].
ABCG2 expression can also be induced via peroxisome proliferator-activated receptor
γ (PPARγ) [49] and downregulated by dexamethasone via the glucocorticoid receptor
(GR) [50]. However, data on ABCG2 regulation are often controversial, and it has been hy-
pothesized that the observed contradiction may be due to cell- or organ-specific regulation.
Epigenetic regulation has been observed in overexpressing cell lines, where elevated ABCG2
levels were associated with hypomethylation or unmethylation of the CpG island and with
hyperacetylation of the ABCG2 promoter [51]. Furthermore, several microRNAs, such as
miR519c, miR520h, and miR328 affect transcription stability and protein translation [52–55].
Once translated, ABCG2 must multimerize and translocate to the cell membrane to exert
its efflux pump function. PI3K/AKT and NFkB pathways and Pim-1 phosphorylation are
involved into surface transfer of the protein [56,57]. In the cell membrane, the ABCG2
protein is in a reverse configuration compared to most other ABC transporters, as the ATP
binding domain is at the N-terminus and the six putative transmembrane domains are at
the C-terminus [58] (Figure 2).
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Figure 2. Schematic representation of ABCG2 proteins and its variants. Stars identify single-
nucleotide polymorphisms. Abbreviation: NBD: Nucleotide-binding domain.

At least one dimerization is required to produce a functional protein; dimerization
is under the control of the endoplasmic reticulum quality control (ERQC) network. If
passing the ERQC, protein traffics to the Golgi apparatus, where the protein becomes fully
glycosylated, passes a further quality control, and can be delivered to its destination, the
plasma membrane. Mechanisms by which the protein is transferred to the cell membrane
are not completely elucidated and may include direct delivery, trafficking via the endo-
somal pool or trans-cytotic pathway via the basolateral membrane. Surplus protein is
proteolytically degraded in lysosomes, and misfolded proteins become ubiquitinated and
degraded in proteosome. Interestingly, 40–60% of the produced protein, even in wild form,
does not pass ERQC and is eliminated [59]. Differently to ABCG5/ABCG8, ABCG2 may
work only as homodimer; however, several studies have reported that it can assemble in
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higher oligomeric forms, from tetramers to dodecamers, a process sometimes favored by
the presence of single-nucleotide polymorphisms [59,60].

2.4.1. Physiologic ABCG2 Tissue Expression

Many studies have investigated the tissue distribution and the expression level of
ABCG2, with the aim to decipher its physiologic function. High expression was found in
the placenta, blood–brain barrier, prostate, mammalian glands, testis and ovaries, liver,
small intestine, kidney, lung, and adrenal glands [61,62]. This strategic tissue localization
suggests that ABCG2 plays a crucial role in limiting absorption, mediating distribution,
and facilitating biliary and renal eliminations of drugs, and supporting the hypothesis of a
protective role from dangerous xenobiotics [63].

Placenta

High ABCG2 expression has been found on the apical membrane of syncytiotro-
phoblasts of the chorionic villi, suggesting a protective role of the fetus from the possible
transmission of toxins of maternal origin. In vivo experiments with intravenous admin-
istration of nitrofurantoin in ABCG2−/− pregnant mice showed a five-fold higher fetal
concentration compared to ABCG2 wild-type mice [64]. An ex vivo placental vesicle
system demonstrated a two-fold higher fetal concentration of the anti-diabetes drug gly-
buride when ABCG2 function was inhibited by novobiocin [65]. Moreover, Myllynen et al.,
demonstrated that a dietary carcinogen substrate of ABCG2 was transported against the
concentration gradient from fetal to maternal circulation in a perfused placenta [66].

Blood–Brain Barrier (BBB)

Penetration of drugs through the BBB depends on the drug chemical properties but
also on ABC protein activity, negatively affecting therapy efficacy in many neurological
diseases, such as Alzheimer’s and Parkinson’s disease [67]. High ABCG2 expression was
found in the luminal side of the micro-vessel endothelium of the brain [68,69]. It must
be underlined that the penetration of any given substrate seems to be influenced by both
ABCB1 and ABCG2, and the limitation of penetration could depend on the affinity of the
substrate for each protein.

Mammary Gland

In contrast to what is described in the placenta, in the mammary gland, ABCG2 serves
to concentrate toxins into milk. Many studies have demonstrated ABCG2-mediated high
concentrations of antibiotics and anticancer drugs in milk [70,71]. Moreover, it seems
to have a physiologic role in secreting vitamin B, required for the metabolism of the fat
into milk [72].

Testis

High ABCG2 levels have been reported in interstitial cells as well in Sertoli/Leydig
cells, confirming a protective role from genotoxic mutagens for the germinal stem cells [73].
High levels of ABCG2 have also been found in myoid cells and in luminal capillary
endothelial cells, suggesting a barrier function like that of BBB [74].

Gastrointestinal Tract

Studies of expression revealed higher ABCG2 levels in the duodenum, then decreasing
along the GI tract, with the lowest levels in the rectum. Protein distribution suggests a
role in limiting the oral absorption of substrates [75]. This role was later confirmed by
in vivo studies in ABCB1/ABCG2-deficient mice, where the availability of oral drugs was
increased by 40% [76].
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Kidney

ABCG2 is expressed in the cortical tubule and in the brush border membrane of the
proximal tubule [77], suggesting a potential involvement of ABCG2 in renal drug excretion,
a hypothesis supported by in vivo studies on ABCG2−/− mice compared to wild-type [78].

Liver and Biliary Tract

ABCG2 expression was found in the liver canalicular membrane, in hepatocytes, in the
bile duct, and in the vascular endothelium of the human liver [73,79,80], having an active
role in the biliary excretion of drugs, xenobiotics, and endogenous compound conjugates.

Hematopoietic Stem Cells

In a normal hematopoietic system, both murine and human, ABCG2 is expressed in
a distinct population with a low proliferation rate and high bone marrow reconstitution
capability after irradiation [81–83] and undergoes downmodulation during hematopoietic
differentiation [84]. However, ABCG2 protein is not necessary for normal hematopoiesis,
and ABCG2-deficient mice have normal peripheral cells; however, stem cells are more
sensitive to mitoxantrone, an ABCG2 substrate [85].

2.5. ABCG2 Substrates

Since ABCG2 was first described, the list of its substrates has been steadily expanding.
The substrate specificity of ABCG2 is highly overlapping to that of ABCB1, and like ABCB1,
ABCG2 preferentially targets hydrophobic and lipophilic compounds with planar aromatic
systems. Transfer across the membrane is associated with conformation changes of the
protein (“in-facing”, with the substrate binding site open in the cytoplasm, and “out-facing”
open in the extracellular space). Recently, Gyöngy et al., and Yu et al., proposed two
molecular models to explain drug transport, highlighting the crucial role of ATP binding
to modulate ABCG2 conformation [86,87]. As for the other ABC members, the molecular
basis of ABCG2 substrate specificity is not fully elucidated. It has been hypothesized that
substrate binding depends on the formation of a “membrane entrance” in the lipid bilayer
by hydrophobic amino-acid residuals, available in the “in-facing” protein conformation,
and that the different combination of these residuals provides the substrate specificity [88].

Mitoxantrone transport is the hallmark of the cells expressing ABCG2; thus, the first
recognized substrates were predominantly chemotherapy agents. More recently, other
classes of substrates have been identified, including antivirals, HMG CoA inhibitors,
flavonoids, carcinogens, and calcium channel blockers [61,89]. A partial list of ABCG2
substrates is summarized in Table 1.

Table 1. Selected substrates of ABCG2 1.

Chemotherapy Drugs

Daunorubicin, Doxorubicin, Idarubicin, Epirubicin, Etoposide, Gefitinib, Imatinib, Irinotecan, Mitoxantrone, Methotrexate, SN-38,
Teniposide, Topotecan

Non-chemotherapy agents

Antibiotics: Ciprofloxacin, Ofloxacin, Norfloxacin, Erythromycin, Nitrofurantoin
Antivirals: Zidovudine, Lamivudine, Delavirdine, Lopinavir
Antihypertensive: Reserpine
Calcium channel blockers: Nicardipine, Azidopine, Nitrendipene, Dipyridamole
HMG-CoA reductase inhibitors: Rosuvastin, Cerivastatin, Pravastatin
Carcinogens: Aflatoxin B, 2-amino-1 methyl-6-phenyl-[4,5-b]imidazolpyridine (PhIP), 2-amino-3,8-dimethylimnidazo
[4,5-f]quinoxaline (MelQx), 2-amini-3-methylimidazol[4,5-f]quinoline (IQ), 3-amini-1,4-dimethyl-5H-pyridol[4,3-b]indole (Trp-P-1)
Others: Sulfasalazine, Cimetidine, Riboflavin, Vitamin K3, Glyburide, d-Luciferin, Quercetin

1 Table was compiled from references [61–85].
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3. Expression and Clinical Significance of ABCG2 in AML

Despite the role of ABC proteins in determining drug resistance in hematologic and
solid cancers, it is still a matter of controversy, and many studies in the past decades have
shown a relationship between ABCG2 overexpression and poor clinical outcome in AML.
The heterogeneity of the employed methods, including ABCG2 m-RNA expression, protein
evaluation by flow cytometry or immune-cytochemistry, ABCG2 efflux of fluorescent
substrates, and the lack of standardization may, in part, explain the confounding results
and make data comparison difficult.

In 2001, Sargent et al., evaluated ABCG2 expression by immunocytochemistry, using
the anti ABCG2 BXP-34 monoclonal antibody, in 20 samples of de novo AML (12 previously
treated and 8 untreated). ABCG2 positivity showed high variability, but 27% patients had
more than 10% positive cells and were considered as ABCG2 overexpressing. There were
no differences between pretreated and naïve patients with regard to FAB cytotype or other
clinical/biological characteristics. The authors also compared in vitro drug sensitivity in
ABCG2 positive (>10%) and negative samples, observing significantly higher daunorubicin
IC50 in ABCG2 positive cases [90].

Van del Kolk et al., tested ABCG2 expression and mitoxantrone efflux in 20 AML pa-
tients who were candidates for intensive chemotherapy. In all samples, ABCG2 expression
was lower compared to the MCF7MR cell line, but a significant negative correlation between
ABCG2 expression and mitoxantrone retention was demonstrated. Moreover, a higher
expression in leukemic cells with more immature immunophenotypes (CD34+/CD38- and
CD34+/CD33-) was observed, and the same subgroups also showed a reduced mitox-
antrone retention compared to more mature leukemia cells, confirming the efflux activity
of ABCG2. No ABCG2 upregulation was observed in refractory or relapsed patients [91].

Abbot et al., studied ABCG2 mRNA levels in 40 specimens from newly diagnosed
adult AML patients. Only 7% showed ABCG2 mRNA levels within the range of drug
resistant clones, although in another 78%, levels were higher than in normal blood and
bone marrow. On this basis, they concluded that ABCG2 overexpression is uncommon
in clinical specimens. Higher expression was reported in M0-M2 FAB cytotypes, while
no correlation was found between ABCG2 mRNA level and cytogenetic or disease status
(diagnosis vs. relapse) [92].

Van den Heuvel-Eibrink et al., compared ABCB1, ABCC1, LRP, and ABCG2 mRNA
levels in 20 leukemia samples at diagnosis or relapse, observing significantly higher ABCG2
mRNA levels at relapse (median 1.7-fold, p = 0.04). On the contrary, expression levels of the
other tested ABC proteins did not change. They hypothesized that only ABCG2 accounted
for drug resistance at relapse [93]. In 2007, the same group explored the relevance of the
same genes’ (ABCB1, ABCC1, LRP, and ABCG2) expression in a cohort of 154 elderly
patients, observing a negative correlation between ABCB1 and ABCG2 expression and
WBC count (p = 0.001) and a positive association between ABCB1 and ABCG2 and CD34
blast expression (p = 0.001). Moreover, high ABCB1/ABCG2 expression significantly
reduced complete remission (CR) rate (p = 0.03) and seemed to be associated with a reduced
event-free survival (EFS) (p = 0.05) [94].

Liu et al., reported a negative impact of ABC protein co-expression on prognosis.
CR rate declined with increasing number of co-expressed ABC transporters; remission
was 0% in cases with four-protein expression, 10% in those with three proteins, 25% in
cases co-expressing two proteins, 58% in patients positive for only one protein, and 90% in
negative patients (p = 0.001). Moreover, they reported significantly higher ABCG2 mRNA
levels in patients older than 60 years (p = 0.008), in those with unfavorable cytogenetics
(p = 0.017), and with FLT3-ITD or c-Kit mutation (p = 0.007 and p = 0.04, respectively) [95].

Marzac et al., analyzed the expression and the prognostic value of 22 ABC transporters
in a cohort of 281 adult patients with AML, concluding that only ACBB1, ABCC1, and
ABCG2 correlated with chemoresistance and had a negative impact on outcome [96].

Van der Pol et al., evaluated efflux function of ABCG2 in 26 leukemia samples. At
diagnosis, 23/26 (88.5%) did not show efflux activity, while ABCB1 and ABCC1 activity
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was present in 36/45 (80%) and in 26/44 (59%) cases, respectively. No modifications were
shown at AML relapse, so the authors concluded that ABCG2-mediated drug efflux offers
limited contribution in developing resistance at relapse [97].

Galimberti et al., studied ABCG2 mRNA by real-time PCR in 52 AML samples, finding
intermediate levels in 48.2% and high levels in 27.6%, and reporting a significant correlation
between ABCB1 and ABCG2 values (r = 0.91, p = 0.0002). Neither ABCG2 nor ABCB1 levels
correlated with clinical characteristics or cytogenetics, and no data on disease outcome
was reported [98].

A negative impact of ABCG2 overexpression on disease outcome was reported by
Benderra et al., in 149 adult AML patients, as high ABCG2 expression correlated with lower
CR rate (p = 0.04) and OS (p = 0.05) compared to non-overexpressing patients. Furthermore,
worse outcome was observed in patients co-expressing two or more ABC proteins [99].

Ho et al., investigated the expression of the entire ABC family to predict response
to the classic “3 + 7” induction therapy in a small cohort of 34 AML patients. No associ-
ation was demonstrated between ABC protein expression and response to therapy, but
non-responding patients had higher levels of ABCB1 and ABCG2 in the candidate (i.e.,
CD34+/CD38-) leukemic stem cell population compared to responders [100]. The negative
impact of ABCG2 expression on OS and disease-free survival (DFS) in adults was confirmed
in the work of Uggla et al. [101].

Our group reported that the negative prognostic impact of ABCG2 overexpression can-
not be reversed by adding fludarabine to induction therapy [102] nor by stem
cell transplantation [103].

The prognostic significance of ABCG2 expression in pediatric AML was assessed by
Steinbach et al., The authors evaluated ABCG2 expression by real time PCR in 59 pediatric
cases, reporting 10-fold higher mRNA levels in patients not in remission after induction
therapy compared to those achieving CR (p = 0.012). The highest expression was observed
in the M1-M2 FAB subtype and the lowest in M5 (p = 0.004). Worse OS was reported in
ABCG2 overexpressing cases, irrespective of disease risk (p = 0.023) [104]. The same group
also investigated the prognostic relevance of the co-expression of ABCB1, ABCG2, ABCC3,
and ABCA3 in 112 children with AML treated according to the AML-BFM 2004 protocol.
Patients with high levels of ABCG2 and ABCC3 had reduced CR rate, and those with
ABCG2 overexpression also had lower DFS. As for CR probability in adults (Liu et al. [95]),
DFS in this pediatric cohort was negatively affected by the number of overexpressed ABC
transporters (p < 0.001) [105].

Taken together, this data supports a role of ABCG2 in affecting AML outcome, both in
adults and in children. Poor response to induction therapy may be also influenced by the
frequent co-expression of ABCB1, but the stem cell–like properties conferred to leukemic
cells by ABCG2 overexpression may account for high relapse rate and for poor survival
when induction therapy is intensified or despite allogeneic stem cell transplantation, even
if performed in CR.

4. ABCG2 Polymorphisms in AML

The cloning of ABCG2 DNA from drug-selected cell lines and from normal tissues
revealed many amino-acid substitutions able to alter the protein function and the sub-
strate preference. Moreover, mutational analysis identified more than 80 ethnic-associated
synonymous and non-synonymous single-nucleotide polymorphisms (SNPs) potentially
influencing ABCG2 expression and function and affecting drug absorption, plasma concen-
tration, and distribution and elimination (Figure 1) [106].

In drug-selected cell lines such as S1-M1-80 and MCF7/AdVp3000, unique mutations
in amino acid position 482 makes cells highly resistant to mitoxantrone and doxorubicin.
The replacement of Arg with Gly or Thr at position 482 increases rhodamine and anthracy-
cline efflux compared to the wild-type counterpart [107]. In contrast, the R482G and R482T
variants negatively affect ABCG2’s ability to transport methotrexate but confer increased
methotrexate resistance [108]. At least 13 ABCG2 variants with substitution at R482 have
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been described in cell lines, all associated with strong resistance to mitoxantrone. The
COO- terminus of TMD3, near position 482, and 3D homology models suggest that R482 is
the central cavity of the binding pocket, with a crucial function in drug transmembrane
translocation [109]. Mutations at N557 and H630 confer lower resistance to SN-38, although
mitoxantrone resistance is maintained [110]. Mutations at C603 may impair the homodimer
formation [60], and substitutions at N596 may affect N-linked glycosylation, reducing the
amount of ABCG2 on the cell membrane [111]. Among synonymous SNPs, Q141K has
been associated with increased risk of gout in Asian [112] and American populations [113].
Moreover, Q141K SNP is associated with poor response to allopurinol [114]. In addition
to Q141K, a Q126X SNP has been recognized as a risk factor for gout, and V12M SNP
seems to have a protective effect in the Han Chinese population [115]. In a study of 229
Hungarian patients with late-onset Alzheimer’s Disease (AD) compared to 259 elderly
non-dementia controls, the genotype C/C of 421C>A SNP (Q141K) was associated with
increased susceptibility to AD (p = 0.024) [116]. Many ABCG2 SNPs have been recognized
to affect anticancer drug transport and disposition. In AML, the two most common ABCG2
SNPs are rs2231137 and rs2231142, and the minor alleles of these SNPs are associated
with a reduced level of ABCG2 expression [117]. The presence of rs2231137, rs2231142,
and rs769188 variants in a cohort of 70 de novo adult AML patients did not influence
anthracycline pharmacokinetics [118]. Studies on the impact of the ABCG2 polymorphism
in response to therapy or toxicity in AML often report contradictory results. Data from the
published studies are summarized in Table 2.

Table 2. Results of clinical studies for ABCG2 polymorphisms in AML.

SNP Author (Refs) Disease Status n Ethnicity Age (Range) Chemotherapy Outcome

G34A
rs2231137

Hampras,
2010 [119]

De novo (75%)
Secondary (25%) 261

Caucasian
(86%) Others
(14%) USA

61.5 (20–85) ANT + AraC
- OS: GG↓OS (p = 0.05) (SCT censored)
- Toxicity: AA/AG↑risk of toxicity
grade ≥ 3

Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/
Dauno/mitox

- CR: trend to↑CR (p = 0.053)
- OS: GG↑OS (p < 0.001)
- Haplotype GG (rs2231137) with
CA(rs2231142) and CT (rs22331149),
↓DFS, OS (p < 0.001)

Megías-Vericat,
2017 [121] De novo 225 Caucasian 52.5 (16–78) AraC/Ida - CR, DDI: no influence

- Toxicity: no influence

C421A
rs2231142

Müller,
2008 [122] De novo 139 Jews (61.2%)

Arabs (38.8%) 46.3 (15–86) AraC/Ant ±
Fluda ±Mit OS (SCT censored): no influence

Hampras, 2010
[119,122]

De novo (75%)
Secondary (25%) 261

Caucasian
(86%) Others
(14%) USA

61.5 (20–85) ANT + AraC
- OS: no influence (SCT censored);
Unadjusted HR: AA↓OS
- Toxicity: no influence

Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/
Dauno/Mit

- CR: no influence
- OS:CC↑OS (p < 0.05, only univariate
analysis). DFS: no influence *
- Haplotype GG (rs2231137) with
CA(rs2231142) and CT
(rs22331149)↓DFS, OS (p < 0.001)

Tiribelli,
2013 [123] De novo 125 Caucasian

(Italy) 59.2 (20–84) AraC/IDA/
Fluda ± Etop

- 3yOS:CC + low ABCG2↑OS
(p = 0.02)
- 3yDFS: CC + low ABCG2↑DFS
(p = 0.04)

Megías-Vericat,
2017 [121] De novo 225 Caucasian 52.5 (16–78) AraC/Ida

- CR, DDI: no influence
- Toxicity: CA↑cardiac
(p = 0.004),↑lung (p = 0.038)

Ile619Ile (C>T) Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/
Dauno/mitox - CR, OS, DFS: no influence *

rs2231149
(C>T) Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/

Dauno/mitox

- CR: no influence
- OS: CC↑OS (p = 0.01; lost in
multivariate analysis)
- DFS: CC↑DSF (p < 0.05; lost in
multivariate analysis) *
- Haplotype GG (rs2231137) with
CA(rs2231142) and CT (rs22331149),
↓DFS, OS (p < 0.001)

rs2231162 Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/
Dauno/mitox CR, OS, DFS: no influence *
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Table 2. Cont.

SNP Author (Refs) Disease Status n Ethnicity Age (Range) Chemotherapy Outcome

rs2231164 Wang, 2011 [120] De novo + ALL 141 Asian 32 (5–70) AraC/
Dauno/mitox CR, OS, DFS: no influence *

ABCG2 + SLC

ABCG2
rs2231142(C>A)

SLC22A16
rs714368(A>C)

Megías-Vericat,
2017 [121] De novo 225 Caucasian 52.5 (16–78) AraC/Ida

- CR, DDI: no influence
- Toxicity:genotype
AC + AA:↑cardiac (p = 0.033)

* Mixed with ALL cases. Abbreviations: AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia;
ANT: anthracycline; Dauno: daunorubicin; IDA: idarubicin; Mit: mitoxantrone; Fluda: fludarabine; Etop: etopo-
side; CR: complete remission; DFS: disease-free survival; OS: overall survival; SCT: stem cell transplantation;
HR: hazard risk. Arrow up = increased; arrow down = decreased/reduced.

5. ABCG2 and Extracellular Vesicles

Among the factors mediating the acquisition of the MDR phenotype, the role of
intercellular communications has recently emerged. In this setting, extracellular vesicles
(EVs) play a pivotal role [124]. EVs are a heterogenous group of lipid bilayer structures
derived from either endosomal multivesicular bodies (exosomes) or from the plasma
membrane (micro vesicles, also called ectosomes). Cells that secrete more vesicles show
a greater level of resistance [125]. Many studies have shown that cytotoxic drugs may be
sequestered into EVs and released from the cells, thus preventing their accumulation in
the nucleus. This mechanism has been demonstrated in MCF7 breast cancer–resistant cells,
in which ABCG2 efflux protein localizes to EVs and mediates the uptake of drugs in the
vesicles before their release [126]. The compartmentalization of ABCG2 in EVs and not in
other intracellular compartments depends on the activation of the PI3K/AKT pathway,
suggesting a potential therapeutic target to overcome drug resistance by the inhibition of
EVs biogenesis. Preliminary in vitro studies using the specific PI3K-AKT axis results in the
reduction of EV number and volume. ABCG2 is relocated to the intracellular compartment
and loses the ability to concentrate anticancer drugs, thus restoring cell sensitivity [126].
EVs may act also by transferring between cells the efflux transporters or mi-RNAs involved
in the regulation of efflux proteins’ expression [127]. Goler-Baron et al., recently proposed
the use of photodynamic therapy in cancers and non-malignant diseases to destroy ABCG2-
containing EVs previously treated with an ABCG2 substrate photosensitizer [128]. In the
specific case of ABCG2 recipients, cells could develop resistance not only by increasing their
capacity for extrude anticancer drugs but also by acquiring the protective characteristics
typical of the stem cell compartment, mediated by ABCG2.

6. ABCG2 Inhibition

Different approaches to overcome ABCG2-mediated MDR have been proposed. De-
spite some positive results obtained in preventing ABCB1 binding [129,130], the attempt to
develop chemotherapy agents that are not recognized by ABCG2 remains challenging, due
to the molecular variety of transported compounds and the still incomplete knowledge of
binding mechanisms [131]. The attractive strategy to induce collateral sensitivity (CS), a
well-known phenomenon in which, due to overexpression of ABC transporters, a MDR cell
becomes hypersensitive to some unrelated anticancer drugs, is difficult to pursue due to
the variety of mechanisms involved in drug resistance [132].

So far, the most used method remains an inhibition of the efflux function, re-sensitizing
resistant cells to conventional anticancer drugs. The first identified functional inhibitor
of ABCG2 was fumitremorgin C (FTC), a mycotoxin produced by Aspergillus fumigatus,
extensively used in experimental settings to test drug sensitivity in ABCG2 overexpressing
cells [133]. Since then, using cellular approaches or in silico models, more than a hundred
compounds in 45 different classes have been identified [134]. Some of them bind ABCG2
TMD, while others inhibit ATPase activity. Moinul et al., investigated many molecular
scaffolds and relationships between structure and inhibition, proposing the “minimum”
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structural features required for ABCG2 inhibition, a potentially useful tool to design
successful inhibitors [135].

It must be underlined that many of the molecules with inhibitory activity work only at
high concentrations, often not attainable in clinical use. Among novel molecules, Ko143 (an
FTC derivative), chromone derivatives, and a recently discovered indenoindol derivative
are the most promising agents, having an IC50 in the nanomolar range [136]. Many
ABCG2 inhibitors, like calcium channel blockers, anti-HIV drugs, and xanthine-oxidase
inhibitors, were selected by drug repurposing, with the potential advantage of shortening
the drug development process. The most interesting are tivozanib, fostamatinib, ponatinib,
and febuxostat, all active at nanomolar IC50 [137–140]. A selected list of molecules that
demonstrated in vitro inhibition of ABCG2-mediated efflux is reported in Table 3. The table
incudes, for each compound class, only the molecules with the lowest IC50, thus potentially
reachable in clinical use.

Table 3. Selected list of ABCG2 inhibitors by class of compounds 1.

Structural Class Title 1 Compound IC50 (µM)

Chalcones Indolylphenylproenone 0.27

Chromones
Chromone4a 0.086
Chromone31 0.046

Diketopiperazines Ko143 (FTC analog) 0.01

Flavonois
Flavone 2.8
6-prenulchrysin 0.29
Flavonoid dimer 1

Hedgehog pathway inhibitors Vismodegib 1.4

Immunosuppressants Sirolimus 1.9

Non-purine xanthine oxidase inhibitors Febuxostat 0.027
Topiroxostat 0.18

ABCB1 inhibitors
Tariquidar 0.9
Tariquidar derivative 6 0.06

Indenoindole-type derivatives
Indeno[1,2-b]indole 0.21
9-hydroxyindeno[1,2-b]indole 0.21
Indeno[1,2-b]indole homodimer 0.024

Tariquidar-related triazoles IR-MB19 0.14
UR-MB108 0.079

Thrombopoietin receptor Eltrombopag 3.1

Tyrosine kinase inhibitors

Alectinib 1.5
Bosutinib 2
Dasatinib 2
Erlotinib 0.13
Fostamatinib 0.05
Gefitinb 0.5
Ponatinib 0.04
Vandetanib 0.2
Tivozanib 0.07
Imatinib 1

1 Only molecules with low IC 50 are included. Inhibitory activity was tested in stabilized cancer cell lines of
different origin. The list was compiled from references [134,141].

It must be underlined that, in leukemic cells, ABCG2 expression is significantly
lower compared to cell lines and that an efficient inhibition could be obtained even
at lower concentrations. Moreover, moving from the original molecule, modifications
done according to critical requisites for ABCG2 inhibition could increase the potency of
ABCG2 inhibitors while maintaining the bound affinity, to avoid off-target toxicities. Many
inhibitors, supposedly selective for ABCG2, actually act as dual inhibitors, either anti-
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ABCG2/ABCB1 [142–145] or anti-ABCG2/ABCC1 [146]. Conversely, despite the overlap
of substrates among the three ABC proteins involved in MDR, pan-inhibitors are rare. One
is curcumin, which in vitro inhibits ABCB1, ABCC1, and ABCG2 [147]. A double/triple in-
hibition capacity may be useful since co-expression of ABC proteins is frequently observed
in acute leukemias. A potential disadvantage could be a greater toxicity in tissues with
physiological overexpression of ABC proteins.

Other new anticancer drugs have recently demonstrated an ABCG2 inhibitory effect
in vitro. Sorf et al., demonstrated that ribociclib, a C4C/6 inhibitor approved for the treat-
ment of locally advanced/metastatic breast cancer, inhibits ABCB1- and ABCG2-mediated
daunorubicin and mitoxantrone efflux in AML cell lines at IC50 ranging between 1,4–3 µM,
suggesting that combination therapy can revert MDR, especially in CD34+/FLT3-WT
cases [148]. In vitro inhibition of ABCG2- and ABCC1-mediated daunorubicin and mi-
toxantrone efflux was demonstrated also by talazoparib, a drug approved for metastatic
BCRA1/2 mutated breast cancer [149]. Finally, venetoclax, a bcl-2 inhibitor used in lympho-
proliferative disease and in elderly AML patients in combination with hypomethylating
agents, seems to inhibit the efflux function in wild-type ABCG2 in cell lines [150].

Despite the discovery of several molecules with an inhibitory effect, the interest in
the clinical development of effective ABCG2 inhibitors has been deprioritized, likely due
to the disappointing results attained in ABCB1 inhibition, and at present no clinical trials
including ABCG2 inhibitors are ongoing. This is in contrast with the evident contribution
of ABC transporters in chemotherapy failure, at least in AML. In this setting, ABCG2
overexpression not only accounts for an increased relapse risk and poor survival after
conventional therapy, but also identifies a subset of patients at higher risk of relapse after
allogeneic transplantation, which is still recognized as the only “curative” option for high-
risk disease [103]. It is possible that the acquisition by ABCG2-overexpressing leukemic
cells of stem-cell-like properties eventually favors their survival in transplant preparative
regimens and their escape from post-transplant graft versus the leukemia effect. On this
basis, strategies to counteract ABCG2 should be adopted.

Kukal et al., provided an exhaustive review of the network of signaling pathways
involved in ABCG2 regulation [151]. This work highlights that most mechanisms affecting
ABCG2 expression are also involved in leukemia pathogenesis. Drugs targeted against
many of these mechanisms are already available or under trial. In vitro studies on cancer
cell lines seem to confirm their ability to downregulate ABCG2 at transcription or post-
translational level [134]. A selection of ABCG2 expression molecules according to regulation
level is listed in Table 4.

Table 4. ABCG2 expression modulators according to regulation level.

Transcriptional Regulation Post-Translational Regulation

Dexamethasone
Genistein
Resveratrol
Gefitinib
LY294002 (PI3K inhibitor)
Glasdegib
Vadadustat
SP600125 (JNK inhibitor)
Telatinib

Imatinib
Nilotinib
Dasatinib
Sorafenib
Gefitinib
LY294002 (PI3K inhibitor)
PPAR-γ agonists (telmisartan)

List was compiled from references [89,134].

With this basis, new chemotherapy protocols could be designed by combining con-
ventional drugs and ABCG2 expression modulators, with the attempt to reverse stem cell
properties in overexpressing AML blasts.
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7. Conclusions

Great progress has been made in the past decades in deciphering ABCG2 structure,
substrate transport, expression, and regulation as well as its impact on AML outcome. It is
time to translate this knowledge into the clinics. New approaches should be developed
to revert the negative effect of ABCG2 overexpression, including strategies addressed to
down-modulate ABCG2 membrane expression, not only impair its efflux activity. The
right inhibitor dose, the more appropriate administration timing (during induction therapy
or after), the right chemotherapy association (conventional or hypomethylating agents
to combine transcriptional and post-translational modulation), and the management of
off-target toxicity and of the frequent co-expression of two or more ABC proteins remain
open questions. Moreover, standardized methods for a precise “quantification” of ABCG2
expression should be established, based on protein rather than on mRNA measurement,
due to the heavy post-transcriptional regulation of the protein.
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