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Spiking systems in population-infection dynamics

Franco Blanchini! and Giulia Giordano?

Abstract— Motivated by a class of models in population
dynamics, we introduce the concept of spiking dynamical
systems. A spiking system admits an asymptotically stable
equilibrium but, under proper perturbations on the initial
conditions in a compact region including the equilibrium,
its output exhibits a spike of arbitrarily large magnitude
before the state returns within the region. We consider
a model that describes a well-documented phenomenon
in caterpillar-virus dynamics: a sudden increase of the
caterpillar population occurs, due to a temporary reduction
of the viral population, and is then followed by a sudden
decrease. We prove that the caterpillar-virus system is
spiking according to our proposed mathematical definition:
the model can yield arbitrarily large population densities for
caterpillars, and then the original conditions are suddenly
restored. When the model also takes into account envi-
ronmental constraints that keep the caterpillar population
bounded, the spike cannot be arbitrarily large, but the
population density can get arbitrarily close to the maximal
one that can be achieved in the absence of virus.

Index Terms—Ecological systems, Infection dynamics,
Population dynamics, Spiking systems.

I. INTRODUCTION AND MOTIVATION

PIKING phenomena are well documented in nature and

widely discussed in the ecological literature [2], [18]. Such
phenomena are often referred to as outbreaks, a term that typi-
cally denotes the sudden increase in the number of individuals
in a population, possibly — but not necessarily — followed by a
rapid decay due to some limiting factor. Outbreaks related to
the sudden increase in the number of infected individuals, in
a population exposed to an infectious agent, are captured by
epidemic models [5], [8]; in epidemiology, a disease outbreak
is defined as the sudden occurrence of infection cases in excess
of what would normally be expected in a given community,
location and season, during a specific period of time [21].

We denote in general by outbreak the sudden growth of a
population, and specifically by spike an outbreak followed by
a sudden restoration of the original system conditions.

In ecology and population dynamics, one of the well-known
mechanisms that induce a population spike is the presence of a
predator or a pathogen that affects the population and becomes
particularly active after the outbreak, thus suppressing most of
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the population and restoring it to its previous size [11], [12].
An example is offered by the interaction between some insect
populations, including the well-studied case of the western
tent caterpillar, and viruses that cause high-mortality infections
in those populations; this case study has been thoroughly
investigated in ecology [3], [6], [7], [10], [18], [19], and
has also inspired several mathematical modelling studies [9]-
[12], [14], [17], [22]. The spiking behaviour occurs because,
while viral circulation is extremely limited when the caterpillar
population density is low, the virus spreads very quickly and
effectively when the population density becomes high, and the
high mortality associated with the infection causes an ensuing
drastic reduction in the number of caterpillars.
The Lotka-Volterra predator-prey model [16], [20]

i‘l(t) = ole(t) — ﬂxl(t)l‘g(t) (1)
Ta(t) = —ywa(t) + dx1(t)z2(t) (2)

where x; is the population density of prey and zs of predator,
is known to produce periodic solutions, with recurrent peaks
of both prey and predator densities. Regular fluctuations have
been observed in real ecosystems, such as in the case of
lynx and snowshoe hare population dynamics [13]. However,
many ecological systems — including the insect-virus case, and
in particular the caterpillar-virus case — exhibit instead only
occasional peaks, depending on unpredictable circumstances:
which is the mechanism that can generate these?

Here, we address this question by considering a variation
of the predator-prey model (1)-(2), in which the interaction
terms fzixo and dzixo among the two species are replaced
by the new terms Szizy and dalzs, with p > 1. In fact,
while in the predator-prey model the interaction terms are
proportional to the likelihood of a prey encountering a predator
(approximated by the product of the two population densities),
the situation is different in the caterpillar-virus case. Once
infected by a virus, a caterpillar dies within a very short time-
span, due to the high mortality of the infection. Still, the virus
population can proliferate only when non-infected caterpillars
encounter infected ones, which depends more than linearly on
the caterpillar density [9], [10]. Therefore, we assume that the
dependence of the interaction terms on the population density
of caterpillars is not linear, but polynomial of degree p > 1,
to capture the evidence that viral transmission is very low
for small caterpillar densities (when an infected caterpillar
is unlikely to encounter a non-infected one and spread the
contagion), while it increases significantly, much more than
linearly, when the caterpillar density becomes higher.

The contributions of this manuscript are summarised below.

o We introduce the new notion and mathematical definition

of spiking system. We define as spiking a system that ad-
mits an asymptotically stable equilibrium but that, under
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proper perturbations on the initial conditions, exhibits a
spike of arbitrarily large magnitude, before reverting back
to its initial configuration (Section II).

o To showcase spiking dynamics, we consider a simple
variation of the Lotka-Volterra predator-prey model that
captures widely observed and meaningful caterpillar-virus
dynamics by introducing a polynomial dependence of
the interaction term on the population density of the
caterpillars (Section III), and we prove that the considered
model is spiking according to our definition (Section IV).

o We also consider a modification of the model that takes
into account environmental constraints, such as finite
resources, that keep the population bounded. In this case,
the system is not spiking, since the spike cannot have
an arbitrarily large magnitude, but the population density
can get arbitrarily close to the maximal population size
in a virus-free setting (Section V). This behaviour is
similar to that of excitable systems [1], [15], for which
a small perturbation can cause “large” transients before
the trajectory returns to the equilibrium.

Section VI illustrates our results on spiking systems through
numerical simulations of the caterpillar-virus model.

Il. SPIKING SYSTEMS: THE CONCEPT

Consider the ordinary-differential-equation system

#(t) = f(x(t), y(t) = Ha(t), 3)

without external inputs, where x € R™ and y € R. The output
y(t) linearly depends on the state just for simplicity, but the
theory could be generalised to the case of outputs that are
suitable nonlinear functions of the state.

Assumption 1. The function f: R™ — R" in (3) is locally
Lipschitz. Also, for all initial conditions, the solution to (3)
exists and depends continuously on the initial conditions.

A spiking system of the form (3) admits an equilibrium
point Z (such that f(Z) = 0) that is locally asymptotically
stable and lies within the interior of a compact set such that,
for some initial conditions within the set, the output becomes
arbitrarily large, but then the state returns within the set.

Definition 1. System (3) is spiking if

a) it admits a locally asymptotically stable equilibrium T,

b) there exists a compact set W that includes T as an interior
point and has the property that, for all © > 0 (no matter how
large), there exist an initial condition xo € int(W), a time
t1 and a time ty > ti such that, for x(0) = xzo, we have
y(t1) > p and z(t2) € int(W).

The notion of spiking system is similar to that of excitable
system [1], [15], but also crucially different. According to [1],
an excitable system has a globally attractive equilibrium and,
if the initial condition is perturbed beyond a threshold, then a
“large” transient can occur, even though the system eventually
returns to the equilibrium; the concept is associated with
singular perturbations. According to [15, Chapter 7], a system
with a stable equilibrium is excitable if there is a “large-
amplitude” trajectory that starts in a small neighbourhood of

the equilibrium, leaves the neighbourhood, and then returns to
the equilibrium, and the mathematical characterisation of the
property requires the system to be “near a bifurcation from
resting to oscillatory dynamics”. Our definition does not con-
sider any threshold, nor does it involve singular perturbations
or bifurcation phenomena. Furthermore, global attractivity
does not hold in our case: according to our definition, the
“spike” can be arbitrary large, which essentially requires the
existence of an unbounded solution xy (t) to the system that
originates on the boundary of WV and is unbounded (and yields
an unbounded yy (¢)), while any other solution starting from
int(W), arbitrarily close to the unbounded solution x(t),
eventually detaches from it and returns within int(W).

[1l. CATERPILLAR-VIRUS POPULATION DYNAMICS

We consider the population dynamics involving western tent
caterpillars (Lepidoptera-Lasiocampidae Malacosoma califor-
nicum), parasites of trees, and some insect baculoviruses (nu-
cleopolyhedrovirus), widely studied in the ecological literature
[3], [6], [7], [10], [18], [19]. Denoting by c the population
density of caterpillars and by v the population density of virus,
we propose the equations

o-
—~
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I

ac(t) — Bu(t)c(t)? )
—yo(t) + dv(t)e(t)? (5)

that capture the growth rate of caterpillars in isolation, associ-
ated with a > 0, the decay of virus, associated with v > 0, the
death rate of caterpillars induced by viral infection, associated
with 8 > 0, and the replication of virus within infected hosts,
associated with § > 0. As the system output, we choose the
population density of caterpillars: y(t) = c(¢).

For p = 1, the model (4)-(5) reduces to the predator-prey
model (1)-(2), which is well known to admit periodic orbits
for any positive initial condition. Here, we assume that p > 1.

In fact, for a fixed v, the infection term

BocP

o(t) =

would be proportional to the population density c of caterpil-
lars for p = 1, while assuming p > 1 allows us to take into
account the following specific features of the caterpillar-virus
population dynamics (see Fig. 1):

o For a small population density c, the caterpillars are
spread out in their habitat and, given the average dis-
tance between two individuals, virtually no contagion is
possible. Therefore, an infected caterpillar typically dies
before having had the opportunity to infect others.

o For a large population density c, the caterpillars are very
close to one another, and hence the contagion grows much
faster than linearly with their population density: since the
average distance between individuals is very small, each
infected caterpillar ends up infecting many others.

Various models could describe caterpillar-virus dynamics;

here we aim to provide a significant example of spiking system
in biology that is as simple as possible. Our model (4)-(5) is
intrinsically different from SIR-like epidemiological models
involving susceptible, infected, recovered individuals [5], [8],
since it models the population dynamics of both caterpillars
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and virus, and it does not distinguish between different stages
of the disease for caterpillars. The model also differs from
that suggested by Dwyer in [9], [10], which considers three
differential equations that model the time evolution of the
population densities of susceptible caterpillars (.5), infected
caterpillars (1), and pathogens (P). It is also different from the
discrete-time model introduced by Dwyer in [11], [12], which
involves two difference equations where the key function
representing infection is given by an implicit expression.

IV. THE CATERPILLAR-VIRUS SYSTEM IS SPIKING

The system (4)-(5) admits an unbounded solution. In fact,
if the initial condition is ¢(0) > 0 and v(0) = 0, then v(t) =0
while c(t) = c(0)e*.

To prove that system (4)-(5) is spiking, we need to show
that it meets both requirements in Definition 1. First, we show
that it admits a locally asymptotically stable equilibrium point
(which is the only nontrivial equilibrium).

Proposition 1. System (4)-(5), for p > 1, admits a single
positive equilibrium, which is locally asymptotically stable.

Proof. From equfltion (5), the only positive equilibrium value
for ¢ is ¢ = (%)”. Substituting in (4) allows us to derive the

1-p
corresponding unique equilibrium for v, v = % (%) ? . To

prove local asymptotic stability of the equilibrium, we show
that the corresponding linearisation is Hurwitz. The system
Jacobian at the equilibrium is

T = a—pBvcP~t  —BcP
(c,v pdvcP 1t —y+48c?

_ [a(-p) -BF
oy L P50 T

For p > 1, the characteristic polynomial
P(A) = det[A — Jem] = A + ap — 1)A + pary

has positive coefficients, and the equilibrium is therefore
locally asymptotically stable. O

Then, we show that condition b) in Definition 1 is satisfied.
Proposition 2. Consider any set of the form
W={(c,v): 0<c<a, 0<v<b},

with a > ¢ and b > v chosen so that the equilibrium P =
(¢,0) of system (4)-(5) is in the interior of W. For all 1 > 0,
there exists an initial condition (C,¢€) (on the segment P-Q in
Fig. 2, with Q = (¢,0)) such that c(t1) > p for some t; and
c(ta) = € for some ta > t1, with 0 < v(t2) < U (namely, the
state will return on the segment P-Q) in Fig. 2).

To prove the proposition, we need a preliminary lemma.
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Fig. 1. Small and large population density of caterpillars: contagion is
almost absent at small density (left), while it grows faster than linearly at
large density (right).
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Fig. 2. Any trajectory of system (4)-(5) originating on the segment
P-Q will eventually return to the segment P-Q (and possibly to P),
where the equilibrium point P = (¢, o) is the intersection of the
nullclines ¢ = ac — Bvc? = 0 (red) and v = —~vv + 6cPv = 0
(blue), while Q@ = (¢, 0). The green segments delimit the set W =
{(c,v):0<ec<a, 0<v<b}

Lemma 1. Consider a compact set C with non-empty interior.
Assume that any solution x(t) of (3) has the property that
each of the derivatives &;(t) has the same sign for all t when
x € C. Then, for x(0) € C, the trajectory x(t) either leaves
the set or converges to an equilibrium.

Proof. Assume that x(t) never leaves C. Since each derivative
Z;(t) has the same sign for all ¢ as long as z € C, each
component z;(t) is monotonic, hence it converges to a finite
limit. Then z(¢) has a limit £ € C. Therefore, it must be
f(&) = 0, otherwise & could not be the limit, and hence & is
an equilibrium. O

Proof of Proposition 2. The proof is geometric and we illus-
trate it with the support of Fig. 3. We show that any solution
originating on the segment P-() rotates counter-clockwise
around the equilibrium point P. To this aim, we consider four
regions of the positive orthant, delimited by the nullclines.
Region 1 (cyan in Fig. 3): the derivatives have sign [+, +].
We show that the solution originating on the segment P-()
intersects the nullcline ¢ = 0 (red in Fig. 3) at a point U.
In the (cyan) compact set delimited by the horizontal segment
xo-L (with L belonging to the nullcline), the nullcline between
L and P and the vertical segment P-x(, since both derivatives
are increasing, the solution cannot reach the only equilibrium
P and thus it must leave this compact set, in view of Lemma

Region 3
A M
v |
Region2 |
1
Y 4]
! .
Region 4 : Region 1
[+,+] Y
X % : L >
(0] Q S ¢

Fig. 3. Any trajectory of system (4)-(5) originating on segment P-
Q eventually comes back to the segment P-Q (and possibly to the
equilibrium P itself). The nullclines (¢ = 0, in blue, and ¢ = 0, in
red) intersect at the equilibrium P and partition the positive orthant into
four regions. The signs of the derivatives of ¢ and v in each region are
reported in square brackets.
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1, crossing the nullcline at a point U between P and L.

Region 2 (magenta in Fig. 3): the derivatives have sign
[, +]. Consider the (magenta) non-compact set delimited by
the vertical half-line P-NN, the nullcline ¢ = 0 (red) between
P and U and the vertical half-line U-M. Since the set is
not compact, we cannot directly apply Lemma 1. However,
z(t) has monotonic components and thus either it has a limit
(possibly infinite) within the region, or it leaves the region.

If it leaves the region, then it must cross the half-line P-N,
because within the region ¢(t) < 0 and ¢ is positive along
the corresponding portion of the nullcline ¢ = 0, hence the
trajectories point vertically upwards and the nullcline cannot
be reached from above.

Now we need to rule out the case of solutions that remain
in this non-compact set with v(¢) — +oco. This cannot happen
because, within this region, the value of c is lower and upper
bounded as ¢ < ¢ < ¢, where ¢ is the value of c at the crossing
point U. Hence ¢ = ac — fvc? < ac — poeP. So, for large
values of v, the negative derivative of ¢ becomes arbitrarily
large in absolute value (it converges to —oo), and hence the
solution must cross the half line P-NV at a finite point V.

Region 3 (green in Fig. 3): the derivatives have sign [—, —].
Consider the (green) compact set delimited by the vertical
segment P-V/, the horizontal segment V-R and the nullcline
¢ = 0 (red) between R and P. By Lemma 1, the solution
either leaves the set, or reaches P. Since both derivatives are
negative, the solution must leave the set and cross the nullcline
between R and P.

Region 4 (yellow in Fig. 3): the derivatives have sign
[+, —]. Consider the (yellow) compact set delimited by the
nullcline ¢ = 0 (red) between P and R and the segments R-
Y, Y-O, O-Q and Q-P, where O is the origin and Y lies
on the v-axis. By Lemma 1, the solution either converges to
the equilibrium P or leaves the set. Since c is increasing,
the solution may only leave the set by crossing the nullcline
between R and P or the segment P-(). However, the solution
cannot reach the nullcline between R and P, because on this
curve we have ¥ < 0 and ¢ = 0, and hence the derivative of
the solution points downwards. Then, the solution must reach
again the segment P-( (and possibly the equilibrium P itself).

To complete the proof, we show that ¢(t) can become
arbitrarily large. This is a consequence of the continuous
dependence of the solution on the initial conditions. The
solution starting from point @, i.e. ¢(0) = ¢ and v(0) = 0,
is c¢(t) = ce® and v(t) = 0. Given a large pu > 0,
consider the time instant £ > 0 at which ¢(f) = 24, namely
t = log(2u4/€)/c. In view of the continuous dependence of
the solution on the initial condition, we can take an initial
condition zp on the segment P-Q such that ¢(0) = ¢ and
v(0) = ¢, where € > 0 is small and such that the corresponding
solution gets arbitrarily close to the point (c(f),0), hence for
such a solution we must have c(f) > . O

We have thus proven that system (4)-(5) is spiking according
to Definition 1.

Since the system enjoys the property of being spiking for all
possible values of its positive parameters, provided that p > 1,
it can be considered structurally spiking [4].

V. FINITE SPIKING WITH POPULATION SATURATION

To take into account environmental constraints that prevent a
population from becoming arbitrarily large, we consider in (4)
the logistic growth term ac(1 — ¢/d), where d is the maximal
population density achieved, in the absence of virus, due to
environmental limits only:

¢t) = ac(t)[l —c(t)/d] — Bo(t)e(t)? (6)
—yu(t) + dv(t)c(t)? (7N

The system admits three equilibria: the trivial (0,0), the
virus-free equilibrium D = (d, 0) and the positive equilibrium
1

.
—~
~+
~

P = (¢,v). From (7) we obtain ¢ = ()7, while substituting
in (6) yields o = § (1 - 5) (&)' 7.

We consider p > 1. We assume that the equilibrium
density of caterpillars in the presence of virus is less than
the maximum population density d in the absence of virus.

1
Assumption 2. For the equilibrium ¢ = ()7, we have ¢ < d.

The system Jacobian is

J = a72a§7pﬁvcp_l
péveP 1

—BcP :|
— 5P
Hence, the equilibrium (0,0) is locally unstable (being
associated with eigenvalues o > 0 and —v), the equilibrium
D = (d,0) is locally unstable (being associated with eigen-
values —a and —v + 6dP > 0 in view of Assumption 2), the
equilibrium P = (¢, ?) is locally asymptotically stable because

—af—(p—1)Boe" ! fﬁ%}

Jp = PO (1-5) 0

is sign definite, with (Jp)11 negative, (Jp)i2 negative and
(Jp)a1 positive, and is therefore a Hurwitz matrix.

System (6)-(7) is not spiking according to Definition 1.
However, it has quite similar properties, with the exception
that its “spikes” are, as expected, bounded by d.

Proposition 3. System (6)-(7), for p > 1, admits a single
positive equilibrium, which is locally asymptotically stable.
All the trajectories with initial condition 0 < ¢(0) < d are
bounded.

Proof. The existence of the positive equilibrium and its local
asymptotic stability was proved by direct computation of the
equilibrium and of the corresponding Jacobian matrix.

The boundedness of the solutions can again be proved geo-
metrically, with the support of Fig. 4. Consider the trajectory
originating in a point A = (d, 0), with large enough ¢. In this
region delimited by the nullclines, the derivatives have sign
[—, +]. This trajectory reaches the line ¢ = ¢, because © > 0
and hence v increases, becoming larger than ©. For sufficiently
large v, ¢ = ac(l — ¢/d) — pvc? < ad — fve? < 0, since
¢ < ¢ < d. The negative derivative ¢ becomes arbitrarily large
in absolute value for large enough values of v, and therefore
the trajectory must reach the line ¢ = ¢ at a finite point B.

Consider the region delimited by the system trajectory
from A to B and the segments B-C, C-O, O-D and D-A,
highlighted in red in Fig. 4. We can show that this region is
positively invariant, since no trajectory originating inside the
region can leave it. In fact, no trajectory can cross the curve
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< d c

L

Fig. 4. The trapping region for the trajectories of system (6)-(7) is
delimited by the red contour. The nuliclines (¢ = 0 in blue and ¢ = 0
in green) intersect at the positive equilibrium P. Another equilibrium is
D = (d,0).

A-B, since such a curve is a trajectory itself; no trajectory can
cross the segment B-C' because, along that segment, v < 0;
no trajectory can cross the segments C-O or O-D because the
system is positive; no trajectory can cross the segment D-A
because, along that segment, the derivative ¢ is negative, with
the exception of point D = (d,0), which is an equilibrium.
To conclude the proof, we just notice that, since we can take
A with an arbitrarily large ordinate 0, in order to accommodate
for any initial condition with 0 < ¢(0) < d, every trajectory
is bounded and the corresponding invariant region can be
constructed as discussed above. O

The behaviour of system (6)-(7) resembles that of excitable
systems [1], [15]. For “small” variations of the initial condi-
tions, the transient is “large”: ¢ approaches the upper limit c,
the virus-free equilibrium population.

Proposition 4. The trajectory of system (6)-(7) with initial
condition ¢(0) = ¢ and v(0) = e gets arbitrarily close
to the unstable equilibrium D = (d,0), provided that € is
small enough, and then comes back to the segment P-B (and
possibly to the asymptotically stable equilibrium P).

Proof. We prove the result geometrically with the support of
Fig. 4. Consider the trajectory originating at (¢, ¢). Within the
(cyan) region delimited by the c-axis, the nullcline ¢ = 0
(green) and the nullcline ¥ = 0 (blue), the derivatives are
¢ > 0 and v > 0, hence the trajectory crosses from below
the nullcline ¢ = 0, which has equation v = w. Then,
in the (magenta) compact region delimited by the nullcline
¢ = 0 (green), the segment A-D, the curve from A to B and
the segment P-B (blue), we can apply Lemma 1 to conclude
that the trajectory must reach the segment P-B (including,
possibly, the equilibrium P) because ¢ < 0 (in fact, the
trajectory cannot cross the curve A-B, which is a trajectory
itself, nor segment A-D because ¢ < 0, nor the nullcline ¢ = 0
where the derivative vector is vertical, pointing upward).
The fact that the trajectory gets arbitrarily close to D follows
from its continuous dependence on the initial conditions, since
the trajectory converges to D for e = 0. O

VI. NUMERICAL SIMULATIONS

We illustrate here the concept of spiking system and our
results through numerical simulations.

Consider system (4)-(5) with parameters « = 8 =1, v =
0 = 0.1, normalised so that the nontrivial equilibrium at which
caterpillars and virus coexist is ¢ = 1 and v = 1. Take p = 2.

At the initial time, assume we have a sudden decrease in
the virus population, so that the initial conditions are ¢(0) =
1 and v(0) = 0.1. Then, the time evolution of the system,
shown in Fig. 5, exhibits a spike with a peak that is about
3.5 times the equilibrium population density. The spike peak
becomes higher when the initial virus population is smaller: for
instance, v(0) = 0.01 yields a peak that is almost 7 times the
equilibrium population density (see Fig. 6). Quite surprisingly,
the height of the spike peak is decreasing with p. For instance,
when p = 3 and v(0) = 0.1, the height of the peak, as shown
in Fig. 7, is reduced with respect to that in Fig. 5.

The time evolution of the system with p > 1 is considerably
different from the one achieved when p = 1: in the latter
case, corresponding to the classic Lotka-Volterra predator-
prey system, the trajectories exhibit persistent oscillations
associated with a periodic solution, as shown in Fig. 8.

In the case of system (6)-(7), with parameters o« = 3 = 1,
v =0 = 0.1, d = 10, the equilibrium at which caterpillars
and virus coexist is ¢ = 1 and v < 1. As expected, a spiking
behaviour occurs, as shown in Fig. 9 for p = 2 and in Fig.
10 for p = 3, but the spike peak never exceeds the threshold
d = 10. Again, the height of the spike peak is decreasing not
only with the initial condition v(0), but also with p.

——caterpillars
—viruses

t (time)

Fig. 5. Time evolution of the spiking system (4)-(5) with p = 2 and
initial conditions (1, 0.1).

T
——caterpillars
—viruses 1

t (time)

Fig. 6. Time evolution of the spiking system (4)-(5) with p = 2 and
initial conditions (1, 0.01).

VIl. CONCLUSION

We have introduced the new concept of spiking system,
inspired by the peculiar dynamics of caterpillar-virus inter-
actions. A spiking system has a locally asymptotically stable
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Fig. 7. Time evolution of the spiking system (4)-(5) with p = 3 and
initial conditions (1, 0.1).
20 :
—cgterpillars
—Viruses
15
210 t
T
5l
I N
0 20 40 60 80 100

t (time)

Fig. 8. Time evolution of the oscillatory system (4)-(5) with p = 1 and
initial conditions (1, 0.1).

equilibrium but, for initial conditions in a compact region
including the equilibrium, its output can become arbitrarily
large before the state returns within the region. To exemplify
spiking dynamics in a simple but meaningful case study, we
have considered a model that captures the population-infection
dynamics of caterpillars and viruses, well described in the
ecological literature, and proven that it is a spiking system
according to our mathematical definition. For a variation of
the model where the caterpillar population is bounded, and
hence it cannot become arbitrarily large, we have shown that
it can still get arbitrarily close to the maximum achievable
in the absence of virus. More complex models that exhibit a
spiking behaviour are possible and can be the object of future
investigation; for instance, we believe that the idea of spiking
system applies to other natural phenomena that exhibit sudden
short-lived outbursts, e.g. in the population of jellyfish, insects,
parasites (locust infestation), but also flames and fires.
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