
Computers & Operations Research 170 (2024) 106760

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Solving the Online On-Demand Warehousing Problem
Sara Ceschia a,∗, Margaretha Gansterer b, Simona Mancini c,b, Antonella Meneghetti a

a Polytechnic Department of Engineering and Architecture, University of Udine, Italy
b University of Klagenfurt, Department of Operations, Energy, and Environmental Management, Klagenfurt, Austria
c University of Palermo, Department of Engineering, Palermo, Italy

A R T I C L E I N F O

Dataset link: https://bitbucket.org/sceschia/on
line-on-demand-warehousing-problem

Keywords:
On-demand warehousing
Combinatorial optimization
Online algorithms

A B S T R A C T

In On-Demand Warehousing, an online platform acts as a central mechanism to match unused storage space and
related services offered by suppliers to customers. Storage requests can be for small capacities and very short
commitment periods if compared to traditional leasing models. The objective of the On-Demand Warehousing
Problem (ODWP) is to maximize the number of successful transactions among the collected offers and requests,
considering the satisfaction of both the supply and demand side to preserve future participation to the platform.
The Online ODWP can be modeled as a stochastic reservation and assignment problem, where dynamically
arriving requests of customers must be rapidly assigned to suppliers. Firstly, an online stochastic combinatorial
optimization framework is adapted to the Online ODWP. The key idea of this approach is to generate samples
of future requests by evaluating possible allocations for the current request against these samples. In addition,
expectation, consensus, and regret, and two greedy algorithms are implemented. All solution methods are
compared on a dataset of realistic instances of different sizes and features, demonstrating their effectiveness
compared to the oracle solutions, which are based on the assumption of perfect information about future request
arrivals. A newly proposed approach of risk approximation is shown to outperform alternative algorithms on
large instances. Managerial insights regarding acceptance and rejection strategies for the platform are derived.
It is shown how requests with large demand, long time frame, not very long spanning time, and average
compatibility degree, are very likely to be rejected in the optimal solution.
1. Introduction

In many industries, manufacturing companies are experiencing in-
creased price pressure and therefore, are required to reduce fixed costs.
One option is to better exploit owned storage capacities and make use
of shared storage spaces (Unnu and Pazour, 2023; Ceschia et al., 2023),
also known as on-demand warehouses. In on-demand warehousing,
available space during low inventory periods is made available to
other companies facing storage demand peaks. Compared to traditional
warehousing models, such as constructing or outsourcing/leasing a
facility, the on-demand one offers: capacity granularity, since stor-
age space is measured in pallet positions rather than square units;
commitment granularity, which is based on weekly/monthly periods
of space availability or request rather than years; access scalability,
i.e. more favorable locations in terms of distance from clients and
related transport costs (Pazour and Unnu, 2018).

Several providers of such shared storage spaces are on the market
(e.g., Flexe1). Typically they are run as platform-based companies,

∗ Corresponding author.
E-mail addresses: sara.ceschia@uniud.it (S. Ceschia), margaretha.gansterer@aau.at (M. Gansterer), simona.mancini@unipa.it, simona.mancini@aau.at

(S. Mancini), antonella.meneghetti@uniud.it (A. Meneghetti).
1 www.flexe.com.

where the objective is to enable as many as possible successful matches
of customer requests and available supplier capacities. Our study ad-
dresses exactly this matching problem in an online setting, which we
denote as the Online On-Demand Warehousing Problem (OODWP).
In contrast to the offline version introduced in Ceschia et al. (2023),
no information on future requests is available during the acceptance
or rejection process of dynamically arriving customer requests. For
each request two dimensions are considered: duration and capacity
consumption. Also, the spanning time (which is the time slack until
a newly arrived request has to be serviced) and compatibility between
requests and suppliers are taken into account.

This study contributes to the existing literature as follows.

• The decision process is formulated as a stochastic reservation
and assignment problem, where dynamically arriving requests of
customers must be assigned to suppliers in a given time horizon.

• Several solution approaches are implemented. These are based
on sampling methods and greedy approaches. A newly proposed
vailable online 28 June 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2024.106760
Received 7 February 2024; Received in revised form 20 June 2024; Accepted 25 Ju
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ne 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
mailto:sara.ceschia@uniud.it
mailto:margaretha.gansterer@aau.at
mailto:simona.mancini@unipa.it
mailto:simona.mancini@aau.at
mailto:antonella.meneghetti@uniud.it
http://www.flexe.com
https://doi.org/10.1016/j.cor.2024.106760
https://doi.org/10.1016/j.cor.2024.106760
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

w
t
S
w
p
i

2

s
U
b

t
T
p
p
f
a
p
p
s
g
d
c
O
i
a
s
m
d
(
w
c
f
c
f
d
m
e
f
t
o
w
s
t
f

method approximates the risk of creating ‘‘capacity holes’’, which
are probably difficult to fill with future requests.

• In an extensive computational study based on realistic instances,
we benchmark all approaches against oracle solutions, which are
generated based on full knowledge about all incoming requests.
Particularly for large instances, the newly proposed approach
outperforms all alternative ones.

• Managerial insights regarding recommendation on acceptance
and rejection strategies are derived, as, for instance, the char-
acteristics of requests that are typically rejected in optimal so-
lutions.

The remainder of the paper is organized as follows. In Section 2
e embed our study in the existing body of literature. Details on

he decision problem are provided and formalized in Section 3. In
ection 4, the newly proposed risk approximation method is presented,
hile Section 5 is dedicated to online stochastic algorithms. The com-
utational study is provided in Section 6, followed by our conclusions
n Section 7.

. Literature review

In the literature, ODW is a rather new research topic. The first
tudies address on-demand warehousing characteristics (Pazour and
nnu, 2018; Tornese et al., 2020), costs (Unnu and Pazour, 2019), and
usiness models (Parodos et al., 2022).

An emerging stream of research is mainly focused on the decision
o adopt ODW beside more traditional storage and distribution systems.
he decision can be considered as the first step before joining an ODW
latform by both suppliers and customers. In Shi et al. (2021) the
articipants decide about the portion of storage capacity to allocate
or ODW and to reserve for private usage in each time frame. The
uthors propose a mathematical formulation and provide theoretical
roperties of the problem. Unnu and Pazour (2022) develop a multi-
eriod facility location model to identify the best solution among
elf-distribution, 3PL/leasing, and ODW. A mixed-integer linear pro-
ram (MILP) determines location–allocation decisions of these different
istribution center types with varying commitment granularities and
apacity adjustments. Results show how a hybrid network adopting
DW in addition to traditional options reduces distribution costs by

ncreasing capacity utilization. Since the above MILP model is only
ble to solve small-sized problems, the authors develop a heuristic to
olve large-scale instances (Unnu and Pazour, 2023), in order to capture
ore dispersed facility locations of smaller capacity granularities with
ifferent commitment durations and capacity levels. Correia and Melo
2022) present an MILP model to solve a multi-period distribution net-
ork redesign problem, which integrates temporary warehouse lease

ontracts as a flexible strategy for sizing storage space to face market
luctuations. Results assess how a company can benefit from ODW as
ompared to the adoption of warehouse lease agreements with limited
lexibility and scalability. Lee et al. (2024) simultaneously investigate
emand and supply inherent uncertainties and the property of commit-
ent in the design of an e-commerce supply chain network. To this

nd, a two-stage stochastic programming model is developed. In the
irst stage, the e-commerce retailer selects suppliers and warehouses,
he latter chosen among a self-owned single-located warehouse, a set
f warehouses connected to the ODW platform, and a single emergency
arehouse with higher holding and transportation costs. In the second

tage, commitment decisions for the facilities are determined. The au-
hors conclude that ODW has the same effect of expanding the capacity
2

lexibly, thus leading to cost savings for the supply chain.
Another research stream is based on the platform’s perspective, thus
facing the problem of matching suppliers with customers. Zhong et al.
(2020) study the case of an on-demand service platform, in which two
types of customers are considered: (i) the congestion-sensitive, whose
request to the platform is influenced by the level of congestion of the
platform itself and the related response time and perceived service qual-
ity, and (ii) those not affected. During the acceptance decision process,
this sensitivity is considered by the platform. Different strategies are
proposed and compared in order to maximize the platform’s profit, but
no optimization models are developed to support and analyze them.
The study by Aouad and Saban (2023) addresses the online matching
problem for a two-sided platform. As soon as a customer’s request
arrives, it is processed by the system, which offers the customer a
set of possible options to choose from. This approach is customer-
centered, but it can also provide suboptimal matching, which might
lead to lower profit for the platform, as well as a negative impact on
the satisfaction level of both customers and suppliers. Conversely, a
more platform-oriented approach is proposed by Ceschia et al. (2023),
who maximize the number of transactions gained by the platform by
matching requests in a given time horizon, while at the same time
preserving future participation and profits by taking customers’ and
suppliers’ satisfaction as a secondary objective. If there is a tie, the
secondary objective maximizes the number of suppliers matched with
at least one customer and the number of customers that have matches
within a specific threshold with respect to the minimum achievable
cost. Our problem differs from this, as we are now solving the online
variant of the problem. While in Ceschia et al. (2023) requests are
all known in advance and a static optimization problem is solved, we
work in a dynamic setting. Thus, as soon as a request is received, we
have to decide whether to accept it or not and, in case of acceptance,
which supplier to assign it to, without having information about future
requests.

In online problems, sequential decisions must be made knowing
only the current state of the system, without any information about
the future. The literature on online decision problems is very rich.
The largest part of the works deals with approximation algorithms,
which are shown to be rather powerful for, e.g., knapsack problems,
bin packing problems (Coffman et al., 2013; Christensen et al., 2017),
and scheduling (Diedrich et al., 2009).

More recently, research on online decision problems moved to
search policies and learning algorithms. Powell (2022) was the first to
introduce a unified framework for sequential optimization problems.
One of the most common techniques to take into account the potential
impact of a decision on the future state of the system, is to sample fu-
ture scenarios, solve them and extract information to guide the decision
in the current state. This approach was introduced by Van Hentenryck
et al. (2010) as Online Stochastic Combinatorial Optimization (OSCO).
The authors test this approach on several combinatorial optimization
problems showing very good performances. However, the main draw-
back of OSCO is that it requires considerable computational effort at
each decision step, making it not suitable for large or very complex
problems that have severe time limits. Another class of learning algo-
rithms is known under the name of dynamic lookahead policies, in which
simulation is used not only to derive a decision at the current state
but to extract information that could guide future decisions for similar
states, by means of the creation of a look-up table (Brinkmann et al.,
2019). A parameterized lookahead policy was designed by Thul and
Powell (2021) to deal with vaccines and testing-kits allocation during
the COVID-19 pandemic. In Mancini et al. (2023) the authors provide
a stochastic lookahead policy, in which all the computational effort is
moved to a pre-processing phase, where sampled scenarios are analyzed
in order to derive a deterministic policy to apply at each decision stage.
This kind of approach is shown to be very effective and more scalable

with respect to other simulation-based approaches.

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

𝑞

t
(
r
a
p
a

r
a
p
F
t
c

a
c
c
i
e
a
b
r

Another popular category of algorithms for online problems is the
cost function approximation (CFA) (Powell, 2022). In this approach,
the objective function contains an additional term, which takes into
account the expected impact of the current decision on the future states,
by approximating it. An application of CFA in aircraft maintenance
scheduling is reported in Deng and Santos (2022), while an application
on energy storage with a rolling forecast is studied in Ghadimi and
Powell (2024). Providing accurate approximations is a very challenging
task since they strongly depend on the problem structure. The key
point is to understand which are the potential negative consequences
of each choice. An alternative viable option is to determine a set of
rules to identify potentially risky decisions, that seem to be good at
the moment but might turn out to be bad in the future, excluding
potentially attractive opportunities in the future. An example of this
approach can be found in Romero et al. (2011), where the authors
provide a set of rules for the tetris game, to quantify the goodness of
a decision with respect to the current reward and the impact on the
system state, which itself impacts future decisions.

3. The on-demand warehousing problem

In this section, the offline ODW problem (ODWP) is firstly intro-
duced by its mathematical formulation. Then, the corresponding online
problem (OODWP)is formulated and a generic solution framework is
presented, while in the last part the decision process is described in
detail.

3.1. The offline problem

We consider a simplification of the ODWP introduced by Ceschia
et al. (2023) which is defined in terms of time slots 𝑇 , storage capacity
suppliers 𝐾, and customers 𝐼 . A supplier declares to an ODW platform
the storage space available in each time slot 𝑄𝑘𝑡. Then, each customer
can submit to the platform a single request, which is characterized by a
demand 𝑞𝑖 and a time frame 𝜏𝑖 ∈ [𝜏𝑠𝑡𝑎𝑟𝑡𝑖 , 𝜏𝑒𝑛𝑑𝑖]. Therefore, it is introduced
𝑖̂𝑡, which is equal to 𝑞𝑖 for the time slots included in the time frame
𝜏𝑖 and 0 otherwise. In addition, there is a compatibility relationship
between each customer/supplier pair specified by parameter 𝜑𝑖𝑘, that
is equal to 1 if customer 𝑖 can be assigned to supplier 𝑘, and 0 otherwise.
The goal is to allocate a subset of customers 𝐼 to the suppliers 𝐾, such
that the capacities of the suppliers are not exceeded in any time slot
and the number of accepted customer requests is maximized.

The mathematical programming formulation proposed by Ceschia
et al. (2023) is an extension of the Temporal Knapsack Problem,
that associates with each customer 𝑖 and supplier 𝑘 a binary decision
variable 𝑦𝑖𝑘, whose value is 1 if the request of customer 𝑖 is allocated
to supplier 𝑘 and 0 otherwise, and the binary decision variable 𝑥𝑖 with
value 1 if the request of customer 𝑖 is served and 0 if it is rejected by the
platform. The integer programming model can be expressed as follows.

max 𝑧 =
∑

𝑖∈𝐼
𝑥𝑖 (1)

∑

𝑖∈𝐼
𝑞𝑖𝑡𝑦𝑖𝑘 ≤ 𝑄𝑘𝑡 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (2)

∑

𝑘∈𝐾
𝑦𝑖𝑘 = 𝑥𝑖 ∀𝑖 ∈ 𝐼 (3)

𝑦𝑖𝑘 ≤ 𝜑𝑖𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4)

𝑥𝑖, 𝑦𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼 (5)

The objective function (1) maximizes the number of accepted cus-
tomer requests, while constraint (2) ensures that available capacities
are not exceeded. In constraint (3) the two assignment decisions are
connected, while compatibility of customers and suppliers is defined in
constraint (4). Variable domains are given in (5).
3

3.2. The online problem and a generic solution framework

Let us consider an ODW platform that operates in real time and
therefore processes customer requests as soon as they arrive. Requests
are not known a priori, thus, we define a sequence of requests 𝝃 =
[𝜉1,… , 𝜉𝐼], each one arriving at epoch 𝑖. Notice that epochs can have
different lengths.

In detail, at epoch 𝑖 requests 𝝃𝒊 = [𝜉1,… , 𝜉𝑖] are known, those of
customers 1,… , 𝑖−1 have been already processed by the system because
they appeared in the past, and the platform must decide whether and
how to serve request 𝜉𝑖.

Following Van Hentenryck et al. (2009) and in order to describe
the generic online optimization algorithm, we assume the existence of
a dummy supplier ⊥ with infinite stocking space available during all the
planning horizon (𝑄⊥𝑡,∀𝑡 ∈ 𝑇), which is compatible with all customers
(𝜑𝑖⊥ = 1,∀𝑖 ∈ 𝐼). The dummy supplier is used to assign the non-selected
requests and the symbol 𝐾⊥ is used to denote 𝐾 ∪ ⊥.

Symbol 𝜎 indicates a solution, 𝜎𝑖 is a partial solution at epoch 𝑖,
and 𝜎[𝜉𝑖 ← 𝑘] denotes the assignment of supplier 𝑘 to the request of
customer 𝑖 in a solution. Finally, for simplicity, 𝜎⊥ denotes the requests
assigned to the dummy supplier, that are those rejected by the platform.

The generic framework for solving the online optimization problem
is shown in Algorithm 1.

Algorithm 1 OnlineOptimization(𝝃)
1: 𝜎0 ∶= 𝜎⊥; ⊳ empty allocation
2: for 𝑖 ∈ 𝐼 do
3: 𝑘 ←ChooseAllocation(𝜎𝑖−1, 𝜉𝑖); ⊳ select the supplier
4: 𝜎𝑖 ← 𝜎𝑖−1[𝜉𝑖 ← 𝑘]; ⊳ update the solution
5: end for
6: return 𝜎

|𝐼|; ⊳ last assignment

The framework receives as input the list of requests 𝝃 and initializes
he solution 𝜎0 by assigning all requests to the dummy supplier ⊥
line 1). Then, at each epoch 𝑖 corresponding to the arrival of the new
equest 𝜉𝑖, it selects the allocation 𝑘 for 𝜉𝑖 also considering the previous
ssignments 𝜎𝑖−1 (line 3), and finally updates the solution (line 4). The
rocedure stops when all requests have been processed and it returns
complete solution.

The function ChooseAllocation can be implemented in different ways
esulting in distinct algorithms. For example, to obtain a first fit online
lgorithm (later denoted as FirstFit) the function returns the first sup-
lier compatible with the request and with sufficient residual capacity.
or best fit (later denoted as BestFit), the algorithm chooses the supplier
hat currently has the smallest total residual capacity throughout the
ustomer time frame, given the assignment 𝜎 (Benoist et al., 2001).

More sophisticated algorithms that exploit stochastic information
re presented in Section 5; they all assume to have available two
omponents: (i) a function OptSol(𝜎,𝑅) that provides the optimal allo-
ation for a set of requests 𝑅, taking into account the past assignments
ncluded in the solution 𝜎, and (ii) a function GetSample(𝑡) that gen-
rates a set of requests over time frame [𝑡, |𝐼|] sampling from the
rrival distribution. In addition, the algorithms use a function Feasi-
leAssignment(𝜎𝑖−1, 𝜉𝑖, 𝑘) that checks the feasibility of the assignment of
equest 𝜉𝑖 to supplier 𝑘, considering both the compatibility 𝜑𝑖𝑘 and the

residual capacity during the entire time frame 𝜏𝑖. Finally, the function
RandomBreakTie implements a random tie-break strategy, which selects

an assignment in a uniform random way in case of equal values.

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

3

Fig. 1. An example of risky areas. If the newly arrived request (dark blue) is assigned as suggested, three risky areas are generated (red) either due to small capacity or due to
closeness to currently assigned ones (light blue) such that only very few time slots are left over in between. Grey areas are free capacity not considered in the decision about the
current request since (too far from 𝜉𝑖 and there is another request in the middle, so there is no interaction with the current request).
w
r

t
t
i
t
h
i
a
o
b
t

h
p

.3. Decision process and system state

Using the notation introduced by Powell (2022), state 𝜇𝑖 of the
system at epoch 𝑖, i.e., at the moment in which request 𝜉𝑖 arrives, is
defined by the residual capacity for each supplier on each future day,
generally referred to as 𝑄𝑅𝐸𝑆

𝑖 which is a matrix of size (|𝐻|− 𝜏𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖) ×
|𝐾|, where 𝜏𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖 is the time slot in which 𝜉𝑖 arrives, the starting time
𝜏𝑠𝑡𝑎𝑟𝑡𝑖 of request 𝜉𝑖, representing the day on which the request needs to
be served, and the spanning time (expressed in time slots) between the
arrival and the start of the request, 𝑇 𝑆

𝑖 . The decision to make at epoch
𝑖, 𝜒𝑖, consists of assigning request 𝜉𝑖 to a supplier 𝑘, or rejecting it. The
reward obtainable by a decision is equal to 1 if the request is accepted,
whereas it is equal to 0 in case of rejection. The reward obtained does
not depend on the supplier matched with the request. The transition
phase among state 𝑖 and 𝑖+1, consists of updating the residual capacity
of the supplier 𝑘, to which request 𝜉𝑖 has been assigned, according to
the capacity absorbed by 𝜉𝑖, or to not modify the residual capacity of
any supplier if 𝜉𝑖 is rejected, obtaining a matrix 𝑄𝑅𝐸𝑆

𝑖+1 . The stochastic
information 𝜔𝑖+1 comprises the newly arrived request 𝜉𝑖+1. The new
state in 𝑖 + 1 is then 𝑆𝑖+1 = (𝑄𝑅𝐸𝑆

𝑖+1 , 𝜉𝑖+1).

4. The RISKY heuristic

The main idea behind this algorithm is to identify potentially risky
areas that can be generated by assigning a customer request 𝑖 to a
supplier 𝑘. The larger the risky area, the worse the assignment. These
areas are portions of the supplier capacity that, due to the current
assignment, present a high risk of remaining unused. This can happen
for two reasons: (1) the residual capacity is so small that with a high
probability, there will be no further requests fitting it; (2) the time
interval between the current request and the previous (or the following)
one is so limited, that it would be very hard to find a request which
matches that interval. The risky area of the first type is denoted as
𝑅ℎ, while the second type of risky areas, referred to as the requests
processed before and after the current request, are denoted as 𝑅𝑙𝑏 and
𝑅𝑙𝑎, respectively. We consider risky the areas of type ℎ if the residual
capacity is included in the interval [𝛼𝑚𝑖𝑛; 𝛼𝑚𝑎𝑥]. Similarly, we consider
risky the areas of type 𝑙 if their time frame is included in the interval
[𝛽𝑚𝑖𝑛; 𝛽𝑚𝑎𝑥]. An illustrative example is reported in Fig. 1.

We consider risky all areas with a residual capacity lower than the
4

average demand of a request 𝛼𝑚𝑎𝑥 or with a time span lower than the e
average requests length 𝛽𝑚𝑎𝑥. However, areas of large size can also be
identified by a very small residual capacity for a very large number of
time slots, which can be represented by a rectangle with a very large
length and a very small height. This could be identified as a potentially
risky area, but actually it is not the case, since we would not be able to
fill such a small capacity, independently of the number of time slots for
which it is available. To overcome this issue we set a minimum value
of both residual capacity and time span (𝛼𝑚𝑖𝑛 and 𝛽𝑚𝑖𝑛) under which the
respective areas are not considered risky.

Each time a new request arrives, we compute, for each feasible
assignment to a supplier 𝑘, the global risky area 𝑅𝐴

𝑘 = 𝑅ℎ
𝑘 + 𝑅𝑙𝑏

𝑘 + 𝑅𝑙𝑎
𝑘 .

Then, a penalty 𝑝𝑘 associated with the assignment is defined as 𝑝𝑘 =
𝑅𝐴
𝑘 ∕𝐴

𝐸𝑋𝑃 , where 𝐴𝐸𝑋𝑃 is the expected area covered by a request,
computed as the expected demand multiplied by the expected duration
of a request. However, we use this additional penalty term only for
instances in which we expect a relatively high number of requests. In
fact, if the number of requests is small, then we should not penalize
request acceptance since the probability of filling the related capacity
with several future requests is small and we run the risk of leaving
unused capacity due to our decisions to reject certain opportunities.

The assignment score 𝑠𝑘 is then computed as

𝑠𝑘 = 1 − 𝑝𝑘(𝑇 𝑆
𝑖 ∕|𝑇 |), (6)

here 𝑇 𝑠
𝑖 is defined as the spanning time between the time on which the

equest starts and the time in which it enters the system, 𝜏𝑠𝑡𝑎𝑟𝑡𝑖 −𝜏𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖 .
This allows us to consider that, if a request starts immediately after

he time slot in which it is received, no risky areas are generated as
he capacity could not be used anyway. Conversely, the larger the time
nterval between the request arrival and the starting time, the higher
he probability that future requests, that do not fit the residual capacity,
ave to be rejected. The score for rejecting a request (i.e., assigning
t to the dummy supplier), is fixed equal to 0. Requests are always
ssigned to suppliers yielding the highest score. A request is rejected
nly if there are no compatible suppliers, or if the risky areas generated
y its acceptance are so large that the corresponding penalty is higher
han the benefit achievable by accepting it.

For instances in which the number of expected requests is much
igher than the number of suppliers (|𝐼| ≥ 𝜌|𝐾|), where 𝜌 is a
arameter of the algorithm, we also penalize requests larger than the

𝐸𝑋𝑃 𝐸𝑋𝑃 𝐸𝑋𝑃
xpected demand 𝑞 , updating 𝑝𝑘 by 𝑝𝑘 = 𝑝𝑘+(𝑞𝑖−𝑞)∕𝑞 . This

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

t
r
a
r

1
1
1
1
1
1
1
1
1
1
2
2

allows us to penalize the acceptance of large items, which could occupy
areas that could potentially fit more than one request. Since the goal
of the problem is to maximize the number of accepted requests, this
additional penalty correction pushes the algorithm to prefer accepting
several small requests instead of one large request. This is of practical
relevance, as the price per pallet per day is constant for each supplier,
but there are additional duties paid by the customer for the service.
Such duties are fixed costs, which do not depend on the size of the
request. Thus, accepting several small requests filling exactly the same
capacity as a single large request, yields higher profits for the platform.

The pseudocode of the algorithm is reported in Algorithm 2.

Algorithm 2 Risky (𝜎𝑖−1, 𝜉𝑖)
1: best_allocation ← 0;
2: 𝑠⊥ ← 0
3: for 𝑘 ∈ 𝐾 do
4: 𝑅ℎ

𝑘 , 𝑅
𝑙𝑏
𝑘 , 𝑅

𝑙𝑎
𝑘 ← ComputeRiskyAreas(𝜎𝑖−1, 𝜉𝑖)

5: 𝑅𝐴
𝑘 ← 𝑅ℎ

𝑘 + 𝑅𝑙𝑏
𝑘 + 𝑅𝑙𝑎

𝑘
6: 𝑝𝑘 ← 𝑅𝐴

𝑘 ∕𝐴
𝐸𝑋𝑃 ⊳ compute the penalty

7: if 𝑞𝑖 ≥ 𝑞𝐸𝑋𝑃 ∧|𝐼| ≥ 𝜌|𝐾| then
8: 𝑝𝑘 ← 𝑝𝑘 + (𝑞𝑖 − 𝑞𝐸𝑋𝑃)∕𝑞𝐸𝑋𝑃 ⊳ penalty correction for large

requests
9: end if

10: 𝑠𝑘 ← 1 − 𝑝𝑘(𝑇 𝑠∕|𝑇 |) ⊳ compute the score
11: end for
12: 𝑠⊥ = 0 ⊳ score of the dummy supplier
13: best_allocation = argmax(𝑘∈𝐾⊥) 𝑠𝑘
14: return best_allocation;

Each epoch 𝑖 corresponds to the arrival of a new request, the
ime elapsed between two epochs is not constant but depends on the
equests’ arrival time. In other words, we do not monitor the system
t fixed points in time, but each time a new event occurs (i.e., a new
equest arrives). The state of the system 𝜇𝑖 at epoch 𝑖 is uniquely

identified by the residual capacity profile for each supplier in each
time slot successive to the arrival time slot of the request 𝜉𝑖, defined as
𝑄𝑅𝐸𝑆

𝑖−1 . At each epoch RISKY approximates the cost of assigning request
𝜉𝑖 to supplier 𝑘 given the current state of the system 𝜇𝑖. Such cost
function approximation is based on computing the reward associated
with the acceptance of 𝜉𝑖 and the expected loss of reward based on the
probability that one or more future requests could not be assigned to
the supplier, due to lack of capacity generated by the assignment of
𝜉𝑖 to 𝑘. The cost function value for the rejection choice (assignment
to the dummy supplier) is 0, since no reward is achieved by rejecting
a request, but no future opportunities of collecting reward are missed
due to this choice, since no capacity is consumed. If the cost function
value is negative for all the suppliers, then the best choice is to reject
the request.

5. Online stochastic algorithms

The framework reported in Algorithm 1 can be executed using
different ChooseAllocation functions. In particular, we present two clas-
sical methods, i.e., an expectation and consensus algorithm, as well as a
new regret algorithm specifically proposed for the OODWP.

5.1. The Expectation algorithm

The idea behind the Expectation algorithm (Algorithm 3) is to
evaluate, for each request, the assignment to all possible suppliers
against different scenarios of future requests obtained by sampling,
5

and then to choose the supplier for which the expected value is
maximized (Van Hentenryck et al., 2009).

Algorithm 3 ChooseAllocation-E(𝜎𝑖−1, 𝜉𝑖)
1: best_allocation ← 0; best_reward ← 0; ⊳ initialization
2: for 𝑘 ∈ 𝐾⊥ do
3: 𝑓 (𝑘) ← 0;
4: end for
5: for 𝑠 ← 1,… ,∕|𝐾⊥| do
6: 𝑅𝑖+1 ← GetSample(𝑖 + 1); ⊳ generate a scenario of future

requests
7: for 𝑘 ∈ 𝐾⊥ do
8: if FeasibleAssignment(𝜎𝑖−1, 𝜉𝑖, 𝑘) then
9: 𝜎∗ ← OptSol(𝜎𝑖−1[𝜉𝑖 ← 𝑘], 𝑅𝑖+1);
0: 𝑓 (𝑘) ← 𝑓 (𝑘) + 1; ⊳ update the evaluation
1: if 𝑓 (𝑘) > best_reward then
2: best_allocation ← 𝑘, best_reward ← 𝑓 (𝑘);
3: else
4: if 𝑓 (𝑘) = best_reward ∧ RandomBreakTie() then
5: best_allocation ← 𝑘, best_reward ← 𝑓 (𝑘);
6: end if
7: end if
8: end if
9: end for
0: end for
1: return best_allocation;

The algorithm is initialized in lines 1–4, it generates ∕|𝐾⊥| sce-
narios of future requests, where  is a control parameter that counts
the number of calls of the optimization procedure. The parameter 
must be greater than the number of suppliers, otherwise, the num-
ber of scenarios is less than 1. Subsequently, the algorithm considers
each supplier 𝑘, including the dummy (line 7), and it checks if the
accommodation of request 𝜉𝑖 to 𝑘 is feasible considering the previous
allocations stored in 𝜎𝑖−1 and the input data (line 8). The algorithm
implicitly allocates 𝜉𝑖 to 𝑘, and calls the optimization algorithm (line
9), which is the implementation in CPLEX of the model of Section 3.1.
The evaluation of supplier 𝑘 is updated in line 10 by adding the value
of the objective function of the optimal solution 𝜎∗. The best allocation
(and best reward) are eventually updated in lines 11–17, adopting a
random breaking time strategy in case of parity. For each request, all
suppliers are evaluated against all scenarios and the supplier with the
highest evaluation is returned (line 21). If the selected supplier is the
dummy one, the request is rejected.

Note that the Expectation algorithm runs  times the optimization
procedure. However, each request is evaluated with respect to ∕|𝐾⊥|

scenarios. The main drawback of this algorithm is that when  is
small due to time constraints (e.g., in online problems), each request
is only tested against a limited number of scenarios, thus the algorithm
does not collect much information. As a consequence, the Expectation
algorithm is appropriate when computational times are not critical, and
 can be large enough to guarantee high-quality results.

5.2. The Consensus algorithm

The Consensus algorithm calls the optimization procedure without
the pre-assignment of request 𝜉𝑖 to any supplier; on the contrary, the
supplier 𝑘∗ to which request 𝜉 is assigned in the optimal solution is
𝑖

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

1
1

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3

2
s
b

6

i
w
c
t

Table 1
Features of dataset 1.

Group Weeks Suppliers Customers Daily occupancy

min max min max

A 4 10 19 36 0.13 0.48
B 8 10 13 31 0.12 0.31
C 12 10 20 37 0.13 0.28

D 4 10 36 61 0.42 0.72
E 8 10 37 58 0.36 0.52
F 12 10 47 61 0.29 0.71

G 4 10 84 116 0.80 1.60
H 8 10 87 119 0.76 1.27
I 12 10 88 118 0.69 1.02

rewarded, while all other suppliers receive no credit (Van Hentenryck
et al., 2009).

Algorithm 4 ChooseAllocation-C(𝜎𝑖−1, 𝜉𝑖)
1: best_allocation ← 0; best_reward ← 0; ⊳ initialization
2: for 𝑘 ∈ 𝐾⊥ do
3: 𝑓 (𝑘) ← 0;
4: end for
5: for 𝑠 ← 1,… , do
6: 𝑅𝑖 ← 𝜉𝑖 ∪ GetSample(𝑖 + 1);
7: 𝜎∗ ← OptSol(𝜎𝑖−1, 𝑅𝑖) ⊳ requests include 𝜉𝑖
8: 𝑘∗ ← 𝜎∗(𝜉𝑖);
9: 𝑓 (𝑘∗) ← 𝑓 (𝑘∗) + 1; ⊳ only the evaluation of the best supplier is

incremented
10: if 𝑓 (𝑘∗) > best_reward then
11: best_allocation ← 𝑘∗, best_reward ← 𝑓 (𝑘∗);
12: else
13: if 𝑓 (𝑘∗) = best_reward ∧ RandomBreakTie() then
14: best_allocation ← 𝑘∗, best_reward ← 𝑓 (𝑘∗);
15: end if
16: end if
7: end for
8: return best_allocation;

Note that in line 6 the set of future requests 𝑅𝑖 includes also the
current request 𝜉𝑖, whose optimal allocation is denoted by 𝑘∗. Only
the evaluation of supplier 𝑘∗ is incremented by 1 (line 9). Finally,
the algorithm returns the supplier with the best reward, i.e., the one
that has been chosen in the highest number of scenarios. The main
advantage of the Consensus algorithm is that each request is examined
against  scenarios, instead of ∕|𝐾⊥|. This way the available sam-
ples are not partitioned between the requests, which is a substantial
advantage when  is small and/or the number of suppliers is large. On
the contrary, its limitation is that only the information about the best
supplier is used, while other ‘‘intermediate’’ suppliers are ignored.

5.3. The Regret algorithm

The Regret algorithm as originally proposed by Van Hentenryck
et al. (2009) is similar to the Consensus algorithm. However, instead
of giving a reward only to the best supplier, an approximation is used
to compute suboptimal solutions, where the current request is allocated
to each feasible supplier. As for the Consensus algorithm, each supplier
receives an evaluation in each scenario, performing  optimizations for
6

each request.
Algorithm 5 shows the pseudo-code of our implementation of the
Regret algorithm specifically designed for the OODWP.

Algorithm 5 ChooseAllocation-R(𝜎𝑖−1, 𝜉𝑖, 𝜈)
1: best_allocation ← 0; best_reward ← 0; feasible_assignment ← false;
2: for 𝑘 ∈ 𝐾⊥ do ⊳ initialization
3: 𝑓 (𝑘) ← 0;
4: end for
5: for 𝑠 ← 1,… , do
6: 𝑅𝑖 ← GetSample(𝑖 + 1); ⊳ requests without 𝜉𝑖
7: 𝜎∗ ← OptSol(𝜎𝑖−1, 𝑅𝑖)
8: for 𝑘 ∈ 𝐾 do
9: reward ← FeasibilityWithFutureRequests(𝜎∗, 𝜉𝑖, 𝑘)
0: 𝑓 (𝑘) ← 𝑓 (𝑘)+ reward;
1: if 𝑓 (𝑘) > best_reward then
2: best_allocation ← 𝑘, best_reward ← 𝑓 (𝑘);
3: feasible_assignment ← true;
4: else
5: if 𝑓 (𝑘) = best_reward ∧ RandomBreakTie() then
6: best_allocation ← 𝑘, best_reward ← 𝑓 (𝑘)
7: end if
8: end if
9: end for
0: if feasible_assignment = false then
1: 𝑓 (⊥) ← 𝑓 (⊥) + 1;
2: if 𝑓 (⊥) > best_reward then
3: best_allocation ← ⊥;
4: end if
5: end if
6: end for
7: if best_allocation ≠ ⊥ ∧ best_reward < ∕𝜈 then
8: best_allocation ← ⊥, best_reward ← 𝑓 (⊥);
9: end if
0: return best_allocation;

The key idea behind this algorithm is to generate  scenarios
for each request and to solve the optimization problem without the
current request (line 7). Once the optimal solution 𝜎∗ is obtained, we
evaluate the allocation of request 𝜉𝑖 to any supplier 𝑘. The function
FeasibilityWithFutureRequests(𝜎∗, 𝜉𝑖, 𝑘) in line 9 tries to assign request 𝜉𝑖
to supplier 𝑘 given the past assignments of requests 𝑖 ∈ {1,… , 𝑖−1} and
those related to the future requests 𝑅𝑖 generated by the sampling and
stored in 𝜎∗. If the allocation is feasible, the reward of 𝑘 is 1, otherwise
its reward is the fraction of satisfied demand during the time frame (0 ≤
reward ≤ 1). In addition, the algorithm has a control parameter 𝜈 (line
7) that is used to avoid early assignments to suppliers and preserve
pace for future requests. The algorithm returns the allocation with the
est reward.

. Computational experiments

In this section we validate through a set of computational exper-
ments, the effectiveness of the proposed algorithms. In Section 6.1,
e describe test instances and parameter settings, while Section 6.3

ompares the performance of the different algorithms and benchmarks
he procedures with the oracle solution. In Section 6.5 we provide

managerial insights.
All algorithms were coded in C++ and resort to IBM ILOG CPLEX

APIs (version 22.11) for ILP routines, with the default optimization
parameters. Experiments were run on an Intel 8-Cores i7-7700 CPU

(3.60 GHz) with Ubuntu Linux 22.04.

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.

r
s
d
t
m
t

t
i
s
c
s
t

g
d
a

b
d
d
a

a
l

6

a
r
t
t

w

6

d
f
n
t

m
o
d
c
t
F
o
b

p
r
t
a
r
t
a
𝑠
s
a
b
c
d
v
t

Table 2
Features of dataset 2.

Group Weeks Suppliers Customers Daily occupancy

min max min max

J 4 10 233 275 2.73 4.39
K 8 10 226 272 1.75 2.79
L 12 10 219 270 1.73 2.56

M 4 10 457 538 4.35 7.41
N 8 10 469 548 3.86 5.84
O 12 10 449 540 3.40 4.85

6.1. Test design

In order to study the performance of the proposed solution ap-
proaches, we construct a test bed varying some input parameters
systematically. In detail, we consider a planning period |𝑇 | of 28, 56,
and 84 time slots (corresponding to 4, 8 and 12 weeks), an expected
number of customers equal to {25, 50, 100, 250, 500}, and a fixed number
of capacity suppliers |𝐾| = 10. We thus compose a full factorial
design of experiments, leading to 15 different classes of instances (A–
O), grouped in two datasets depending on the number of customers:
dataset 1 (classes A–I) with up to 100 customers, and dataset 2 (classes
J–O) with a number of customers between 250 and 500. For each class,
we generated 10 instances resulting in 150 test cases in total.

Regarding the generation procedure, the arrivals of customer re-
quests follow a Poisson process with an arrival rate 𝜆 computed as the
ratio between the expected number of customers and the number of
time slots. As a consequence, the actual number of customers |𝐼| can
be slightly different from the expected one, given as an input to the
instance generator. The arrival processes for requests are independent.

The demand 𝑞𝑖 of each customer 𝑖 is randomly chosen within 10
and 2500 pallets. The first day 𝜏𝑠𝑡𝑎𝑟𝑡𝑖 of the requested time frame is
andomly selected between the arrival of the request and the last time
lot of the horizon. Then, the length of the time frame 𝜏𝑒𝑛𝑑𝑖 − 𝜏𝑠𝑡𝑎𝑟𝑡𝑖 is
rawn within the minimum booking period (set to 7-time slots) and
he remaining time slots. If the remaining time slots are less than the
inimum booking period, the length of the time frame is set equal to

he remaining time slots.
The supplier availability is generated in two steps for 7 consecutive

ime slots (one week): we first decide if there is some space available
n that week with probability 0.5, then, in case, the values of stocking
pace available 𝑄𝑘𝑡 are drawn between 2500 and 5000 pallets. The
ompatibility matrix is drawn with a density of 0.9. We only consider
uppliers within a certain radius from the customer location to ensure
hat the matching provided by the platform meets the customer’s needs.

The selection of the values of parameters used by the instance
enerator is inspired by the real-life scenario and the generation proce-
ure described in Ceschia et al. (2023). All random values (except the
rrivals) are drawn from a discrete uniform distribution.

Tables 1 and 2 show the main features of the two datasets grouped
y classes. The daily occupancy is the average ratio between the daily
emand and the daily supply. For the number of customers and the
aily occupancy, the minimum and the maximum values in the class
re reported.

Instances and the instance generator coded in Python are available
t https://bitbucket.org/sceschia/online-on-demand-warehousing-prob
em.

.2. Parameters

Based on preliminary experiments, for the Expectation, Consensus,
nd Regret algorithms, parameters  and 𝜈 were fixed to 50 and 2,
espectively. The mathematical programs are solved by CPLEX with a
ime limit of 30 s. The mathematical solution can be found within the
7

ime limit for all instances of dataset 1, except groups G, H and I. For e
Oracle, we set a time limit of one hour, such that CPLEX is able to
find the optimal solution for all the instances of dataset 1. For larger
instances of dataset 2, Oracle consistently reaches the time limit.

For the RISKY algorithm, 𝛼𝑚𝑖𝑛 and 𝛽𝑚𝑖𝑛 are set equal to 0.1𝐴𝐸𝑋𝑃

hereas 𝛼𝑚𝑎𝑥 and 𝛽𝑚𝑎𝑥 equal to 𝐴𝐸𝑋𝑃

.3. Comparison of the algorithms

Table 3 depicts the aggregated results on instances of groups A–I of
ataset 1; run times are in seconds. Each instance is solved five times
or Expectation, Consensus, and Regret because of the non-deterministic
ature of the sampling. For FirstFit (FF), BestFit (BF) and Risky running
imes are negligible, always inferior to one second.

We observe that the Consensus algorithm outperforms all the other
ethods on all groups but the smallest one (A), where the best score is

btained by Regret. For all the other test cases, the Regret algorithm
oes not bring any benefit over Consensus and Expectation that are
onsistently superior. This proves the value of stochastic information
o guide decisions about the future. This behavior is more evident in
ig. 2, which plots the average optimality gap with respect to the
ptimal offline solution (Oracle) for all groups of dataset 1. It can
e noticed that on small and medium instances (groups A-F), FirstFit

and BestFit perform well, while their performances deteriorate as the
number of customers increases. On the other hand, Risky exhibits good
quality results through all instances of dataset 1: it is within 12% of the
Oracle on average and it is never worse than 18% of it.

When comparing the run times of the different methods, it is evident
that Expectation, Consensus, and Regret algorithms require long compu-
tational times; as a consequence, these methods become unusable for
instances with more than 80 customers. In contrast, FirstFit, BestFit and
Risky are very fast, requiring less than one second for their execution,
and scale very well, since their computational times are only marginally
affected by the instance’s size. The disparity in running times is primar-
ily due to the necessity of online stochastic optimization algorithms to
evaluate each new request against a minimum number of scenarios to
guarantee good-quality results.

We thus compare the performance on dataset 2 (which includes
instances of 250 and 500 customers) only using FirstFit, BestFit, and
Risky. The results are presented in Table 4.

For these larger datasets, we can see that the performance of FirstFit
and BestFit are comparable, although surprisingly the former is slightly
superior. Notably, the newly proposed RISKY strongly dominates both
of them for all the groups of large instances (J-O), demonstrating its
efficiency and scalability compared to the other heuristic methods.

6.4. Performance guarantee

The RISKY heuristic does not guarantee an approximation ratio,
since for instances with particular features the optimal solution tends
to infinity with increasing number of suppliers |𝐾|, while RISKY always
rovides a solution with an objective function value equal to 0 (all the
equests are rejected). We show this behavior by means of an illustra-
ive example. Consider having |𝐾| suppliers with identical capacities
ll compatible with all requests. Consider further to have |𝐼| identical
equests, with |𝐼| > |𝐾| consuming the largest part of the capacity of
he suppliers, as shown in Fig. 3. For each request 𝑖, RISKY identifies
potentially risky area (shown in red), which yields a negative score

𝑘 for all the suppliers, therefore, it is always assigned to the dummy
upplier ⊥, i.e., it is rejected. This would result in a solution in which
ll requests are rejected and therefore the cumulative reward achieved
y the company would be 0. The optimal solution of this instance
onsists of accepting |𝐾| requests and assigning each one of them to a
ifferent supplier, which leads to a solution with an objective function
alue of |𝐾|. When |𝐾| grows to infinity, the optimal solution value
ends to infinity as well, while the value provided by RISKY is always

qual to 0. This proves that RISKY does not admit any approximation

https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.
Table 3
Comparative results (objective function and run times in seconds) on dataset 1 with all proposed algorithms (FF, BF, and RISKY times are
always <1 s).
Group Oracle FF BF Risky Expectation Consensus Regret

𝑧 𝑧 𝑧 𝑧 𝑧 Time (s) 𝑧 Time (s) 𝑧 Time (s)

A 24.2 22.5 22.7 22.4 22.2 9.4 22.8 19.7 22.8 18.3
B 22.4 21.8 21.6 21.2 21.2 4.8 21.9 11.6 21.7 9.4
C 23.3 22.1 21.8 21.4 21.8 6.0 22.5 12.6 22.3 12.2

D 39.1 33.4 33.3 33.6 35.1 190.2 36.2 480.8 33.8 633.3
E 40.7 36.5 36.2 35.3 36.9 63.6 37.8 152.7 36.4 142.6
F 41.9 37.5 37.0 35.1 37.84 48.4 39.0 124.1 37.3 106.6

G 57.4 44.6 42.3 49.2 49.75 4905.5 53.8 13 452.7 47.6 10 530.5
H 67.7 54.4 54.5 56.9 58.8 8071.5 62.0 25 462.5 58.0 21 859.3
I 71.1 58.9 58.6 59.4 62.1 7052.9 64.9 20 236.3 61.4 14 261.2

Avg 43.1 36.9 36.4 37.2 38.4 2261.4 40.1 6 661.4 37.9 5 285.9
Fig. 2. Optimality gap for dataset 1.
Fig. 3. Optimal solution for an illustrative example.
Table 4
Comparative results on dataset 2.

Group Oracle FirstFit BestFit Risky
𝑧 𝑧 𝑧 𝑧

J 97.5 60.9 57.8 74.4
K 110.1 76.0 73.5 86.1
L 124.1 90.0 87.2 100.4

M 139.0 78.0 74.0 87.0
N 167.8 101.5 98.6 120.4
O 180.5 114.3 114.6 134.8

Avg 136.5 86.8 84.3 100.5

ratio. Nevertheless, our extensive computational study shows that it
systematically obtains very good results. In fact, the instances for which
it obtains poor results (as the one in this example) have very specific
features that are very unlikely to occur in realistic instances.
8

6.5. Managerial insights

In this section, we present two analyses devoted to derive interesting
managerial insights. The first analysis aims at assessing the benefit
achievable by exploiting two relevant features of Risky, namely, (i)
the additional penalty associated with very large requests, which takes
into consideration that the space occupied by a large request could be
more profitably filled with several small requests, and (ii) the penalty
correction factor depending on the spanning time between the arrival
and the start of the request, 𝑇 𝑆

𝑖 , which reduces the effect of the
penalty when 𝑇 𝑆

𝑖 tends to be zero, considering the fact that the residual
alternative opportunity to fill the space occupied by that requests is
decreasing when approaching the starting time (see Section 4).

We compare the results of Risky including these two features with
two modified versions of the algorithm, in which we do not consider
additional penalties for large requests (NO_LARGE_PEN) and no correc-
tion factor based on the spanning time (NO_TIME_PEN). In the latter
case, the penalty for generating risky areas is included independently

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.
Fig. 4. Comparison of Risky in three different version grouped by class.
Table 5
Analysis of the Risky algorithm in 3 different versions based on the objective
function.

Group Risky NO_LARGE_PEN NO_TIME_PEN

A 21.9 21.9 21.9
B 21.2 21.2 21.2
C 21.4 21.4 21.4

D 33.5 33.2 27.1
E 35.3 35.9 27.4
F 35.1 36.1 23.8

G 48.9 45.0 43.1
H 56.9 54.8 43.4
I 58.8 58.9 43.2

Avg dataset 1 37.0 36.5 30.3

J 74.4 63.4 81.2
K 86.1 78.1 85.4
L 100.4 93.7 95.4

M 96.5 83.3 107.1
N 120.4 106.6 127.6
O 134.8 121.0 139.9

Avg dataset 2 102.1 91.0 106.1

Avg all 63.0 58.3 60.6

of the spanning time. Comparisons for all classes of instances A–O are
provided in Table 5.

From these results we can evince that both features are needed
as Risky outperforms, on average, all the other algorithms. However,
from a more detailed analysis, we can see that while on small and
medium-sized instances (dataset 1) Risky is strongly preferable, on
larger ones (dataset 2), NO_TIME_PEN performs slightly better. Con-
versely, NO_LARGE_PEN is almost always slightly dominated by Risky
with the proposed settings. This trend is highlighted in Fig. 4 which
plots the number of accepted requests by group. If we collect instances
by time horizon length rather than by request group, as depicted in
Fig. 5, we observe that Risky strongly outperforms both algorithms.
This means that the effectiveness of both features (i) and (ii) vary only
according to the number of requests, while the time horizon length
does not significantly affect it. Since the number of suppliers and the
total available capacity do not depend on the number of requests, we
can argue that what actually influences the utility of these features (in
particular the time-related penalty) is the ratio between the number of
requests and the capacity. The larger this ratio, the lower the benefit
of the penalty, which even becomes negative for very large values of
9

Table 6
Analysis of rejected requests for all algorithms and for Oracle.

Demand Time frame Spanning Compatibility

Consensus 56.42% 23.72% −14.67% −1.46%
Expectation 46.68% 15.43% −27.44% −0.93%
Regret 52.48% 11.07% −3.01% −0.90%
FirstFit 31.40% 8.01% −34.08% −0.86%
BestFit 32.33% 9.24% −33.79% −0.68%
Risky 37.43% 8.88% −18.61% −0.71%

Oracle 50.20% 24.05% −3.18% −0.43%

this ratio. When the ratio is large, the number of future alternative
opportunities to fill the capacity is large too and therefore, we can be
more selective when accepting requests and we can reject requests that
generate large risky areas. On the contrary, when the ratio is small,
and therefore the future opportunities are limited, we are more likely
to accept requests, even those which generate risky areas, since we risk
ending up with a large percentage of unused capacity.

Concerning the time-related penalty correction factor, it should be
noted how it considerably decreases the penalty value if the spanning
time is small, see Eq. (6). Thus, we push the system to accept requests
within a very short spanning time, regardless of the generated risky
areas. This is a rational behavior, since, when the spanning time is
small, the number of future opportunities is limited, especially when
the ratio between the number of requests and the available capacity
is low. Conversely, when the ratio is high, the number of future
opportunities is still quite high even when the spanning time is small,
and therefore, we can afford to reject a risky request. We believe this
is an interesting managerial insight.

The second analysis concerns the study of the features of rejected
requests, in order to provide the decision maker with an identikit of
the requests that should be rejected. For this, we consider four features
of each request: (i) the demand, (ii) the time frame length, (iii) the
spanning time, and (iv) the compatibility degree between the request
and the suppliers. The latter is defined as follows for each request 𝑖 ∈ 𝐼 .
∑

𝑘∈𝐾 𝜑𝑖𝑘

|𝐾|

(7)

In Table 6 we report, for each feature, the average percentage varia-
tion with respect to the average value of the features in all the requests.
Results are provided for all algorithms and the Oracle solution.

We observe that the average demand of rejected requests is clearly
above the overall average demand for all the algorithms, even if
the greedy heuristics (FirstFit, BestFit, and RISKY) tend to accept
smaller (but still above average sized). Regarding the time frame, we

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.
Fig. 5. Comparison of Risky in three different versions grouped by the length of the time horizon.
can observe that on average requests rejected by Oracle are 24.05%
longer than the overall average time frame. The only algorithm, which
matches this behavior is Consensus with 23.72%, while all the other
algorithms reject shorter requests, especially the three greedy ones
(only 9% above average).

On average, requests accepted by Oracle have a spanning time just
slightly lower than the average time (−3.18%). The only algorithm
matching this behavior is Regret, while the others reject requests with
much shorter spanning times on average. This result is totally counter-
intuitive, as it seems more reasonable to reject requests with large
spanning times in order to profit from future opportunities to better
fill the supplier capacity. When investigating more deeply this aspect,
we notice that most of the rejections, especially in the later parts of
the time horizon, are not preemptive, but occur because, due to wrong
choices made in the previous epochs, the incoming requests are not
compatible with the residual capacity of any supplier and must be
rejected.

Finally, rejected requests show an average compatibility degree ap-
proximately equal to the overall average degree for all the algorithms.
Therefore, this feature seems not to be relevant for the recommendation
which requests to reject.

In summary, we find that a request with large demand, long time
frame, not very long spanning time, and average compatibility degree,
is very likely to be rejected in the oracle solution. This finding can be
seen as a valuable rule of thumb for acceptance or rejection decisions.

7. Conclusions

We have addressed the Online On-demand Warehousing Problem
(OODWP), which is grounded in the paradigm of the Sharing Economy.
It arises if providers of shared storage space platforms have to match
incoming customer requests with the available capacities of suppliers.
The objective is to accept and assign as many as possible customer
requests, where these requests have two dimensions that have to be
considered, i.e., duration and capacity consumption. Also, the spanning
time (which is the time slack until a newly arrived request has to be
serviced) and compatibilities between requests and suppliers are taken
into account.

We formalized the decision process as a stochastic reservation and
assignment problem and presented several solution algorithms. These
include greedy as well as sampling-based approaches. A newly pro-
posed idea is to reject or accept incoming requests based on the
estimation of the risk their features (time and required capacity) might
impose requests arriving later.
10
In an extensive computational study, we compared all proposed
algorithms and benchmarked them against an oracle solution, where
full information availability is assumed. Results revealed, that on small
test instances, one of the sampling-based methods outperforms all
other algorithms. However, due to heavy run times, this approach is
not suitable for larger instances. In these cases, the newly designed
risk approximation-based approach is dominant, outperforming the
alternative algorithms in all tested groups of instances. Finally, we
also derived valuable managerial insights regarding acceptance and
rejection strategies.

Future work could analyze the problem from a bilevel optimization
perspective or apply sophisticated learning techniques. Furthermore, it
could be interesting to address a setting in which we do not have to
give an immediate reply to the customers but to wait for a specified
amount of time before making a decision for a larger set of requests.
While this might be viable approach in regards of valuable matching,
one has to take into account the loss of customers, who are not willing
to accept the postponement of decisions. Observing current market
behavior, covering such a setting has to include in-depth investigations
of platform providers’ business models. Another interesting future de-
velopment concerns the exploitation of data about the average number
of expected compatible requests for each supplier, which can strongly
differ among suppliers. For instance, suppliers located on a very densely
populated area could be filled more easily compared to those located
in rural zones.

CRediT authorship contribution statement

Sara Ceschia: Writing – original draft, Supervision, Soft-
ware, Methodology, Data curation, Conceptualization. Margaretha
Gansterer: Writing – original draft, Supervision, Software, Method-
ology, Data curation, Conceptualization. Simona Mancini: Writing
– original draft, Supervision, Software, Methodology, Data curation,
Conceptualization. Antonella Meneghetti: Writing – original draft,
Supervision, Software, Methodology, Data curation, Conceptualization.

Data availability

Instances are available at https://bitbucket.org/sceschia/online-on-
demand-warehousing-problem.

https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem
https://bitbucket.org/sceschia/online-on-demand-warehousing-problem

Computers and Operations Research 170 (2024) 106760S. Ceschia et al.
References

Aouad, A., Saban, D., 2023. Online assortment optimization for two-sided matching
platforms. Manage. Sci. 69, 2069–2087.

Benoist, T., Bourreau, E., Caseau, Y., Rottembourg, B., 2001. Towards stochastic
constraint programming: A study of onine multi-choice knapsack with deadlines.
In: International Conference on Principles and Practice of Constraint Programming.
Springer, pp. 61–76.

Brinkmann, J., Ulmer, M., Mattfeld, D., 2019. Dynamic lookahead policies for
stochastic-dynamic inventory routing in bike sharing systems. Comput. Oper. Res.
106, 260–279.

Ceschia, S., Gansterer, M., Mancini, S., Meneghetti, A., 2023. The on-demand
warehousing problem. Int. J. Prod. Res. 61, 3152–3170.

Christensen, H., Khan, A., Pokutta, S., Tetali, P., 2017. Approximation and online
algorithms for multidimensional bin packing: A survey. Comp. Sci. Rev. 24, 63–79.

Coffman, E., Csirik, J., Galambos, G., Martello, S., Vigo, D., 2013. In: Du, D.-Z.,
Pardalos, P.M., Graham, R.L. (Eds.), Handbook of Combinatorial Optimization. pp.
455–531, chapter Bin Packing Approximation Algorithms: Survey and Classification.

Correia, I., Melo, T., 2022. Distribution network redesign under flexible conditions for
short-term location planning. Comput. Ind. Eng. 174, 108747.

Deng, Q., Santos, B., 2022. Lookahead approximate dynamic programming for stochas-
tic aircraft maintenance check scheduling optimization. European J. Oper. Res. 299,
814–833.

Diedrich, F., Jansen, K., Schwarz, U., Trystram, D., 2009. A survey on approximation
algorithms for scheduling with machine unavailability. Lecture Notes in Comput.
Sci. 5515, 50–64.

Ghadimi, S., Powell, W., 2024. Stochastic search for a parametric cost function
approximation: Energy storage with rolling forecasts. European J. Oper. Res. 312,
641–652.

Lee, J., Ko, C., Moon, I., 2024. E-commerce supply chain network design us-
ing on-demand warehousing system under uncertainty. Int. J. Prod. Res. 62,
1901–1927.
11
Mancini, S., Ulmer, M., Gansterer, M., 2023. Dynamic Assignment of Delivery Or-
der Bundles to In-Store Customers. Technical Report. Working Paper 12/2023,
Otto-Von-Guericke Universität Magdeburg.

Parodos, L., Tsolakis, O., Tsoukos, G., Xenou, E., Ayfantopoulou, G., 2022. Business
model analysis of smart city logistics solutions using the business model canvas:
The case of an on-demand warehousing e-marketplace. Future Transp. 2, 467–481.

Pazour, J., Unnu, K., 2018. On the unique features and benefits of on-demand
distribution models. In: 15th IMHRC Proceedings (Savannah, Georgia. USA). pp.
1–9.

Powell, W., 2022. Reinforcement Learning and Stochastic Optimization. Wiley.
Romero, V.I.M., Tomes, L.L., Yusiong, J.P.T., 2011. Tetris agent optimization using

harmony search algorithm. Int. J. Comput. Sci. Issues 8, 1–22.
Shi, Y., Yu, Y., Dong, Y., 2021. Warehousing platform’s revenue management: A

dynamic model of coordinating space allocation for self-use and rent. European
J. Oper. Res. 293, 167–176.

Thul, L., Powell, W., 2021. Stochastic optimization for vaccine and testing kit allocation
for the covid-19 pandemic. European J. Oper. Res. 304, 325–338.

Tornese, F., Unnu, K., Gnoni, M., Pazour, J., 2020. On-demand warehousing: main
features and business models. In: XXV Summer School ‘‘Francesco Turco’’ -
Industrial Systems Engineering. pp. 1–23.

Unnu, K., Pazour, J., 2019. Analyzing varying cost structures of alternative warehouse
strategies. In: IISE Annual Conference and Expo 2019. pp. 480–485.

Unnu, K., Pazour, J., 2022. Evaluating on-demand warehousing via dynamic facility
location models. IISE Trans. 54, 988–1003.

Unnu, K., Pazour, J.A., 2023. A large-scale heuristic approach to integrate on-demand
warehousing into dynamic distribution network designs. Comput. Ind. Eng. 186,
109752.

Van Hentenryck, P., Bent, R., Mercier, L., Vergados, Y., 2009. Online stochastic
reservation systems. Ann. Oper. Res. 171, 101–126.

Van Hentenryck, P., Bent, R., Upfal, E., 2010. Online stochastic optimization under
time constraints. Ann. Oper. Res. 177, 151–183.

Zhong, Y., Pan, Q., Xie, W., Cheng, T., Lin, X., 2020. Pricing and wage strategies for
an on-demand service platform with heterogeneous congestion-sensitive customers.
Int. J. Prod. Econ. 230, 107901.

http://refhub.elsevier.com/S0305-0548(24)00232-6/sb1
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb1
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb1
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb2
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb3
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb3
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb3
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb3
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb3
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb4
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb4
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb4
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb5
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb5
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb5
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb6
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb6
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb6
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb6
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb6
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb7
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb7
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb7
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb8
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb8
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb8
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb8
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb8
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb9
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb9
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb9
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb9
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb9
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb10
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb10
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb10
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb10
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb10
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb11
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb11
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb11
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb11
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb11
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb12
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb12
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb12
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb12
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb12
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb13
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb13
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb13
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb13
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb13
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb14
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb14
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb14
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb14
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb14
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb15
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb16
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb16
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb16
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb17
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb17
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb17
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb17
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb17
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb18
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb18
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb18
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb19
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb19
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb19
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb19
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb19
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb20
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb20
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb20
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb21
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb21
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb21
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb22
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb22
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb22
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb22
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb22
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb23
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb23
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb23
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb24
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb24
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb24
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb25
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb25
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb25
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb25
http://refhub.elsevier.com/S0305-0548(24)00232-6/sb25

	Solving the Online On-Demand Warehousing Problem
	Introduction
	Literature Review
	The On-Demand Warehousing Problem
	The offline problem
	The online problem and a generic solution framework
	Decision process and system state

	The RISKY Heuristic
	Online stochastic algorithms
	The Expectation algorithm
	The Consensus algorithm
	The Regret algorithm

	Computational experiments
	Test design
	Parameters
	Comparison of the algorithms
	Performance Guarantee
	Managerial insights

	Conclusions
	CRediT authorship contribution statement
	Data availability
	References

