
PH.D. THESIS IN

INDUSTRIAL AND INFORMATION ENGINEERING

Decentralized approaches for
admission, routing and flow problems

CANDIDATE

Francesca Rosset

SUPERVISOR

Prof. Franco Blanchini

CO-SUPERVISOR

Prof. Pier Luca Montessoro

Cycle XXXV — Year 2023



Institute Contacts
Dipartimento Politecnico di Ingegneria e Architettura
Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine — Italia
+39 0432 558253
https://www.dpia.uniud.it/

Author’s Contacts
Francesca Rosset
Via delle Scienze, 206
33100 Udine — Italia
rosset.francesca@spes.uniud.it

© 2023 Francesca Rosset
This work is shared under the Creative Commons 4.0 License Attribution-NonCommercial-ShareAlike.

https://www.dpia.uniud.it/


Acknowledgements

Firstly, I am extremely grateful to my supervisor Franco Blanchini for his invaluable advice, continuous support,
guidance, and patience, and for all the opportunities he gave me to work on many different interesting topics.

My gratitude extends to my co-supervisor Pier Luca Montessoro for his useful advice and support.

Many special thanks to Raffaele Pesenti for the support and very useful discussions.

Many thanks to Babak Jafarpisheh for his collaboration and advice.

Many thanks to my co-authors Daniele Casagrande, Giulia Giordano, Carlos Andrès Devia, Simone Milanesi,
Marta Colaneri, Kenneth Pesenti, Paolo Bolzern, Patrizio Colaneri, Paolo Sacchi, Giuseppe De Nicolao, Raffaele
Bruno, and Carlo Drioli for the opportunity of working together.

I would like to extend my thanks to Alessandro Pilotto and Pier Paolo Palestri: their advice during the brief
period working together just before my Ph.D. was also greatly useful during these last three years.

Last but not least, I would like to thank my parents, my sister Eleonora, my grandparents and my whole
family for their encouragement and support over all these years.





Abstract

Online control of large dynamic networks is challenging because little data are in general available about the
environment, because decentralized strategies have to be employed, which rely on the knowledge of local data
only, and because faults can occur. In this regard, three problems are addressed in this thesis.

The first problem concerns the scheduling of some requests of a limited resource occurring at different times,
from a supplier with limited capacity. The goal is that of minimizing the average waiting time for these requests.

The problem is formulated as an optimal control one, in which the control is the supply strategy, specified by
some constraints, and the state variables are associated with the waiting times of the demands. The exact optimal
problem requires mixed-integer linear programming; some relaxed versions are also formulated and, in particular,
one of these is based on linear programming and efficiently provides some lower bound. Some online heuristics
are analyzed, both centralized and decentralized, for which, in general, no a-posteriori optimality of the solution
is obtained.

The second problem is an agent-based minimum path one. Some tokens (agents) are injected in the network,
in some source nodes, and must travel in the network to find an exit, a sink. A simple decentralized policy is
proposed. This policy allows or denies the transitions of the tokens along the arcs on the basis of a simple local
threshold mechanism. In particular, a transition occurs through a directed arc if the amount of tokens present in
the origin node minus the amount tokens present in the end node exceeds the arc cost. Despite the very simple
local mechanism, in the long run, all the injected tokens leave the network by the closest sink through the shortest
path, although some tokens are, unavoidably, lost during the initial transient exploring phase. This issue can be
avoided by enhancing the policy allowing the generation of some virtual tokens. Some constraints to the maximum
number of transitions can also be imposed to all tokens. In fact, this is equivalent to applying the policy proposed
for the unconstrained case to the so-called expanded network.

The third problem considers flow networks with buffers in the nodes containing an amount of a continuous
resource at a given level (state), which is transferred between nodes by controlled flows along the arcs. A
decentralized control is formulated to meet a given flow demand, stabilize the system and asymptotically minimize
the p-norm of the flow. This control is specified at the arc level and depends only on the value of p and on the
difference of the states of the two arc’s endnodes. After an initial transient, the unique optimal desired flow is
obtained when 1 < p < ∞. When p = 1 sparsity of the solution tends to emerge, while when p = ∞ fairness is
promoted; however, no optimality or uniqueness of solution is achieved in these two cases: suboptimal solutions
can be obtained by applying the control with p → 1 and p → ∞, respectively. Enhancements can be applied
to support uncontrollable flows governed by unknown dynamics depending on the buffer levels and buffer level
control to a desired set-point. In this case, a decentralized proportional-integral control is adopted.





Contents

Acknowledgements iii

Abstract v

List of Tables xi

List of Figures xiii

Introduction 1

Part I Admission control optimization for waiting time minimization 3

1 Introduction to Part I 5
1.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Problem setup 9
2.1 Resource supply facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Request and supply characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Supply strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 The waiting time as a function of the supply profile . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 A state variable accounting for the delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The capacity of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The minimization of the delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Linear Programming and Mixed-Integer Linear Programming problems . . . . . . . . . . . 15
2.5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The optimal control framework 17
3.1 The non-interruptible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Discrete-time implementation: Mixed integer programming using the LC and SU techniques 19
3.2 The interruptible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Discrete-time implementation: Mixed integer programming using the LC and SU techniques 26
3.3 The variable-rate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Discrete-time implementation: Mixed integer programming using the LC and SU techniques 31
3.3.2 A relaxed problem to get a heuristic solution efficiently . . . . . . . . . . . . . . . . . . . . 31
3.3.3 A greedy strategy for the relaxed problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Recap of the relations between the optimal costs and their lower bounds . . . . . . . . . . . . . . . 35

4 Online heuristics: centralized and decentralized solutions 37
4.1 The non-interruptible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 The greedy heuristic (NI strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 The predictive control heuristic (NI strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 The priority queue-based heuristic (NI strategy) . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 The p-persistent-based heuristic (NI strategy) . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.5 The reservation-variable-based heuristic (NI strategy) . . . . . . . . . . . . . . . . . . . . . 42

4.2 The interruptible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 The greedy heuristic (IT strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



viii Contents

4.2.2 The predictive control heuristic (IT strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 The priority queue-based heuristic (IT strategy) . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 The p-persistent-based heuristic (IT strategy) . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 The reservation-variable-based heuristic (IT strategy) . . . . . . . . . . . . . . . . . . . . . 47

4.3 The variable-rate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 The greedy heuristic (VR strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 The predictive control heuristic (VR strategy) . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 The priority queue-based heuristic (VR strategy) . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 The p-persistent-based heuristic (VR strategy) . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.5 The reservation-variable-based heuristic (VR strategy) . . . . . . . . . . . . . . . . . . . . . 50

5 Application to EV charging scheduling 51
5.1 Scenario and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 The input data for the requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Parameters, simulation settings, and metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Part II Decentralized agent-based policies for path problems 69

6 Introduction to Part II 71
6.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Transition rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.2 An example in a simple network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 Negative costs and states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.4 Constrained paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Problem setup 81
7.1 Weighted directed networks with moving tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1 Possible traveled routes: paths, walks and circuits . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.2 Buffers in the nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Decentralized policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Timing of the system dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5 Problem statement and its variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 A decentralized agent-based policy finding the shortest paths 89
8.1 Admissibility of the state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Dynamics of the state of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Decentralized transition rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.4 Properties of the state of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4.1 Special admissible states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4.2 Networks in an admissible state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4.3 Networks in a non-admissible state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5 Optimality of the traveled paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.5.1 Maximal rest state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.5.2 Multiple source nodes, sink nodes, and shortest outgoing paths . . . . . . . . . . . . . . . . 96

8.6 Dynamic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.7 Non-integer arc costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.8 An enhanced policy considering virtual tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9 A decentralized agent-based policy finding the constrained shortest paths 105
9.1 Constrained costs and feasible routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Admissibility of the state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.3 Dynamics of the state of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.4 Decentralized transition rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.5 Expanded network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Contents ix

9.6 Properties of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.7 Negative arc costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.8 Non-integer arc costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.9 An enhanced policy considering virtual tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 Illustrative example in a small network 113
10.1 Scenario and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.1.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11 Illustrative example in a large grid network 119
11.1 Scenario and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12 Illustrative example in a large small-world network 127
12.1 Scenario and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Part III Decentralized flow control for fair and sparse solutions 133

13 Introduction to Part III 135
13.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
13.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

14 Problem setup 139
14.1 Flow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.1.1 Buffers in the nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.1.2 Controlled flows associated with the arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.1.3 The network incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
14.1.4 External, unknown, constant demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
14.1.5 Unknown dynamics affecting the buffer levels . . . . . . . . . . . . . . . . . . . . . . . . . . 141
14.1.6 The state equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

14.2 Assumptions and requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.3 Minimization of the p-norm of the flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

14.3.1 Minimization of the weighted p-norm of the flow . . . . . . . . . . . . . . . . . . . . . . . . 144
14.4 Problem statement for the considered model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

15 Networks with an uncontrolled demand 151
15.1 Decentralized control for p-norm minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

15.1.1 Optimality when 1 < p < +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.1.2 Limit cases: p = 1 and p = +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

15.2 Sub-optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
15.2.1 Suboptimal fair solutions: using p→ +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
15.2.2 Suboptimal sparse solutions: using p→ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

15.3 Dynamic environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
15.4 Optimal solutions by linear-quadratic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

15.4.1 Optimal 1-norm solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
15.4.2 Optimal 2-norm solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
15.4.3 Optimal ∞-norm solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

16 Enhancements to the control 159
16.1 Handling networks with unknown dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

16.1.1 Optimality when 1 < p <∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
16.1.2 Optimal solutions by linear-quadratic programming . . . . . . . . . . . . . . . . . . . . . . 161

16.2 Support for buffer level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
16.2.1 Optimal solutions by linear-quadratic programming . . . . . . . . . . . . . . . . . . . . . . 162

16.3 Support for weighted norm minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
16.3.1 Optimal solutions by linear-quadratic programming . . . . . . . . . . . . . . . . . . . . . . 164

16.4 Numerical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



x Contents

16.4.1 Roundoff errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
16.4.2 Truncation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

17 Illustrative example in a system of interconnected tanks 167
17.1 Scenario and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17.1.1 Simulations’ setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
17.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Conclusion 179

Appendices 181

A Proofs from Part I 183

B Proofs from Part II 189

Bibliography 195

List of publications and submitted manuscripts 203



List of Tables

5.1 Input data (raw) for the 32 charging requests i for the day Tuesday, 19 February 2019, from the
ACN-Data dataset [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Preprocessed input data for the 32 charging requests i for the day Tuesday, 19 February 2019, that
are used in the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Numerical values of the (a-posteriori) simulation results Xav and ωav presented in Fig. 5.4. All
quantities are expressed in minutes. The optimal Xav or ωav for each strategy of supplying are
highlighted in bold. (source: [1], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 Overall effects on the network state x of all the network transition of a token moving from a source
node i up to a destination node j, along a given traveled path, in the unconstrained case. ei is the
ith canonical basis vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Length L(p) for each possible path p1, p2, p3, p4, p5 of the actual network in Fig. 8.2 with actual
costs ˜︁γij , and the networks where the costs are approximated to integers. Values in bold refer to
the shortest (unconstrained) paths in each network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.1 (A simple network). The state xi(k) of the nodes reached after the transitions of the token injected
at time tk, i.e., the kth instant of the slow dynamic, during the initial transitory (see the paths in
Fig. 10.2). If a constrained system is considered, the state components xci (k) are also indicated.
Dots indicate that the steady-state is reached. Bold numbers indicate the states that have just
been modified, due to the token stopping in a node, or, for the enhanced policy, to virtual tokens. . 117

10.2 (A simple network). Comparison of the simulation results at each configuration of the network,
considering the modifications from Fig. 10.1 on the network. A deterministic choice model is assumed.118

11.1 (A large grid network). Minimum length Lmin and minimum constrained cost Cmin of the paths
between each source si and each sink di. Here, Cmin is also the constrained cost of the shortest
paths (except for s2 → d3, where the shortest path has C = 31). Values in bold refer to the shortest
(unconstrained) path from each source. Values in italics refer to the shortest feasible path from
each source when Cmax = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2 (A large grid network). Comparison of the simulation results at each configuration of the network
in Fig. 11.1, considering the modifications from Fig. 11.7. . . . . . . . . . . . . . . . . . . . . . . . 124

12.1 (A large small-world network). Comparison of the simulation results at global rest state when
varying the network characteristics. The network is built using the Watts-Strogatz small-world
graph model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

16.1 Range of values of ξ for which Φp(ξ) ̸= Φ1(ξ) when variables are represented according to the IEEE
Standard 754 for double precision. Outside this range, Φp(ξ) is either 0 or +∞. . . . . . . . . . . . 166

16.2 The gap of the discontinuity of Φp(ξ) at ξ = 0, i.e., Φp(ϵ0) − Φp(0) = Φp(ϵ0), where ϵ0 is the
minimum non-zero value for ξ, when variables are represented according to the IEEE Standard 754
for double precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

17.1 (Test 1, case (A)). The steady-state vectors for the case considering a network with no unknown
dynamics (A(x(t)) ≡ 0) and no buffer level control, minimizing the weighted norm of the flow vector.171

17.2 (Test 1, case (B)). The steady-state vectors for the case considering a network with no unknown
dynamics (A(x(t)) ≡ 0), but with buffer level control to h̄, minimizing the weighted norm of the
flow vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

17.3 (Test 1, case (C)). The steady-state vectors for the case considering a network with unknown
dynamics A(x(t)) and buffer level control to h̄, minimizing the weighted norm of the flow vector. . 173





List of Figures

1.1 Supplying the requests exactly as required might result in overloading of the system if the total
supply exceeds the system capacity P . By properly scheduling the supplied power profile, it is
possible to avoid overloading on the system, at the cost of some additional delays. The scheduler
should minimize such additional delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Pictorial representation of the quantities characterizing a request i. Red: its demand profile di(t);
blue: a generic example of its supply function ui(t) (with an interruption/resumption and power
rate variations); ti: release time; τi: requested processing time; ∆i: initial delay; δi: overall delay;
ti +∆i: admission time; ti + δi: completion time; ωi = δi− τi: waiting time. The areas under di(t)
(in light red) and ui(t) (in light blue) are the same, and equal to τi, meaning that at time ti + δi
all the requested power has been supplied. (source: [1], © 2022 IEEE) . . . . . . . . . . . . . . . . 10

2.2 The possible supplying strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 NI supply. Red: di(t), blue: ui(t), black: xi(t). On the left, ∆i ≤ τi; on the right, ∆i ≥ τi. (source:
[1], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Generic supply. Red: di(t), blue: the actual supply, ui(t), black: xi(t) for the actual supply,
yellow: hypothetical supply d(t − ∆i), green: hypothetical supply d(t − ωi). In the bottom, the
corresponding

∫︁∞
0
xi(t)dt are reported for such supplies. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 The Linear Combination (LC) technique for implementing contiguity constraint Eq. (3.4i), in the
non-interruptible NI case. Red: demand profile di(t); blue: supply function ui(t) (with delay ∆i);

gray: the candidate profiles u
(h)
i (t) for the optimal control. The candidate profile with h = 8

(highlighted in yellow) is to be selected: from Eq. (3.5), setting bi8 = 1 and bih = 0 for all h ̸= 8,
ui(t) = u(8)

i (t). In the specific example, τi = 4θ,∆i = 8θ. . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 A predefined non-rectangular shaped fixed power profile for request i. Red: the demand profile di(t);
blue: the supply function ui(t), which is a delayed version of di(t); ti: release time; τ ′i : requested
processing time; τi < τ ′i : minimum requested processing time, assuming maximum constant power
supply without interruptions (see the yellow line); ∆i: initial delay; δi: overall delay; ti + ∆i:
admission time; ti+ δi: completion time; ωi = δi− τ ′i : waiting time. The areas under di(t) (in light
red) and ui(t) (in light blue) are the same, and equal to τi, meaning that at time ti + δi all the
requested power has been supplied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The Start-Up (SU) technique for implementing contiguity constraint Eq. (3.4i), in the non-interruptible
NI case. Red: demand profile di(t); blue: supply function ui(t) (with delay ∆i); gray: the discrete-
time function si(k). There is only one non-zero value of si(k), located at t = ti + ∆i = 9θ, i.e.,
when the supply starts at admission time ti +∆i. In the specific example, τi = 4θ,∆i = 8θ. . . . 24

3.4 Left: a continuous function u(ξ) ∈ [0, 1], whose integral U(t) =
∫︁ t

0
u(ξ)dξ in the interval [0, t] is

highlighted by the blue area. Center: u(ξ) can be approximated by some piecewise constant function

˜︁u(ξ) ∈ [0, 1]; its integral in [0, t] corresponds to the Riemann sum ˜︁U(t): letting the interval [0, t]
be partitioned into n sub-intervals [tk−1, tk], for k = 1, . . . , n, t0 = 0, tn = t (here, n = 4), this is
just the sum the areas of n contiguous rectangles associated with those sub-intervals, each one with
width ∆k = tk−tk−1 and height uk = u(ξk) ∈ [0, 1] for some ξk ∈ [tk−1, tk], i.e., ˜︁U(t) =

∑︁n
k=1 uk∆k.

As n increases, the sub-intervals become smaller and smaller, ∆k → 0, and ˜︁U(t)→ U(t) as n→∞.
Right: each of these rectangles can be “replaced” by some rectangles with the same area, but height
1 and width uk∆k ≤ ∆k, which define some switching function ˜︁us(ξ) ∈ {0, 1}. Its integral ˜︁Us(t) in

[0, t] is equal to ˜︁U(t), by construction, hence it tends to U(t) as n→∞, too, ˜︁Us(t) ≡ ˜︁U(t)→ U(t),
and the corresponding ˜︁us(ξ) has an arbitrarily high–frequency switching, as the ∆k are arbitrarily
small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xiv LIST OF FIGURES

3.5 The Linear Combination (LC) technique for implementing contiguity constraint Eq. (3.11b), in
the interruptible IT case. Red: demand profile di(t); blue: supply function ui(t); green: active

request profile zi(t); gray: the candidate profiles z
(h)
i (t) for zi(t). The candidate profile with h = 8

(highlighted in yellow) is to be selected: from Eq. (3.12), setting bi8 = 1 and bih = 0 for all h ̸= 8,
zi(t) = z(8)

i (t). In the specific example, τi = 4θ, ωi = 8θ. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 The Start-Up (SU) technique for implementing contiguity constraint Eq. (3.11b), in the interruptible
IT case. Red: demand profile di(t); blue: supply function ui(t); green: active request profile
zi(t); gray: the discrete-time function si(k). There is only one non-zero value of si(k), located at
t = ti = 1θ, i.e., when the request starts. In the specific example, τi = 4θ,∆i = 8θ. . . . . . . . . . 29

3.7 Examples of solution when relaxing the binary variables in Eq. (3.6) (top) and Eq. (3.9) (bottom),
to continuous variables. Some special types of variable-rate supply are obtained. Red: demand
profile di(t); blue: supply function ui(t). On the top image, the yellow, green, and orange dashed
lines represent bi7u

(7)

i (t), bi9u
(9)

i (t), and bi12u
(12)

i (t), respectively. On the bottom image, the yellow,
green, and orange dots represent si(8), si(10), and si(14), respectively. . . . . . . . . . . . . . . . . 32

3.8 The solutions for Example 1. Dashed red: di(t), blue: ui(t), black: xi(t). The time axes and costs
J are expressed in terms of time slots (θ = 10 minutes). . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 The impact of the requests, assuming τM = P . The lower the impact, the lower the system is
occupied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 The p-persistent-based strategy for the non-interruptible NI case. . . . . . . . . . . . . . . . . . . 42

4.3 Flow-chart of the p-persistent-based strategy for the non-interruptible NI case. . . . . . . . . . . 43

4.4 The reservation-variable-based strategy for the non-interruptible NI case. Assuming µi(t) and σ(t)
constant, variable αi(t) for request i evolves according to αi(t) = ri

(︁
1− e−µi(t)(1−σ(t))ρ(t−ti)

)︁
, for

t ≥ ti. The growth is faster as µi(t) increases, and as σ(t) decreases. However, the time in which
the threshold ξri is reached does not depend on ri. In practice, the saturation σ(t) varies over time
(as well as µi(t), possibly), so that function αi(t) has a more complex behavior, but still remains
an increasing function approaching ri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Flow-chart of the reservation-variable-based strategy for the non-interruptible NI case. (∗) refers
to control Eq. (4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The p-persistent-based (top) and reservation-variable-based (bottom) strategies for the interruptible
IT -packets case, where the requests are divided into packets. . . . . . . . . . . . . . . . . . . . . . 45

4.7 The p-persistent-based strategy for the interruptible IT case. . . . . . . . . . . . . . . . . . . . . . 47

4.8 Flow-chart of the p-persistent-based strategy for the interruptible IT case. . . . . . . . . . . . . . 48

4.9 The reservation-variable-based strategy for the interruptible IT case. Assuming µi(t), νi(t) and σ(t)
constant, variable αi(t) for request i evolves according to αi(t) = ri

(︁
1− e−µi(t)(1−σ(t))ρ(t−t∗)

)︁
, until

it is admitted, for t∗ = ti ≤ t ≤ ti+∆i. Then, it evolves according to αi(t) = ξrie
−νi(t)(σ(t))

ρ(t−t∗∗),
from t∗∗ = ti + ∆i until it is interrupted at tint. Then, it evolves again according to αi(t) =
ri
(︁
1− e−µi(t)(1−σ(t))ρ(t−t∗)

)︁
, from t∗ = tint until it is resumed, and so on. When the supplying is

non-zero, the decreasing is faster as νi(t) increases, and as σ(t) increases. However, the time in
which the threshold ϵri is reached does not depend on ri. In practice, the saturation σ(t) varies
over time (as well as µi(t) and ν(t), possibly), so that function αi(t) has a more complex behavior,
but still remains an increasing function approaching ri when there is no supply (ui(t) = 0), and a
decreasing function approaching 0 when supply is active (ui(t) = 1). . . . . . . . . . . . . . . . . . 49

4.10 Flow-chart of the reservation-variable-based strategy for the interruptible IT case. (∗) refers to
control Eq. (4.5), and (∗∗) refers to control Eq. (4.7). . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Left: relations between the acceptance rate and the capacity of the batteries of the most common
models of EV according to the “EV models” dataset. Right: relations between the actual charging
rate of the same models of EV and the charging duration to get a full battery charging, when the
maximum output power of the charging stations is 7 kW (see red dashed line). In both graphs,
each point represents a model of EV: its size and color are representative of the popularity of that
particular model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



LIST OF FIGURES xv

5.2 Left: the 2D weighting function wi(REV , C) for the request i = 22. It is one at (r∗i , E
∗
i ) (see

the black point highlighted), and it decreases to zero as REV > r∗i and C > E∗
i increase. Right:

the joint 2D probability distribution pi(REV , C) (red bars) and wi(REV , C) · pi(REV , C), which is
a scaled version of the weighted joint 2D probability distribution pw,i(REV , C) (blue bars). The
points (REV , C) with REV < r∗i and C < E∗

i ) are excluded from the computations (see gray
points). Note that the multiplication by the weighing function makes the pairs (REV , C) which are
far from (r∗i , E

∗
i ) less probable to be selected. A random point, here highlighted in green, is selected

according to pw,i(REV , C) and gives ( ˜︁REV,i, ˜︁Ci), from which the values ri and τi to be used in the
simulations are computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Distribution of the charging requests. Top: each row refers to a different request i, which is indicated
by a rectangle located at ti and of length τi. Its color refers to the value of ri. Bottom: total
requested power (colored area) and system capacity (dashed violet line), assuming uncoordinated
charging. Here, the color is used to distinguish the power assigned to each request: blue refers to
the older requests, and red to the ones occurred at the end. . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Comparison between the average waiting time per user ωav (indicated by vertical bars) of the
presented batch solutions and real-time heuristics for the NI , IT , and VR cases, obtained by
simulating one day of real input data with a resolution of 5 minutes (see Table 5.3). The colors
of the bars represent the classes of supplying: NI , IT , IT -packets or VR. For each solution, the
average admission delay per user (∆av, indicated by green triangles △) and the average integral of
xi(t) (Xav, indicated by red crosses ×) are also reported, as well as the optimal cost of the batch
solutions for the specific objective J considered (in blue circles ◦). All these quantities are expressed
in minutes. c.c.: contiguity constraint Eq. (3.4i); LC(ui) (or SU(ui)): the Linear Combination
(or Start-Ups) alternative form is used to implement contiguity constraints Eq. (3.4i); LC(zi) (or
SU(zi)): the Linear Combination (or Start-Ups) alternative form is used to implement contiguity
constraints Eq. (2.11). (source: [1], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Comparison between the solving times, expressed in seconds, of the presented batch problems
from Fig. 5.4. The average solving times of each iteration of the greedy strategy applied to the
relaxed problem without LC or SU contiguity constraints on ui(t) are also reported and are clearly
negligible. The y axis is in log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Distribution of the scheduled supply for the exact optimal non-interruptible (NI ) supply strategy
problem, minimizing Xav =

∑︁
i xi/n(≡ ωav). Top: each row refers to the supply of a different

request i, and the colored area is located between ti +∆i and ti + δi. Its color refers to the value
of the supply yi(t) = riui(t), see the color bar in Fig. 5.3. The blue circle ◦ and cross × indicate ti
and ti + τi, respectively. Bottom: total supplied power (colored area), total requested power (red
line, see Fig. 5.3), and system capacity (dashed violet line). Here, the color is used to distinguish
the power assigned to each request: blue refers to the older requests, and red to the ones occurred
at the end, as in Fig. 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Distribution of the scheduled supply for the exact optimal interruptible (IT ) supply strategy prob-
lem, minimizing ωav =

∑︁
i ωi/n. See Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . . . 60

5.8 Distribution of the scheduled supply for the exact optimal variable rate (VR) supply strategy
problem, minimizing ωav =

∑︁
i ωi/n. See Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . 60

5.9 Distribution of the scheduled supply when the relaxed problem minimizing J = Xav =
∑︁

i

∫︁∞
0

[xi(t)/n]
is considered (without contiguity constraints on ui(t)). See Fig. 5.6 for a description. In subfigures
Figs. 5.9c and 5.9d, greyscale colors indicate that the assigned power is above ri: from just above
ri = 7 kW (black) up to 45 kW (light gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Distribution of the scheduled supply when the NI online heuristics are adopted. See Fig. 5.6 for a
description. (continued on the next page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 (continued) Distribution of the scheduled supply when the NI online heuristics are adopted. See
Fig. 5.6 for a description. (continued on the next page). . . . . . . . . . . . . . . . . . . . . . . . . 62

5.10 (continued) Distribution of the scheduled supply when the NI online heuristics are adopted. See
Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.11 Distribution of the scheduled supply when the IT online heuristics are adopted. See Fig. 5.6 for a
description. (continued on the next page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.11 (continued) Distribution of the scheduled supply when the IT online heuristics are adopted. See
Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.12 Distribution of the scheduled supply when the IT -packets online heuristics are adopted. See Fig. 5.6
for a description. (continued on the next page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.12 (continued) Distribution of the scheduled supply when the IT -packets online heuristics are adopted.
See Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xvi LIST OF FIGURES

5.13 Distribution of the scheduled supply when the VR online heuristics are adopted. See Fig. 5.6 for a
description. (continued on the next page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.13 (continued) Distribution of the scheduled supply when the VR online heuristics are adopted. See
Fig. 5.6 for a description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Graphical representation of the state xi of a node i: assuming a zero reference level, the state can
be seen as the number of tokens deposited in the node. . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Graphical representation of a directed weighted arc (i, j) connecting node i to node j, with arc cost
γij , as a step. The height of this step is equal to the arc costs γij and represents the displacement
between the zero reference levels of the two nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Graphical representation of a path p = {i, j, k, l} as a stair. The height of each step is equal to the
corresponding arc cost. The total elevation of the stair is equal to the path length L(p) = γij+γjk+γkl. 73

6.4 Examples of below threshold (left), at threshold (center), and above threshold (right) conditions for
an arc (i, j) joining node i to node j. Only horizontal or downward token displacements between
nodes are allowed. Hence, a token can move from node i to node j only if the above threshold
condition holds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Examples of movement of an actual token when the “above threshold” condition holds for two
consecutive nodes i and j connected by an arc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 A simple network with 5 nodes and 5 arcs. Tokens are injected regularly in the source node 1.
Tokens reaching sink node 4 are immediately expelled from the network. . . . . . . . . . . . . . . . 74

6.7 Graphical representation of the proposed policy applied to the network in Fig. 6.6, for the first time
instants k. The stairs on the left refer to the (shortest) path p1 = {1, 2, 3, 4}; the stairs on the right
refer to the path p2 = {1, 2, 5, 3, 4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.8 Arcs with negative cost are represented by downward steps. The meaning of above, at, below-
threshold conditions are well-defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Some virtual tokens are assumed to be present in the network, other than the actual ones. The state
is the number of tokens (both actual and virtual) expressed with respect to a predefined zero-level.
Such virtual tokens might move from node to node, just like the actual tokens do. The state of
the node does not distinguish between them and just considers the number of tokens below, at, or
above the zero level. Red: actual (informative) tokens; blue: virtual (non-informative) tokens. . . . 76

6.10 Examples of movement of a non-informative token when the “above threshold” condition holds for
two consecutive nodes i and j connected by an arc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.11 Graphical representation of the enhanced rule applied to the network in Fig. 6.6, for the first time
instants k. The stairs on the left refer to the (shortest) path p1 = {1, 2, 3, 4}; the stairs on the right
refer to the path p2 = {1, 2, 5, 3, 4}. Tokens filled with white are virtual tokens. . . . . . . . . . . . 77

6.12 Graphical representation of the state xi of a node i and its components in a constrained system:
assuming a zero reference level, each component of the state can be seen as the number of tokens
with a given constrained cost deposited in the node, which collects all the tokens with the same
constrained costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 The possible routes in a network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 A simple network G, both considering an unconstrained system (left) and a constrained system
(right). The values γij and σij are indicated for each arc (i, j). The shortest paths are highlighted. 83

7.3 Decentralized policy: for a token in node i, only the information on the neighboring nodes j ∈ Ni

and the corresponding arcs (i, j), which are highlighted in blue, are available. . . . . . . . . . . . . 85

7.4 Assumption 7.1.e is not limiting: an equivalent network without negative paths connecting two sink
nodes can always be constructed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1 A simple network G with three sources s1, s2, s3 and four sinks d1, d2, d3, d4. All the arc costs are
assumed unitary, γij = 1. The shortest paths from each source are highlighted. The highlighted
nodes have a state equal to the corresponding maximal rest state components xi = x̄̄xi. . . . . . . . 97

8.2 A network with non-integer arc costs ˜︁γij . Different networks are obtained by approximating the
arc costs to integers using the rounding, flooring, and ceiling functions. The shortest paths are
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Examples of token transition for a non-integer cost arc. Using the non-integer arc cost as threshold
is equivalent to using its flooring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4 A network with non-integer arc costs ˜︁γij . On the left, a network that has integer costs γij and is
topologically equivalent to it in terms of shortest paths is represented. . . . . . . . . . . . . . . . . 103

8.5 The same of Fig. 8.4, with the only difference being that the rational costs ˜︁γij are in the same
range, but have an higher precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



LIST OF FIGURES xvii

9.1 The simple network G from Fig. 7.2 (left) and the corresponding expanded network GE , when
Cmax = 2 (right). The values γij and σij are indicated for each arc (i, j) of G; the value γij is
indicated for each arc (i, j) of GE . In GE , nodes highlighted in grey are not reachable by tokens
injected in the sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2 A simple network G (left) and the corresponding expanded network GE when Cmax = 4 (right).
The values γij and σij are indicated for each arc (i, j) of G; γij is indicated for each arc (i, j) of GE .
In GE , nodes highlighted in grey are not reachable by tokens injected in the sources. The possible
paths/walks in G are highlighted, as well as the corresponding paths in GE . . . . . . . . . . . . . . 109

9.3 A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the
corresponding expanded network GE (right), assuming Cmax = 4. In GE , nodes highlighted in grey
are not reachable by tokens injected in the sources. G has only positive circuits with respect to the
constrained costs σij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.4 A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the
corresponding expanded network GE (right), assuming Cmax = 4. In GE , nodes highlighted in grey
are not reachable by tokens injected in the sources. Circuit p = {1, 3, 4, 1} in G has C(p) = 0. . . . 111

9.5 A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the
corresponding expanded network GE (right), assuming Cmax = 4. In GE , all the nodes are reachable.
Circuit p = {1, 3, 4, 1} in G has C(p) = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.1 (A simple network). The initial network at time k = 0 and the successive modifications occurred
at the indicated time k. The existing unconstrained shortest paths are hightailed in yellow, and
the existing constrained shortest paths in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.2 (A simple network). The path travelled by the first tokens injected at times tk, i.e., the kth instants
of the slow dynamic, during the initial transitory, until the steady-state is reached. If a path stops
in a node, it means that the token is deposited in that node. For the enhanced policy, states are
also modified along the way. The effects on the states of the nodes can be retrieved from Table 10.1,
where the values of such states are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.3 (A simple network). Time evolution of the states of the nodes, considering the modifications from
Fig. 10.1 on the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1 (A large grid network). The map of the network. Red circles: source nodes; blue circles: sink
nodes, colored pixels: nodes of the network. The color of each pixel represents the corresponding
value of hi and x̄̄xi, respectively, with gray representing 0. Each node is connected to its existing
8-neighborhood nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2 (A large grid network). The map of the network. Red circles: source nodes; blue circles: sink
nodes, colored pixels: nodes of the network. The color of each pixel represents the corresponding
value of x̄i(k) at steady-state (global rest state), with gray representing 0. The lines represent the
paths traveled by 10000 injected tokens; from white thin lines, when few tokens traversed each arc,
to thicker black lines, when almost all the tokens traversed them. . . . . . . . . . . . . . . . . . . 121

11.3 (A large grid network). Time profile of the states xi(k) of a subset of nodes, including the sources,
which are highlighted by thick lines. Dotted lines represent x̄̄xi(k) for the source nodes computed for
the unconstrained case: the state of the source nodes converge to these values in the unconstrained
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.4 (A large grid network). Blue: V (x(k)) for the unconstrained system; dotted red: V (x̄̄x(k)) for the
unconstrained system; yellow: V (x(k)) for the constrained system with Cmax = 25. . . . . . . . . . 122

11.5 (A large grid network). Evolution of the nodes’ state map of both the unconstrained and constrained
systems, adopting both the deterministic and stochastic choice model, to get the final global rest
states of Fig. 11.2. The paths traveled by the tokens in the previous 105 (Fig. 11.3a) and 106

(Fig. 11.3b) time units are represented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.6 (A large grid network). Blue: V (x(k)) for the unconstrained system; dotted red: V (x̄̄x(k)) for the
unconstrained system; yellow: V (x(k)) for the constrained system with Cmax = 25. The full time
horizon is represented. The y-axis is in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



xviii LIST OF FIGURES

11.7 (A large grid network). First column evolution of the map of Fig. 11.2, occurring at different times
k = km. Black pixels: obstacles (disabled nodes); white pixels: enabled nodes; red circles: source
nodes; blue circles: sink nodes; green shapes: sources/sinks/group of nodes that have just been
modified. Second to fifth columns: the corresponding global rest state of the network reached
after the system stabilizes after each modification, for the unconstrained system with deterministic
choices (evolving from Fig. 11.2a), the unconstrained system with stochastic choices (evolving
from Fig. 11.2b), the constrained system with deterministic choices and Cmax = 25 (evolving
from Fig. 11.2c), and constrained system with stochastic choices and Cmax = 25 (evolving from
Fig. 11.2d). White pixels are obstacles. The paths traveled by the tokens in the previous 40000
time units are represented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.1 (A large small-world network). Directed Watts-Strogatz small-world graph with n = 1000 nodes,
m = 4000 edges, δ = 4 mean out-degree, and rewiring probability β = 0.15. The effects of changing
some characteristics of this network will be evaluated. Arc costs are omitted. The source and sink
nodes are highlighted in red and blue, respectively. The shortest path between them is highlighted
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.2 (A large small-world network). The network of Fig. 12.1 at steady-state after having applied the
proposed policies for the network in Fig. 12.1.. The color of each node represents its state x̄i(t) at
steady-state (global rest state). The paths followed by the tokens are highlighted in red. (continued
on the next page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.2 (A large small-world network). (continued) The network of Fig. 12.1 at steady-state after having
applied the proposed policies for the network in Fig. 12.1. The color of each node represents its
state x̄i(t) at steady-state (global rest state). The paths followed by the tokens are highlighted in
red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

13.1 Graphical representation of the state xi of a node i: assuming a zero reference level, the state can
be seen as the (continuous) level of resource in the node. . . . . . . . . . . . . . . . . . . . . . . . . 136

13.2 Graphical representation of the flow fij between two nodes i and j. . . . . . . . . . . . . . . . . . . 137

13.3 Graphical representation of the alternative definition of the state to support buffer level control. . 137

13.4 Graphical representation of the alternative flow definition to support weighted p-norm minimization.137

14.1 An example network. Red arcs are controllable arcs. The blue dashed arc has an uncontrollable
constant demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

14.2 The example network. Green arcs are uncontrollable arcs, whose flow depends on the state of the
nodes. On the left, the actual uncontrolled flows αk(x) are represented; on the right, the equivalent
representation using functions Ak(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

14.3 Examples of fair and sparse solutions. The colors of the arcs refer to the modulo of the corresponding
flow. The total demanded flow is marked in yellow. Darker tones refer to fractions of this flow.
Zero-flows are reported in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

14.4 The flow problem in Example 14.2 (left) and the optimal controls that minimize the p-norm (center)
and the weighted p-norm (right) of the flow vector, for p = 1 (yellow), p = 2 (cyan), p =∞ (red).
(based on : [3], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

14.5 The optimal controls (u1, u2) minimizing the p-norm ||u||p such that a1u1 + a2u2 = d, for d ≥
0, a1 ≥ 0, a2 > 0, and for p = 1, p = 2, p = ∞. The optimal solution(s) can be obtained as the
(non-empty) intersection between the line u2 = (d − a1u1)/a2 (blue line) and the curve given by
the locus of the points for which ||u||p= k = constant, for the smallest possible k (yellow line). . . 148

15.1 Function Φp(ξ) for some values of p. (source: [3], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . 152

17.1 Fluid network: controlled arcs (red arrows), with weight ωk for each controlled arc k; losses (green
arrows); demands (blue arrows). (source: [3], © 2022 IEEE) . . . . . . . . . . . . . . . . . . . . . 167

17.2 (Test 1, case (A)). Time evolution profiles for the case considering a network with no unknown
dynamics (A(x(t)) ≡ 0) and no buffer level control, minimizing the weighted norm of the flow vector.171

17.3 (Test 1, case (B)). Time evolution profiles for the case considering a network with no unknown
dynamics (A(x(t)) ≡ 0), but buffer level control to h̄, minimizing the weighted norm of the flow
vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

17.4 (Test 1, case (C)). Time evolution profiles for the case considering a network with unknown dy-
namics A(x(t)) and buffer level control to h̄, minimizing the weighted norm of the flow vector. . . 173

17.5 (Test 1, case (C)). The network at steady-state for each possible value of p, trying to minimize the
q-norm. The color of each arc h represents the modulo of the flow fh = uh/ωh. . . . . . . . . . . . 174



LIST OF FIGURES xix

17.6 (Test 2 ). Evolution over time of the components of the control applied to the arcs. Each color
refers to a different arc. Dashed lines are the control components of the optimal ∞-norm control
computed via linear quadratic programming. For some values of p chattering emerges, but its
effects are clearly reduced by applying a low-pass filter. . . . . . . . . . . . . . . . . . . . . . . . . 175

17.7 (Test 3 ). Comparison of the (interpolated) trend of the steady-state (optimal) control u∗p and its
norms, for different values of p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176





Introduction

Online control is fundamental in real-world systems in which little data is available about the future. In large,
dynamic, and unknown environments, little data might also be available about the environment itself: decen-
tralized strategies can be employed, which rely on the knowledge of local data only, and are also proven to be
fault-tolerant and robust. In this regard, in this thesis, three problems are addressed, whose results are the main
results I’ve worked on during the three years of my Ph.D.; in particular, this thesis is divided into three Parts,
each of which is based on a specific topic.

In Part I the problem of scheduling some requests requiring a given amount of a limited resource is considered,
to minimize the average waiting time required for each request to be completely served. Different supply strategies
can be considered (at maximum supply rate, with or without interruptions, or with supply rate variations). An
optimal control framework is introduced to provide some optimal solutions, where different supply strategies are
supported by means of some additional constraints. Both offline and online solutions, possibly decentralized, are
presented. Online heuristics do not require the knowledge of future data, but are not necessarily optimal (when
evaluated a-posteriori). Solutions can be analyzed periodically, based on some historical recorded data, to improve
the performance of the above-mentioned heuristics, by tuning some parameters.

This Part is based on [1], whose results come from the collaboration between Daniele Casagrande, Babak
Jafarpisheh, Pier Luca Montessoro, Franco Blanchini, and me.

After an introduction including a simple exposition of the reasons behind the problem considered in this
Part and a literature review (Chapter 1), and a description of the setup (Chapter 2), the above-mentioned
optimal control framework is introduced in Chapter 3 and studied. A formulation yielding the exact solution is
presented, which however results in mixed integer linear programming implementation. Integral (buffer) variables
are introduced, which account for the waiting time of each request. Some relaxations are considered, which result
in efficient linear programming implementation and provide some lower bound to the optimal cost.

In Chapter 4, some online heuristics are presented and analyzed, both centralized and decentralized, which
can be employed to scheduling the requests without assuming any knowledge of future requests.

An application to the case of electric vehicle battery charging scheduling is reported in Chapter 5, in which the
proposed methodology is applied by comparing a-posteriori the performance of the above-mentioned heuristics
with the optimal and possibly relaxed solutions obtained by utilizing the batch problems deriving from the
proposed framework.

In Part II networks with discrete moving agents are considered. In particular, it is assumed that these agents,
named tokens, are injected in some source nodes of a weighted network and have to travel from node to node
(explore the network) to reach some unknown sink nodes to leave the network. Tokens might stop in the nodes:
the state of the node is introduced as the number of tokens bufferized in there. No information is available to the
tokens for their routing decisions, except for the information about the state of the nodes in their neighborhood.
A simple decentralized policy is introduced, which not only ensures that the above-mentioned behavior is achieved
in the long run, but also that eventually the tokens are able to reach the closest sink through some shortest path,
even in the case in which some constrains are applied to it.

This Part is based on [2] (under review), whose results come from the collaboration between Franco Blanchini,
and Raffaele Pesenti, and me.

After an introduction including a literature review and a simple introduction to the proposed strategy (Chap-
ter 6), and a description of the setup (Chapter 7), in Chapter 8 the unconstrained problem is studied, in which the
travelled paths of the tokens have no restrictions. A decentralized policy is proposed, which uses only local infor-
mation to determine whether a token in a given node should keep moving to a neighbor node or not: a transition
is admitted if the difference between the states of the two nodes is greater than the cost of the connecting arc.
After an initial transient in which tokens are possibly forced to stop in some intermediate nodes, a steady-state is
reached, in which all newly injected tokens reach the closest sink through the shortest path. An enhancement to
the proposed policy is also presented, which allows tokens to proceed moving, instead of stopping in the nodes,
during the initial transitory; the performance of the policy is improved and, under the assumption of strongly
connected network, it is guaranteed that all the tokens injected in the network reach a sink, although this does
not necessarily occur along the shortest paths initially.



2 INTRODUCTION

Then, in Chapter 9, the constrained problem is considered, in which a secondary cost is added to each arc:
the total secondary cost of a path cannot exceed a given value, otherwise, the token is forced to stop. It is shown
that this problem can be traced back to the unconstrained problem in the so-called expanded network, which is
however larger than the original one. Based on this fact, a decentralized policy is built, on the basis of the one
from the unconstrained case, considering multi-component states. Again, in the long run, the optimality (and
feasibility) of the paths is achieved.

In Chapters 10 to 12, the proposed policy is applied in different conditions. A very simple network is considered
in Chapter 10, which allows to easily analyze the step-by-step evolution of the network. A larger network is
considered in Chapter 11, analyzing the effects of the control on the states and the traveled paths. Finally, in
Chapter 12 a class of small-world networks is considered and the effects of changing some network characteristics
are evaluated and compared.

In Part III networks with continuous flows are considered. Such flows can be continuous in nature (e.g, like
in a fluid network) or approximated as such when there is a large number of agents. A network-decentralized
flow control stabilizing the network must be found to asymptotically minimize the p-norm of the controlled flow
meeting a given demand. The main idea is similar to that from Part II, and a decentralized control based on buffers
is introduced. The discussion presented in this Part is based on [3], whose results come from the collaboration
between Franco Blanchini, Carlos Andrés Devia, Giulia Giordano, Raffaele Pesenti, and me.

After an introduction including a simple exposition of the main idea behind this Part and a literature review
(Chapter 13), and a description of the setup (Chapter 14), networks with uncontrolled demands with buffers
on the nodes are considered (Chapter 15): an online decentralized control is proposed, which uses only local
information about the buffer levels (representing the state of the network) and minimizes the p-norm of the arc
flows vector. Choosing p = 1 tends to concentrate the flow in few arcs, along some shortest paths, usually getting
a sparse solution, while having p = +∞ tends to distribute the flow, getting a fair solution.

In the case in which 1 < p < +∞, this control is continuous, and the unique optimal solution is eventually
reached at steady-state. This is the most important result of Part III: similarly to Part, by using a local control,
a global optimality result is achieved. When considering p = 1 (respectively, p = +∞), the control is no
longer continuous and the solution might not be unique; then, the proposed control must be applied for p → 1
(respectively, p→ +∞): it is shown that the solution gets closer to the desired optimal one.

Some linear quadratic programming problem formulations are also introduced to efficiently compute offline
the optimal control to be used, which can be useful for validating the proposed decentralized online strategies.

Then, some enhancements to the control are introduced (Chapter 16); in particular, the support for networks
with uncontrolled dynamics depending on the buffer levels and the support for buffer level control (i.e., driving
the buffer levels to a desired set point) is reached by adopting a proportional-integral control. The support for
weighted p-norm minimization is introduced by scaling the control.

An example of application of such decentralized controls to a fluid network is reported at the end of this
Part (Chapter 17), which demonstrates its efficacy in finding the optimal p-norm flow. Different scenarios are
considered and the effects of the choice of p are assessed.

The final Conclusion chapter at Page 179 summarizes the main findings from the Parts I to III.
Finally, in the Appendices, the proofs of the Theorems, Corollaries, Propositions, and Lemmas from Parts I

and II are reported.

Parts II and III are somehow related. Both consider a directed network, although in the former there are
discrete traveling agents moving along its arcs, while in the latter some continuous flows are considered. In both
cases it is assumed that there is a buffer in each node whose state is roughly defined as the “amount” of a given
quantity; in both cases, the adopted local policy/control for each arc assumes that only the information about
the states of its two extreme nodes is known, in particular their difference, as well as possibly some information
about the connecting arc.

Part I is more independent from the other two. However, again, a point in common is the employment
of a controlled buffer system, although the context is different. Here, this buffer integrates a time, while in
Parts II and III a physical quantity is accounted; in fact, different problems are considered: in Part I a “time”
optimization is performed, while in Parts II and III a somehow “spatial” optimization is considered, at least to a
first approximation. In any case, in both cases, the information about these buffers is used in the optimization,
possibly in a decentralized way.

As a final remark, recall that the three Parts I to III are based on three works [1, 2, 3] which are a collaboration
between different authors. While the theorems, corollaries, propositions, and lemmas from [1, 2, 3] are also reported
here almost integrally, for completeness, some more details are also given in their explanation. Some more new
aspects are also investigated and discussed.



PART I
Admission control optimization

for waiting time minimization

Based on [1], published: Francesca Rosset, Daniele Casagrande, Babak Jafarpisheh, Pier Luca Montessoro, and Franco Blanchini.
“Optimal Control Approach to Scheduling Power Supply Facilities: Theory and Heuristics”. In: IEEE Transactions on Control of
Network Systems 9.4 (2022). © 2022 IEEE, pp. 1679–1691. doi: 10.1109/TCNS.2022.3165019

https://doi.org/10.1109/TCNS.2022.3165019




CHAPTER1
Introduction to Part I

This Part presents the work introduced in [1], which is the result of the collaboration between Daniele Casagrande,
Babak Jafarpisheh, Pier Luca Montessoro, Franco Blanchini, and me.

Consider a scenario in which there is a supplier facility that can provide a given resource. Some users make
some requests for an amount of that resource, at different times. Each one has a maximum rate at which it can
receive this resource: as each user would like to be served as soon as possible, following its immediate interest,
the supply should be performed at the maximum constant rate. The supplier, however, can only supply a limited
total maximum rate. Hence, when the system is congested and there are not enough available resources, the
supply of some requests is to be delayed.

However, benefits might emerge for all the users if they stop following their immediate interests and allow for
possible interruptions or rate reduction of the supply. Clearly, this possibility depends on the type of requests
and the flexibility of the users. Despite these operations increase the supply time of each user, overall, the total
waiting time to be served is lower compared to the case in which only delays of the supply are possible, because
the available power can be better exploited.

Then, the problem of scheduling the supply of a limited resource at a given rate for a specific time interval
facing some resource requests [4] is addressed, with the objective of minimizing the minimum average waiting time.
To simplify, three simple classes of supply strategies are considered: i) maximum rate without interruptions, ii)
maximum rate with interruptions, iii) variable rate.

The “resource” considered here is generic. Without loss of generality, the specific case in which energy is
requested from power networks is considered, which is of fundamental importance nowadays, given the rising
electricity demand due to the increasing number of electric vehicles (EVs), for instance. Much research focuses
on this topic and, in particular, on demand-response methods [5, 6, 7, 8, 9], smart grids [10, 11], home energy
management systems [12, 13, 14, 15], and smart charging of EVs batteries [16, 17, 18, 19, 20], with the aim at
preventing overloads on the power networks. It is assumed that there are enough supplying points, as in [21, 22],
so that the total supplied power is the only constraint.

An important aspect is that some electric loads requesting energy have some flexibility, both in terms of when
to supply the requested energy, and how. Timing and supplying rates can therefore be optimized considering
different aspects and objectives. For the specific case of EVs batteries charging this is called smart charging.

The scheduling can be applied at any level, from the local smart home/EV charging site to the community
level, up to the context of smart cities and smart cities networks. Clearly, the broader the context, the larger
the amount of data to be considered, so that the scheduler must be able to handle large-scale data; otherwise, a
better solution is managing the network at a local level in a decentralized way.

Moreover, usually data about future requests are not known in advance; then, online heuristics are necessary.

However, such online heuristics, both centralized and decentralized, are not optimal, in general, when evaluated
a-posteriori. Indeed, the optimality of a strategy can be evaluated only once all the requests are known; then, in a
real-time scenario, where future requests are not known in advance, the level of a-posteriori sub-optimality should
be assessed. An optimal control framework is here proposed, where the scheduling problem is formulated as an
optimal control problem and for different classes of supply strategies, by means of some additional constraints.

As the exact problem formulations for the three considered supply strategies result in mixed-integer linear
programming, for some large instances of the problem, it might be difficult to find a solution, possibly within a
reasonable time.

A controlled buffer system [23, 24] is introduced, in which an integral variable (virtual buffer) xi(t) accounts for
the individual delay of user i in fulfilling the request. Then, a relaxed problem that can be approached efficiently
via Linear Programming (LP) is formulated for the case in which power can be supplied at a variable rate. A



6 Part I, Chapter 1 — Introduction to Part I

greedy approach can also be applied, leading to a (non-optimal, in general) heuristic solution for the variable rate
case, which also provides some lower bounds for the exact optimal cost minimizing the average waiting time.

To summarize, two kinds of strategies are considered: off–line (batch) strategies, in which all data are available
(regarding all the current and future requests), and on–line strategies, in which data become available in real-time.
In the latter case, both centralized or decentralized schedulers are considered, to decide when and how to supply
power.

Real-time strategies perform the actual scheduling. Assuming that data about the requests is recorded over
time, an optimization could be performed periodically by some centralized element, using the batch strategies and
the known collected data. The results can be used to evaluate (a-posteriori) and possibly re-tune the real–time
scheduling strategies.

In the rest of this Chapter, first, the intuitive idea behind the considered problem is presented in Section 1.1, and
after that, the literature review is reported in Section 1.2 and the main contributions summarized in Section 1.3.
Then, in Chapter 2 the setup is described, and the considered problem is stated. In Chapter 3 the proposed optimal
control framework is introduced and studied for the non-interruptible, interruptible, and variable rate supply
strategies. In Chapter 4 some online heuristics are proposed, which are both centralized and decentralized, for the
three above-mentioned supply strategies. Finally, in Chapter 5, the proposed optimal control framework and the
online heuristics are evaluated (a-posteriori) and compared, considering the specific application to EVs’ battery
charging scheduling, using real data from the ACN-Data dataset [25]. The proofs are reported in Appendix A.

1.1 The main idea

Consider a power supply facility in which there are four users, labeled A, B, C, and D, which require, at different
times, a given amount of energy to be supplied at a given rate (power) and for a certain duration. The requested
power profiles RA(t), RB(t), RC(t), RD(t) describe these requests and are represented in the four graphs on the
top-left of Fig. 1.1.

Assuming that all these requests are served immediately as required, the overall power supplied by the facility
is given by the sum of these profiles RA(t) + RB(t) + RC(t) + RD(t), see the bottom-left of Fig. 1.1. As no
optimization is performed, the system must be able to support this supply: the peak supplied power, however,
might be very large. If there is a limit on the overall power capacity P of the system, such peaks result in
overloading of the system, so that it is not possible to serve all these requests as required.

Some flexibility can be exploited: it might be acceptable fulfilling such requests with some delay. Then,
the actual power supply can be scheduled to avoid overloading the system: this determines the power supply
profiles of the requests SA(t), SB(t), SC(t), SD(t), see the graphs on the right of Fig. 1.1. For instance, it might
be possible to just delay the supply (see request D), to interrupt and then resume it (see request A), or even
reduce the power rate (see request C): all of these possibilities, however, introduce the above-mentioned additional
delay. The supply must provide exactly the required amount of energy, so that the area below each Ri(t) and the
corresponding Si(t) must be the same.

The supply of these requests can be scheduled in many ways. For instance, one might decide to supply the
requests one at a time; however, this results in a waste of the non-supplied system capacity and in large additional
delays. Then, an optimization is required, so that the available capacity is exploited at best, while avoiding
overloading. To this aim, the average additional delay minimization is a reasonable objective to consider.

In practice, there are many requests to schedule and at a given time t it might be not possible to know in
advance what requests will be made in the future. Hence, there is the need for online strategies to schedule such
requests. These online strategies are in general not optimal (when evaluated a-posteriori), but their performance
can be evaluated (a-posteriori) by solving some global optimization problems over a horizon using the recorded
known past data, and this can be used to improve them.

1.2 Literature review

As already mentioned, demand-response methods [5, 6, 7, 8, 9], smart grids [10, 11], home energy management
systems [12, 13, 14, 15], and smart charging of electric vehicles’ (EVs) batteries [16, 17, 18, 19, 20] are gaining a
lot of importance lately and aim at reducing the overload on the system by properly scheduling the timing and
rate of the supply of power requests.

Different objectives could be considered, like monetary cost minimization, green energy exploitation maxi-
mization, and so on. The objective considered here considers the delay each user experiences to get served, which
must be minimized.

In [26, 27, 28] a penalty is imposed for not fulfilling the requests before some due date. In [29] a multi-queuing
model is introduced for average waiting time minimization with non-interruptible supply.



1.2 Literature review 7

P

request A

RA(t)

t

Single requested power profiles Ri(t).

P

SA(t)

t

Single supplied power profiles Si(t).

P

B

RB(t)

t

P

SB(t)

t

P

C

RC(t)

t

P

SC(t)

t

P

D
RD(t)

t

P

SD(t)
t

P

overload!

t

Total requested power: RA +RB +RC +RD

P

t

Total supplied power: SA + SB + SC + SD

Figure 1.1: Supplying the requests exactly as required might result in overloading of the system if the total supply exceeds the system
capacity P . By properly scheduling the supplied power profile, it is possible to avoid overloading on the system, at the cost of some
additional delays. The scheduler should minimize such additional delays.

A constrained stochastic optimization problem is introduced in [30]. When admitting possible interruptions
of the supplying, a multi-objective evolutionary algorithm is studied in [31], and some multi-objective nature-
inspired optimization techniques are exposed in [32]. Some other strategies aim to minimize, among others, the
maximum waiting time [33, 34], or to supply the resource as quickly as possible [21, 35, 22, 36]. Finally, in some
works traveled paths are also taken into account [37, 38, 39, 40, 41].

Here, the specific problem of scheduling to minimize the average waiting time of the users is addressed, or
equivalently the average completion time, considering three different supply strategies: i) maximum rate without
interruptions; ii) maxiumum rate with interruptions; iii) variable rate.

The problem can also be studied as a scheduling problem [42, 43, 44]. The classes of problems presented here
are variants of the charge scheduling problem [45], which is quite different from classical scheduling ones. They
can be classified, according to [46], as identical parallel machines problems of independent tasks with release times
and resource constraints, as well as preemption and/or time-varying resource allocation (depending on the specific
version), minimizing the total completion time.

As it will be seen, the considered problem is NP-hard, so it might be not so trivial to find the exact optimal
solution for the minimum average waiting time and a heuristic approach might need to be considered, instead,
especially for large instance of the problem.

Remind that when demands are all unitary and their rate cannot be varied, which occurs in CPU scheduling,
the optimal strategies consist in scheduling the shortest job first for the non-interruptible case, and the shortest
remaining processing time for the interruptible one [47]. In these conditions (interruptible and unitary requests),



8 Part I, Chapter 1 — Introduction to Part I

[48] proposes a Mixed-Integer Linear Programming problem for single-machine scheduling for average comple-
tion time minimization. The problem considered here is different, as different rates and generic capacities are
considered.

1.3 Contributions

One of the main contributions of this Part (and [1]) is proposing an alternative way of treating scheduling problems,
which are typical combinatorial problems: these can indeed be reduced to the formulation and solving of some
MILP or LP problems. The latter case, in particular, is of great interest: despite not providing the exact optimal
solutions for the considered problems, they can be solved quite efficiently even for large instances of the problem
and still provide some lower bound to such costs. To summarize, the contributions are:

• the formulation of the considered scheduling problem as an optimal control problem, capable of supporting
different classes of supplying strategies by means of some additional constraints;

• while the exact problems result in mixed-integer linear programming, some relaxed version of the problems
could be solved exactly quite efficiently and provide some good lower bounds to the optimal costs;

• the formulation of some online heuristics, both centralized and decentralized, to deal with the considered
problem without needing information about future requests. Some of the former are based on the above-
mentioned framework, while the latter have the advantage of not requiring the knowledge of any data about
other current requests, too. A decentralized reservation-variable based heuristic is introduced, which can
create a priority ordering among requests in a decentralized way.

• the definition of a procedure to evaluate such heuristics a-posteriori: the results obtained from the optimal
control framework based on historical recorded data about the requests can be exploited to improve their
performance.



CHAPTER2
Problem setup

2.1 Resource supply facilities

Consider a resource supplier facility shared between n users that make requests at specific time instants, requiring
an amount of a limited resource for a specific time interval. In particular, consider a generic user i ∈ {1, 2, . . . , n};
then,

• user i requires an amount of resource ri, beginning at release time ti and for an interval of duration τi
(minimum processing time, assuming maximum rate ri); no strict deadline is assumed;

• user i might receive the required resource at a rate not greater than the maximum ri;

• user i may be immediately admitted to the supply at time ti, or delayed to the admittance time ti +∆i;

• different supply strategies can be considered: once the user i is admitted to the supplying, the supplier
may decide whether and when to interrupt and resume the supply, and/or to provide the resource at a
time-varying rate, not greater than the nominal one ri.

• the user receives all the requested amount of resource at time ti + δi, with δi ≥ ∆i + τi, in general.

Multiple users can be supplied simultaneously. However, the total amount of resource that can be supplied
by the supplier at a given time is limited by the system capacity P . Hence, not all the requests can be admitted
immediately.

The problem investigated in the following is to determine an admission control strategy that minimizes the
time the user has to wait to receive all the requested amount of resource.

Note that if the capacity of the system P and the maximum supply rate ri are unlimited, the problem would
trivialize, as each user could be satisfied instantaneously.

The following assumption is needed for feasibility.

Assumption 2.1:
The number of requests is finite and equal to n. At some time T > 0 all the requests are over. All the demands
fulfill the constraint ri ≤ P .

In the following Sections, the supplying process is characterized more formally, introducing several specific
constraints to be included in the formulation of the problem. Then, it is formulated as a dynamic system,
introducing an integral variable that accounts for the delay of each request. Finally, the problem statement is
formulated.

2.2 Request and supply characterization

The dynamics of the supplying process for the generic request i are modeled using the quantities introduced in
Fig. 2.1; a detailed description is given next.

The normalized demand variables di, defined by

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(2.1)



10 Part I, Chapter 2 — Problem setup

ti ti + τi ti + ∆i ti + δi

1

∆i δi −∆i ≥ τi
δi

τi ωi

t

Figure 2.1: Pictorial representation of the quantities characterizing a request i. Red: its demand profile di(t); blue: a generic example
of its supply function ui(t) (with an interruption/resumption and power rate variations); ti: release time; τi: requested processing
time; ∆i: initial delay; δi: overall delay; ti + ∆i: admission time; ti + δi: completion time; ωi = δi − τi: waiting time. The areas
under di(t) (in light red) and ui(t) (in light blue) are the same, and equal to τi, meaning that at time ti + δi all the requested power
has been supplied. (source: [1], © 2022 IEEE)

represent the desired supply time profile, normalized with respect to the maximum rate ri, see the red line in
Fig. 2.1. The requesting user would like to be immediately supplied at the maximum rate ri in the minimum time
τi, which is indeed represented by a rectangular-shaped time profile.

However, if there are too many requesting users, there might be not enough resource to be supplied, so the
supply might need to be delayed, or interrupted, or possibly its rate might be reduced. Then, the actual supplied
power profile yi(t),

0 ≤ yi(t) ≤ ri,
is the fraction of the maximum power rate ri supplied at time t, and, in general, it is different from the desired
one. The corresponding normalized decision variables ui(t) associated with the supply are therefore defined as

ui(t) =
yi(t)

ri
, 0 ≤ ui(t) ≤ 1,

see the blue line in Fig. 2.1. Note that ui(t) = 0 if the request is not being supplied at time t, and it is 1 if it is
being supplied at the maximum rate ri.

The integrals of both di and ui over the time horizon, which represent the amount of requested and supplied
resource, respectively, normalized by ri, must be equal, eventually. Indeed, to fulfill a request, the total requested
resource Ei must be the same as the supplied one:

Ei = ri

∫︂ ∞

0

di(t) dt = ri

∫︂ ti+τi

ti

1 dt = riτi ≡ ri
∫︂ ∞

0

ui(t) dt,

which is equivalent to the following constraint:

∫︂ ∞

0

ui(t) dt ≡ τi. (2.2)

Note that it is implicitly assumed that the supplied energy cannot be larger than the requested one.

Recalling that the release time ti is the time in which the request i starts, so that the demand/desired supply
di(t) = 0 for all t < ti and di(ti) > 0, and that the minimum processing time τi is the duration of the desired
supply, assuming a constant maximum power rate ri supplying, so that di(ti + τi) > 0 and di(t) = 0 for all
t > ti + τi, the next definitions are introduced. Refer to Fig. 2.1 for a representation of these quantities.

Definition 2.1:
The admission delay ∆i is the time the user waits before the actual supply ui(t) starts, that is

∆i = inf{∆∗ ≥ 0 : ui(ti +∆∗) ̸= 0}, (2.3)

and the admission time ti +∆i is the corresponding time in which that occurs.

A request is said fulfilled at time t∗ if and only if the requested energy Ei = riτi has been fully supplied at that



2.2 Request and supply characterization 11

time, i.e., if the following holds ∫︂ t∗

0

ui(t) dt = τi, (2.4)

and unfulfilled otherwise, if 0 ≤
∫︁ t∗

0
ui(t) dt < τi.

The completion time ci is the time in which the request first becomes fulfilled, that is

ci
.
= inf{t∗ > 0 : Eq. (2.4) holds},

and the overall delay δi = ci − ti is the corresponding time the user has to wait before that occurs.

Finally, the waiting time ωi is the additional time needed to fulfill the request compared to τi, i.e., the delay
the user can complain about, and is defined as

ωi = δi − τi. (2.5)

Two obvious constraints are to be imposed to u(t):

ui(t) = 0, t < ti, (2.6a)

ui(t) = 0, t > ci = ti + δi; (2.6b)

that is, the supply cannot start before the request is made Eq. (2.6a), and must stop once the request is first
fulfilled Eq. (2.6b). Then, Eq. (2.2) becomes

∫︂ ti+δi

ti

ui(t) dt ≡ τi. (2.7)

2.2.1 Supply strategies

Three types of simple supply strategies are considered:

• The non-interruptible (NI ) case in which the power is supplied at constant rate ri, without interruptions
and with delay ∆i ≥ 0:

ui(t) = di(t−∆i) =

{︃
1 , if t ∈ [ti +∆i, ti +∆i + τi] ,
0 , otherwise .

(2.8)

In this specific case δi = ∆i + τi, by construction. See Fig. 2.2, left.

• The interruptible (IT ) case, in which the supplying occurs at a constant rate ri but can be switched on and
off, i.e., interrupted and resumed:

u(t) ∈ {0, 1}, t ∈ [ti, ti + δi]. (2.9)

See Fig. 2.2, center.

• The variable rate (VR) case, in which the supplying rate (power) can vary over time between 0 and ri:

0 ≤ ui(t) ≤ 1, t ∈ [ti, ti + δi]. (2.10)

See Fig. 2.2, right.

Note that the non-interruptible NI case is a special case of the interruptible IT one, which in turn is a special
case of the variable-rate VR one. Temporarily suspending the supply or reducing its intensity clearly increases
the waiting time, but provides a benefit for the overall average delay, because this allows for better exploitation
of the capacity of the system.

Moreover, in the NI case, the waiting time is equal to the admission delay, ωi ≡ ∆i, by construction. In the
more general IT and VR cases, it might be larger, ωi ≥ ∆i, because an additional delay due to the interruption
of the supply or the reduction of the supplied power rate must be taken into account.

Remark 2.1:
Many more constraints can be included regarding the way in which the supply could be interrupted and resumed
(e.g., the minimum or maximum time before interruption or resumption), or its rate could be varied (e.g., the
minimum and maximum rate variation over time). Here, only the simpler NI , IT , and VR general classes are
considered.



12 Part I, Chapter 2 — Problem setup

ti +∆i ti + δi

1

t

NI supply strategy.

ti +∆i ti + δi

1

t

IT supply strategy.

ti +∆i ti + δi

1

t

VR supply strategy.

Figure 2.2: The possible supplying strategies.

2.2.2 The waiting time as a function of the supply profile

To determine the waiting time ωi as a function of the supply ui(t), the binary variable zi(t) is defined, which is
non-zero and equal to 1 only when the request is still active and some resource needs to be supplied (i.e., between
the start of the request at time ti and the completion of the supplying at time ci = ti + δi):

zi(t) =

{︃
1 , if t ∈ [ti, ti + δi] ,
0 , otherwise .

(2.11)

Since, by definition, for any supply strategy ui is active only in the interval [ti, ti + δi], where it can only
assume values in [0, 1], and is 0 outside that interval, then, for all t,

0 ≤ ui(t) ≤ zi(t) ≤ 1. (2.12)

Theorem 2.1:
The waiting time ωi can be computed as:

ωi =

∫︂ ∞

0

[zi(t)− ui(t)] dt. (2.13)

2.2.3 A state variable accounting for the delay

To study the supplying process within the classical theory of optimal control problems, a dynamic system, rep-
resenting the state of the system, is introduced, where the following integral state variable xi(t) accounts for the
delay of the supplying. Its dynamics are given by

xi(t) =
1

τi

∫︂ t

0

[di(ξ)− ui(ξ)]dξ , (2.14)

or, taking the time derivative,

ẋi(t) =
1

τi
[di(t)− ui(t)] , xi(0) = 0 . (2.15)

xi(t) represents the unfulfilled request in terms of delay, normalized with respect to τi. Note that in the two above
expressions Eqs. (2.14) and (2.15) the demand di(t) and possibly the supply ui(t) (depending on the imposed
supply strategy) are discontinuous: this is not really a problem, as there are just time discontinuities, and can be
faced by considering the right derivative and just using the integral form Eq. (2.14).

Assumption 2.2: Standing assumption.
It is imposed that

xi(t) ≥ 0, for all t ≥ 0, for all i. (2.16)

Imposing Assumption 2.2 is equivalent to impose that the supply cannot start before ti and must stop when
the required energy has been supplied.

Proposition 2.1:

Let Assumption 2.2 be satisfied. The constraint Eq. (2.16) is equivalent to constraints Eqs. (2.6a) and (2.6b).



2.3 The capacity of the system 13

An advantage of imposing Eq. (2.16) is that, differently from Eq. (2.6b), the knowledge of the completion time
ci, which is not known a priori, is not required. The following Proposition follows.

Proposition 2.2:

Let Assumption 2.2 be satisfied. The demand is fulfilled at time t∗ if and only if xi(t) = 0 for all t ≥ t∗ ≥ ti+τi.
Moreover, the overall delay δi is the smallest value for which xi(t) = 0, for t ≥ ti + δi,

δi
.
= inf{δ⋆ ≥ τi : xi(ti + δ⋆) = 0} . (2.17)

Then, xi(t) = 0 for all t < ti and t > ti + δi.

Moreover, the relation between variable xi(t) and with ∆i, ωi, and δi is given in the next Theorem.

Theorem 2.2:
For any supply strategy ui such that ui ∈ [0, 1], starting at time ti +∆i and terminating at time ti + δi,

∆i ≤
∫︂ ∞

0

xi(t)dt ≤ ωi < δi , (2.18)

where equalities hold only in the NI case.

This Theorem can be intuitively explained as follows. Consider first the NI case: unless ∆i = 0 (in which
case xi(t) ≡ 0), xi(t) has a trapezoidal profile, see Fig. 2.3. Then,

∫︁∞
0
xi(t)dt is simply the area of this shape, and

results equal to ∆i (see the proof of Theorem in Appendix A).

ti ti + ∆i ti + τi ti + ∆i + τi

∆i

τi

1

t

ti ti + τi ti + ∆i ti + ∆i + τi

1

t

Figure 2.3: NI supply. Red: di(t), blue: ui(t), black: xi(t). On the left, ∆i ≤ τi; on the right, ∆i ≥ τi. (source: [1], © 2022 IEEE)

In a generic supply, xi(t) has a different profile, see, e.g., Fig. 2.4. Consider the two hypothetical NI supplies
of duration τi and rate ri starting at ti + ∆i and ti + ωi, respectively (see the yellow and green lines). These
correspond to two trapezoidal profiles of the integral variable xi, whose areas are ∆i and ωi, respectively. The
actual xi(t) profile can only lie between these two trapezoids, and so does its area

∫︁∞
0
xi(t)dt.

ti ti + τi ti +∆i ti +∆i + τi ti + ωi ti + δi

1
τi τi τi

t

ti ti + τi ti +∆i ti +∆i + τi ti + ωi ti + δi

1

t

Figure 2.4: Generic supply. Red: di(t), blue: the actual supply, ui(t), black: xi(t) for the actual supply, yellow: hypothetical supply
d(t−∆i), green: hypothetical supply d(t− ωi). In the bottom, the corresponding

∫︁∞
0 xi(t)dt are reported for such supplies.

2.3 The capacity of the system

In the system, there are n requests of supplying occurring at any given time. It is assumed that there is no
limitation in the number of possible demands either being requesting or supplied simultaneously. However, there
is a limit on the total amount of resource that can be supplied at any time, which indirectly limits those which
are being supplied.

Let ytot(t) be the total power supply at a given time,

ytot(t)
.
=

n∑︂

i=1

riui(t) =
∑︂

i∈A(t)

riui(t), (2.19)



14 Part I, Chapter 2 — Problem setup

where A(t) is the set of unfulfilled requesting users at time t, which are being supplied at t,

A(t) = {i : ti ≤ t ≤ ci} (2.20a)

= {i : xi(t) > 0 for t ≥ t+ τi} (2.20b)

= {i : either xi(t) > 0 or di(t) > 0}. (2.20c)

Note that since the constraint Eq. (2.16), xi(t) ≥ 0, implies that ui(t) = 0 when the demand is inactive, i.e., when
di(t) = 0 and xi(t) = 0, the sum in Eq. (2.19) could be limited to the active demands described by the set A(t).
Recall that the condition di(t) > 0 means that request i is active at time t, hence started no more than τi time
units before; xi(t) > 0 means that request i is still unfulfilled.

Then, at any time, the total power supply ytot(t) is limited by a given maximum value P , which is the capacity
of the system,

n∑︂

i=1

riui(t) ≤ P , ∀t ≥ 0 . (2.21)

If the total available power P is unlimited, or, more realistically, it is very large, e.g.

P ≥ max

⎛
⎝ ∑︂

i∈A(t)

ri

⎞
⎠ ,

any demand could be trivially admitted with ui(t) ≡ di(t), so that xi(t) ≡ 0 for all t, and this is possible for any
of the NI , IT , VR cases. Hence, the supply start immediately and is performed at the maximum rate without
interruptions, so that δi = τi is the minimum (the admission delay and the waiting time are zero, ∆i = ωi = 0).

Remark 2.2:
Constraint Eq. (2.21) is a hard constraint, where P is constant over time.
Two variations are possible:

• the capacity of the system might be time-varying, i.e.,

n∑︂

i=1

riui(t) ≤ P (t) , ∀t ≥ 0 ;

• the constraint is a soft constraint, i.e., ytot(t) could exceed P , but a penalization is applied.

2.4 The minimization of the delay

When scheduling the supply of a limited resource, different objectives could be considered. Here, the minimization
of the total overall delay is considered. This is simply defined as

δ =

n∑︂

i=1

δi.

Then, the objective function to be minimized is

J = δ =

n∑︂

i=1

δi.

Note that, as of Assumption 2.1, J is finite if all demands are fulfilled.

A different objective function could be considered; indeed, one might want to optimize one of the following
quantities, instead of δ:

• the average overall delay δ̄ =
1

n

n∑︂

i=1

δi =
δ

n
;

• the total waiting time ω =

n∑︂

i=1

ωi =

n∑︂

i=1

[δi − τi] = δ −
n∑︂

i=1

τi;



2.5 Problem statement 15

• the average waiting time ω̄ =
1

n

n∑︂

i=1

ωi =
ω

n
=
δ −∑︁n

i=1 τi
n

;

• the total completion time c =

n∑︂

i=1

ci =

n∑︂

i=1

[ti + δi] = δ +

n∑︂

i=1

ti;

• the average completion time c̄ =
1

n

n∑︂

i=1

ci =
c

n
=
δ +

∑︁n
i=1 ti
n

.

Still, minimizing each of the above-mentioned quantities is equivalent to minimizing δ, because n, τi, and ti are
given and constant, for all i,

arg min
δ1,...,δn

δ = arg min
δ1,...,δn

δ̄ = arg min
δ1,...,δn

ω = arg min
δ1,...,δn

ω̄ = arg min
δ1,...,δn

c = arg min
δ1,...,δn

c̄.

2.4.1 Linear Programming and Mixed-Integer Linear Programming problems

In the problem considered here, the solution minimizing the objective function must satisfy some given constraints.
If the objective function is linear, and the constraints can be expressed by linear relations, after discretization the
problem becomes a Linear Programming (LP) problem.

A generic linear programming problem with q variables described by vector η ∈ Rq×1, r inequality constraints
and s equality constraints, can be written in the form

min
η

f⊤η, (2.22a)

s.t. A · η ≤ b, (2.22b)

Aeq · η = beq, (2.22c)

lb ≤ η ≤ ub, (2.22d)

where the matrices A ∈ Rr×q, Aeq ∈ Rs×q and the vectors f, lb, ub ∈ Rq×1, b ∈ Rr×1, beq ∈ Rs×1 are to be defined.
A problem of this kind can be solved very efficiently by existing tools, even for large instances of the problem.

Sometimes, a subset of the variables of vector η needs to be integer. In this case, the problem becomes a
Mixed-Integer Linear Programming (MILP) problem, which can be written in the form

min
η

f⊤η, (2.23a)

s.t. A · η ≤ b, (2.23b)

Aeq · η = beq, (2.23c)

lb ≤ η ≤ ub, (2.23d)

η(I) ∈ Z, (2.23e)

where the matrices A ∈ Rr×q, Aeq ∈ Rs×q and the vectors f, lb, ub ∈ Rq×1, b ∈ Rr×1, beq ∈ Rs×1 are to be defined,
and I denotes the indices of the elements of η which are imposed to be integer.

A MILP problem is harder to solve, compared to the LP case.

2.5 Problem statement

The main problem is formulated as follows in generic terms.

Problem 2.1:
Given n demands starting at times t1, t2, . . . , tn with power requests r1, . . . , rn, under Assumption 2.1, and du-
rations τ1, . . . , τn, respectively, find a supply strategy u1(t), . . . un(t), either NI , or IT , or VR, under constraints
Eqs. (2.16) and (2.21), which minimizes

J(u1, . . . , un)
.
=

n∑︂

i=1

δi . (2.24)

Clearly, the problem solution depends on the type of supplying strategy that is to be imposed.
For simplicity, it is assumed that the supply strategy is the same for each user. Then, three cases are considered:

• solve Problem 2.1 using the NI supply strategy for each request;



16 Part I, Chapter 2 — Problem setup

• solve Problem 2.1 using the IT supply strategy for each request;

• solve Problem 2.1 using the VR supply strategy for each request.

The extension to the case in which requests are partitioned into three groups, each one characterized by a
specific supply strategy, NI , IT and VR, is straightforward.

Remark 2.3:
The problem of minimizing J = ∆ is equivalent to minimizing ω =

∑︁
i ωi or c =

∑︁
i ci =

∑︁
i [ti + δi].

Interestingly, the information about τi is fundamental in the optimization. Indeed, the constant τi, along with
ri can be used by the scheduler to privilege “modest” requests with respect to the more demanding ones.



CHAPTER3
The optimal control framework

Under the structure presented in Chapter 2, Problem 2.1 can be formulated as an optimal control problem aimed
at minimizing the total delay. A common framework is specified, which is independent from the chosen supply
strategy. The specific class of supply NI , IT , or VR is specified by means of some additional constraints on ui(t).

In particular, this framework is

min
u1,...,un

J(u1, . . . , un) =
n∑︂

i=1

δi , (3.1a)

s.t. ẋi(t) =
1

τi
[di(t)− ui(t)] , (3.1b)

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(3.1c)

0 ≤ ui(t) ≤ 1 , for all t ≥ 0, (3.1d)

xi(0) = 0 , (3.1e)

xi(t) ≥ 0 , for all t ≥ 0, (3.1f)

xi(t) = 0 , for all t ≥ ti + δi, (3.1g)
n∑︂

i=1

riui(t) ≤ P, for all t ≥ 0 , (3.1h)

(additional constraints specifying the supply strategy). (3.1i)

Constraints Eqs. (3.1b) to (3.1h), are common to all NI , IT , VR cases, and gather all the constraints introduced
in Chapter 2. Recall that, for all i, Eq. (3.1f) implies that xi(t) = 0 for all t < ti and for all t ≥ ti + δi, and is
equivalent to constraints Eqs. (2.6a) and (2.6b), see Propositions 2.1 and 2.2. Also, recall that the discontinuity
of the demand di(t) and possibly the supply ui(t) in Eq. (3.1b) can be faced by considering the right derivative
or just using the integral form Eq. (2.14).

The difference is the chosen class of input functions, to be specified in Eq. (3.1i), where the optimal control is
to be searched. Noting that Eq. (3.1d) holds for any supply strategy considered here, there are three cases:

• in the NI case, u(t) ∈ {0, 1}, and, in particular, the inputs ui are constant and equal to 1 on intervals of
size τi, with no interruptions;

• in the IT case, ui(t) ∈ {0, 1}, so that the inputs ui are off-on functions, with switching;

• in the VR case, ui(t) ∈ [0, 1], so the inputs ui are piecewise-continuous functions ( Eq. (3.1d) is enough).

The specifications of these constraints in Eq. (3.1i) are detailed in the next Sections. In general, as different
constraints are to be imposed depending on the chosen supply strategy, the optimal solution will be different.
Then, the optimal values of the cost functionals for the three problems will be denoted by J∗

NI , J
∗
IT and J∗

V R,
respectively.

Recalling that the classes of functions for ui(t) are nested, i.e., a constant function on an interval is a special
case of a switching function in {0, 1}, which is a piecewise continuous function, it necessarily holds that

J∗
NI ≥ J∗

IT ≥ J∗
V R. (3.2)



18 Part I, Chapter 3 — The optimal control framework

Remark 3.1:
The proposed optimal control framework, if opportunely modified, could support some different features.

A (finite) deadline δmax,i for each user i, i.e., an upper bound on the completion time ti + δi, can be imposed
by adding the constraint δi ≤ δmax,i, that is:

ui(t) = 0, for all t ≥ ti + δmax,i.

The deadline could be imposed as a soft constraint, i.e., the supply can occur after ti+δmax,i, but a penalization
is imposed, which is to be minimized. In this case, the objective function is modified into J ′, e.g,

J ′ = αJ + (1− α)
n∑︂

i=1

∫︂ ∞

ti+δmax,i

u2i (t) dt,

where 0 < α < 1 is given. The new term minimizes the supply to each user after its deadline.

Time variability of the available power P can be easily handled by considering a time-varying function P (t) in
Eq. (3.1h).
A soft constraint on the maximum power, i.e., the supply can exceed P , but a penalization is imposed, which
is to be minimized, can be handled by modifying the objective function into J ′, e.g,

J ′ = αJ + (1− α)
∫︂ ∞

0

[︄
max

(︄
0,

n∑︂

i=1

riui(t)− P
)︄]︄2

dt,

with 0 < α < 1 is given. The new term minimizes the excess total power supplied above P .

The main problem of formulation Eq. (3.1) is the characterization of variables δi in Eq. (3.1a) with respect
to variables ui. Then, a possibility is to solve Problem 2.1 approximately, by replacing function Eq. (3.1a) with
other functionals suitable for computation.

Recall that from Theorem 2.2,

∆i ≤
∫︂ ∞

0

xi(t)dt ≤ ωi < δi ,

and, in particular, for the NI case,

∆i =

∫︂ ∞

0

xi(t)dt = ωi < δi (= ∆i + τi) .

Then, the problem of minimizing J(u) can be heuristically faced by minimizing

n∑︂

i=1

∫︂ ∞

0

xi(t)dt, (3.3)

which is an optimal control problem that is easier to solve and leads to a lower bound for the optimal δ, in
general, and to the exact optimal solution J∗

NI in the specific NI case. Indeed, the values of δi are not needed to
be determined.

Theorem 3.1:
Any solution with NI supplies that minimizes Eq. (3.3) solves the problem of minimizing Eq. (2.24).

Some considerations about the complexity

To study the complexity of the problem, consider an equivalent system with n independent jobs to be scheduled
(the requests) and, as there is no limitation on the simultaneous number of active requests, n identical machines
in parallel.

Then, the three considered problems NI , IT and VR can be classified, according to [46], as identical parallel
machines problems of independent tasks with release times ti and resource constraints [49], as well as preemption
(for IT case) and time-varying resource allocation (for VR case), minimizing the total completion time

∑︁
iCi =∑︁

iti + δi, which is equivalent to minimizing Eq. (2.24) as ti is not a decision variable.
The NI and IT problems are NP-hard, as they can be reduced, respectively, to the single-machine problem

with release times minimizing
∑︁

iCi [43, 50] and to the two-identical-machine problem with release times and
preemption minimizing

∑︁
iCi [43, 51], which are known to be NP-hard.



3.1 The non-interruptible case 19

Instead, for the VR problem, a thorough search of the relevant literature yielded that the closest work is [52],
which considers a time-varying resource allocation profile for each user, stating that some general problems of
minimizing

∑︁
iCi are NP-hard. The VR problem is indeed a generalization of the IT case, thus it is conjectured

that the problem remains NP-hard.

The relaxed problem Eq. (3.3) under constraints Eqs. (3.1b) to (3.1h) is convex and linear. It can be solved
in polynomial time.

3.1 The non-interruptible case

In this Section, the optimal control problem is specified for the non-interruptible (NI ) case. For each request,
the power is supplied at a constant rate ri, without interruptions and with delay ∆i ≥ 0; Eq. (3.1i) is given by
Eq. (2.8), reported next in Eq. (3.4i).

In this case, for each request i, the supply profile is entirely specified by means of a single parameter, the
initial delay ∆i, and the overall delay is

δi = ∆i + τi,

so that the ∆i are the decision variables, or, equivalently, the initial delays ti +∆i are such. Then, the functional
for this version of the problem is JNI(u1, . . . , un) = JNI(∆1, . . . ,∆n). Recall that, exploiting Theorem 2.2, it now
holds that

∆ =

∞∑︂

i=1

∆i = X =

∞∑︂

i=1

∫︂ ∞

0

xi(t)dt = ω =

∞∑︂

i=1

ωi =

∞∑︂

i=1

[δi − τi] = δ −
∞∑︂

i=1

τi,

so that the optimal cost minimizing the total accounted delay
∑︁∞

i=1

∫︁∞
0
xi(t)dt, is indeed the optimal waiting

time ω, and the optimal initial delay ∆.

Then, the optimal control problem of minimizing the total overall delay δ can be formulated exploiting The-
orem 3.1, assuming the constraints Eqs. (3.1b) to (3.1h) as well as the additional constraint Eq. (2.8) on ui,
as

min
∆1,...,∆n

JNI(∆1, . . . ,∆n) =

∫︂ ∞

0

n∑︂

i=1

xi(t)dt, (3.4a)

s.t. ẋi(t) =
1

τi
[di(t)− ui(t)] , (3.4b)

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(3.4c)

0 ≤ ui(t) ≤ 1 , for all t ≥ 0, (3.4d)

xi(0) = 0 , (3.4e)

xi(t) ≥ 0 , for all t ≥ 0, (3.4f)

xi(t) = 0 , for all t ≥ ti + δi, (3.4g)
n∑︂

i=1

riui(t) ≤ P, for all t ≥ 0 , (3.4h)

ui(t) =

{︃
1 , if t ∈ [ti +∆i, ti +∆i + τi] ,
0 , otherwise .

(3.4i)

The major issue in the exact solution is the constraint Eq. (3.4i), which imposes that, once an user is admitted,
it is supposed to remain connected for the whole requested period [ti +∆i, ti + τi +∆i]. A constraint of this kind
will be referred to as contiguity constraint.

3.1.1 Discrete-time implementation: Mixed integer programming using the LC and
SU techniques

For computation and to reach a solution, problem Eq. (3.4) must be discretized. Assuming a sampling period of
θ and a horizon of T = Nθ of N + 1 time-slots, consider the discrete time instants tk = kθ, k = 0, 1, 2, . . . , N and
denote

xi(k)
.
= xi(tk), ui(k)

.
= ui(tk), di(k)

.
= di(tk).



20 Part I, Chapter 3 — The optimal control framework

Figure 3.1: The Linear Combination (LC) technique for implementing contiguity constraint Eq. (3.4i), in the non-interruptible NI

case. Red: demand profile di(t); blue: supply function ui(t) (with delay ∆i); gray: the candidate profiles u
(h)
i (t) for the optimal

control. The candidate profile with h = 8 (highlighted in yellow) is to be selected: from Eq. (3.5), setting bi8 = 1 and bih = 0 for all

h ̸= 8, ui(t) = u
(8)

i (t). In the specific example, τi = 4θ,∆i = 8θ.

Then, Eq. (3.4b) is discretized with sampling time θ using the Euler method as

xi(k + 1) = xi(k) +
θ

τi
[di(k)− ui(k)] , .

Note that as time is discretized, also the actual possible values assumed by the release time ti, the processing
time τi, the delay ∆i, waiting time ωi and overall delay δi are discretized, too: ti, τi,∆i, ωi, δi ∈ {hθ : h = 0, 1, . . . }.
Moreover, any sampled–data solution can be seen as a special continuous-time solution, so the ideal continuous-
time optimal cost is in general smaller than the sampled-data one.

Proposition 3.1:

When the system is sampled with sampling time θ, the worst-case performance loss is not greater than n(n+1)θ.

To ensure the contiguity constraint Eq. (3.4i), two equivalent formulations, i.e., Linear Combination and
Start–ups, are suggested, which however results in a mixed-integer linear programming problem.

Linear Combination (LC) formulation for the contiguity constraints.

The first alternative form for contiguity constraint Eq. (3.4i) consists in writing ui(k) as a linear combination of
all the possible profiles it can assume, selecting only one of them by means of some new decision variables.

Consider a set of possible values for the delay H = {hθ : h = 0, 1, . . . ,Hi}, where Hi = N − ti − τi + 1 is the
maximum one, and define, for each ∆h ∈ H, the continuous-time signal

u
(h)
i (t) = di(t−∆h) =

{︃
1 , if t ∈ [ti +∆h, ti +∆h + τi] ,
0 , otherwise .

which is d(t) delayed by ∆h, so that u
(0)
i (t) = di(t).

Any u
(h)
i (k) is a (discrete-time) candidate profile for the optimal control ui(k): only one of them must be

selected for each request i, see Fig. 3.1. Thus, the actual control Eq. (3.4i) is written as a linear convex combination
with binary coefficients and is replaced by:

ui(k) =

Hi∑︂

h=0

bihu
(h)
i (k), (3.5a)

Hi∑︂

h=0

bih = 1, (3.5b)

bih ∈ {0, 1}. (3.5c)

Note that Eq. (3.5) imposes that only one specific NI profile u
(h)
i (k) is selected, as there can be only one non-zero

bih.



3.1 The non-interruptible case 21

Then, after discretization, problem Eq. (3.4) reduces to the following MILP problem:

min
∆1,...,∆n

JNI(∆1, . . . ,∆n) = θ

N∑︂

k=0

n∑︂

i=1

xi(k), (3.6a)

s.t. xi(k + 1) = xi(k) +
θ

τi
[di(k)− ui(k)] , (3.6b)

di(k) =

{︃
1 if ti ≤ kθ ≤ ti + τi ,
0 otherwise,

(3.6c)

0 ≤ ui(k) ≤ 1 , for all k ≥ 0, (3.6d)

xi(0) = 0 , (3.6e)

xi(k) ≥ 0 , for all k ≥ 0, (3.6f)

xi(k) = 0 , for all kθ ≥ ti + δi, (3.6g)
n∑︂

i=1

riui(k) ≤ P, for all k ≥ 0 , (3.6h)

ui(k) =

Hi∑︂

h=0

bihu
(h)
i (k), (3.6i)

Hi∑︂

h=0

bih = 1, (3.6j)

bih ∈ {0, 1}. (3.6k)

Problem Eq. (3.6) can be simply implemented as a MILP problem Eq. (2.23) by taking

η⊤ =

[︃
x1(0) · · · x1(N) · · · xn(0) · · · xn(N) b1,0 · · · b1,H1

· · · bn,0 · · · bn,Hn

]︃
,

f⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0

]︃
,

lb⊤ =

[︃
0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,

ub⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

]︃
,

bih ∈ Z, ∀i = 1, . . . n, h = 0, . . . ,Hi,

A =

⎡
⎣ [0] · · · [0] r1U1 · · · rnUn

⎤
⎦, b =

⎡
⎢⎣

P
...
P

⎤
⎥⎦ ,

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1M · · · [0] θU1 · · · [0]

...
. . .

...
...

. . .
...

[0] · · · τnM [0] · · · θUn

1 · · · 1 · · · 0 · · · 0

[0] · · · [0]
. . .

0 · · · 0 · · · 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θd1(1)
...

θd1(N)

...

θdn(1)
...

θdn(N)

1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ui is the (N + 1)× (Hi + 1) matrix whose columns are the possible u
(h)
i (t) profiles for request i, which



22 Part I, Chapter 3 — The optimal control framework

are selected by bi,h

Ui =

⎡
⎢⎢⎢⎢⎣

u
(0)
i (0) u

(1)
i (0) · · · u

(Hi)
1 (0)

u
(0)
i (1) u

(1)
i (1) · · · u

(Hi)
1 (1)

...
...

. . .
...

u
(0)
i (N) u

(1)
i (N) · · · u

(Hi)
1 (N)

⎤
⎥⎥⎥⎥⎦
,

and M is the (N + 1)× (N + 1) matrix defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0

. . .

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Once the solution is found, the actual delay ∆i could be computed by

∆i = ∆h,with h such that bih = 1.

Remark 3.2:
This formulation with LC constraints also allows solving the same problem in a more general case in which a
predefined non-rectangular shaped fixed power profile di(t) is imposed for the supply, that is given by

di(t) =

{︃
f(t) if ti ≤ t ≤ ti + τ ′i ,
0 otherwise,

with τ ′i > τi given and such that ∫︂ ∞

0

di(t) =

∫︂ ti+τ ′
i

ti

f(t) = τi.

Then, given the admission delay ∆i, the supply is ui(t) = di(t−∆i). Hence, in this case,

u
(h)
i (t) = di(t−∆h) =

{︃
f(t−∆h) , if t ∈ [ti +∆h, ti + δh] ,
0 , otherwise .

ti ti + τi ti + τ ′i ti +∆i ti + δi

1

∆i δi −∆i = τ ′i

δi

τ ′i ωi

t

Figure 3.2: A predefined non-rectangular shaped fixed power profile for request i. Red: the demand profile di(t); blue: the supply
function ui(t), which is a delayed version of di(t); ti: release time; τ ′i : requested processing time; τi < τ ′i : minimum requested
processing time, assuming maximum constant power supply without interruptions (see the yellow line); ∆i: initial delay; δi: overall
delay; ti +∆i: admission time; ti + δi: completion time; ωi = δi − τ ′i : waiting time. The areas under di(t) (in light red) and ui(t)
(in light blue) are the same, and equal to τi, meaning that at time ti + δi all the requested power has been supplied.

Note that in this case, it still holds that

∆i =

∫︂ ∞

0

xi(t)dt = ωi < δi (= ∆i + τ ′i) .

Indeed, ∆i = ωi and δi = ∆i + τ ′i by construction. Also, the integral is equal to ∆i for the reasons exposed
next.



3.1 The non-interruptible case 23

Firstly, it is easy to verify that, if ∆i ≥ τ ′i ,

x(t) =
1

τi

∫︂ t

0

d(ξ)− u(ξ)dξ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if t < ti,
1
τi

∫︁ t

ti
d(ξ)dξ, if ti ≤ t ≤ ti + τ ′i ,

1, if ti + τ ′i < t < ti +∆i,

1− 1
τi

∫︁ t

ti+∆i
u(ξ)dξ, if ti +∆i ≤ t ≤ ti +∆i + τ ′i ,

0, if t > ti +∆i + τ ′i .

Note that
1

τi

∫︂ t

ti+∆i

u(ξ) dξ =
1

τi

∫︂ t

ti+∆i

d(ξ −∆i) dξ =
1

τi

∫︂ t−∆i

ti

d(ψ) dψ.

Then,

∫︂ ∞

0

x(t)dt =

∫︂ ti

0

x(t)dt+

∫︂ ti+τ ′
i

ti

x(t)dt+

∫︂ ti+∆i

ti+τ ′
i

x(t)dt+

∫︂ ti+∆i+τ ′
i

ti+∆i

x(t)dt+

∫︂ ∞

ti+∆i+τ ′
i

x(t)dt

= 0 +

∫︂ ti+τ ′
i

ti

[︃
1

τi

∫︂ t

ti

d(ξ)dξ

]︃
dt+ (ti +∆i − (ti + τ ′i)) +

∫︂ ti+∆i+τ ′
i

ti+∆i

[︄
1− 1

τi

∫︂ t−∆i

ti

d(ξ)dξ

]︄
dt+ 0

=

∫︂ ti+τ ′
i

ti

[︃
1

τi

∫︂ t

ti

d(ξ)dξ

]︃
dt+ (∆i − τ ′i) + (ti +∆i + τ ′i − (ti +∆i))−

∫︂ ti+τ ′
i

ti

[︄
1

τi

∫︂ t′

ti

d(ξ)dξ

]︄
dt

= ∆i.

Similarly, if 0 ≤ ∆i < τ ′i ,

x(t) =
1

τi

∫︂ t

0

d(ξ)− u(ξ)dξ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if t < ti,
1
τi

∫︁ t

ti
d(ξ)dξ, if ti ≤ t ≤ ti +∆i,

1
τi

∫︁ t

ti
d(ξ)dξ − 1

τi

∫︁ t

ti+∆i
u(ξ)dξ, if ti +∆i < t < ti + τ ′i ,

1− 1
τi

∫︁ t

ti+∆i
u(ξ)dξ, if ti + τ ′i ≤ t ≤ ti +∆i + τ ′i ,

0, if t > ti +∆i + τ ′i .

Then,

∫︂ ∞

0

x(t)dt =

∫︂ ti+∆i

ti

[︃
1

τi

∫︂ t

ti

d(ξ)dξ

]︃
dt+

∫︂ ti+τ ′
i

ti+∆i

[︃
1

τi

∫︂ t

ti

d(ξ)dξ − 1

τi

∫︂ t

ti+∆i

u(ξ)dξ

]︃
dt+

∫︂ ti+∆i+τ ′
i

ti+τ ′
i

[︃
1− 1

τi

∫︂ t

ti+∆i

u(ξ)dξ

]︃
dt

=

∫︂ ti+τ ′
i

ti

[︃
1

τi

∫︂ t

ti

d(ξ)dξ

]︃
dt−

∫︂ ti+∆i+τ ′
i

ti+∆i

[︄
1

τi

∫︂ t−∆i

ti

d(ψ)dψ

]︄
dt+∆i

=

∫︂ ti+τ ′
i

ti

[︃
1

τi

∫︂ t

ti

d(ξ)dξ

]︃
dt−

∫︂ ti+τ ′
i

ti

[︄
1

τi

∫︂ t′

ti

d(ψ)dψ

]︄
dt+∆i

= ∆i.

Start–ups (SU) formulation for the contiguity constraints.

The second alternative form for contiguity constraint Eq. (3.4i) is based on [53] and consists in limiting the number
of “start-ups”, i.e., transitions from 0 to 1, to one for variable ui(k).

The additional constrained variable si(k) is introduced, as well as the following constraints

0 ≤ si(k) ≤ 1, (3.8a)

si(0) ≥ ui(0), (3.8b)

si(k) ≥ ui(k)− ui(k − 1), k > 0, (3.8c)
∑︂

k

si(k) = 1, (3.8d)

ui(k) = 0, k < ti, (3.8e)



24 Part I, Chapter 3 — The optimal control framework

Figure 3.3: The Start-Up (SU) technique for implementing contiguity constraint Eq. (3.4i), in the non-interruptible NI case. Red:
demand profile di(t); blue: supply function ui(t) (with delay ∆i); gray: the discrete-time function si(k). There is only one non-
zero value of si(k), located at t = ti + ∆i = 9θ, i.e., when the supply starts at admission time ti + ∆i. In the specific example,
τi = 4θ,∆i = 8θ.

θ
∑︂

k

ui(k) = τi, (3.8f)

ui(k) ∈ {0, 1}. (3.8g)

Since ui(k) is a binary variable for the NI case, the term ui(k) − ui(k − 1) in Eq. (3.8c) can take only three
values: 1 (when there is a start-up), −1 (when there is a transition from 1 to 0), or 0 (when there is no transition).
Then, by Eqs. (3.8a) to (3.8c), si(k) is forced to be 1 when there is a start-up (i.e., at the admission instant
ti +∆i), while it is unrestricted in the other cases. Finally, constraint Eq. (3.8d) ensures that there is only one
non-zero si(k) in the considered time horizon, i.e., only one start-up. See Fig. 3.3.

Then, after discretization, problem Eq. (3.4) reduces to the following MILP problem:

min
∆1,...,∆n

JNI(∆1, . . . ,∆n) = θ

N∑︂

k=0

n∑︂

i=1

xi(k), (3.9a)

s.t. xi(k + 1) = xi(k) +
θ

τi
[di(k)− ui(k)] , (3.9b)

di(k) =

{︃
1 if ti ≤ kθ ≤ ti + τi ,
0 otherwise,

(3.9c)

0 ≤ ui(k) ≤ 1 , for all k ≥ 0, (3.9d)

xi(0) = 0 , (3.9e)

xi(k) ≥ 0 , for all k ≥ 0, (3.9f)

xi(k) = 0 , for all kθ ≥ ti + δi, (3.9g)
n∑︂

i=1

riui(k) ≤ P, for all k ≥ 0 , (3.9h)

0 ≤ si(k) ≤ 1, (3.9i)

si(0) ≥ ui(0), (3.9j)

si(k) ≥ ui(k)− ui(k − 1), k > 0, (3.9k)
∑︂

k

si(k) = 1, (3.9l)

ui(k) = 0, k < ti, (3.9m)

θ
∑︂

k

ui(k) = τi, (3.9n)

ui(k) ∈ {0, 1}. (3.9o)

Problem Eq. (3.9) can be simply implemented as a MILP problem Eq. (2.23) by taking

η⊤ =

[︃
x1(0) · · · x1(N) · · · xn(0) · · · xn(N) u1(0) · · · u1(N) · · · un(0) · · · un(N) s1(0) · · · s1(N) · · · sn(0) · · · sn(N)

]︃
,

f⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,



3.2 The interruptible case 25

lb⊤ =

[︃
0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,

ub⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

]︃
,

ui(k) ∈ Z, ∀i = 1, . . . n, k = 0, . . . , N,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
[0] · · · [0] M · · · [0]

. . . · · · [0]
−1

...
. . .

...
...

. . .
...

...
. . .

...

−1
[0] · · · [0] [0] · · · M [0] · · · . . .

−1
r1 rn

[0] · · · [0]
. . . · · · . . . [0] · · · [0]

r1 rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

...

0
...
0

P
...
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

M1 · · · [0]
. . . · · · [0] [0] · · · [0]

θ

...
. . .

...
...

. . .
...

...
. . .

...

θ

[0] · · · Mn [0] · · · . . . [0] · · · [0]
θ

1 · · · 1

[0] · · · [0] [0] · · · [0]
. . .

1 · · · 1

θ · · · θ

[0] · · · [0]
. . . [0] · · · [0]

θ · · · θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θd1(0)
...

θd1(N)

...

θdn(0)
...

θdn(N)

1
...
1

τ1
...
τn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Mi is the (N + 1)× (N + 1) matrix defined as

Mi = τi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0

. . .

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 3.3:
In general, the LC and SU approaches, based on integer programming techniques, can be hard to solve.

3.2 The interruptible case

In this Section, the optimal control problem is specified for the interruptible (IT ) case. The power is still supplied
at the maximum rate, but the supply can be interrupted and resumed; Eq. (3.1i) is given by Eq. (2.9), reported
next in Eq. (3.11d).

Then, the effect of chattering is to be considered. It is known that given any continuous function u(t) ∈ [0, 1],
the corresponding trajectory xi(t) in Eq. (2.14) can be achieved as the limit of the response to a suitable switching



26 Part I, Chapter 3 — The optimal control framework

0 t

1

ξ

Continuous function u(ξ) ∈ [0, 1].

U(t) =
∫ t

0
u(ξ)dξ

0 = t0 t1 t2 t3 t4 = t

1
width ∆4
height u4

ξ

An approximated piecewise
constant function ũ(ξ) ∈ [0, 1].

Ũ(t) =
∑n

k=1 uk∆k −−−−→
n→∞

U(t)

t0 t1 t2 t3 t4

1

width u4∆4
height 1

ξ

An “equivalent” switching
function ũs(ξ) ∈ {0, 1}.

Ũs(t) =
∑n

k=1 1 · (uk∆k) ≡ Ũ(t)

Figure 3.4: Left: a continuous function u(ξ) ∈ [0, 1], whose integral U(t) =
∫︁ t
0 u(ξ)dξ in the interval [0, t] is highlighted by the blue

area. Center: u(ξ) can be approximated by some piecewise constant function ˜︁u(ξ) ∈ [0, 1]; its integral in [0, t] corresponds to the

Riemann sum ˜︁U(t): letting the interval [0, t] be partitioned into n sub-intervals [tk−1, tk], for k = 1, . . . , n, t0 = 0, tn = t (here, n = 4),
this is just the sum the areas of n contiguous rectangles associated with those sub-intervals, each one with width ∆k = tk − tk−1 and

height uk = u(ξk) ∈ [0, 1] for some ξk ∈ [tk−1, tk], i.e., ˜︁U(t) =
∑︁n

k=1 uk∆k. As n increases, the sub-intervals become smaller and

smaller, ∆k → 0, and ˜︁U(t) → U(t) as n → ∞. Right: each of these rectangles can be “replaced” by some rectangles with the same

area, but height 1 and width uk∆k ≤ ∆k, which define some switching function ˜︁us(ξ) ∈ {0, 1}. Its integral ˜︁Us(t) in [0, t] is equal to˜︁U(t), by construction, hence it tends to U(t) as n → ∞, too, ˜︁Us(t) ≡ ˜︁U(t) → U(t), and the corresponding ˜︁us(ξ) has an arbitrarily
high–frequency switching, as the ∆k are arbitrarily small.

function us(t) ∈ {0, 1} if an arbitrarily high–frequency switching is allowed [54]. Indeed, this fact can be easily

derived, see, e.g., Fig. 3.4, where the trajectory of U(t) =
∫︁ t

0
u(ξ)dξ is considered, for simplicity. Clearly, arbitrarily

high switching frequency is not realistic. In practice, this problem is automatically solved by using discretization,
since the sampling time imposes a bound on the switching frequency.

While the contiguity constraint on ui(t) in Eq. (3.1i) is not required here, it is not possible to use the total
accounted delay

∑︁∞
i=1

∫︁∞
0
xi(t)dt as a functional to get the exact optimal solution minimizing the total overall

delay δ or, equivalently, the total waiting time ω. Indeed, by Theorem 2.2, it now holds that
∑︁∞

i=1

∫︁∞
0
xi(t)dt ≤

ω =
∑︁∞

i=1 ωi.

Still, Theorem 2.1 from subsection 2.2.2 can be exploited to better specify the functional JIT (u1, . . . , un, z1,
. . . , zn), by introducing variables zi(t), see Eqs. (2.11) and (2.12), reported next in Eqs. (3.11b) and (3.11c).

Then, for the IT case, the delay minimization problem is

min
z1,...,zn,u1,...,un

JIT (u1, . . . , un, z1, . . . , zn) =

n∑︂

i=1

ωi =

n∑︂

i=1

∫︂ ∞

0

[zi(t)− ui(t)] dt, (3.11a)

s.t. zi(t) =

{︃
1 , if t ∈ [ti, ti + δi] ,
0 , otherwise ,

(3.11b)

0 ≤ ui(t) ≤ zi(t) ≤ 1, (3.11c)

ui(t), zi(t) ∈ {0, 1}, (3.11d)
∫︂ ∞

0

ui(t) dt = τi, (3.11e)

n∑︂

i=1

riui(t) ≤ P, for all t ≥ 0 . (3.11f)

As formulated, this is a functional problem of choosing uk. Note that the variables xi(t) and the corresponding
constraints from Eq. (3.1b)–Eq. (3.1h) are not used here, and are replaced by the equivalent constraints associated
with zi(t) in Eqs. (3.11b) to (3.11d) and Eq. (3.11e).

Now, the major issue in the exact solution is that contiguity constraints are needed for variables zi(t), which
are used in the objective function.

3.2.1 Discrete-time implementation: Mixed integer programming using the LC and
SU techniques

For computation, problem Eq. (3.11) and the class of functions ui(t) ∈ {0, 1} needs to be discretized. Assume a
sampling time θ and N + 1 time-slots, as in subsection 3.1.1.

Then, constraint Eq. (3.11b) can be rewritten based on the LC or the SU forms described in subsection 3.1.1,
just using zi instead of ui and adapting the formulation.



3.2 The interruptible case 27

Figure 3.5: The Linear Combination (LC) technique for implementing contiguity constraint Eq. (3.11b), in the interruptible IT case.

Red: demand profile di(t); blue: supply function ui(t); green: active request profile zi(t); gray: the candidate profiles z
(h)
i (t) for zi(t).

The candidate profile with h = 8 (highlighted in yellow) is to be selected: from Eq. (3.12), setting bi8 = 1 and bih = 0 for all h ̸= 8,

zi(t) = z
(8)

i (t). In the specific example, τi = 4θ, ωi = 8θ.

Linear Combination (LC) formulation for the contiguity constraints.

The first alternative form for contiguity constraint Eq. (3.11b) consists in writing zi(k) as a linear combination
of all the possible profiles it can assume, selecting only one of them by means of some new decision variables.

Consider a set of possible values for the waiting time H = {hθ : h = 0, . . . ,Hi}, where Hi = N − ti − τi + 1
is the maximum one, and define, for each ωh ∈ H, the continuous-time signal

z
(h)
i (t) =

{︃
1 , if t ∈ [ti, ti + τi + ωh] ,
0 , otherwise .

Then, the variable zi(t) Eq. (3.11b) is written as a linear convex combination with binary coefficients bih where
only one of them is non-zero and equal to 1, see Fig. 3.5, and is replaced by:

zi(k) =

Hi∑︂

h=1

bihz
(h)
i (k), (3.12a)

Hi∑︂

h=1

bih = 1, (3.12b)

bih ∈ {0, 1}. (3.12c)

Then, after discretization, problem Eq. (3.11) reduces to the following MILP problem:

min
z1,...,zn,u1,...,un

JIT (u1, . . . , un, z1, . . . , zn) =

n∑︂

i=1

ωi = θ

N∑︂

k=0

n∑︂

i=1

[zi(k)− ui(k)], (3.13a)

s.t. zi(k) =

Hi∑︂

h=1

bihz
(h)
i (k), (3.13b)

Hi∑︂

h=1

bih = 1, (3.13c)

bih ∈ {0, 1}, (3.13d)

0 ≤ ui(k) ≤ zi(k) ≤ 1, (3.13e)

ui(k), zi(k) ∈ {0, 1}, (3.13f)

θ

N∑︂

k=0

ui(t) = τi, (3.13g)

n∑︂

i=1

riui(k) ≤ P, for all k ≥ 0 . (3.13h)



28 Part I, Chapter 3 — The optimal control framework

Problem Eq. (3.13) can be simply implemented as a MILP problem Eq. (2.23) by taking

η⊤ =

[︃
z1(0) · · · z1(N) · · · zn(0) · · · zn(N) u1(0) · · · u1(N) · · · un(0) · · · un(N) b1,0 · · · b1,H1

· · · bn,0 · · · bn,Hn

]︃
,

f⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 −1 · · · −1 · · · −1 · · · −1 0 · · · 0 · · · 0 · · · 0

]︃
,

lb⊤ =

[︃
0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,

ub⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

]︃
,

bih, ui(k) ∈ Z, ∀i = 1, . . . n, h = 0, . . . ,Hi, k = 0, . . . , N,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
. . . · · · [0]

. . . · · · [0] [0] · · · [0]
−1 1

...
. . .

...
...

. . .
...

...
. . .

...

−1 1

[0] · · · . . . [0] · · · . . . [0] · · · [0]
−1 1

r1 rn

[0] · · · [0]
. . . · · · . . . [0] · · · [0]

r1 rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

...

0
...
0

P
...
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . . · · · [0] [0] · · · [0] −Z1 · · · [0]

1

...
. . .

...
...

. . .
...

...
. . .

...

1

[0] · · · . . . [0] · · · [0] [0] · · · −Zn

1

1 · · · 1

[0] · · · [0] [0] · · · [0]
. . .

1 · · · 1

θ · · · θ
[0] · · · [0]

. . . [0] · · · [0]
θ · · · θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

...

0
...
0

1
...
1

τ1
...
τn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Zi is the (N + 1)× (Hi + 1) matrix whose columns are the possible z
(h)
i (t) profiles for request i, which

are selected by bi,h

Zi =

⎡
⎢⎢⎢⎢⎣

z
(1)
i (0) z

(2)
i (0) · · · z

(Hi)
1 (0)

z
(1)
i (1) z

(2)
i (1) · · · z

(Hi)
1 (1)

...
...

. . .
...

z
(1)
i (N) z

(2)
i (N) · · · z

(Hi)
1 (N)

⎤
⎥⎥⎥⎥⎦
.

Start–ups (SU) formulation for the contiguity constraints.

The second alternative form for contiguity constraint Eq. (3.11b) is based on [53] and consists in limiting the
number of “start-ups”, i.e., transitions from 0 to 1, to one for variable zi(k).



3.2 The interruptible case 29

Figure 3.6: The Start-Up (SU) technique for implementing contiguity constraint Eq. (3.11b), in the interruptible IT case. Red:
demand profile di(t); blue: supply function ui(t); green: active request profile zi(t); gray: the discrete-time function si(k). There is
only one non-zero value of si(k), located at t = ti = 1θ, i.e., when the request starts. In the specific example, τi = 4θ,∆i = 8θ.

The additional constrained variable si(k) is introduced, as well as the following constraints

0 ≤ si(k) ≤ 1, (3.14a)

si(0) ≥ zi(0), (3.14b)

si(k) ≥ zi(k)− zi(k − 1), k > 0, (3.14c)
∑︂

k

si(k) = 1, (3.14d)

zi(k) = 0, θk < ti, (3.14e)

zi(k) = 1, θk = ti, (3.14f)

zi(k) ∈ {0, 1}. (3.14g)

Note that, differently from the NI case, by constraints Eqs. (3.14e) and (3.14f), a start-up is imposed for
variable zi(t) at k = θti, so that by Eqs. (3.14c) and (3.14g), si(k) = 1 at k = θti. By Eq. (3.14d), this is imposed
to be the only start-up instant.

Then, after discretization, problem Eq. (3.11) reduces to the following MILP problem:

min
z1,...,zn,u1,...,un

JIT (u1, . . . , un, z1, . . . , zn) =

n∑︂

i=1

ωi = θ

N∑︂

k=0

n∑︂

i=1

[zi(k)− ui(k)], (3.15a)

s.t. 0 ≤ si(k) ≤ 1, (3.15b)

si(0) ≥ zi(0), (3.15c)

si(k) ≥ zi(k)− zi(k − 1), k > 0, (3.15d)
∑︂

k

si(k) = 1, (3.15e)

zi(k) = 0, θk < ti, (3.15f)

zi(k) = 1, θk = ti, (3.15g)

0 ≤ ui(k) ≤ zi(k) ≤ 1, (3.15h)

ui(k), zi(k) ∈ {0, 1}, (3.15i)

θ

N∑︂

k=0

ui(t) = τi, (3.15j)

n∑︂

i=1

riui(k) ≤ P, for all k ≥ 0 . (3.15k)

Problem Eq. (3.15) can be simply implemented as a MILP problem Eq. (2.23) by taking

η⊤ =

[︃
z1(0) · · · z1(N) · · · zn(0) · · · zn(N) u1(0) · · · u1(N) · · · un(0) · · · un(N) s1(0) · · · s1(N) · · · sn(0) · · · sn(N)

]︃
,

f⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 −1 · · · −1 · · · −1 · · · −1 0 · · · 0 · · · 0 · · · 0

]︃
,



30 Part I, Chapter 3 — The optimal control framework

lb⊤ =

[︃
0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,

ub⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1

]︃
,

ui(k), zi(k) ∈ Z, ∀i = 1, . . . n, k = 0, . . . , N,

zi(ti) = 1 → lb(k) = 1, for k = (i− 1) · n+ ti,∀i = 1, . . . n,

zi(t) = 0,∀t < ti → ub(k) = 0,∀ 1 ≤ k < (i− 1) · n+ ti, ∀i = 1, . . . n,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
M · · · [0] [0] · · · [0]

. . . · · · [0]
−1

...
. . .

...
...

. . .
...

...
. . .

...

−1
[0] · · · M [0] · · · [0] [0] · · · . . .

−1
−1 1

. . . · · · [0]
. . . · · · [0] [0] · · · [0]

−1 1

...
. . .

...
...

. . .
...

...
. . .

...

−1 1

[0] · · · . . . [0] · · · . . . [0] · · · [0]
−1 1

r1 rn

[0] · · · [0]
. . . · · · . . . [0] · · · [0]

r1 rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

...

0
...
0

0
...
0

...

0
...
0

P
...
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1

[0] · · · [0] [0] · · · [0]
. . .

1 · · · 1

θ · · · θ

[0] · · · [0]
. . . [0] · · · [0]

θ · · · θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1

τ1
...
τn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where M is the (N + 1)× (N + 1) matrix defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0

. . .

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

3.3 The variable-rate case

In this Section, the optimal control problem is specified for the variable-rate (VR) case. The supply ui(t) can be
any (piecewise-continuous) function; Eq. (3.1i) is given by Eq. (2.10), that is 0 ≤ ui(t) ≤ 1.

A first possibility is minimizing Eq. (3.1a) directly, that is,

min JV R(δ1, δ2 . . . , δn).

For fixed δ1, δ2 . . . , δn, the problem of determining ui from completion times ti + δi can be formulated as a linear



3.3 The variable-rate case 31

feasibility problem, which can be solved easily.
Another possibility is considering problem Eq. (3.11) with functional JV R(u1, . . . , un) =

∑︁
i ωi and without

the ui(t) ∈ {0, 1} constraint, as reported next. Compared to the previous possibility, this is harder because the
problem is not convex.

min
z1,...,zn,u1,...,un

JV R(u1, . . . , un, z1, . . . , zn) =

n∑︂

i=1

ωi =

n∑︂

i=1

∫︂ ∞

0

[zi(t)− ui(t)] dt, (3.16a)

s.t. zi(t) =

{︃
1 , if t ∈ [ti, ti + δi] ,
0 , otherwise ,

(3.16b)

0 ≤ ui(t) ≤ zi(t) ≤ 1, (3.16c)

zi(t) ∈ {0, 1}, (3.16d)
∫︂ ∞

0

ui(t) dt = τi, (3.16e)

n∑︂

i=1

riui(t) ≤ P, for all t ≥ 0 . (3.16f)

3.3.1 Discrete-time implementation: Mixed integer programming using the LC and
SU techniques

For computation, problem Eq. (3.16) and the class of functions ui(t) ∈ [0, 1] needs to be discretized. Note that,
after discretization, ui(t) actually becomes a piecewise-constant function: assuming a sampling period θ and N+1
time-slots, the possible discontinuity points are given by kθ, for k = 0, 1, . . . , N .

Again, constraint Eq. (3.16b) can be rewritten based on the LC or the SU forms described in subsection 3.2.1.
The formulations are exactly the same of problems Eq. (3.13) and Eq. (3.15), respectively; the only difference is
that constraint ui(k) ∈ {0, 1} is replaced by 0 ≤ ui(k) ≤ 1. Hence, these formulations are omitted.

3.3.2 A relaxed problem to get a heuristic solution efficiently

As implementing the exact optimal control problems requires Mixed-Integer Linear Programming for any of the
considered supply strategies, these problems cannot be solved efficiently for very large instances.

A heuristic solution for the variable rate case is achieved by considering the integral functional

Jrlx(u1, . . . , un) =

∫︂ ∞

0

n∑︂

i=1

xi(t)dt, (3.17)

under constraints Eqs. (3.1b) to (3.1h), resulting in the so-called relaxed problem, that is

min
u1,...,un

Jrlx(u1, . . . , un) =

∫︂ ∞

0

n∑︂

i=1

xi(t)dt, , (3.18a)

s.t. ẋi(t) =
1

τi
[di(t)− ui(t)] , (3.18b)

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(3.18c)

0 ≤ ui(t) ≤ 1 , for all t ≥ 0, (3.18d)

xi(0) = 0 , (3.18e)

xi(t) ≥ 0 , for all t ≥ 0, (3.18f)

xi(t) = 0 , for all t ≥ ti + δi, (3.18g)
n∑︂

i=1

riui(t) ≤ P, for all t ≥ 0 , (3.18h)

which is convex and linear. Indeed, if uA1, . . . , uAn and uB1, . . . , uBn are admissible solutions associated with the
costs Jrlx,A and Jrlx,B , respectively, then, for all α, β ≥ 0 with α+β = 1, the solution αuA1+βuB1, . . . αuAn+βuBn

is admissible and gives the cost αJrlx,A+βJrlx,B . Then, it can be implemented as a Linear Programming problem
and easily solved even for large instances.



32 Part I, Chapter 3 — The optimal control framework

There are two main reasons to solve the relaxed problem:

• the solution is a heuristic solution (in general non–optimal in terms of ω and δ) for the variable rate VR
problem;

• the optimal cost J∗
rlx =

∫︁∞
0

∑︁n
i=1 x

∗
i (t)dt is a lower bound for the optimal cost ω∗ for the NI , IT , and VR

supplying strategies, because of Theorem 2.2. This is specified by the next Proposition.

Proposition 3.2:

The minimum value of Eq. (3.18a) under constraints Eqs. (3.18b) to (3.18h) is a lower bound for the optimal
cost

∑︁
i ωi, for all the three cases NI, IT and VR.

Remark 3.4:
Some other relaxations could be considered.

• Consider problem Eq. (3.6), where the optimal non-interruptible problem is formulated by means of the
Linear-Combination (LC) constraints. Relax Eq. (3.6k) into 0 ≤ bih ≤ 1 (see Fig. 3.7, top).

• Consider problem Eq. (3.9), where the optimal non-interruptible problem is formulated by means of the
Start–ups (SU) constraints. Relax Eq. (3.9i) into 0 ≤ ui(t) ≤ 1 (see Fig. 3.7, bottom).

In both cases, the supply is a special variable-rate supply and the problem becomes a linear programming one;
the solution is a non-optimal heuristic for the VR case, and a lower bound for the optimal waiting time ω∗ of
the original NI supply strategy.

ti ti + τi ti +∆i ti + δi

1
∆7 = 7θ

∆9 = 9θ

∆12 = 12θ

bi7 = 0.25 bi12 = 0.25

bi9 = 0.5

t

Solution when the LC constraints in the NP optimal problem are relaxed
(ui(t) = bi7 · u(7)i (t) + bi9 · u(9)i (t) + bi12 · u(12)i (t), with bi7 + bi9 + bi12 = 1)

ti ti + τi ti +∆i ti + δi

1
∆7 = 7θ

∆9 = 9θ

∆12 = 13θ

si(8) = 0.5

si(14) = 0.25si(10) = 0.25

t

Solution when the SC constraints in the NP optimal problem are relaxed
(with transitions such that si(k) = ui(k + 1)− ui(k) > 0 at k ∈ {8, 10, 14},

with si(8) + si(10) + si(14) = 1)

Figure 3.7: Examples of solution when relaxing the binary variables in Eq. (3.6) (top) and Eq. (3.9) (bottom), to continuous
variables. Some special types of variable-rate supply are obtained. Red: demand profile di(t); blue: supply function ui(t). On the

top image, the yellow, green, and orange dashed lines represent bi7u
(7)

i (t), bi9u
(9)

i (t), and bi12u
(12)

i (t), respectively. On the bottom
image, the yellow, green, and orange dots represent si(8), si(10), and si(14), respectively.

This relaxation could be potentially applied to the LC and SU implementations in problems Eq. (3.13) and
Eq. (3.15), by converting all the integer variables to continuous variables. However, this is not useful, because
the corresponding relaxed optimal solutions would be the ones in which zi(t) ≡ ui(t), and this only ensures
that the lower bound of ω∗ is 0.



3.3 The variable-rate case 33

Moreover, consider the exact optimal IT problem Eq. (3.11), where ui(t) are integer and the contiguity con-
straints on zi(t) are imposed too, which makes the problem harder to solve. A lower bound for the optimal NI
cost, which is closer to it compared to the optimum of the relaxed problem Eq. (3.18), could be achieved also
by considering the relaxed problem Eq. (3.18) with the additional constraint ui(t) ∈ {0, 1}. While this results
in a MILP problem too, it is easier to solve, because fewer integer variables are required.

Discrete-time implementation: Linear programming

After discretization, problem Eq. (3.18) can be simply implemented as a LP problem Eq. (2.22) by taking

η⊤ =

[︃
x1(0) · · · x1(N) · · · xn(0) · · · xn(N) u1(0) · · · u1(N) · · · un(0) · · · un(N)

]︃
,

f⊤ =

[︃
1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0

]︃
,

lb⊤ =

[︃
0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0

]︃
,

ub⊤ =

[︃
+∞ · · · +∞ · · · +∞ · · · +∞ 1 · · · 1 · · · 1 · · · 1

]︃
,

A =

⎡
⎢⎣

r1 rn

[0] · · · [0]
. . . · · · . . .

r1 rn

⎤
⎥⎦, b =

⎡
⎢⎣

P
...
P

⎤
⎥⎦,

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

τ1M · · · [0]
. . . · · · [0]

θ

...
. . .

...
...

. . .
...

θ

[0] · · · τnM [0] · · · . . .

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θd1(0)
...

θd1(N)

...

θdn(0)
...

θdn(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where M is the (N + 1)× (N + 1) matrix defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0

. . .

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

3.3.3 A greedy strategy for the relaxed problem

Sometimes, even though the relaxed problem Eq. (3.18) can be solved quite efficiently, for very large instances
of the problem there might still be some issues to find a solution. Then, the VR problem can be approached by
applying the so-called greedy strategy, in which the problem is solved iteratively at each time t by finding the
control u(t) that minimizes the instantaneous derivative of the cost function inside the integral Eq. (3.17) instead
of the integral itself.

While greedy strategies are not optimal, in general, there are still three advantages to adopting this approach:

• the (relaxed) greedy strategy is amenable for real-time implementation, because no knowledge of future data
is required;

• it can be used to provide upper and lower bounds for the optimal strategies;

• it has very low complexity and can be implemented recursively, even for very large problems.



34 Part I, Chapter 3 — The optimal control framework

The (relaxed) greedy strategy to be solved at generic time t is formulated as follows

min
u1(t),...,un(t)

n∑︂

i=1

1

τi
[di(t)− ui(t)], (3.19a)

s.t. ẋi(t) =
1

τi
[di(t)− ui(t)], (3.19b)

xi(t) ≥ 0, for all t > 0, (3.19c)

xi(t) = 0, if t = 0, (3.19d)

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(3.19e)

0 ≤ ui(t) ≤ 1, (3.19f)
n∑︂

i=1

1

τi
riui(t) ≤ P. (3.19g)

Note that Eq. (3.19a) means that the point-wise sum of the derivatives
∑︁
ẋi is minimized.

Eq. (3.19c) imposes that only active (unfulfilled) requests are considered (see Proposition 2.1); the control is
forced to be 0 otherwise. Moreover, constraints Eqs. (3.19b) and (3.19c) imply that it is necessary to keep track
of variable xi(t), to ensure that ẋi(t) does not make the next xi(t+ dt) become negative.

Overall, the greedy strategy is not optimal for the corresponding integral cost

Jrlx,grd =

n∑︂

i=1

∫︂ ∞

0

xi(t)dt, s.t. Eqs. (3.19b) to (3.19g).

Hence, in this form, it cannot be considered as a lower bound for the optimal cost of the considered supply
strategies. Despite this, from numerical simulations, it turns out that it achieves results quite close to the
optimum of Eq. (3.17), so that it can be considered a good “reference value”.

Discrete-time implementation: Linear programming

After discretization, problem Eq. (3.19) can be simply implemented as a LP problem Eq. (2.22) by taking

η⊤ =

[︃
x1(k) · · · xn(k) u1(k) · · · un(k)

]︃
,

f⊤ =

[︃
1 · · · 1 0 · · · 0

]︃
,

lb⊤ =

[︃
0 · · · 0 0 · · · 0

]︃
,

ub⊤ =

[︃
+∞ · · · +∞ 1 · · · 1

]︃
,

A =
[︁
0 · · · 0 r1 · · · rn

]︁
, b =

[︁
P

]︁
,

Aeq =

⎡
⎢⎣
τ1 θ

. . .
. . .

τn θ

⎤
⎥⎦, beq =

⎡
⎢⎣
θd1(k) + τ1x1(k − 1)

...
θdn(k) + τnxn(k − 1)

⎤
⎥⎦ ,

A further relaxation resulting in an optimal greedy strategy

A further relaxation to the exact optimal problem is achieved by replacing the constraint Eq. (3.19f) from the
relaxed greedy problem Eq. (3.19) with the condition ui(t) ≥ 0. Despite the new problem has no direct relevance,
now the results in [55] can be used to claim global optimality of the greedy strategy in this case; then, the optimal
value of the corresponding integral cost is a lower bound to the cost of any strategy applied to the admission
problem.

While constraint xi(t) ≥ 0 is fundamental, because it guarantees that the request is satisfied without supplying
more resource than requested, see Propositions 2.1 and 2.2, it is not included in [55]. Then, this constraint xi(t) ≥ 0



3.4 Recap of the relations between the optimal costs and their lower bounds 35

can be enforced by introducing a penalization term in the cost

Jpen =

∫︂ ∞

0

n∑︂

i=1

g(xi(t))dt =

∫︂ ∞

0

n∑︂

i=1

max{−µxi(t);xi(t)}dt, (3.20)

with large positive µ.

Proposition 3.3:

The greedy strategy Eq. (3.19), after replacing Eq. (3.19f) by ui(t) ≥ 0, is globally optimal, since it minimizes
both the costs Jpen (Eq. (3.20)) and

∫︁∞
0

∑︁
i xi(t)dt.

Remark 3.5:
In general, penalization introduces an approximation. In this case, the constraint xi(t) ≥ 0 is exactly satisfied,
since xi(t) does not become negative.

3.4 Recap of the relations between the optimal costs and their lower
bounds

To recap, because of Eq. (3.2) and Propositions 3.2 and 3.3, the optimal costs of the presented problems (here
marked with superscript ∗) fulfill the following relations:

J∗
rlx,grd(u≥0) = J∗

rlx(u≥0) ≤ J∗
rlx(0≤u≤1) ≤ J∗

V R ≤ J∗
IT ≤ J∗

NI , (3.21)

in which the parentheses denote the level of relaxation of ui(t) in the corresponding integral costs. Specifically,
denote X =

∫︁∞
0

∑︁
i xi(t)dt and ω =

∑︁
i ωi(t) the two considered objective functions. Then, the first equality of

Eq. (3.21) results from Proposition 3.3. The first inequality holds because the corresponding problems have the
same cost function X, but different constraints on ui, and the latter is more restrictive. The second inequality
holds because the corresponding problems have the same constraints on ui, but different objective functions:
indeed, because of Theorem 2.2 and Proposition 3.2, X∗

rlx,(0≤u≤1) ≤ ˜︁X∗
V R ≤ ω∗

V R, where
˜︁X∗
V R is the value of X

corresponding to the exact solution minimizing ω in the VR case, which is not optimal in general. The third and
fourth inequalities follow from Eq. (3.2).

Recall that, for the relaxed problem Eq. (3.18) minimizing X with 0 ≤ ui(t) ≤ 1 and the same solved applying
a greedy approach, the relation between the corresponding final costs is just

J∗
rlx(0≤u≤1) ≤ J̄rlx,grd(0≤u≤1), (3.22)

where J∗
rlx(0≤u≤1) is optimal, but J̄rlx,grd(0≤u≤1) is not.

Another useful relations consider the relaxations of the exact NI case described in Remark 3.4, using the LC
and SU constraints. Denote J∗

NI,LC(0≤u≤1) and J
∗
NI,SU(0≤u≤1) the optimal cost of the two relaxed problems. The

following relations hold:
J∗
rlx(0≤u≤1) ≤ J∗

NI,LC(0≤u≤1) ≤ J∗
NI , (3.23)

J∗
rlx(0≤u≤1) ≤ J∗

NI,SU(0≤u≤1) ≤ J∗
NI , (3.24)

where, in both cases, both inequalities hold because the corresponding problems have the same cost function X,
but different constraints on u, with the latter being a special, more restrictive VR supply (see Remark 3.4).

Finally, consider the relaxed problem Eq. (3.18) with the additional constraint ui(t) ∈ {0, 1}, as described in
Remark 3.4, and denote J∗

rlx(ui(t)∈{0,1}) the optimal cost of this relaxed problem. The following relation holds:

J∗
rlx(0≤u≤1) ≤ J∗

rlx(ui(t)∈{0,1}) ≤ J∗
IT , (3.25)

where the first inequality holds because the corresponding problems have the same cost function X, but different
constraints on u, with the latter being more restrictive. The second inequality holds because the corresponding
problems have the constraints on u, but different cost functions X and ω, respectively: for the same reasons
expressed above, X∗

rlx,(ui(t)∈{0,1}) ≤ ˜︁X∗
IT ≤ ω∗

IT .



36 Part I, Chapter 3 — The optimal control framework

Example 3.1:
Consider the case of n = 7 power requests. Consider an optimization horizon of 8 hours, and a discretization
of θ = 10 minutes corresponding to N = 48 time slots. The randomly generated demands are described by the
sets ri ∈ {0.6, 0.7, 0.9, 1, 1.4, 1.7, 2.3} kW , τi ∈ {15, 11, 12, 13, 13, 14, 10} and ti ∈ {6, 5, 4, 1, 5, 8, 2}
time slots. The maximum overall power is P = 3 kW. In Fig. 3.8, the optimal solution for each considered
problem is reported.

(a) The exact optimal NI solution (JNI = 69). (b) The exact optimal IT solution (JIT = 64). (c) The exact optimal VR solution (JV R = 48).

(d) The relaxed optimal solution, for
0 ≤ ui ≤ 1 (Jrlx = 40.7098).

(e) The relaxed greedy strategy solution, for
0 ≤ ui ≤ 1 (Jrlx,grd = 43.7291).

(f) The relaxed optimal solution, for ui ≥ 0, equal
to the greedy strategy (Jrlx = Jrlx,grd = 40.2180).

Figure 3.8: The solutions for Example 1. Dashed red: di(t), blue: ui(t), black: xi(t). The time axes and costs J are expressed in
terms of time slots (θ = 10 minutes).

First of all, note that the relations Eqs. (3.21) and (3.22) are satisfied. The supply rate profiles ui(t) in subfigure
(a) are just a delayed version of the requests di(t); also, there are interruptions/resumptions in subfigure (b),
and there are rate variations in the other subfigures. Note that in subfigure (f), ui(t) possibly exceeds 1, as the
rate is unlimited: this does not happen at the beginning of the requests, because of the imposition of constraints
xi(t) ≥ 0. Finally, regarding xi(t), note that these have a trapezoidal profiles for the case in subplot (a), i.e.,
in the non-interruptible case, while, from subfigure (d), (e), (f), where ui(t) can vary over time, the more the
supply profiles ui(t) differ from the requested (possibly delayed) ones, the less the profiles are trapezoidal. In
any case, the smaller the waiting times for the fulfillment of the requests are, the smaller are the areas under
xi(t), and these are actually 0 when no delay is applied. xi(t) are not shown in subfigure (b), (c), as they are
not involved in the formulation of the exact IT and VR problems.



CHAPTER4
Online heuristics:

centralized and decentralized solutions

In this Chapter, some online heuristics for the considered NI , IT , and VR problems are presented, which are
both centralized and decentralized. The main reason for adopting online heuristics is that in practice the data
about the requests are not known in advance. Moreover, possible disturbances or time variability of the available
power P and duration τi of the requests can be easily supported. Recall that online strategies cannot guarantee
a-posteriori optimality for all possible demand profiles.

For the centralized strategies, all the data of active users at time t, either requesting or being supplied, are
available for optimization to a central manager. For the decentralized strategies, each supply point is considered
as a decision agent that knows only its local information (ti, ri, τi) and the global system state (P , ytot(t)):
consequently, these have a low computational burden implementation, and are easily scalable and fault-tolerant.

The following strategies will be considered, which are based on well-known methods and some existing works:

• Centralized greedy strategies apply a greedy approach to the presented optimal control problems. They
are very simple to implement, as only the current time is optimized;

• Centralized predictive control strategies apply a predictive control. A similar approach is adopted
in [21, 22], where a LP formulation for the VR case is introduced considering many different objectives.
Compared to the greedy strategies, the optimization is performed over a finite time window;

• Centralized priority queue-based strategies are based on the well-known priority queue-based job
scheduling algorithms. This idea has been applied to charging systems by other works, too [56, 57]. They
require simple computation and the sorting of the elements of a queue;

• Decentralized p-persistent-based strategies are inspired by the well-known p-persistent protocols used
in CSMA. Multiple attempts are performed to admit a request, which occurs at a given probability. As they
mostly require computing probabilities, they are very simple to implement;

• Decentralized reservation variable-based strategies are based on a control law inspired by an enhanced
version of the p-persistent protocol [58, 59] and applied to home energy management systems in [60, 61].
Other than being very simple to implement, the main advantage is that a priority order is created in a
distributed way.

To describe such strategies, the following quantities are introduced:

• The system saturation at time t: σ(t) = ytot(t)/P ∈ [0, 1]. No power is supplied at time t if σ(t) is 0, while
if it is 1, all the system capacity is occupied and no more request can be admitted.

• The portion of the unfulfilled request that has not been supplied yet to user i at time t, ˜︁τi(t) = τi−
∫︁ t

ti
ui(t

′)dt′.

• The set R(t) = {i | ˜︁τi(t) > 0 and ui(t) = 0} of users requesting the resource, but not being supplied.

• The set S(t) = {i | ˜︁τi(t) > 0 and ui(t) > 0} of currently supplied users.

• The set A(t) = R(t) ∪ S(t) of all unfulfilled requests, either being supplied or not.



38 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

ti +∆i ti +∆i + τi

P = ri

t

Impact qi(t) = 1 (ri = rM , τi = τM )

ti +∆i

P = ri

t

Impact qi(t) = 0.1 (ri = rM , τi = τM/10)

ti +∆i ti +∆i + τi

ri

P

t

Impact qi(t) = 0.1 (ri = rM/10, τi = τM )

ti +∆i

ri

P

t

Impact qi(t) = 0.01 (ri = rM/10, τi = τM/10)

Figure 4.1: The impact of the requests, assuming τM = P . The lower the impact, the lower the system is occupied.

• The impact on the system of request i ∈ A(t) at time t

qi(t) = min

(︃
ri˜︁τi(t)
rMτM

, 1

)︃
∈ (0, 1], (4.1)

i.e., the ratio of the energy yet to be supplied (ri˜︁τi(t)) and the maximum possible energy, computed as the
product of rM and τM , the maximum possible values for ri and τi which are assumed to be known from
historical data. Admitting a request with a high impact could affect the scheduling of other requests.

For instance, assume P = rM and a NI power supply strategy and consider Fig. 4.1. Admitting a request
with ri = rM and ˜︁τi = τM (qi = 1) prevents other requests to be admitted for a large amount of time.
Admitting a request with ri = rM and ˜︁τi = τM/10 (qi = 0.1) prevents other requests to be admitted for a
shorter period, while admitting a request with ri = τM/10 and τi = τM (qi = 0.1) reduces a bit the resource
available to others requests for a large amount of time, possibly preventing their admission: in both cases,
the impact on the system is reduced. Finally, admitting a request of ri = rM/10 and ˜︁τi = τM/10 (qi = 0.01)
only reduces the total available power shortly, so the admission of other requests is barely affected.

• The local admission priority, a decreasing function of the impact and the saturation,

πA
i (t) = 1− qi(t)(σ(t))ρA ∈ [0, 1], ∀i ∈ R,

where the exponent ρA is a constant that determines how much πA
i is influenced by the saturation. This

priority is maximum at full power availability (regardless of the impact), and, as the saturation increases,
it differentiates by qi(t) (higher impact means lower priority).

• The local interruption priority, an increasing function of the impact and the saturation,

πI
i (t) = qi(t)(σ(t))

ρI ∈ [0, 1], ∀i ∈ S,

where the exponent ρI is a constant that determines how much πI
i is influenced by the saturation. This

priority is minimum at full power availability (regardless of the impact), and, as the saturation increases, it
differentiates by qi(t) (lower impact means lower priority).

A detailed description of the heuristics for the considered supply strategies is reported in the next Sections.
For some of them, a basic version is first introduced, which aims at scheduling earlier requests first. As in this
way early large power requests might saturate the network capacity increasing the delay of others, an enhanced
version is also studied, which takes the impact into account.



4.1 The non-interruptible case 39

4.1 The non-interruptible case

In the non-interruptible case, at time t, a request i ∈ S(t), once admitted, cannot be rescheduled in future
optimizations. If a user i is set to switch on at t′, i.e., ui(t′) > 0, then ui(t) is forced to be 1 up to t′ + τi. Thus,
only the admission policy is to be specified.

4.1.1 The greedy heuristic (NI strategy)

For the centralized greedy heuristic for the NI supply strategy, an optimization problem is solved at each tk = kθ,
considering only the active requests i ∈ A(tk). Two possibilities are proposed.

A first possibility is considering the problem introduced in subsection 3.3.3, adapting it by imposing ui(t) ∈
{0, 1}, and that if ui(t) switches on at t′, then it remains 1 up to t′ + τi, that is

min
u1(t),...,un(t)

n∑︂

i=1

ẋi(t) =

n∑︂

i=1

1

τi
[di(t)− ui(t)], (4.2a)

s.t. ẋi(t) =
1

τi
[di(t)− ui(t)], (4.2b)

xi(t) ≥ 0, for all t > 0, (4.2c)

xi(t) = 0, if t = 0, (4.2d)

di(t) =

{︃
1 if ti ≤ t ≤ ti + τi ,
0 otherwise,

(4.2e)

ui(t) ∈ {0, 1}, (4.2f)

Uk
i ≤ ui(t) ≤ 1, (4.2g)
n∑︂

i=1

1

τi
riui(t) ≤ P, (4.2h)

where

Uk
i =

{︄
1, if 0 < ˜︁τi(k) < τi,

0, otherwise,

in Eq. (4.2g), is a known quantity introduced to ensure that the supply, once started, cannot be interrupted until
the request is fulfilled. Indeed, before the admission, ˜︁τi = τi, so that Uk

i = 0, and after the request is fulfilled,
˜︁τi = 0, so that Uk

i = 0, again. In between these two events, when the supplying is non-zero, 0 < ˜︁τi < τi, and then
Uk
i = 1, so that this imposes ui = 1.

Remark 4.1:
Constraint Eq. (4.2b) can be discretized as

xi(k)− xi(k − 1)

θ
=

1

τi
[di(k)− ui(k)] ,

where di(k) and xi(k− 1) are known from the optimization results of the previous time slot k− 1, and thus are
not decision variables.
The objective function Eq. (4.2a) at time t is the sum of the derivative of each xi(t): considering its discretiza-
tion, it holds that

arg min
∑︂

i

xi(k)− xi(k − 1)

θ
= arg min

∑︂

i

xi(k) = arg min
∑︂

i

1

τi
[di(k)− ui(k)] = arg min

∑︂

i

−ui(k)
τi

.

Problem Eq. (4.2) can be easily discretized and implemented as a MILP problem Eq. (2.23) by taking

η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)
...

xn(k)
u1(k)

...
un(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, lb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
Uk
i
...
Uk
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ub =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+∞
...

+∞
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ui(k) ∈ Z,



40 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

A =
[︁
0 · · · 0 r1 · · · rn

]︁
, b =

[︁
P
]︁
, Aeq =

⎡
⎢⎣
1 · · · 0 θ

τ1
· · · 0

...
. . .

...
...

. . .
...

0 · · · 1 0 · · · θ
τn

⎤
⎥⎦, beq =

⎡
⎢⎢⎣

x1(k − 1) + d1(k)θ
τ1

...

xn(k − 1) + dn(k)θ
τn

⎤
⎥⎥⎦ .

A second possibility is applying a greedy approach to problem Eq. (3.11), by minimizing
∑︁

i∈A zi(t) − ui(t)
at time t, and imposing ui(t) ≤ ˜︁τi(t) instead of Eq. (3.11e), to take into account the quantity of resource already
supplied in the previous time-slots. Indeed, to consider the lack of knowledge of the future, the integral in
Eq. (3.11e) is to be evaluated only up to the current time t and the constraint becomes an inequality, that is

ui(t) +

∫︂ t

0

ui(t
′) dt′ ≤ τi, where ˜︁τi(t) = τi −

∫︂ t

0

ui(t
′) dt′.

Moreover, note that each zi(t) is no more a decision variable, as it can be forced to be 1 when t ≥ ti and as
long as ˜︁τi(t) > 0.

Then, the problem becomes

min
u1(t),...,un(t)

∑︂

i∈A
zi(t)− ui(t), (4.3a)

s.t. zi(t) =

{︃
1 , if t ≥ ti and ˜︁τi(t) > 0 ,
0 , otherwise ,

(4.3b)

Uk
i ≤ ui(t) ≤ zi(t) ≤ 1, (4.3c)

ui(t) ∈ {0, 1}, (4.3d)

ui(t) ≤ ˜︁τi(t), (4.3e)
n∑︂

i=1

riui(t) ≤ P, (4.3f)

where Eq. (4.3c) imposes non-interruption of the supply, as in the previous case.

Remark 4.2:
The objective function Eq. (4.3a) can be easily discretized, and, as zi(k) is known, it holds that

arg min
∑︂

i

zi(k)− ui(k) = arg min
∑︂

i

−ui(k).

Problem Eq. (4.2) can be easily discretized and implemented as a MILP problem Eq. (2.23) by taking

η =

⎡
⎢⎣
u1(k)

...
un(k)

⎤
⎥⎦ , f =

⎡
⎢⎣
−1
...
−1

⎤
⎥⎦ , lb =

⎡
⎢⎣
Uk
i
...
Uk
i

⎤
⎥⎦ , ub =

⎡
⎢⎣
1
...
1

⎤
⎥⎦ , ui(k) ∈ Z, Aeq, beq : N/A,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
...

. . .
...

0 · · · 1

1 · · · 0
...

. . .
...

0 · · · 1

r1 · · · rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1(k)
...

zn(k)

˜︁τ1(k)
...

˜︁τ1(k)
P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ˜︁τi(k) = τi −
k−1∑︂

h=0

ui(h), zi(k) =

{︄
1, if kθ ≥ ti and ˜︁τi(k) > 0,

0, otherwise.

4.1.2 The predictive control heuristic (NI strategy)

For the predictive control heuristic for the NI supply strategy, the optimization problem Eq. (3.4) is solved at
each tk = kθ over a finite time horizon Tpc, considering only the non-admitted requests i ∈ R(tk) occurred up to
the current time tk. Then, at t̂+Θ the process is repeated, taking into account the variations of the system.

This is different from the greedy strategy described in subsection 4.1.1, as in that case only the instantaneous
value of the cost in a given time slot is optimized. Again, the solution is not guaranteed to be optimal (a-posteriori),
considering the entire time horizon.



4.1 The non-interruptible case 41

To distinguish the variables of the sub-problem to be solved at generic time tk, denote by û(t) the normalized
supply power profile to be optimized in the horizon [tk, tk + Tpc], and by u(t) the actual one, in the entire time
horizon [0,∞). Initially, it is assumed that ui(t) = 0 for all i = 1, . . . , n and for all t ≥ 0.

First of all, if the release time ti of request i ∈ R(tk) occurs before the current time tk and the supply has not
started yet at time tk, the request has to be considered in the optimization. However, its admittance cannot occur
in the “past”, i.e., for t < tk: the delay tk − ti is fixed and is experienced in any case. Then, for computation,
considering the same request occurring at release time t̂i = tk is equivalent when minimizing the overall delay.
Clearly, supposing that the supply is scheduled to start at tk + ∆̂i, the term t̂i − ti = tk − ti is to be considered
for the computation of the actual delay, which is ∆i = ∆̂i + (tk − ti). Then, all the requests to be considered in
the optimization problem at time tk can use the same release time t̂i = tk.

Moreover, once the “temporary” optimal solution û∗i (t) is obtained by solving the sub-problem at time tk, if
the admittance of request i ∈ R(tk) is scheduled in the [tk; tk +Θ) time interval, i.e., if the optimized admission
delay is ∆̂i < Θ, the supply is confirmed and the actual supply profile is updated as

ui(t)← ûi(t) = 1, for t ∈ [tk + ∆̂i; tk + ∆̂i + τi), if ∆̂i < Θ;

recall that the actual admission delay is ∆̂i + tk − ti.
A request, if it is scheduled to be admitted before tk +Θ, is removed from the set R(tk) and therefore it will

not be considered again for further optimizations, to support the contiguity constraints on ui(t). Still, its (known)
assigned supply profile ui(t) must be taken into account in Eq. (3.4h) for the successive optimizations, so that the
constraint becomes

∑︂

i∈R(tk)

riûi(t) ≤ P (t) = P −
n∑︂

i=1

riui(t), (4.4)

where the known time-varying P (t) is to be used instead of P .

The problem to be solved at each tk becomes

min

∫︂ tk+Tpc

tk

∑︂

i∈R(tk)

x̂i(t)dt,

s.t. ẋ̂xi(t) =
1

τi
[d̂i(t)− ûi(t)],

d̂i(t) =

{︃
1 if tk ≤ t ≤ tk + τi ,
0 otherwise,

0 ≤ ûi(t) ≤ 1 , for all tk ≤ t ≤ tk + Tpc,

x̂i(tk) = 0 ,

x̂i(t) ≥ 0 , for all tk ≤ t ≤ tk + Tpc,

x̂i(t) = 0 , for all tk + δ̂i ≤ t ≤ tk + Tpc,

∑︂

i∈R(tk)

riûi(t) ≤ P (t) = P −
n∑︂

i=1

riui(t), for all tk ≤ t ≤ tk + Tpc ,

ûi(t) =

{︃
1 , if t ∈ [tk + ∆̂i, tk + ∆̂i + τi] ,
0 , otherwise .

Discrete-time implementations using the Linear Combination (LC) and Start–Ups (SU) techniques, as reported
in subsection 3.1.1, results in a Mixed-Integer-Linear-Programming problem.

4.1.3 The priority queue-based heuristic (NI strategy)

In the centralized priority queue-based heuristic for the NI supply strategy, new power requests are sent to a
central manager and inserted in an admission queue (storing requests i ∈ R(t)).

At the end of each time-slot, the central manager sorts the elements of the queue according to a given criterion:
then, as long as there is energy availability, the requests are admitted in the given order.

When evaluating the requests one at a time, it may happen that some of them cannot be fulfilled because
there is not enough available power. If a request requires more power than the available one, i.e., if ri > P − ytot,
the request is ignored, and the next one in the queues is evaluated.

The ordering method could be



42 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

ti ti + τi ti +∆i ti + δi

1

ri try to be admitted

ui(t)di(t)

ADMITTED

t

Figure 4.2: The p-persistent-based strategy for the non-interruptible NI case.

• First In First Out (FIFO);

• Last In First Out (LIFO);

• Larger Requested Power First (LPF);

• Smaller Requested Power First (SPF);

• Larger Requested Duration First (LDF);

• Smaller Requested Duration First (SDF);

• Larger Requested Energy First (LEF);

• Smaller Requested Energy First (SEF);

• Larger Remaining Duration First (LRDF);

• Smaller Remaining Duration First (SRDF);

• Larger Remaining Energy First (LREF);

• Smaller Remaining Energy First (SREF).

Note that, by the definition of impact qi(t), the SREF sorting method prioritizes requests with a lower impact.

4.1.4 The p-persistent-based heuristic (NI strategy)

In the decentralized p-persistent-based heuristic for the NI supply strategy, each user i ∈ R(t) whose request has
not started being supplied yet continuously checks the power availability, at every k. As soon as there is enough
available power for fulfilling its request, i.e., if

∑︂

j

yj(k) + ri ≤ P,

it is eventually admitted with an admission probability pAi (t), see Fig. 4.2. This can be implemented by generating
a real random number rand ∈ [0, 1]: if rand ≤ pAi (t), the supply starts; otherwise, another attempt is performed
at the next time-slot. In Fig. 4.3 the flow-chart of the p-persistent strategy is reported.

The admission probability pAi (t) could be

• constant and equal to 1, i.e., pAi (t) = 1. In this case, the supply starts immediately, as soon as there is
power availability. In CSMA, this variation is known as 1-persistent. The main problem is that, when the
system is congested, the immediate admission of requests with high ri and τi, makes it less likely to reduce
the saturation, preventing other requests to be admitted, and increasing their waiting times.

• equal to the admission priority of the request, i.e., pAi (t) = πA
i (t) (recall that the priority is a number

between 0 and 1, hence it could be a probability). In this enhanced version, if the system saturation is low,
the request is very likely to be admitted immediately, regardless of its impact on the system; otherwise, if
the saturation is high, requests with low impact are way more likely to be admitted compared to those with
high impact, for which the admission priority is close to zero.

4.1.5 The reservation-variable-based heuristic (NI strategy)

In the decentralized reservation variable-based heuristic for the NI supply strategy, each user i ∈ R(t) whose
request has not started being supplied yet is assigned an integral variable αi(t) ∈ R.

A local dynamic mechanism processes this variable according to the control law:

{︄
α̇i(t) = µi(t) · (ri − αi(t)) · (1− σ(t))ρ, ∀i ∈ R(t),
αi(ti) = 0,

(4.5)

where µi(t) is a non-negative function of time and ρ a given positive parameter.
Variable αi(t) is initialized with 0 and starts increasing as soon as the request starts at ti. Its growth at each

time t depends on µ(t) and on the saturation σ(t) = ytot(t)/P ∈ [0, 1]. In particular, on the one hand, the term
(1− σ(t))ρ ensures that the more the current total load ytot(t) is high, the less αi(t) grows. Eventually, when the
system is fully loaded, there is no increase. On the other hand, a larger µi(t) means a faster variation; depending



4.1 The non-interruptible case 43

Start of request i
at θk = ti

yi(k)← 0

∑
j
yj(k) + ri ≤ P ?

rand ≤ pAi (k) ?

yi(k)← ri

∑k

h=0
yi(k) > riτi ?

yi(k)← 0

Request i fulfilled

k ← k + 1

k ← k + 1

check power availability

yes: check if admitted

yes: request admitted

check if fulfilled

yes: stop the supply

no

no

no

continue the supply

make another attempt

Figure 4.3: Flow-chart of the p-persistent-based strategy for the non-interruptible NI case.

on its specification, it could be used to differentiate the behavior of different requests. The term ri − αi(t) makes
αi converge to ri, as it makes the derivative become zero as αi grows.

Let ξ be a constant close and smaller than 1. As soon as αi(t) reaches a threshold ξri, which is close and
smaller than ri, the request can be admitted, and the supply starts as soon as there is enough available power,
see Fig. 4.4. Note that the time in which the threshold is reached does not depend on ri (unless µi(t) = µi(t, ri)).
In Fig. 4.5 the flow-chart of the reservation-variable-based strategy is reported.

Function µi(t) could be

• constant and equal to some µ0, i.e., µi(t) = µ0;

• proportional to the admission priority of the request, i.e., µi(t) = µ0π
A
i (t). In this enhanced version, if the

system saturation is low, the growth of variable αi is very fast, regardless of the impact of the request on
the system. Otherwise, if the saturation is high, the lower is the impact, the faster αi grows: if the impact is
very high, the growth of αi is very small, which prevents its admittance, so that requests with lower impact
tend to be admitted earlier.

When µi(t) = µ0, the control law is the same for every demanding user, so that the control variables cor-
responding to earlier requests have been increased for a longer time, based on the saturation of the system: a
priority order (based on the requests’ release-times ti) is created among users in a decentralized way and fairness
is assured. Time-varying µ0π

A
i (t) enhances this behavior by prioritizing requests with lower impact.

For implementation, the above-mentioned control law can be easily discretized via the Euler scheme as:

αi(k + 1) = αi(k) + θ̂ · µi(k) · (ri − αi(k)) · (1− σ(k))ρ, (4.6)



44 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

ti ti + τi ti +∆i ti + δi

1

ri
threshold: ξri

ADMITTED

αi(t)

ui(t)di(t)

t

Example with ri = 2, ξ = 0.95, µi(t) = 1, σ(t) = 0.3, and ρ = 2.

ti ti +∆i

ri
ξri

t

αi(t) when varying ri.

ri: 0.5 1 2

ti

ri
ξri

t

αi(t) when varying µi(t) = µi.

µi: 0.5 1 2

ti

ri
ξri

t

αi(t) when varying σ(t) = σ.

σ: 0 0.3 0.6

Figure 4.4: The reservation-variable-based strategy for the non-interruptible NI case. Assuming µi(t) and σ(t) constant, variable

αi(t) for request i evolves according to αi(t) = ri

(︂
1− e−µi(t)(1−σ(t))ρ(t−ti)

)︂
, for t ≥ ti. The growth is faster as µi(t) increases,

and as σ(t) decreases. However, the time in which the threshold ξri is reached does not depend on ri. In practice, the saturation
σ(t) varies over time (as well as µi(t), possibly), so that function αi(t) has a more complex behavior, but still remains an increasing
function approaching ri.

in which θ̂ is the sampling rate at which the control law is updated (e.g. 1 second). Note that θ̂ is independent

from the sampling time θ and θ̂ ≤ θ: a finer resolution is needed to get a behavior closer to the one of the
continuous-time version.

4.2 The interruptible case

In this Section, the real-time heuristics for the interruptible supply strategy are presented.

Now an admitted request can be rescheduled. Indeed, it is imposed that the supply can only be either 0 or ri.
However, the supply can be interrupted and resumed later on, even multiple times.

For all the proposed heuristics, the admission procedure is exactly the same as the corresponding one of the
NI case, with the difference that the control ui(t) is not forced to be 1 for the entire requested duration. The
interruption procedure is to be specified.

Remark 4.3: Fix the interruption instants by dividing the requests into packets of known dura-
tion.
A simple way to support the IT case is to divide each request into packets of fixed duration τpkt or energy Epkt,
as in [62, 56]. In the former case, there are P = floor(τi/τpkt) packets of duration τpkt, and one of duration
τ ′pkt, such that τi = Pτpkt + τ ′pkt. In the latter case, there are P = floor(τiri/Epkt) packets of duration Epkt/ri,
and one of duration τ ′pkt, such that τi = PEpkt/ri + τ ′pkt.
Then, each packet is like an independent request: the new “packet request” p is issued just after the previous
“packet request” p − 1 is fulfilled. The main advantage is that in this way the possible interruption instants
are known.
Then, the greedy, priority queue-based, p-persistent-based, and reservation-variable-based heuristics for the
NI supply strategy can be applied to each packet. See, for instance, Fig. 4.6. This case will be denoted by
IT-packets.



4.2 The interruptible case 45

Start of request i
at θk = ti

αi(k)← 0

yi(k)← 0

Update αi(k)
with (∗)

∑
j
yj(k) + ri ≤ P ?

αi(k) ≥ ξri ?

yi(k)← ri

∑k

h=0
yi(k) > riτi ?

yi(k)← 0

Request i fulfilled

k ← k + 1

k ← k + 1

check power availability

yes: check if admitted

yes: request admitted

check if fulfilled

yes: stop the supply

no

no

no

continue the supply

make another attempt

Figure 4.5: Flow-chart of the reservation-variable-based strategy for the non-interruptible NI case. (∗) refers to control Eq. (4.5).

ti ti + τi ti +∆i ti + δi

1

ri try to be admitted

ui(t)di(t)

ADMITTED INTERRUPTED RESUMED

try to be readmitted
τpkt τpkt

t

ti ti + τi ti +∆i
INTERRUPTED ti + δi

1

ri
threshold: ξri

ADMITTED RESUMED

τpkt τpkt
αi(t)

ui(t)di(t)

t

Example with ri = 2, ϵ = 0.95, µ(t) = 1, σi(t) = 0.3, and ρ = 2.

Figure 4.6: The p-persistent-based (top) and reservation-variable-based (bottom) strategies for the interruptible IT -packets case,
where the requests are divided into packets.



46 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

4.2.1 The greedy heuristic (IT strategy)

The centralized greedy strategy for the IT supply strategy can be formulated exactly as in subsection 4.1.1, in
two ways: the only difference is that now Uk

i = 0 for all i, k as there is no need to impose that once a request is
admitted, it must be supplied at maximum rate without interruptions until it is fulfilled.

4.2.2 The predictive control heuristic (IT strategy)

For the predictive control heuristic for the IT supply strategy, an optimization problem, either the exact problem
Eq. (3.11) or the relaxed problem Eq. (3.18) with the constraint ui(t) ∈ {0, 1}, is solved at each tk = kθ over a
finite time horizon Tpc, considering all the active unfulfilled requests i ∈ A(tk) up to the current time tk. Then,
at t̂+Θ the process is repeated, taking into account the variations of the system.

Compared to the NI case, the admitted requests can be rescheduled, so the requests in A(tk) are considered,
instead of just those in R(tk). Moreover, there is no need to enforce the modified constraint Eq. (4.4) with time-
varying P (t), since the profile of ui(t) for t ≥ tk + Θ is modified by the next optimization performed at tk + Θ.
Indeed, once the “temporary” optimal solution û∗i (t) is obtained by solving the sub-problem at time tk, the actual
supply is set for the [tk; tk +Θ) time interval as

ui(t)← ûi(t), for t ∈ [tk; tk +Θ).

Like in subsection 4.1.2, all the requests to be considered in each optimization problem at time tk can use the
same release time t̂i = tk. Moreover, to take into account the portion of the request that has possibly already
been fulfilled before tk, the duration of the request ˜︁τi(t̂) is to be used in the computations, instead of τi.

The exact problem Eq. (3.11) to be solved at each tk becomes

min
∑︂

i∈A(tk)

ωi =
∑︂

i∈A(tk)

∫︂ tk+Θ

tk

[ẑi(t)− ûi(t)] dt,

s.t. ẑi(t) =

{︃
1 , if t ∈ [tk, tk + δ̂i] ,
0 , otherwise ,

0 ≤ ûi(t) ≤ ẑi(t) ≤ 1,

ûi(t), ẑi(t) ∈ {0, 1},
∫︂ tk+Θ

tk

ûi(t) dt = ˜︁τi,
n∑︂

i=1

riûi(t) ≤ P, for all tk ≤ t ≤ tk +Θ .

Discrete-time implementations using the Linear Combination (LC) and Start–Ups (SU) techniques, as reported
in subsection 3.2.1, result in a Mixed-Integer-Linear-Programming problem.

Alternatively, the relaxed problem Eq. (3.18) to be solved at each tk becomes

min

∫︂ tk+Θ

tk

∑︂

i∈A(tk)

x̂i(t)dt,

s.t. ẋ̂xi(t) =
1

˜︁τi
[d̂i(t)− ûi(t)] ,

d̂i(t) =

{︃
1 if tk ≤ t ≤ tk + ˜︁τi ,
0 otherwise,

0 ≤ ûi(t) ≤ 1 , for all tk ≤ t ≤ tk +Θ,

x̂i(0) = 0 ,

x̂i(t) ≥ 0 , for all tk ≤ t ≤ tk +Θ,

x̂i(t) = 0 , for all tk + δi ≤ t ≤ tk +Θ,
∑︂

i∈A(tk)

riûi(t) ≤ P, for all tk ≤ t ≤ tk +Θ ,

ui(t) ∈ {0, 1}.



4.2 The interruptible case 47

ti ti + τi ti +∆i ti + δi

1

ri try to be admitted

ui(t)di(t)

ADMITTED INTERRUPTED

try to be interrupted

RESUMED

try to be readmitted

t

Figure 4.7: The p-persistent-based strategy for the interruptible IT case.

Discrete time implementation, as reported in subsection 3.3.3, results in a Mixed-Integer-Linear-Programming
problem in both cases, because of ui(t) ∈ {0, 1}.

4.2.3 The priority queue-based heuristic (IT strategy)

The centralized priority queue-based heuristic for the IT supply strategy is similar to the corresponding one for
the NI case described in subsection 4.1.3.

The main difference is that instead of the admission queue, the active queue is used to store the active
requests i ∈ A(t) in the central manager. In the active queue, there are both the non-admitted requests and the
already-admitted requests, which could possibly be rescheduled (interrupted and resumed) at any time.

4.2.4 The p-persistent-based heuristic (IT strategy)

The decentralized p-persistent-based strategy for the IT supply strategy is similar to that for the NI strategy
from subsection 4.1.4: the same mechanism is used to admit a request; however, an interruption probability pIi
is also introduced for each request i ∈ S(t) which is currently being supplied. In the case in which the supply
is interrupted before the request is fulfilled, it is readmitted with probability pAi (t) as soon as there is power
availability, using (again) the same mechanism of the NI case, see Fig. 4.7. Then, this behavior could possibly
be repeated multiple times, i.e., there can be multiple interruptions/resumptions before the request is fulfilled. In
Fig. 4.8 the flow-chart of the p-persistent-based strategy is reported.

The interruption probability pIi could be equal to the interruption priority of the request, i.e., pIi = πI
i (t) (recall

that the priority is a number between 0 and 1, hence it could be a probability). Then, if the system saturation is
low, the request is very likely not to be interrupted immediately, regardless of its impact on the system; otherwise,
if the saturation is high, requests with low impact are less likely to be interrupted compared to those with high
impact, for which the interruption priority is close to one.

4.2.5 The reservation-variable-based heuristic (IT strategy)

The decentralized reservation-variable-based strategy for the IT supply strategy is similar to that for the NI
strategy from subsection 4.1.5: the same mechanism is used to admit a request.

However, just after the admission, at ti +∆i, for each request i ∈ S(t) which is currently being supplied, αi(t)
is updated in a different way, so that it decreases at high saturation:

α̇i(t) = −νi(t) · αi(t) · (σ(t))ρ, ∀i ∈ S(t), (4.7)

where νi(t) is a non-negative function of time and ρ a given positive parameter.
The decrease of this function at time t now depends on νi(t) and on the saturation σ(t) = ytot(t)/P ∈ [0, 1].

In particular, on the one hand, the term (σ(t))ρ ensures that the more the system is saturated, the larger αi(t)
decreases; when no other request is being supplied (σ(t) = 0), there is no decreasing. On the other hand, a larger
νi(t) means a faster decreasing; depending on its specification, it could be used to differentiate the behavior of
different requests. The term αi(t) makes αi converge to 0 from above, as it makes the derivative become zero.

Let ϵ be a constant close and smaller than 1. As soon as αi(t) reaches a threshold (1− ϵ)ri, which is positive
and close to zero, the supply is interrupted. Note that the time in which the threshold is reached does not depend
on ri (unless νi(t) = νi(t, ri)). In the case in which the supply is interrupted before the request is fulfilled,
it is readmitted using again the same mechanism of the NI case, increasing αi(t) with Eq. (4.5) to readmit it
when threshold ξri is reached, see Fig. 4.9. Multiple interruptions/resumptions are possible before the request is
fulfilled. In Fig. 4.10 the flow-chart of the reservation-variable-based strategy is reported.

Function νi(t) could be

• constant and equal to some ν0, i.e., νi(t) = ν0;



48 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

Start of request i
at θk = ti

yi(k)← 0

∑
j
yj(k) + ri ≤ P ?

rand ≤ pAi (k) ?

yi(k)← ri

∑k

h=0
yi(k) > riτi ?

yi(k)← 0

Request i fulfilled

k ← k + 1

k ← k + 1

rand ≤ pIi (k) ? yi(k)← 0

check power availability

yes: check if admitted

yes: request admitted

check if fulfilled

yes: stop the supply

no

no

check if it is to be interrupted

no

yes: interrupt

the supply

no: continue

the supply

make another attempt

try to re-admidt the supply

Figure 4.8: Flow-chart of the p-persistent-based strategy for the interruptible IT case.

• proportional to the interruption priority of the request, i.e., νi(t) = ν0π
I
i (t). In this enhanced version, if the

system saturation is low, the decrease of variable αi is very slow, regardless of the impact of the request
on the system, so that possible interruptions occur after a long time. Otherwise, if the saturation is high,
the higher is the impact, the faster αi decreases, so that requests with high impact tend to be interrupted
earlier.

For the interruption process, note that when νi(t) = ν0, the control law is the same for every request being
supplied, so that the control variables corresponding to earlier requests have been decreased for a longer time,
based on the saturation of the system, so that these are interrupted earlier: a priority order (based on the requests’
(re)-admittance times) is created among users in a decentralized way and fairness is assured. Time-varying ν0π

I
i (t)

enhances this behavior by prioritizing the interruption of the requests with high impact.

For implementation, control law Eq. (4.7) for i ∈ S(t) can be easily discretized via Euler scheme as:

αi(k + 1) = αi(k)− θ̂ · νi(k) · αi(k) · (σ(k))ρ. (4.8)

4.3 The variable-rate case

In this Section, the real-time heuristics for the variable rate supply strategy are presented.

In general, now there is no need to impose that the supply can only be either 0 or ri, nor to impose that the
supply cannot be interrupted.

4.3.1 The greedy heuristic (VR strategy)

The centralized greedy strategy for the VR supply strategy can be formulated exactly as in subsection 4.1.1: the
only difference is that the constraint ui(t) ∈ {0, 1} is replaced by 0 ≤ ui(t) ≤ 1, and Uk

i = 0 for all i, k.



4.3 The variable-rate case 49

ti ti + τi ti +∆i
INTERRUPTED ti + δi

1

ri
threshold: ξri

ADMITTED RESUMED

αi(t)

ui(t)di(t)
threshold: (1− ϵ)ri

t

Example with ri = 2, ξ = ϵ = 0.95, µi(t) = 1, νi(t) = 10, σ(t) = 0.3, and ρ = 2.

ti +∆i int.

ri
ξri

t

αi(t) when varying ri.

ri: 0.5 1 2

ti +∆i int.

ri
ξri

t

αi(t) when varying νi(t) = νi.

νi: 5 10 20

ti +∆i int.

ri
ξri

(1− ϵ)ri t

αi(t) when varying σ(t) = σ.

σ: 0 0.3 0.6

Figure 4.9: The reservation-variable-based strategy for the interruptible IT case. Assuming µi(t), νi(t) and σ(t) constant, variable

αi(t) for request i evolves according to αi(t) = ri

(︂
1− e−µi(t)(1−σ(t))ρ(t−t∗)

)︂
, until it is admitted, for t∗ = ti ≤ t ≤ ti +∆i. Then,

it evolves according to αi(t) = ξrie
−νi(t)(σ(t))ρ(t−t∗∗), from t∗∗ = ti + ∆i until it is interrupted at tint. Then, it evolves again

according to αi(t) = ri

(︂
1− e−µi(t)(1−σ(t))ρ(t−t∗)

)︂
, from t∗ = tint until it is resumed, and so on. When the supplying is non-zero,

the decreasing is faster as νi(t) increases, and as σ(t) increases. However, the time in which the threshold ϵri is reached does not
depend on ri. In practice, the saturation σ(t) varies over time (as well as µi(t) and ν(t), possibly), so that function αi(t) has a
more complex behavior, but still remains an increasing function approaching ri when there is no supply (ui(t) = 0), and a decreasing
function approaching 0 when supply is active (ui(t) = 1).

4.3.2 The predictive control heuristic (VR strategy)

The centralized predictive control strategy for the VR supply strategy can be formulated exactly as in subsec-
tion 4.2.2: the only difference is that the constraint ui(t) ∈ {0, 1} is replaced by 0 ≤ ui(t) ≤ 1.

4.3.3 The priority queue-based heuristic (VR strategy)

The centralized priority queue-based strategy for the VR supply strategy generalizes the corresponding NI and
IT strategies by allowing rate reduction: instead of possibly assigning either a fixed quantity ri of resource, or
none, according to a given criterion, even a fraction of ri can be assigned.

New requests are still sent to a central manager and inserted in the active queue (storing requests i ∈ A(t)),
whose elements are still sorted according to a given order which reflects the impact qi(t)

1. Then, at each time t,
the total available power P is partitioned among all the users in A(t) according to their impact, so that the lower
qi(t), the higher the amount of resource is assigned, which is between 0 and ri.

In particular, at each t, yi(t) = 0 is temporally set for each i ∈ A. The, by evaluating such requests one at a
time in the order given by the queue, the supplied power for each of them is

yi(t) = min

(︄
ri,

P −∑︁j∈S(t), qj(t)<qi(t)
yj(t)∑︁

j∈R(t), qj(t)≥qi(t)
1

qj(t)

1

qi(t)

)︄
.

The meaning is the following.
∑︁

j∈S(t), qj(t)<qi(t)
yj(t) is the total power assigned so far at time t to other requests

(whose impact is lower than qi(t), the one of the request). Then, P −∑︁j∈S(t), qj(t)<qi(t)
yj(t) is the amount of

resource yet to be assigned at time t. The amount of assigned resource to request i is a fraction of it, which

is given by (1/qi(t)) /
(︂∑︁

j∈R(t), qj(t)≥qi(t)
1/qj(t)

)︂
, considering the inverse of qi(t) and the total one among the

1Here, for the SREF sorting method, rM and τM are computed so that they are bigger than the (known) ri > 0 and τi > 0 of the
elements in the queue, to avoid clipping. For the FIFO case, the inverse of the time waited so far is considered as qi(t). qi(t) could
also be redefined for the other sorting methods.



50 Part I, Chapter 4 — Online heuristics: centralized and decentralized solutions

Start of request i
at θk = ti

αi(k)← 0

yi(k)← 0

Update αi(k)
with (∗)

∑
j
yj(k) + ri ≤ P ?

αi(k) ≥ ξri ?

yi(k)← ri

∑k

h=0
yi(k) > riτi ?

yi(k)← 0

Request i fulfilled

k ← k + 1

k ← k + 1
Update αi(k)
with (∗∗)

αi(k) ≤ (1− ϵ)ri ?

yi(k)← 0

check power availability

yes: check if admitted

yes: request admitted

check if fulfilled

yes: stop the supply

no

check if it is to be interrupted

yes: interrupt the supply

no

make another attempt

no: continue the supply

try to re-admidt the supply

Figure 4.10: Flow-chart of the reservation-variable-based strategy for the interruptible IT case. (∗) refers to control Eq. (4.5), and
(∗∗) refers to control Eq. (4.7).

others yet to be processed. The assigned resource is finally clipped to ri. The process is possibly reiterated until
all the power is assigned, or all requests are fulfilled.

4.3.4 The p-persistent-based heuristic (VR strategy)

The p-persistent-based heuristic is not considered for the VR supply strategy.

4.3.5 The reservation-variable-based heuristic (VR strategy)

The decentralized reservation-variable-based strategy for the VR supply strategy sets the power supply yi(t) of
request i as a function of some αi(t). In particular, as the power supply cannot exceed ri, and the total power
supply ytot(t) cannot exceed P , it is imposed that

yi(t) = min(P − ytot(t), ri, αi(t)).

For all active request i ∈ S(t)∪R(t), αi(t) varies according to Eq. (4.5) whenever there is enough resource for
the supplying (αi(t) ≤ P − ytot(t)), and switches to Eq. (4.7) otherwise (αi(t) > P − ytot(t)), to reduce yi(t) and
the saturation of the system. In particular,

α̇i(t) =

{︄
µi(t) · (ri − αi(t)) · (1− σ(t))ρ, if αi(t) ≤ P − ytot(t),
−νi(t) · αi(t) · (σ(t))ρ, otherwise,

with α(ti) = 0.



CHAPTER5
Application to EV charging scheduling

In this Chapter, the proposed optimal control framework from Chapter 3 and the presented online heuristics from
Chapter 4 are evaluated (a-posteriori) and compared.

These have been implemented in Matlab. The Opti Toolbox interface [63] and the SCIP solver [64] have been
used for solving the LP and MILP problems. All the simulations were performed on a dual-core Intel Core i3 at
2.3 GHz with 8 GB of RAM.

The specific case of electric vehicles (EV) battery charging scheduling scenario in a power supply facility has
been considered. For the charging requests, realistic data have been obtained from the ACN-Data dataset, which
collects data recorded at the existing charging site at the Caltech university campus [25]. Since not all the required
data can be obtained from this dataset, some of them have been generated stochastically.

5.1 Scenario and data

In the presented framework, each generic request i is characterized by three quantities:

• ti, the release time;

• ri, the maximum supply rate;

• τi, the minimum processing time, i.e., the length of the supply, if this occurs at the maximum rate ri without
interruptions. Ei = riτi is the requested amount of resource that must be supplied.

In the specific case of EV charging scheduling, the considered charging system is composed by a set of charging
stations and a set of n EVs, each of which makes a charging request for their batteries. Many existing standards
regulate the charging process and the required infrastructure [18]. Traditionally, uncoordinated charging is per-
formed at charging stations (i.e., batteries are charged at as soon as the requests are made at maximum rate
possible). However, this increases the load at peak hours, which leads to the risk of overheating and damaging of
the infrastructure, and to the need of a grid that supports a higher capacity. To overcome this, many models of
coordinated charging (also called smart charging) have been proposed, both centralized and distributed, in which
the timing and the charging power are optimized.

The following quantities are also specified:

• RCS , the maximum output power of each charging station, which can be delivered to the battery of the
connected EV;

• P , the system capacity, that is the maximum overall power that can be supplied by all these charging
stations at any time;

• REV,i, the maximum input power that the battery of the EV making the ith request can accept (also known
as acceptance rate);

• Ci, the capacity of the battery of the EV making the ith request, which is the maximum amount of energy
that can be stored in there;

• Ei, the requested energy for request i, which is smaller or equal to Ci (assuming no discharging). Here, it
is assumed that the value of Ei is provided by the user before the charging starts.



52 Part I, Chapter 5 — Application to EV charging scheduling

Several models for the actual EV charging power profile have been proposed [65, 66, 57]. To simplify the
system for the proposed approach, a basic approximated model of EVs charging has been considered for the
charging requests, by which the ideal supply is performed at maximum rate ri, without interruptions and for a
duration of τi. Non-idealities are taken into account by defining the average charging efficiency µeffi ∈ [0, 1], see
[67]. Then, ri and τi can be approximated as

ri = min(RCS , REVi
), (5.1)

τi =
1

µeffi

· Ei

ri
. (5.2)

The first relation means that the maximum supply rate is limited by the minimum between the acceptance rate
of the battery of the EV and the maximum output power of the charging station. The second relation means that
the actual charging time is increased compared to the ideal one Ei/ri, due to possible losses during the charging
process.

The data that will be used in the simulations are obtained from the ACN-Data dataset [25, 68], which collects
information that was recorded at the existing charging site at the Caltech university campus, which has 54 charging
stations (with maximum output power RCS = 7 kW ) and is open to the public, despite most usage being by
faculty, staff, and students.

For each power request i, the following quantities are reported, among others:

• t∗i , the time at which the request has been made;

• E∗
i , the actual delivered energy during the charging session;

• r∗i , the average value of the supplied power rate at which the charging was performed.

The analysis of the data shows that the total number of charging requests per day does not depend on the
time of the year. The periodicity is weekly: weekdays (Monday to Friday) are similar one to each other, while on
weekend days there is a smaller number of charging requests. Most of the requests (and the peak of the demanded
power) occurs in the weekdays morning, and partially in the afternoon, while there are very few in the evening,
by night and during weekends, which results in not having overlapping requests between different days: generally,
the requests from one day can be served before the ones from the next day start. This behavior is due to the fact
that the site is mostly used during work hours by faculty, staff, and students.

Then, it is reasonable to consider the requests from one day only. The requests of Tuesday, 19 February 2019
have been considered, which are n = 32 (see Table 5.1). Assuming a sampling time of θ = 5 minutes, the day is
divided into N = 288 time-slots.

Table 5.1: Input data (raw) for the 32 charging requests i for the day Tuesday, 19 February 2019, from the ACN-Data dataset [25].

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti/θ 88 92 99 102 103 104 104 105 106 107 108 109 110 111 112 114
r∗i [kW ] 2.9307 2.6386 1.9342 3.1777 2.4992 2.2219 4.8917 2.7312 1.4199 3.0242 6.5855 2.8137 2.7181 0.98436 6.4608 3.4964
E∗

i [kWh] 32.189 15.568 13.314 2.754 2.166 17.479 46.308 24.535 7.904 8.014 13.61 4.924 24.916 4.971 30.689 12.587

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ti/θ 116 117 120 123 126 126 130 136 165 213 221 239 241 241 246 256
r∗i [kW ] 0.20808 3.364 1.9951 1.4888 1.8197 4.1547 2.5433 1.6915 2.3192 2.5278 3.3416 3.5009 5.6494 5.985 6.1348 1.7167
E∗

i [kWh] 0.919 7.625 16.127 3.201 15.164 13.572 2.077 8.373 4.677 0.969 4.901 16.279 6.591 9.975 7.873 0.515

However, since in the charging site at the Caltech university campus an adaptive algorithm that varies the
power is actually used to optimize the charging [21, 22], the r∗i and τ∗i = (E∗

i /r
∗
i )/µeffi cannot be used directly as

the required ri and τi, since they are already “optimized”, in some way. Also, the acceptance rate REVi and the
capacity Ci of each EV’s battery is not reported in the dataset, nor is the corresponding car model from which this
information can be retrieved. Then, to get both ri and τi using Eqs. (5.1) and (5.2), data have been integrated

stochastically assigning an acceptance rate ˜︁REVi
and a capacity ˜︁Ci and to each request, taking into account the

popularity of the most common EVs models [69] and the acceptance rate and capacity of their batteries [70, 71],
as described in the next subsection.

5.1.1 Data preprocessing

Consider the data of the charging sessions from [25]. These have been first preprocessed by removing the recorded
requests with missing values or with inconsistent data (e.g., negative charging duration or charging duration
greater than one day). Denote the resulting dataset as the “EV requests” dataset.



5.1 Scenario and data 53

The distributions of the capacity Ci and the acceptance rate REV,i of the most common EV models have also
been considered. In particular, different EV models and their popularity (in Washington State) were obtained
from [69]; these have been integrated with data (acceptance rate and battery capacity) from [70, 71]. Denote the
resulting dataset as the “EV models” dataset.

In Fig. 5.1, left, the relations between the capacity Ci and the acceptance rate REV,i of the most popular
EV models are reported as a scatter plot: the size and color of each point are based on the popularity of each
model. There is a weak positive correlation between Ci and REV,i, in general: batteries with larger capacity tend
to support a larger acceptance rate. As an example, assuming to have charging stations with RCS = 7 kW , the
relations between the minimum charging times τi to get a full battery charging from 0% to 100% (i.e., Ei = Ci)
and the maximum rate ri, obtained using Eqs. (5.1) and (5.2), are reported in Fig. 5.1, right.

0 5 10 15 20

EV Acceptance Rate (kW)

0

20

40

60

80

100

E
V

 C
ap

ac
ity

 (
kW

h)

0

2000

4000

6000

8000

10000

Frequency

0 2 4 6

Actual Charging Rate (kW)

0

5

10

15

C
ha

rg
in

g 
T

im
e 

(h
)

0

2000

4000

6000

8000

10000

Frequency

Figure 5.1: Left: relations between the acceptance rate and the capacity of the batteries of the most common models of EV according
to the “EV models” dataset. Right: relations between the actual charging rate of the same models of EV and the charging duration to
get a full battery charging, when the maximum output power of the charging stations is 7 kW (see red dashed line). In both graphs,
each point represents a model of EV: its size and color are representative of the popularity of that particular model.

The two “EV requests” and “EV models” datasets have been integrated by stochastically assigning a random
car model (and its acceptance rate ˜︁REVi) from the latter dataset to each request (characterized by r∗i and E∗

i ) in
the former dataset, choosing among the models which have a battery with an acceptance rate greater or equal to
r∗i and a capacity greater or equal to E∗

i (indeed, it must hold that E∗
i ≤ ˜︁Ci and r

∗
i ≤ ˜︁REV,i); the probability is

higher for the models which have a capacity and acceptance rate closer to E∗
i and r∗i , respectively.

In particular, consider the generic request i of the “EV requests” dataset. Let M be the set of the capaci-
ty/acceptance rate pairs (REV , C) from the “EV models” dataset. Then, consider the subset

Mi = {(REV , C) ∈M : r∗i ≤ REV and E∗
i ≤ C}.

The joint 2D probability distribution pi(REV , C) of the selected pairs (REV , C) ∈ Mi is computed using the
bivariate histogram bin counts and normalizing the total sum to 1.

Also, a 2D weighting function wi(REV , C) is defined to make the pairs (REV , C) ∈ Mi closer to the pair
(r∗i , E

∗
i ) more probable, as

wi(REV , C) = wR,i(REV ) · wC,i(C),

in which

wR,i(ξ) =

(︃
1− ξ − r∗i

MR − r∗i

)︃2

, MR = max
(REV ,·)∈Mi

{REV }+ δR,

wC,i(ξ) =

(︃
1− ξ − E∗

i

MC − E∗
i

)︃2

, MC = max
(·,C)∈Mi

{C}+ δC,

where δR and δC are two positive scalars with small values, introduced to avoid divisions by 0. By definition,
wi(r

∗
i , E

∗
i ) = 1, and wi(REV , C)→ 0 as REV , C increase.

The final weighted joint 2D probability distribution pw,i(REV , C) is eventually obtained as:

pw,i(REV , C) =
wi(REV , C) · pi(REV , C)∫︁MR

r∗i

∫︁MC

E∗
i

wi(r, c) · pi(r, c) dc dr
.

For each real request i, a pair ( ˜︁REV,i, ˜︁Ci) is chosen randomly based on this weighted distribution pw,i(REV , C).
Then, the required input data are finally obtained as



54 Part I, Chapter 5 — Application to EV charging scheduling

• the release time ti is the real one, taken from the dataset, ti = t∗i ;

• the maximum rate is obtained from Eq. (5.1), using ˜︁REVi , as ri = min
(︂
RCS , ˜︁REVi

)︂
;

• the request duration is obtained from Eq. (5.2), as τi =
1

µeffi
· E

∗
i

ri
.

For instance, consider the 22th request with r∗i = 4.1547 kW and E∗
i = 13.572 kWh. The 2D weighting function

wi(REV,C), the joint 2D probability distribution pi(REV , C) and the weighted joint 2D probability distribution

pw,i(REV , C) are represented in Fig. 5.2. The pair ( ˜︁REV,i, ˜︁Ci) is chosen randomly according to pw,i(REV , C),

resulting in ˜︁REVi
= 6.6 kW and ˜︁Ci = 40 kWh. Then, setting RCS = 7 kW and µeff,i = 0.9, it holds that

ri = min(7, 6.6) = 6.6 kW and τi = 13.572/6.6/0.9 = 2.2848 h = 137.1 min, or ceil(τi/θ) = 28 time slots.

Figure 5.2: Left: the 2D weighting function wi(REV , C) for the request i = 22. It is one at (r∗i , E
∗
i ) (see the black point highlighted),

and it decreases to zero as REV > r∗i and C > E∗
i increase. Right: the joint 2D probability distribution pi(REV , C) (red bars) and

wi(REV , C) · pi(REV , C), which is a scaled version of the weighted joint 2D probability distribution pw,i(REV , C) (blue bars). The
points (REV , C) with REV < r∗i and C < E∗

i ) are excluded from the computations (see gray points). Note that the multiplication
by the weighing function makes the pairs (REV , C) which are far from (r∗i , E

∗
i ) less probable to be selected. A random point, here

highlighted in green, is selected according to pw,i(REV , C) and gives ( ˜︁REV,i, ˜︁Ci), from which the values ri and τi to be used in the
simulations are computed.

5.1.2 The input data for the requests

Assume that each charging station in the considered site has a maximum output power of RCS = 7 kW and that
the charging efficiency of each battery is µeff,i = 0.9. The data obtained using the procedure reported above for
the selected day, Tuesday 19 February 2019, and adopted in the simulations, are reported in Table 5.2. No timing
constraints (i.e., deadlines) have been considered.

Table 5.2: Preprocessed input data for the 32 charging requests i for the day Tuesday, 19 February 2019, that are used in the
simulations.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti/θ 88 92 99 102 103 104 104 105 106 107 108 109 110 111 112 114
ri [kW ] 7.0 6.6 6.6 3.3 7.0 6.6 7.0 7.0 6.6 3.3 7.0 3.3 6.6 3.3 7.0 6.6
τi/θ 62 32 27 12 5 36 89 47 16 33 26 20 51 20 59 26

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ti/θ 116 117 120 123 126 126 130 136 165 213 221 239 241 241 246 256
ri [kW ] 6.6 6.6 3.6 7.0 3.6 6.6 3.3 3.3 3.6 3.3 3.6 7.0 6.6 6.6 6.6 3.3
τi/θ 2 16 60 6 57 28 9 34 18 4 19 31 14 21 16 2

The distribution of the requests over the day is reported in Fig. 5.3, top. Assuming an uncoordinated charging
policy, a system capacity of about 100 kW would be needed to support the supply of all the requested power,
see Fig. 5.3, bottom. In this Chapter it is assumed that the system capacity is limited to P = 56 kW , hence
the requests made in the peak hours (between 9:00 and 12:00) need to be delayed, interrupted and/or their rate
reduced to avoid overloading.



5.1 Scenario and data 55

Figure 5.3: Distribution of the charging requests. Top: each row refers to a different request i, which is indicated by a rectangle
located at ti and of length τi. Its color refers to the value of ri. Bottom: total requested power (colored area) and system capacity
(dashed violet line), assuming uncoordinated charging. Here, the color is used to distinguish the power assigned to each request: blue
refers to the older requests, and red to the ones occurred at the end.

5.1.3 Parameters, simulation settings, and metrics

The parameters of the heuristics have been tuned experimentally through trial and error, also based on the realistic
input data. In particular, the following parameters are set:

• for the enhanced versions based on the impact Eq. (4.1) and the admission and interruption priorities,
rM = 7 kW , τM = 300 min, ρA = 0.5 and ρI = 20;

• for the IT-packets case, the energy of the packets is fixed as Epkt = 5 kWh; the duration τpkt of a packet
depends on ri: if ri = 3.3 kW , τpkt = 60 · Epkt/ri = 90.90 minutes; if ri = 3.6 kW , τpkt = 83.33 minutes; if
ri = 6.6 kW , τpkt = 45.45 minutes; if ri = 7 kW , τpkt = 42.86 minutes (recall that these τi are discretized
as floor[(τi − 1)/θ] + 1);

• for the predictive control heuristic, Tpc = 6 hours and Θ = θ. A timeout of 30 seconds to solve the
optimization problems at each step is also imposed;

• for the reservation variable-based heuristic, µ0 = 8, ν0 = 0.15, ρ = 0.5, and ϵ = 0.9999.

The variability due to non–determinism in the implementation of real-time strategies, is accounted for by
repeating each simulation K = 50 times and averaging the results. In particular, for each instance h of the same

heuristic, denote the corresponding variables by superscript “(h)”; for instance, for request i, ω
(h)
i is the waiting

time, ∆
(h)
i is the admission delay, and x

(h)
i is the integral variable accounting for the delay.

Then, the following metrics are considered to evaluate (a-posteriori) the strategies and compare them:

• ωav, the average waiting time per request, ωav = 1
K

(︂∑︁K
s=1 ω̄

(h)
)︂
= 1

Kn

(︂∑︁K
s=1

∑︁n
i=1 ω

(h)
i

)︂
; that is to be

minimized (recall that minimizing the average ωi is equivalent to minimizing the average overall delay δi);

• Xav, the average integral of xi(t) per request, Xav = 1
K

(︂∑︁K
s=1 X̄

(h)
)︂
= 1

Kn

(︂∑︁K
s=1

∑︁n
i=1 x

(h)
i

)︂
;

• ∆av, the average admission delay per request, ∆av = 1
K

(︂∑︁K
s=1 ∆̄

(h)
)︂
= 1

Kn

(︂∑︁K
s=1

∑︁n
i=1 ∆

(h)
i

)︂
.



56 Part I, Chapter 5 — Application to EV charging scheduling

0

10

20

30

40

50

Exact batch
problem with
objective
J = ωav

Relaxed batch
problem with
objective
J = Xav

Centralized real-time
greedy heuristic
with objective Jt

Centralized real-time
predictive control with horizon

[t, t+ Tpc] and objective J
(a) J = Xav, LC(ui)
(b) J = Xav, SU (ui)

Centralized real-time
priority queue
based heuristic

Decentralized
real-time

p-persistent
based heuristic

(c) pA = 1

Decentralized real-time
reservation variable

based heuristic

LC(zi) SU (zi) LC(ui) SU (ui) no c.c. Jt =
∑

i zi − ui Jt =
∑

i ẋi
J = ωav

LC(zi)
J = ωav

SU (zi)
(b)

J = Xav

no c.c.
FIFO SREF (c) pA(riτ̃i(t)) µi = µ0 µi(riτ̃i(t))(a)

Non-Interruptible (NI) - ui ∈ {0, 1}, c.c.

Interruptible using packets (IT-packets) - ui ∈ {0, 1}, Epkt

Interruptible (IT) - ui ∈ {0, 1}

Variable Rate (VR) - ui ∈ [0, 1]

Unbounded - ui ≥ 0

ωav = 1/n
∑

i ωi: ∆av = 1/n
∑

i ∆i

Xav = 1/n
∑

i

∫
xidt

Optimal cost of objective J (for batch solutions)

Figure 5.4: Comparison between the average waiting time per user ωav (indicated by vertical bars) of the presented batch solutions
and real-time heuristics for the NI , IT , and VR cases, obtained by simulating one day of real input data with a resolution of 5 minutes
(see Table 5.3). The colors of the bars represent the classes of supplying: NI , IT , IT -packets or VR. For each solution, the average
admission delay per user (∆av , indicated by green triangles △) and the average integral of xi(t) (Xav , indicated by red crosses ×)
are also reported, as well as the optimal cost of the batch solutions for the specific objective J considered (in blue circles ◦). All
these quantities are expressed in minutes. c.c.: contiguity constraint Eq. (3.4i); LC(ui) (or SU(ui)): the Linear Combination (or
Start-Ups) alternative form is used to implement contiguity constraints Eq. (3.4i); LC(zi) (or SU(zi)): the Linear Combination (or
Start-Ups) alternative form is used to implement contiguity constraints Eq. (2.11). (source: [1], © 2022 IEEE)

LC(zi)

Exact batch problem
with objective J = !av

SU(zi) LC(ui) SU(ui)

Relaxed batch problem
with objective J = Xav

no c.c. on ui (NI) (IT)

Greedy approach applied to the
relaxed problem, without c.c.,
with objective Jt =

P
i _xi

(VR) (UN)

100

101

102

103 Non-Interruptible (NI) - ui 2 f0; 1g, c.c.

Interruptible (IT) - ui 2 f0; 1g

Unlimited (UL) - ui 6 0

Variable Rate (VR) - ui 2 [0; 1]

Figure 5.5: Comparison between the solving times, expressed in seconds, of the presented batch problems from Fig. 5.4. The average
solving times of each iteration of the greedy strategy applied to the relaxed problem without LC or SU contiguity constraints on ui(t)
are also reported and are clearly negligible. The y axis is in log scale.

5.2 Results

The performances of the considered batch and online strategies are presented in Table 5.3, where the numeric
values of Xav = (

∑︁
i

∫︁∞
0
xidt)/n and ωav = (

∑︁
i ωi)/n are reported for each of them. Recall that the batch

relaxed problem minimizing Xav with 0 ≤ ui ≤ 1 provides a lower bound for the optimal delays ωav (computed
a-posteriori for the online strategies).

To better compare the results, a visual representation is depicted in the bar chart in Fig. 5.4, where the vertical
bars represent the achieved average waiting time ωav = (

∑︁
i ωi)/n. The color of the bars represents the specific

supply strategy. The following values are also reported: the optimal cost J of the (batch) optimization problems
(denoted by ◦), ∆av = (

∑︁
i ∆i)/n (denoted by △) and Xav = (

∑︁
i

∫︁∞
0
xidt)/n (denoted by ×).

In Fig. 5.5, the time needed to solve the problem is also represented as a bar chart. It is evident that the
problem implemented by MILP takes way more time compared to the ones implemented by LP. The average
solving time for each iteration of some versions of the greedy strategy is also reported, which is clearly negligible.

The scheduling of the exact optimal NI , IT and VR solutions are reported in Figs. 5.6 to 5.8 (at Pages 59
to 60), respectively. Recall that both the LC and SU constraints can be equivalently used to implement contiguity
constraints (either for ui(t) or zi(t)): for each of the three supply strategies, while the optimal cost is reached in



5.2 Results 57

Table 5.3: Numerical values of the (a-posteriori) simulation results Xav and ωav presented in Fig. 5.4. All quantities are expressed in
minutes. The optimal Xav or ωav for each strategy of supplying are highlighted in bold. (source: [1], © 2022 IEEE)

Problem

NI case IT case VR case

(ui ∈ {0, 1}, c.c.) (ui ∈ {0, 1}) (ui ∈ [0, 1]) (ui ≥ 0)

Xav ωav Xav ωav Xav ωav Xav ωav

B
A
T
C
H

Exact optimal with
objective J = minωav

LC (zi) - - 20.025 22.500 16.605 19.219 - -

SU (zi) - - 19.437 22.500 16.409 19.219 - -

Relaxed optimal with
objective J = Xav)

LC (ui) 26.406 26.406 - - 21.850 25.208 - -

SU (ui) 26.406 26.406 - - 17.957 36.719 - -

no c.c. - - 18.077 24.219 15.263 21.094 11.603 2.500

C
E
N
T
R
A
L
IZ

E
D

R
E
A
L
-T

IM
E

Greedy heuristic
with objective Jt

Jt =
∑︁

i zi − ui 37.500 37.500 25.614 29.219 20.953 24.650 - -

Jt =
∑︁

i zi − ui, pkt - - 31.887 36.875 - - - -

Jt =
∑︁

i ẋi, 31.875 31.875 20.160 22.969 16.438 19.688 11.603 2.500

Jt =
∑︁

i ẋi, pkt - - 20.637 24.375 - - - -

Predictive
control heuristic
with objective J

J = ωav , LC (zi) - - 22.208 31.302 17.904 23.021 - -

J = ωav , SU (zi) - - 21.374 26.771 17.253 21.250 - -

J = Xav , LC (ui) 35.885 35.885 - - - - - -

J = Xav , SU (ui) 32.344 32.344 - - - - -

J = Xav , no c.c. - - 20.055 23.229 16.531 19.740 - -

Priority queue
based heuristic

FIFO 43.750 43.750 46.604 46.875 30.337 40.781 - -

SREF 31.875 31.875 21.446 23.125 17.748 22.188 - -

FIFO, pkt - - 29.763 45.828 - - - -

SREF, pkt - - 21.085 24.219 - - - -

D
E
C
E
N
T
.
R
E
A
L
-T

IM
E

P-persistent
based heuristic

pAi = 1 42.756 42.756 - - - - -

pAi (ri, ˜︁τi) 37.316 37.316 32.007 36.541 - - -

pAi (ri, ˜︁τi), pkt - - 32.488 36.747 - - - -

Reservation variable
based heuristic

µi(t) = µ0 42.456 42.456 32.496 50.316 27.605 47.131 - -

µi(ri, ˜︁τi) 40.238 40.238 37.945 38.859 24.853 32.566 - -

µi(t) = µ0, pkt - - 43.056 43.056 - - - -

µi(ri, ˜︁τi), pkt - - 32.316 34.819 - - - -

c.c.: contiguity constraint Eq. (3.4i) on ui(t);
LC(ui): the Linear Combination alternative form is used to implement contiguity constraints Eq. (3.4i);
SU(ui): the Start-Ups alternative form is used to implement contiguity constraints Eq. (3.4i);
LC(zi): the Linear Combination alternative form is used to implement contiguity constraints Eq. (2.11);
SU(zi): the Start-Ups alternative form is used to implement contiguity constraints Eq. (2.11);
“pkt”: the IT-packets strategy of supplying is adopted;
“-”: the cases that were not considered.

any case, the distribution can be slightly different, because the optimal solution is generally not unique.

The scheduling of the relaxed problem with continuous 0 ≤ ui(t) ≤ 1 is reported in Fig. 5.9a (at Page 61). The
result of applying a greedy approach to it is shown in Fig. 5.9b: this is generally not optimal. The corresponding
results when the constraints on ui(t) are relaxed to ui(t) ≥ 0 are reported in Figs. 5.9c and 5.9d: recall that in
this case, both distributions are optimal.

Finally, in Figs. 5.10 to 5.13 (at Pages 61 to 67) examples of distribution of the scheduled supply when applying
the considered online heuristics are reported.

A discussion of these results is presented in the next Section 5.3.



58 Part I, Chapter 5 — Application to EV charging scheduling

5.3 Discussion

Firstly, from Figs. 5.6 to 5.13, each tested strategy makes all the requests fulfilled before the end of the day,
without exceeding the overall capacity limit P of the system. Moreover, every strategy admits immediately the
requests when the congestion is low, e.g., the first and the last requests of the day.

In general, it can be seen that the less the supply ui(t) is constrained, the better the available power tends
to be exploited, although this is not a general rule. For instance, compare the total supplied power of the exact
NI case in Fig. 5.6 and the total supplied power of the exact VR case in Fig. 5.8: with the NI supply, around
9:00 some of the available power is not supplied to anyone and is therefore wasted. On the contrary, with the VR
supply the full capacity is occupied (as long as the total requested power exceeds P : the maximum output rate
of supply is still limited), and this results in lower delays experienced by the users. This is even more evident in
the limit case in which ui(t) ≥ 0 is unbounded.

Consider now the average waiting times ωav visualized in Fig. 5.4. It can be easily verified that

• the predictions of Theorem 2.2 are always satisfied for each strategy (except for the unbounded case ui ≥ 0,
which is not covered by the Theorem). Namely, given a solution u1, . . . , un, the corresponding delays fulfill
∆av ≤ Xav ≤ ωav;

• for the specific NI case, as expected from Theorem 2.2, given a solution u1, . . . , un, the corresponding delays
fulfill ∆av = Xav = ωav;

• the relations between the batch costs summarized in Section 3.4 are satisfied;

• in particular, the optimal cost of the relaxed problem Eq. (3.18) with 0 ≤ ui ≤ 1 is smaller or equal to the
average waiting times of all the other strategies (again, except for the one allowing ui(t) ≥ 0), as it is a
lower bound.

Moreover, in support of the choice of adopting the functional Eq. (3.3) in the proposed optimal control
technique, note that Xav is generally close to the corresponding ωav (with just few exceptions).

Regarding the unbounded case, Fig. 5.9 shows that actually the supply of each request i is never fulfilled
before ti + τi, even if more power could be assigned to it to anticipate the completion: this occurs because of
the constraint xi(t) ≥ 0. For instance, consider the request 7: its delay could certainly be reduced by allowing a
higher rate at around 15:00, making the completion time ti + δi even smaller than ti + τi.

The batch solutions provide the optimal average waiting times ωav of the NI , IT and VR cases, which are
26.406, 22.500 and 19.219 minutes, respectively. Some lower bounds (in terms of Xav) for such optimal costs
are obtained from the relaxed batch versions, which are reduced between 20% and 50%: the relaxed problem
Eq. (3.18) provides a lower bound (for the VR case) of 15.263 minutes, while the unbounded problem imposing
ui(t) ≥ 0 (as well as the corresponding greedy strategy) provides a lower bound of 11.603 minutes.

Regarding the exact problems, note that both the implementations of the contiguity constraints LC and SU
(either for ui(t) or zi(t)) produce the same results when applied to the same problem and strategy, except when
the relaxed versions are considered. Considering the exact problems, Figs. 5.6 to 5.8 show that the scheduling is
quite similar for the same supply strategy, too. As already stated, the solution is in general not unique, so there
can be few minimal differences. The performance in solving the problem, however, can be quite different, see
Fig. 5.5: from these simulations, it seems that the SU constraints are best applied to variables zi(t), while the LC
ones to variables ui(t), due to the resulting lower computation times (a further investigation is however required).

To confirm the findings reported above, generally, as expected, the VR versions of the batch and centralized
online heuristics perform better than the corresponding IT ones, which in turn outperform the NI ones. Even
the a-posteriori performance loss compared to the optimum follows a similar trend. However, this does not hold
for the decentralized and the FIFO strategies: for the former, better tuning of the parameters would possibly
be needed; for the latter, this is expected, as scheduling early requests with large impact potentially prevents
multiple users to be admitted, increasing their waiting times.

Predictably, the real-time centralized strategies outperform the decentralized ones, which use only local data
to optimize, except for the FIFO priority-queue-based one, for the reasons expressed above.

Generally, the greedy and model-predictive approaches do not reach the optimal cost (when evaluated a-
posteriori), as expected. The only exception is the greedy strategy applied to the unbounded relaxed case with
ui(t) ≥ 0, which is proven optimal. However, in some of the performed simulations, sometimes the a-posteriori
optimality has been reached anyway. A surprising result is that the simpler greedy strategy, which only considers
the current time for optimization, and not a finite horizon, performs similarly, and sometimes even better, in
terms of ωav, than the model-predictive one, and the relaxed batch problem, too.



5.3 Discussion 59

(a) Using the LC constraints for ui(t). (b) Using the SU constraints for ui(t).

Figure 5.6: Distribution of the scheduled supply for the exact optimal non-interruptible (NI ) supply strategy problem, minimizing
Xav =

∑︁
i xi/n(≡ ωav). Top: each row refers to the supply of a different request i, and the colored area is located between ti +∆i

and ti + δi. Its color refers to the value of the supply yi(t) = riui(t), see the color bar in Fig. 5.3. The blue circle ◦ and cross ×
indicate ti and ti + τi, respectively. Bottom: total supplied power (colored area), total requested power (red line, see Fig. 5.3), and
system capacity (dashed violet line). Here, the color is used to distinguish the power assigned to each request: blue refers to the older
requests, and red to the ones occurred at the end, as in Fig. 5.3.

The enhanced priority-queue-based strategy prioritizing the requests with smaller remaining energy to supply
provides (a-posteriori) results close to optimum for the IT , IT-packets, and VR cases (again, sometimes the opti-
mum has been also reached in some other performed simulations), while it is apparent that a FIFO strategy does
not provide good performance, with results also worse than some decentralized methods with limited knowledge.
The enhanced version of the p-persistent and reservation-variable heuristic prioritizing the requests with smaller
impact qi(ri, ˜︁τi(t)), instead of the one made earlier, provides the best (a-posteriori) results among the decentral-
ized online strategies, getting a ωav at most twice the optimum. Such average waiting times can be considered
good, as they are achieved despite not knowing any data in advance, nor any data about the other requests.

Consider now the computational times of the batch problems, visualized in Fig. 5.5 in log scale. From the
first four bars, all the exact problems minimizing J = ωav in the IT and VR supply strategies, using either the
LC(zi) or SU(zi) constraints, require a large amount of time to be solved (from several minutes up to about an
hour) despite the problem considering only n = 32 requests. Indeed, a MILP problem is to be solved in those
cases, with the possible integer variables being ui(k) (for the IT case), bih (for the LC(zi) constraints), and zi(k).
As expected, the IT problems take longer to be solved, as well as the ones corresponding to the case where the
LC(zi) constraints are used, as there are more integer variables.

Consider now the exact NI case, minimizing J = Xav (recall that, in this case, Xav ≡ ωav), using either the
LC(xi) or SU(xi) constraints (see the fifth and seventh bars of Fig. 5.5): the solving times are large, too, as,
again, a MILP problem is to be solved, with the possible integer variables being ui(k) and bih (for the LC(xi)
constraints). A formulation minimizing J = ωav is also possible, however the complexity would be even larger, as
either the LC(zi) or SU(zi) constraints would be needed, other than the LC(xi) or SU(xi) constraints.

The solving times are reduced when relaxing all of the above-mentioned integer variables (see the sixth and
eighth bars of Fig. 5.5), resulting in just few seconds, as the problems reduce to LP.

A similar solving time is achieved when considering the relaxed problem minimizing J = Xav for the IT case,
when no contiguity constrained is imposed (see the ninth bar of Fig. 5.5): there are less constraints variables,
despite ui(k) are still integer.

In comparison, the relaxed (non-exact) batch problem with 0 ≤ ui(t) ≤ 1 and u ≥ 0 (see the tenth and eleventh
bar of Fig. 5.5) only require about 1 second; the computation time is now lower as the problem is an LP one, with
no contiguity constraints imposed.

The average solving time for each iteration of the greedy strategy (see the last four bars in Fig. 5.5) is less
than 0.1 seconds, which is a negligible amount compared to the times reported above. A trade-off between the
computation time and the optimality of the result exists. Since the performance loss of the greedy heuristic with
respect to the exact optimal solution for the three supply strategies is not that large, especially for the NI and
VR cases, and in any case it is within 20%, the advantages of adopting it are evident when just a reference
value for the optimal waiting time is required, since the computation times are reduced by at least the 1000%,



60 Part I, Chapter 5 — Application to EV charging scheduling

which is remarkable, since in the batch problem all data are available for optimization, while in the greedy one
no information about future requests is provided.

A similar argument can be made for the relaxed problem: in this case, however, the optimal cost is a lower
bound for the optimal minimum average waiting time. Then, for a preliminary analysis, the relaxed (possibly
greedy) solutions can give an approximate idea of the minimal delay to expect, especially for larger problems,
where the exact solutions might be more difficult to find in a reasonable time.

The computation times of the priority queue-based, p-persistent-based, and reservation variable-based real-
time heuristics are less than 1 second at each iteration, thus negligible compared to the duration of the time-slots
(5 minutes). Finally, for the predictive control heuristics, the timeout of 30 seconds was only occasionally reached.

(a) Using the LC constraints for zi(t). (b) Using the SU constraints for zi(t).

Figure 5.7: Distribution of the scheduled supply for the exact optimal interruptible (IT ) supply strategy problem, minimizing
ωav =

∑︁
i ωi/n. See Fig. 5.6 for a description.

(a) Using the LC constraints for zi(t). (b) Using the SU constraints for zi(t).

Figure 5.8: Distribution of the scheduled supply for the exact optimal variable rate (VR) supply strategy problem, minimizing
ωav =

∑︁
i ωi/n. See Fig. 5.6 for a description.



5.3 Discussion 61

(a) Batch solution, with 0 ≤ ui(t) ≤ 1. (b) Greedy solution, with 0 ≤ ui(t) ≤ 1.

(c) Batch solution, with ui(t) ≥ 1. (d) Greedy solution, with ui(t) ≥ 1.

Figure 5.9: Distribution of the scheduled supply when the relaxed problem minimizing J = Xav =
∑︁

i

∫︁∞
0 [xi(t)/n] is considered

(without contiguity constraints on ui(t)). See Fig. 5.6 for a description. In subfigures Figs. 5.9c and 5.9d, greyscale colors indicate
that the assigned power is above ri: from just above ri = 7 kW (black) up to 45 kW (light gray).

(a) Greedy heuristic with objective Jt =
∑︁

i(zi − ui). (b) Greedy heuristic with objective Jt =
∑︁

i(ẋi).

Figure 5.10: Distribution of the scheduled supply when the NI online heuristics are adopted. See Fig. 5.6 for a description. (continued
on the next page).



62 Part I, Chapter 5 — Application to EV charging scheduling

(c) Predictive control heuristic with objective J = Xav , using LC con-
straints on ui(t).

(d) Predictive control heuristic with objective J = Xav , using SU con-
straints on ui(t).

(e) Priority queue-based heuristic, using FIFO ordering. (f) Priority queue based heuristic, using SREF ordering.

(g) p-persistent based heuristic with pA
i = 1. (h) p-persistent based heuristic with pA

i (ri, ˜︁τi).
Figure 5.10: (continued) Distribution of the scheduled supply when the NI online heuristics are adopted. See Fig. 5.6 for a description.
(continued on the next page).



5.3 Discussion 63

(i) Reservation variable based heuristic with µi(t) = µ0. (j) Reservation variable based heuristic with µi(ri, ˜︁τi(t)).
Figure 5.10: (continued) Distribution of the scheduled supply when the NI online heuristics are adopted. See Fig. 5.6 for a description.

(a) Greedy heuristic with objective Jt =
∑︁

i(zi − ui). (b) Greedy heuristic with objective Jt =
∑︁

i(ẋi).

(c) Predictive control heuristic with objective J = ωav , using LC con-
straints on zi(t).

(d) Predictive control heuristic with objective J = ωav , using SU con-
straints on zi(t).

Figure 5.11: Distribution of the scheduled supply when the IT online heuristics are adopted. See Fig. 5.6 for a description. (continued
on the next page).



64 Part I, Chapter 5 — Application to EV charging scheduling

(e) Predictive control heuristic with objective J = Xav , without conti-
guity constraints on ui(t).

(f) Priority queue-based heuristic, using FIFO ordering.

(g) Priority queue based heuristic, using SREF ordering. (h) p-persistent based heuristic with pA
i (ri, ˜︁τi), and pI

i (ri, ˜︁τi).

(i) Reservation variable based heuristic with µi(t) = µ0,νi(t) = ν0. (j) Reservation variable based heuristic with µi(ri, ˜︁τi(t)), and
νi(ri, ˜︁τi(t)).

Figure 5.11: (continued) Distribution of the scheduled supply when the IT online heuristics are adopted. See Fig. 5.6 for a description.



5.3 Discussion 65

(a) Greedy heuristic with objective Jt =
∑︁

i(zi − ui). (b) Greedy heuristic with objective Jt =
∑︁

i(ẋi).

(c) Priority queue-based heuristic, using FIFO ordering. (d) Priority queue based heuristic, using SREF ordering.

(e) p-persistent based heuristic with pA
i (ri, ˜︁τi), and pI

i (ri, ˜︁τi). (f) Reservation variable based heuristic with µi(t) = µ0, and νi(t) = ν0.

Figure 5.12: Distribution of the scheduled supply when the IT -packets online heuristics are adopted. See Fig. 5.6 for a description.
(continued on the next page).



66 Part I, Chapter 5 — Application to EV charging scheduling

(g) Reservation variable based heuristic with µi(ri, ˜︁τi(t)), and νi(ri, ˜︁τi(t)).
Figure 5.12: (continued) Distribution of the scheduled supply when the IT -packets online heuristics are adopted. See Fig. 5.6 for a
description.

(a) Greedy heuristic with objective Jt =
∑︁

i(zi − ui). (b) Greedy heuristic with objective Jt =
∑︁

i(ẋi).

(c) Predictive control heuristic with objective J = ωav , using LC con-
straints on zi(t).

(d) Predictive control heuristic with objective J = ωav , using SU con-
straints on zi(t).

Figure 5.13: Distribution of the scheduled supply when the VR online heuristics are adopted. See Fig. 5.6 for a description. (continued
on the next page).



5.3 Discussion 67

(e) Predictive control heuristic with objective J = Xav , without conti-
guity constraints on ui(t).

(f) Priority queue-based heuristic, using FIFO ordering.

(g) Priority queue based heuristic, using SREF ordering. (h) Reservation variable based heuristic with µi(t) = µ0,νi(t) = ν0.

(i) Reservation variable based heuristic with µi(ri, ˜︁τi(t)), and νi(ri, ˜︁τi(t)).
Figure 5.13: (continued) Distribution of the scheduled supply when the VR online heuristics are adopted. See Fig. 5.6 for a description.





PART II
Decentralized agent-based policies

for path problems

Based on [2], under review: Francesca Rosset, Franco Blanchini, and Raffaele Pesenti. “An agent–based decentralized threshold
policy finding the constrained shortest paths”. In: (2022). Submitted





CHAPTER6
Introduction to Part II

This Part presents the work introduced in [2], which is the result of the collaboration between Franco Blanchini,
Raffaele Pesenti and me.

Consider an environment described by a directed network that presents some source nodes and some sink
nodes that connect it to the external environment. Some traveling agents (tokens) are injected into the source
nodes and enter the network from the external environment. Such tokens explore the network, which is completely
unknown to them, by traveling from node to node along the existing arcs trying to reach a sink node to leave
the network. The decisions of each token on whether to leave a given node or in which node to move next are
governed by a policy. When a sink node is actually reached, tokens are expelled from the network and return
to the external environment. However, not all tokens may be able to do that: some of them might be forced to
stop in a node along their way, and this prevents them to reach a sink. This is unavoidable, since tokens have to
explore the network before reaching the exit. It will be discussed how one can recover trapped tokens at the end.

Now suppose that a given finite integer cost is associated with each arc and that the tokens have to pay the
corresponding cost at each arc traversal. It is assumed that the traveling tokens not only want to find a route
to exit the network, but also that they would like to do that preferably paying the minimum cost. For instance,
the arc cost might represent the physical arc length, the arc traversal time, or the consumed/recovered energy
to traverse the arc; then, the minimum cost route that the token would like to follow is the shortest route, the
fastest route, or the route that makes agents consume the least amount of energy, respectively.

A decentralized threshold policy is introduced, by which each token independently decides whether to stop in
the currently occupied node or to move to some adjacent node along the connecting arc. This decision depends
only on local information regarding the currently occupied node, the adjacent neighboring node and the connecting
arc cost (the threshold), exploiting the information about the number of tokens stopped in the two nodes (which
represent the state of the two nodes). It does not require the knowledge of the network, its topology, or the location
of the sinks, nor the information about the nodes traversed so far. Hence, tokens can be assumed memoryless and
the network can be considered unknown to them. Note that the arc costs can be determined locally by the arc
endnodes and remain unknown to the tokens until they reach the arc tail node. The main idea behind this rule
is anticipated in the next Section 6.1.

It turns out that applying a very simple local rule is eventually effective not only in routing the injected
tokens toward the sinks, but also in routing them to the closer sinks, through the minimum cost (shortest) paths,
provided that the network does not present non-positive cost cycles.

Note that the optimality is achieved in the long run: initially, there is a transient phase in which tokens might
not be able to reach a sink to exit the network and are forced to stop and accumulate in some nodes of the
network, instead. However, this makes the states of the nodes vary initially, influencing the routing decisions of
the successive tokens injected into the network. It will be shown that at some point the state of the network
stabilizes, reaching a steady-state in terms of tokens accumulated in the nodes, meaning that indeed all the newly
injected tokens are able to reach a sink, in particular through the shortest path. The possibility that the tokens
travel indefinitely in the network or that there is an accumulation of infinitely many tokens in a node is excluded,
and the number of tokens that have to be injected to reach the steady-state is bounded.

It will be also shown that a simple variation of the proposed policy ensures that, under the assumption of a
strongly connected network, all the tokens injected in the sources are collected in the sinks. While in the initial
transient phase tokens do not necessarily follow the shortest paths, the optimality is eventually achieved. In this
enhanced version, the performance is also improved, meaning that far fewer tokens are required to be injected
into the network to reach the steady-state.

In a similar scenario, an additional given finite integer secondary cost might also be associated with each arc,



72 Part II, Chapter 6 — Introduction to Part II

which is independent from the one introduced above and which can induce a constraint on the tokens’ movements.
In particular, the tokens have also a secondary cost at each arc traversal and, to continue moving, their total
cumulative secondary cost paid so far cannot exceed a given maximum value. For instance, the secondary arc
cost might represent, again, the arc’s physical length, the arc traversal time, or the consumed/recovered energy
to traverse the arc. Such secondary cost has a different meaning for the token: the token must exclude all the
routes that are too long, take too long to be traversed, or consume too much energy, respectively. As an example,
the token with limited traveling autonomy might want to take the fastest route possible that minimizes the
total traversal time without exceeding a given energy consumption. As another example, tokens carrying some
information might want to reach the closer physical sink without exceeding a given traversal time, after which
such information would become outdated.

The decentralized threshold policy introduced for the unconstrained case can be easily adapted to deal with
these secondary costs, remaining a decentralized one, and it turns out that eventually tokens are routed through
the shortest feasible path to the closest sink.

Remark that although the routes found by tokens turn out to be the (possibly constrained) shortest paths
to the sinks, the proposed policy is not presented as a new method for solving the well-known shortest path
problem. Indeed, the main result from this Part is that applying a very simple local threshold rule, using the
least amount of information, results in an optimal self-organizing emerging global behavior, that is the discovery
of the shortest paths in a network in the long run [72, 73], even in the case in which some constraints are applied
to them, which, as it will be seen, makes the shortest path problem hard to solve. As it will be discussed later
in Sections 6.1 and 6.2, the model presented here is indeed inspired by the decentralized threshold-based flow
control introduced in [72] for single-source-single-sink networks: despite the different nature of the problem, the
similar effect of concentrating the flow along the (unconstrained) shortest path is achieved in the long run. In the
proposed agent-based model, this holds even if path constraints, multiple sources and sinks, or negative arc costs
are considered. Moreover, the reaching of a steady-state with the above-mentioned properties does not depend on
the initial state of the nodes, i.e., on the fact that some tokens are already deposited in the nodes. As a result, the
proposed policy also turns out to be adaptive: if the network is dynamic and some modifications are applied to it
(e.g., there is a failure of a node, or the insertion of a new link), if the new configuration is kept for a sufficiently
long time, the optimal paths followed by the tokens are eventually updated.

Remark that having a decentralized policy provides many advantages, as it is fault-tolerant, it easily supports
large, unknown and dynamic networks (tokens do not need to be notified about the state of the network, nor if
possible modifications occur) and it supports privacy.

The proposed policy could be employed in packet transmission through an unknown network, where packets
not only carry information, but are also routing agents. A more specific example of application in the context
of smart grids and IoT is the following, in the so-called sensors networks [74, 75]. Consider some sensors (the
sources) placed in an environment which measure some data. This data is transmitted in a network of transceivers
(the nodes) and is to be collected in a set of nodes (the sinks). It is not important where data are collected, but
the only request is that they leave the network, reaching a data storage facility (sink) among the available ones.
The application of the proposed decentralized policy ensures that in the long run data flow in the network and
are collected in the closest sinks through the shortest paths with respect to a given cost, for instance, the physical
distance. Constraints on the paths could be enforced to exclude paths that take too much time to be traversed,
making the information in the data “outdated”. Despite some data might be initially lost, at steady-state all
valid data are collected in the sinks. The support for possibly failing of some nodes or links is also guaranteed.

In the rest of this Chapter, first, the intuitive idea behind the proposed policy is presented in Section 6.1, and
after that, the literature review is reported in Section 6.2 and the main contributions summarized in Section 6.3.
Then, in Chapter 7 the setup is described, and the considered problem is stated. In Chapter 8 and Chapter 9
the unconstrained problem and constrained problem, respectively, are formally studied, and the main results are
reported. Finally, in Chapters 10 to 12, the results of some simulations are reported to validate the proposed
approach, considering a simple network, a large dynamic network and a class of small-world networks, respectively.
The proofs are reported in Appendix B.

6.1 The main idea

Here, the main idea behind the proposed policy is introduced.

Consider a network composed of some nodes and some oriented arcs. It is assumed that in each node a token
buffer is present. Then, the state xi of a node i is defined as the number of tokens deposited in it with respect to
an initial zero level of the node, see Fig. 6.1. In [72], there is the same concept of state, although it is continuous.



6.1 The main idea 73

i

xi = 3
zero level for node i

xi

i

Figure 6.1: Graphical representation of the state xi of a node i: assuming a zero reference level, the state can be seen as the number
of tokens deposited in the node.

i

j

γij
xi = 3
xj = 1
γij = 4 zero level for node i

zero level for node j

γij

xj

xi

i j

Figure 6.2: Graphical representation of a directed weighted arc (i, j) connecting node i to node j, with arc cost γij , as a step. The
height of this step is equal to the arc costs γij and represents the displacement between the zero reference levels of the two nodes.

i

j

k

l

xi = 3, xj = 1, xk = 2, xl = 0

γij = 4, γjk = 2, γkl = 3

i j k l

γij

γjk

γkl

L(path)
xj

xi

xk

xl

Figure 6.3: Graphical representation of a path p = {i, j, k, l} as a stair. The height of each step is equal to the corresponding arc cost.
The total elevation of the stair is equal to the path length L(p) = γij + γjk + γkl.

Then, each directed weighted arc (i, j) connecting two nodes i and j can be represented as a step whose height
is equal to the (integer) arc cost γij , see Fig. 6.2. Accordingly, each possible route p in the network can be
represented by a stair whose steps have heights equal to the route’s arcs’ costs: the elevation of this stair is equal
to the corresponding total route cost L(p), see Fig. 6.3. Remark that in a network multiple routes are present
(possibly, there are infinite routes if there are cycles in the network and nodes can be traversed multiple times),
each of which is to be represented by a different stair.

6.1.1 Transition rule

Consider a generic arc (i, j). To define the tokens’ transition rule between nodes, a threshold is introduced, equal
to the arc cost γij . In [72], the flow is controlled based on this same threshold and the difference of the states
xi−xj : when the latter is greater than the threshold, the greater it is, the greater is the (possibly saturated) flow;
otherwise, the flow is set to 0. Here, only two choices are possible: permit or deny the transition of the single
tokens along the arc. Depending on the (integer) value of xi − xj , three conditions can emerge, see Fig. 6.4:

• below threshold: xi − xj < γij , i.e., the difference between the states of the two nodes is smaller than the
threshold;

• at threshold: xi − xj = γij , i.e., the difference between the states of the two nodes is equal to the threshold;

• above threshold: xi − xj > γij , i.e., the difference between the states of the two nodes is greater than the
threshold.

When an arc (i, j) is below threshold or at threshold, the top token in node i cannot proceed moving to node j,
as a barrier blocks it and upward displacements are not allowed, see Fig. 6.4. Conversely, when the arc is above



74 Part II, Chapter 6 — Introduction to Part II

γij

xj

xi

xj + γij

i j

below threshold : xi < xj + γij

NO

γij

xj

xi

xj + γij

i j

at threshold : xi = xj + γij

NO

γij

xj

xi

xj + γij

i j

above threshold : xi > xj + γij

OK

Figure 6.4: Examples of below threshold (left), at threshold (center), and above threshold (right) conditions for an arc (i, j) joining
node i to node j. Only horizontal or downward token displacements between nodes are allowed. Hence, a token can move from node
i to node j only if the above threshold condition holds.

γij

xj

xi

xj + γij γij

xj

xi

xj + γij

i j

before the transition

i j

after the transition

Figure 6.5: Examples of movement of an actual token when the “above threshold” condition holds for two consecutive nodes i and j
connected by an arc.

threshold, displacements are allowed: this changes the states of the two nodes as xi ← xi − 1 and xj ← xj + 1,
see Fig. 6.5. Then, a transition of a token from node i to node j occurs only if

xi − xj > γij , (6.1)

and states are updated as xi ← xi − 1 and xj ← xj + 1. Otherwise, the transition is denied (i.e., the token does
not leave i). Note that in the above expression, it is assumed that the token to be moved is initially counted in
xi, even if it has just been injected from the outside. A token is above-threshold in node i if condition Eq. (6.1)
holds for some node j adjacent to node i, and it is under-threshold otherwise. The routing decision depends only
on local information about the current node i, the adjacent node j and the connecting arc.

As it will be proven later, the essential result obtained by applying this policy is that if tokens are introduced
in the network from some source nodes and have to reach some sinks (destinations) and if such introduction is
persistent, then in the long run all tokens will travel in the network along the shortest path.

6.1.2 An example in a simple network

Consider the network in Fig. 6.6 with 5 nodes and 5 arcs. Tokens are injected regularly in the source node
1. Tokens reaching sink node 4 are immediately expelled from the network. As this network is very simple,
only two paths with no repeated nodes are possible, namely: p1 = {1, 2, 3, 4}, which is the shortest path, and
p2 = {1, 2, 5, 3, 4}. Hence, only two stairs are to be analyzed and it is easy to display what happens as tokens are
injected into the network.

1 2 3 4

5

1 2 0

1 2source sink

Figure 6.6: A simple network with 5 nodes and 5 arcs. Tokens are injected regularly in the source node 1. Tokens reaching sink node
4 are immediately expelled from the network.

Consider an initial zero state x1 = x2 = x3 = x4 = x5 = 0 at time k = 0. Then, at every time k, a new



6.1 The main idea 75

token is injected in the source node 1, which starts moving according to the transition rule reported above. It is
assumed that when a token in node 2 can move both to node 3 and 5, it moves to node 5 preferentially, i.e., it
tries to take the non-shortest path. Fig. 6.7 shows the evolution of the states as new tokens are injected into the
network. The first tokens stop in some node 1, 2, 3, 5 without reaching the sink 4, as they cannot proceed further.
As more tokens are injected, the stairs are filled and brought to the zero level of the sink node; this level is first
reached by the stair associated with the shortest path, as fewer tokens are needed to do so. At some point, this
allows all newly injected tokens to reach the sink and be collected, without modifying the state any further. The
tokens stopped in the nodes are lost; however, once the steady-state is reached, all the newly injected tokens can
reach the sink through the shortest path.

k = 0:
the initial state
is zero and no
token is deposited
in the nodes.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 1: the new
token injected in
source node 1 can
only stop in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 2: the new
token injected in
source node 1 reaches
node 2 and stops
in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 3: the new
token injected in
source node 1 can
only stop in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 4: the new
token injected in
source node 1 reaches
node 5 and stops
in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 5: the new
token injected in
source node 1 reaches
node 2 and stops
in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 6: the new
token injected in
source node 1 can
only stop in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 7: the new
token injected in
source node 1 reaches
node 5 and stops
in there.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k ≥ 8: every new
token injected in
source node 1 reaches
sink node 4 through
the shortest path p1.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

Figure 6.7: Graphical representation of the proposed policy applied to the network in Fig. 6.6, for the first time instants k. The stairs
on the left refer to the (shortest) path p1 = {1, 2, 3, 4}; the stairs on the right refer to the path p2 = {1, 2, 5, 3, 4}.



76 Part II, Chapter 6 — Introduction to Part II

6.1.3 Negative costs and states

So far, to simplify the exposition of the proposed policy, the state of the nodes and the arc costs have been
assumed non-negative. Having negative arc costs simply means having a downward step: the same definition for
the below, at, and above-threshold condition continues to hold, see Fig. 6.8, and the transition rule remains the
same.

xjγij

xj + γijxi

i j

below threshold

xjγij

xj + γijxi

i j

at threshold

γij

xj

xj + γij

xi

i j

above threshold

Figure 6.8: Arcs with negative cost are represented by downward steps. The meaning of above, at, below-threshold conditions are
well-defined.

The state of a node is to be generalized when negative states are allowed. Denote the tokens considered so far
as actual tokens, which might carry some information. The simpler way to interpret negative states is assuming
that there are some non-informative virtual tokens that are accounted in each node and can be virtually moved
from node to node when Eq. (6.1) holds but no actual token is present: the zero level of the node is set at some
predefined level of such virtual tokens. The state of a node considers both the virtual and the actual tokens as
a whole, without distinction, and counts them with respect to the zero level of the node, allowing for negative
values (see Fig. 6.9). The idea behind the rule is the same, as differences of states are considered, and not their
absolute values.

zero level for node i

xi

i

...

xi

i

⇐⇒

Some virtual tokens are available. The state is
the number of actual (red) and virtual (blue) tokens,

defined with respect to some zero level.

A positive state.

...

xi

i

A positive state

...

xi

i

A positive state

...

xi i

A negative state

...

xi
i

A negative state

Figure 6.9: Some virtual tokens are assumed to be present in the network, other than the actual ones. The state is the number of
tokens (both actual and virtual) expressed with respect to a predefined zero-level. Such virtual tokens might move from node to node,
just like the actual tokens do. The state of the node does not distinguish between them and just considers the number of tokens
below, at, or above the zero level. Red: actual (informative) tokens; blue: virtual (non-informative) tokens.

For instance, consider arc (i, j) with γij = −2 and xi = xj = 0 (i.e., there are no actual tokens). Such arc
is above-threshold, as xi − xj = 0 > γij = −2. A virtual token is moved from i to j, making the state become
xi = −1 and xj = 1: the new configuration is at threshold, see Fig. 6.10.

...
...

γij

xj

xi

xj + γij

...
...

γij
xj

xi xj + γij

i j

before the transition

i j

after the transition

Figure 6.10: Examples of movement of a non-informative token when the “above threshold” condition holds for two consecutive nodes
i and j connected by an arc.

Another interpretation is that the state is just a counter of the value of the tokens deposited in there. Actual
tokens have value +1. When no actual (positive) token is present in a node i and the above threshold condition
holds for some arc (i, j), a pair of virtual tokens is generated in i, one positive (with value +1) and one negative



6.1 The main idea 77

(with value −1), which does not change the state. Then, the negative token does not leave the node i, while the
positive one moves to j: the state of i becomes xi − 1 and the state of j becomes xj + 1. Note that if in node i
there are both a negative and a positive token, the net value of these two tokens is 0 for the state: if such positive
token is indeed virtual, the pair of positive/negative tokens is destroyed (no information is lost).

Remark 6.1: An enhanced rule
As it will be seen later, virtual tokens can also be artificially introduced to avoid an accumulation of actual
tokens in the nodes. The main difference from the original rule is that now, when a token is in a node
where there are no outgoing arcs for which the above-threshold condition holds, instead of stopping in there, it
increases the state of the node it occupies until a transition to some adjacent node is possible. This improves the
performance, and, if a strongly connected network is considered, ensures that all injected tokens are received.
The application of this enhanced rule for the network in Fig. 6.6 is explained in Fig. 6.11. All the injected
tokens find a way to leave the network. In the beginning, some tokens may take the non-optimal path, but,
eventually, all the newly injected tokens can reach the sink through the shortest path.

k = 0: the initial
state is zero and no
token is deposited
in the nodes.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 1: the new token
injected in source
node 1 cannot leave
it, so it increments
the node’s state by 1
to be able to move.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

Then, it moves to
node 2 where, again,
it increments the
state by 1.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

Then, it moves to
node 5 where, again,
it increments the
state by 2. Now the
token can reach
sink 4 and leave.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 2: the new token
injected in source
node 1 increments
the node’s state by 1.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

Then, it moves to
node 2 where, again,
it increments the
state by 1. Now the
token can reach
sink 4 and leave.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k = 3: the new token
injected in source
node 1 increments
the node’s state by 1.
Now the token can
reach sink 4 and leave.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

k ≥ 4: every new
token injected in
source node 1 reaches
sink node 4 through
the shortest path p1.

1 2 3 4

1

2

0

1 2 5 3 4

1

1

2

0

Figure 6.11: Graphical representation of the enhanced rule applied to the network in Fig. 6.6, for the first time instants k. The
stairs on the left refer to the (shortest) path p1 = {1, 2, 3, 4}; the stairs on the right refer to the path p2 = {1, 2, 5, 3, 4}. Tokens
filled with white are virtual tokens.



78 Part II, Chapter 6 — Introduction to Part II

6.1.4 Constrained paths

The proposed policy can be adapted to support constraints on the paths. These constraints are expressed based
on some secondary costs σij assigned to each arc. In particular, each token is characterized by a constrained cost
c which is the cumulative cost it has paid at each arc traversal since it has first started moving: c, however, cannot
exceed a given value Cmax. For instance, assume that σij = 1 for all arcs: this means that the secondary cost of
a path is the number of traversed arcs, so that a limitation is set to the maximum number of traversed arcs.

As moving tokens proceeds along their way, their constrained cost is updated as follows: if a token moves from
node i to node j along an arc (i, j) with secondary cost σij , then, c← c+ σij .

The rule proposed for the unconstrained case can be simply adapted to the constrained by assuming that:

• each token keeps tracks of the cumulative constrained cost c of its traveled route up to the current occupied
node;

• each node i buffers the tokens deposited in there according to their constrained cost c; the state becomes a
multi-component state, where each generic component xci denotes the number of tokens deposited in node i
with constrained cost c, see Fig. 6.12;

• a token currently in node i with constrained cost c makes its routing decision along the generic arc (i, j)
considering only the agents stopped in nodes i and j that have paid its same secondary costs c and c+ σij ,

respectively, i.e., xci and x
c+σij

j ;

• denying a transition along arc (i, j) if c+ σij > Cmax, because such path is not allowed.

Then, the adapted policy can be summarized as follows; a transition of a token in node i with constrained
cost c along arc (i, j) occurs only if

xci − x
c+σij

j > γij and c+ σij ≤ Cmax.

It will be shown that the adapted policy is optimal, i.e., in the long run, all the newly injected tokens leave
the network through the constrained shortest path.

i

xi = 6

with
x0i = 3, x1i = 0

x2i = 2, x3i = 1

xi

i

xi x0i

x2i

x3i

⇐⇒
tokens in node i
are buffered by

their constrained cost

x0i
x1i

x2i x3i

multi-components state for node i

⇐⇒

Figure 6.12: Graphical representation of the state xi of a node i and its components in a constrained system: assuming a zero reference
level, each component of the state can be seen as the number of tokens with a given constrained cost deposited in the node, which
collects all the tokens with the same constrained costs.

6.2 Literature review

As already pointed out, the main focus of this Part is not presenting a new solution for the shortest path problem
(SPP). Yet, some works that have been proposed to solve the SPP have some characteristics in common with the
proposed approach (e.g., being decentralized or adaptive), hence they are reviewed next.

The shortest path problem (SPP) under known data is one of the most studied network problems [76], and many
variants and solution algorithms have been proposed over the years [77]. Two of the most famous algorithms
that are currently used to solve the SPP efficiently are Dijkstra’s algorithm [78], which solves the problem in
polynomial time for non-negative arc cost networks, and the Bellman-Ford algorithm [79, 80], which adds the
support for negative cost arcs, at the expense of a slightly higher computational burden. In the latter case, it is
usually assumed that no negative cycle is present in the considered network. Removing this assumption makes
the SPP NP-hard and it turns out that the standard polynomial time algorithms are not able to find a solution,
as indefinite loops emerge in the negative cycles (although some of them, including the Bellman-Ford algorithm,
are able to detect this condition).

Moreover, in general, arc costs are usually assumed to be rational values. The more specific case in which costs
are integer provides advantages from an algorithmic perspective in terms of space efficiency, speed of arithmetic
operations, and stability [81, 82].



6.2 Literature review 79

The above-mentioned algorithms, despite they could solve the SPP very efficiently, assume that the network is
static and fully known. Conversely, in this Part, the network is assumed unknown and possibly dynamic: indeed,
the moving tokens discover locally the nodes of the network as they proceed traveling from node to node, without
remembering their traversed route; tokens are unaware of possible modifications occurring to the network, too.
Several solutions have been proposed for supporting unknown [83, 84] and dynamic networks [85, 86]. Hereinafter,
the works proposing decentralized agent–oriented methods are considered, using only local information and easily
adaptable to possible modifications of the network. Note that algorithms like Dijkstra’s and Bellman-Ford’s
require that the optimization is to be repeated from the beginning if a modification has occurred on the network.

In [87] and [88], some optimal decentralized methods based on consensus are presented. A model based on
reinforced random walks is proposed in [73], where it is shown that shortest paths emerge. Also, many heuristics
have been proposed, which are adaptive, but cannot guarantee finding the optimal shortest path, by the very
definition of heuristics. Meta-heuristics inspired by nature are based on ant colony [89, 90, 91], river formation
dynamics [92, 93], amoebas (slime molds) [94, 95], genetic algorithms [96], particle swarm optimization [97].
Moreover, learning automata have been employed in [98]; methods exploiting learning automata can also find
stochastic shortest paths in stochastic networks, whose arc costs are random variables to be sampled [99, 100].
Most of the above-mentioned works, e.g., [89, 90, 91, 92], support only non-negative costs.

Many adaptive shortest-path routing protocols exist, for packet-switched networks [101, 102], ad-hoc and
mesh networks [103, 104], and wireless sensor networks (WSN) [74, 75], supporting multipath routing, scalable
performance, self-organizing behavior, the locality of interaction and network failure detection and backup [75].
The network architecture considered in this Part is indeed the one assumed in WSN; however, here some specific
aspects such as link congestion and throughput are neglected.

Regarding the specific threshold policy presented in this Part, as already mentioned, this is inspired by the
decentralized threshold-based control presented in [72] for (continuous) flow networks, where it is shown that
such control is effective in concentrating the flow along the shortest path in the single–source–single–sink problem
in the long run. Remark that here the problem is different, as a flow control policy is considered, instead of a
navigation agent–oriented policy. A mechanism of this kind also governs natural phenomena, like lightnings, in
the choice of their path [105]. Interestingly, it will be shown that a similar phenomenon observed in lightnings
emerges also when applying the proposed strategy: when a shortest path is discovered, initially some non-optimal
paths are still taken by some injected tokens, but become shorter and shorter, until they “vanish” and eventually
all the newly injected tokens take one of the discovered shortest outgoing paths.

It is also interesting to mention that the SPP can be studied by modeling the networks as electronic analog
circuits composed of Zener diodes (directed arcs) or non-linear resistors (undirected arcs), or as strings with knots,
adopting a threshold mechanism [106, 107, 108, 109, 110].

Remark that the proposed strategy is decentralized and the routing decisions are individual and depend only
on local information regarding the number of tokens stopped in the neighbouring nodes, but not directly on the
other tokens routing decisions. This is different, for instance, from pedestrian flow models [111] and mean-field
game routing problem formulations [112], where the interactions between agents influence those decisions.

When some secondary costs are also associated with each arc of the network and constraints are imposed on
the possible routes, making those with a total secondary cost exceeding a given value infeasible, the (resource)
constrained shortest path problem (CSPP) is to be considered [113], which is an extension of the SPP. Differently
from the SPP, which could be solved in polynomial time by some centralized algorithms under the assumption
of networks with no negative circuits, this constrained problem is known to be NP-hard [114]; it has been widely
studied, too [115, 116].

State-of-the-art methods for solving the CSPP still consider static known networks, and are based on dynamic
programming labeling methods [113, 117, 118, 119], the k-th shortest path algorithm [120], Lagrangian relaxation
[117, 120] and pulses propagation [121].

Different methods handle the infeasible paths differently. For instance, in [118, 119] a preprocessing phase first
reduces the initial network by deleting infeasible nodes and arcs, and then the resulting network is transformed
into an extended one, where the SPP is solved. Instead, in [121] infeasible partial paths are pruned during the
exploration of the network. In this Part, the concept of the extended network will be exploited to demonstrate
the optimality of the presented policy in the constrained problem.

Some heuristics have been proposed, too, for the CSPP. An adaptive amoeba algorithm is combined with the
Lagrangian relaxation algorithm in [122]. [123] introduces a bio-inspired rule. [124] presents a hybrid particle
swarm optimization-variable neighborhood search algorithm. A multi-constrained routing strategy based on ant-
colony optimization is introduced in [125]. Finally, an improved random walk search heuristic policy is studied in
[126].



80 Part II, Chapter 6 — Introduction to Part II

6.3 Contributions

To summarize, the main contribution of this Part (and [2]) is the definition of a local threshold rule that provides
a global optimal result for both the SPP and the CSPP problems. In particular:

• the specification of a decentralized agent-based policy using a very simple local threshold rule to route tokens
in an unknown network, requiring only the knowledge of local information (no information about the rest of
the network, nor the past traveled route is required); this policy supports arcs with negative costs (assuming
no non-positive circuits in the network) and can also be adapted to support constraints on the traveled
routes;

• if tokens are persistently injected in some source nodes of the network, the proposed policy is able to make
them reach some sink nodes, in the long run: after an initial transient phase in which tokens may be even
forced to stop in some nodes of the network, a steady-state is eventually reached where no token stops in
the nodes anymore;

• differently from the cited heuristics, the proposed policy is proven to be optimal in the long run: at steady-
state the optimal (possibly constrained) shortest paths emerge, which are the paths mentioned in the previous
point that are followed by the tokens at steady-state;

• the proposed policy is adaptive, as new optimal paths are eventually formed when dynamic modifications
occur on the network; there is no need to restart from the beginning, as the past optimization results are
exploited;

• the specification of an enhanced version of the proposed decentralized policy for strongly connected networks
that improves the performance and, in the unconstrained case, ensures that all tokens reach a sink.



CHAPTER7
Problem setup

In this Chapter, the considered system composed of a directed weighted network and a certain number of agents
(tokens) moving in there is first introduced. Then, the main assumptions and the main problems to be solved are
stated.

7.1 Weighted directed networks with moving tokens

A weighted directed network G = (N ,A) is considered, with n nodes and m arcs. The set of the nodes of the
network is denoted by N = {1, 2, . . . , n} and the set of the arcs of the network is denoted by A = {1, 2, . . . ,m}.

Each arc (i, j) ∈ A of the network connecting node i ∈ N to node j ∈ N is characterized by two finite weights:
a cost γij ∈ Z and a secondary cost σij ∈ Z, which will be referred to by constrained cost. The system will be
called unconstrained system when such constrained costs σij are not considered, and constrained system otherwise.

The considered network is connected to the external environment through some special nodes, called source
and sink nodes, which are a subset of the nodes of the network. The set of the source nodes is denoted by S ⊆ N
and the set of the sink nodes is denoted by T ⊆ N , with T ∩ S = ∅.

Some tokens are regularly injected from the external environment to the network, specifically in the source
nodes in S. Such tokens travel from node to node along the existing arcs, according to their direction and based
on a given policy, trying to reach a sink node to leave the network. Such policy allows or denies the transitions
along the arcs; if a transition is denied, the token must stop in the node it currently occupies, preventing it to
reach a sink. Otherwise, if the token is allowed to continue moving, once it arrives in a sink node in T , it is
immediately expelled from the network to the external environment.

Then, each injected token will either stop in a node of the network or reach a sink, where it is expelled from
the network. The last node occupied by the moving token (possibly a sink node) will be referred to as destination
node.

Moreover, for each node i ∈ N , the subset of the neighboring nodes reachable by traversing at most one arc
is also introduced, as

Ni = {j ∈ N : (i, j) ∈ A} ∪ {i}, for all i ∈ N .

7.1.1 Possible traveled routes: paths, walks and circuits

Tokens traverse the network, moving from node to node along the existing arcs. A classification of the types of
routes that they may travel is made, see Fig. 7.1.

Definition 7.1:
A path p = {hs ∈ N , s = 1, 2 . . . , r} joining a starting node i and a terminal node j on G is an ordered sequence
of r non-repeated nodes i = h1, h2 . . . , hr = j joined by an arc, i.e., such that (hs, hs+1) ∈ A and hs ̸= ht, for
all s, t = 1, 2, . . . , r, with s ̸= t.

A walk w = {hs ∈ N , s = 1, 2 . . . r} joining a starting node i and a terminal node j on G is an ordered sequence
of r possibly repeated nodes i = h1, h2 . . . hr = j joined by an arc, i.e., such that (hs, hs+1) ∈ A.

A circuit c = {hs ∈ N , s = 1, 2 . . . r} on G is a closed walk, where only the first and the last node coincide,
i.e., an ordered sequence of r nodes i = h1, h2 . . . hr = i such that (hs, hs+1) ∈ A, h1 = hr, and hs ̸= ht, for all
s, t = 1, 2, . . . , r − 1, with s ̸= t.



82 Part II, Chapter 7 — Problem setup

The traveled route of a token at time t is the ordered sequence of nodes reached by the moving token since the
moment it has first started moving (or, equivalently, since time 0) up to time t. It might be a path, a walk, or
a circuit depending on such nodes.

i

j

A path.

i

j

A walk.

i

A circuit.

i

j

An entering path.
(i ∈ S)

i

j

An outgoing path.
(j ∈ T )

i
j

A complete path.
(i ∈ S, j ∈ T )

Figure 7.1: The possible routes in a network.

Each token might first start moving from a source node (after being injected in there) or from any node (if, for
some reason, it was already in the network); in the former case, h1 = i ∈ S and the resulting traveled path/walk
is entering the network. Moreover, a traveling token might stop moving in a certain node, and possibly resume
moving later on; if the token is able to reach a sink and leave the network, then, hr = j ∈ T and the corresponding
traveled path/walk is said outgoing. A token injected in a source travels a complete path/walk if it is able to reach
a sink and exit. Note that the traveled route of a token is not reset if the token stops in a node and resumes
moving after a while.

A sequence of traversed arcs is associated with each path/walk/circuit. Then, each route can be characterized
based on the costs and the constrained costs of such traversed arcs, by introducing the following concepts.

Definition 7.2:
The length of a path p (or a walk, or a circuit) is the sum of the arc costs of all the traversed arcs:

L(p)
.
=

∑︂

hk,hk+1∈p

γhkhk+1
. (7.1)

In constrained systems, the constrained cost of a path p (or a walk, or a circuit) is the sum of all its constrained
arc costs:

C(p)
.
=

∑︂

hk,hk+1∈p

σhkhk+1
. (7.2)

Depending on the sign of L(p) the path/walk/circuit is said positive (for the costs γij) if its length is positive,
L(p) > 0, non-positive if L(p) ≤ 0, and negative if L(p) < 0. Similar definitions hold with respect to the costs σij ,
based on the sign of C(p).

In constrained systems, the constrained cost C(p) is used to specify which routes a token can take when moving
in the network; a token can continue moving as long as its traveled route is feasible.

Definition 7.3:
In a constrained system, a path p = {h1, h2, . . . , hr} (or a walk, or a circuit) is said feasible if and only if

C(p) ≤ Cmax, (7.3)

where Cmax ∈ N is the maximum constrained cost allowed for a path, and the partial subpaths pi = {h1, . . . , hi}
from h1 to the intermediate node hi, i < r are feasible, too.

The constrained cost of the traveled path of a token takes into account all the arcs traversed since the token
has first started moving (i.e., since time 0). Note that feasibility is defined recursively and takes into account all



7.1 Weighted directed networks with moving tokens 83

the intermediate step nodes. When constrained costs are non-negative, σij ≥ 0, the feasibility of the subpaths is
automatically satisfied by Eq. (7.3). Otherwise, Eq. (7.3) is not sufficient. For instance, the path p = {A,B,C}
with σAB = 4 and σBC = −2 is not feasible for Cmax = 3: despite C(p) = 4 − 2 = 2 < Cmax = 3, the subpath
pB = {A,B} is not feasible, as C(pB) = 4 > Cmax = 3. If a token reaches a node from which it cannot proceed
to any other node without making the traveled route infeasible, it is forced to stop in that node.

Remark 7.1:
The length L(p) and the constrained costs C(p) of the traveled route p have different meanings for a traveling
token. Such token would like to take the shortest path with respect to the length L(p). Moreover, in a
constrained system, the token cannot take any route with a constrained cost greater than Cmax. Then, L(p) is
a quantity to be minimized, while C(p) defines a constraint.

For instance, if the arc costs γij are physical lengths and the secondary arc costs σij are traversal times, the
tokens might want to take a route that minimizes the total traveled physical length, while not exceeding a given
traversal time.

Example 7.1:

Consider the network G in Fig. 7.2. The outgoing path p = {1, 2, 4, 5} connecting source node 1 to sink node 5
has length L(p) = γ1,2+γ2,4+γ4,5 = 1+3+0 = 4, and constrained cost C(p) = σ1,2+σ2,4+σ4,5 = 1+1+0 = 2.
This is the shortest one in a constrained system with Cmax = 2. Instead, the shortest unconstrained path is
p = {1, 2, 3, 4, 5} with L(p) = 3 and C(p) = 3.

1

2

3

4 5

1

4

1

3

1

1 0

Unconstrained system.

1

2

3

4 5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1 0, 0

Constrained system with Cmax = 2.

Figure 7.2: A simple network G, both considering an unconstrained system (left) and a constrained system (right). The values γij
and σij are indicated for each arc (i, j). The shortest paths are highlighted.

7.1.2 Buffers in the nodes

A buffer is present in each node, which collects the tokens that have stopped in there.
It is assumed that such tokens are stored in a last-in-first-out (LIFO) manner: if a new token stops in the

node, it is deposited at the top of the buffer; it is also the first one to possibly leave the node to move to another
one. The FIFO case works as well.

A state is associated with each node, based on the tokens deposited in its buffer.
The state xi(tk) ∈ Z of a node i ∈ N at time tk ≥ 0 is simply the number of tokens present in node i at

that time, defined with respect to the “zero level of the node”. A negative state is possible, and means that the
number of tokens is below this zero level; in this regard, it can be assumed that initially, in the network, there
is already a given amount of non-informative/virtual tokens, and that the zero-level is indeed their initial level.
Specifically, let ri(tk) be the possibly negative total number of tokens in a node (both coming from the external
environment or already present in the network) at time tk and let Ri = ri(0) be the “zero level of the node”.
Then, the concept of state is reinterpreted as

xi(tk) = ri(tk)−Ri.

Remark 7.2:
The interpretation of negative states could be revised by avoiding assuming that there are already some tokens
present in the network at time 0, e.g., by taking xi(tk) = li(tk)+ ci(tk), where li is the (possibly negative) zero
level of the actual tokens at time tk, i.e., of the tokens that were injected in the sources, defined with respect
to the zero level of the node, and ci the (non-negative) number of actual tokens present in the node, defined
with respect to the level li of the node. The state xi is the (possibly negative) level of actual tokens present in
the node, defined with respect to the zero level of the node. When an actual token is present in the network
and is to be moved, ci changes and li remains unchanged. Otherwise, if, for some reason, a transition needs to



84 Part II, Chapter 7 — Problem setup

be performed when there are no actual tokens present in the node, li changes and ci remains unchanged: this
latter possibility could be seen as the generation of a virtual token at time tk.

When constraints on the path length are present, the buffers’ state needs to be redefined. Each token keeps
the information of its own partial constrained cost, namely the secondary cost already accumulated in its previous
transitions.

In each node, tokens are assumed to be buffered according to their current constrained cost c = C(p), where
p is the traveled route of each token, i.e., according to the sum of the constrained costs σij that they paid along
the route they used to reach i. Assume, for simplicity, that σij ≥ 0 for all arcs (i, j) ∈ A, so that C(p) ≥ 0 for
all possible routes. Then, the state xi(tk) ∈ ZCmax+1 of a node i ∈ N at time tk ≥ 0 in now a vector whose
components xci (tk), for c = 0, . . . , Cmax, are the number of tokens with current constrained cost c present in the
node i at that time,

xi(tk) =

⎡
⎢⎣

x0i (tk)
...

xCmax
i (tk)

⎤
⎥⎦ .

In general, if σij ∈ Z, there is a component for all the possible values that C(p) can assume. The information
about the constrained costs in the state components will be used to take into account the feasibility of the traveled
routes. Note that, for an unconstrained system, all paths are actually feasible, thus this information is not needed.

Finally, the state of the network at time tk is the vector x(tk) ∈ Zn of the nodes’ states at that time,

x(tk) =

⎡
⎢⎣
x1(tk)

...
xn(tk)

⎤
⎥⎦ .

The total number of tokens in the network at generic time tk (with respect to the zero reference level) is given
by counting the tokens present in each node: in an unconstrained system, this is denoted by

V (x(tk)) =
∑︂

i∈N
xi(tk),

while in a constrained system, letting C be the set of all the possible values assumed by c = C(p), this becomes

V (x(tk)) =
∑︂

i∈N

∑︂

c∈C
xci (tk).

Under particular conditions, function V will be shown to be monotonically increasing and will have an essential
role in proving the optimality results.

Remark 7.3:
By definition of sink node, xi(tk) = 0 for all sink nodes i ∈ T for all tk ≥ 0, since all tokens arriving in there
are expelled.
For a constrained system, it also holds that xci (tk) = 0 for all sink nodes i ∈ T , for all possible constrained
costs of the traveled paths 0 ≤ c ≤ Cmax, for all tk ≥ 0.

7.2 Decentralized policies

Tokens decide in which node to move in and if/where to stop according to a decentralized policy, see Fig. 7.3.

Definition 7.4:
A token routing policy is decentralized if tokens make their routing decisions on the basis of local information
only. Specifically, for a token in node i, only the information about the nodes j ∈ Ni, the arcs (i, j) with j ∈ Ni,
and the token itself is available.

Note that by the definition of decentralized policy, all the information about non-neighboring nodes is not available.
The rest of the network might even be unknown to the moving agent, and it is discovered as it proceeds moving
from node to node.

In the specific case considered here, it is assumed that this policy uses the least amount of information possible
and that the tokens have no memory of the nodes/arcs of the traveled route p so far, except for its current
constrained cost c = C(p). Then, just the following quantities will be considered as available for formulating a
decision for the token:



7.3 Timing of the system dynamics 85

i

Figure 7.3: Decentralized policy: for a token in node i, only the information on the neighboring nodes j ∈ Ni and the corresponding
arcs (i, j), which are highlighted in blue, are available.

• the state of the current node xi, and, if a constrained system is considered, the components xci ;

• the state of the neighboring nodes xj , for all j ∈ Ni \ {i}, and, if a constrained system is considered, the
corresponding components xcj ;

• the cost γij of the incident arcs (i, j), for all j ∈ Ni \ {i}, and, if a constrained system is considered, the
corresponding constrained cost σij ;

• if a constrained system is considered, the current constrained cost c = C(p) of the traveled route p so far.

Remark 7.4:
The routing decision can be performed either by the token agent, or equivalently by the node agent, or equiva-
lently by the arc agent.

7.3 Timing of the system dynamics

The system is modeled as a discrete-time, multiple-time-scale dynamical system. In particular, two time-scales
are considered to describe the motion of the injected tokens:

• a coarser slow dynamic timescale t0 < t1 < ... < tk < ... marks the times at which tokens are injected into
the source nodes. The kth token entering the network is the one injected at tk.

• a finer fast dynamic timescale tk = t0k < t1k < ... < tNk

k , marks the times of the Nk elementary transitions
that a generic token k performs from tk until it stops in a node or reaches a sink.

Definition 7.5:
An elementary transition is the movement of a token from a node i ∈ N to a node j ∈ N along the arc (i, j) ∈ A
connecting the two nodes.

A network transition is the overall set of all the elementary transitions occurring between two consecutive time
instants tk and tk+1 of the slow dynamics.

Sometimes, however, under certain conditions, some of the tokens already present in the network might be
able to move, other than the injected token. Some intermediate time instants tk,r of the slow dynamic in-between
tk and tk+1 are introduced, such that tk < tk,1 < tk,2 < ... < tk,r < ... < tk+1, in which no token is injected, but
the token that starts moving is one already present in the network. For the generic token that starts moving at

tk,r, the corresponding finer fast dynamic timescale tk,r = t0k,r < t1k,r < ... < t
Nk,r

k,r marks the times of the Nk,r

elementary transitions that such token performs from tk,r until it stops in a node or reaches a sink.

To formally study the system, it will be assumed that only a token at a time can move in the network. Then,
a priority criterion will be adopted, by which the tokens already present in the network start moving first, one
at a time, until no other one can move further. A new token can be injected into the network only after the one
injected just before it is not able to move anymore and there are no other tokens that can move, too. Hence, the
following must hold for the instants of the slow dynamics:

t0 < t0,1 < t0,2 < ... < ... < t1 < . . . < tk < tk,1 < tk,2 < ... < tk+1 < ....



86 Part II, Chapter 7 — Problem setup

Moreover, for any two consecutive time instant of the slow dynamics tk < t1k < · · · < tNk

k < tk+1 (a similar relation
is imposed if the times tk,r are involved). This will be better specified in the Assumption 7.4 reported in the next
Section, where all the assumptions made for the considered system are stated.

Hereinafter, for simple notation, tk will indicate the generic time instant of the slow dynamic in which either
a token already present in the network or a newly injected one starts moving, where the former possibility takes
priority. Also, considering a generic time instant of the slow dynamic tk, the following notation will be adopted:

x(k)
.
= x(tk), for k = 0, 1, . . . .

A similar notation will be used for V (k)) and the other quantities that will be introduced later on.

7.4 Assumptions

Several assumptions are introduced for the network, the traveling tokens, and the adopted policy.

Assumption 7.1:
Network G is

(a) weakly connected,

and has

(b) at least one path between each source node i ∈ S and (at least) one sink node j ∈ T . If the system is
constrained, such path must be feasible, i.e., it must have a constrained cost not greater than Cmax;

(c) no non-positive circuits with respect to the costs γij and no negative circuits with respect to the costs
σij ; namely, L(c) > 0 and C(c) ≥ 0 for all possible circuit c;

(d) the costs γij and σij of all its arcs (i, j) ∈ A which are upper bounded by some γ̄ ∈ N and σ̄ ∈ N,
respectively. Namely, γij ≤ γ̄ and σij ≤ σ̄;

(e) no negative paths between any pair of sink nodes in M .

In this Assumption 7.1, condition (a) simply means that isolated/disconnected network components are not
considered.

Condition (b) ensures that for any token injected in the network (in any source node) there exists at least one
outgoing path it could follow to leave the network, if no limiting rule is applied to its displacements.

Condition (c) prevents the possibility of the tokens looping indefinitely in the network and ensures that the
shortest route in a network is necessarily a path (and not a walk), both for the constrained and unconstrained
system.

Condition (d) implies that path lengths and costs are finite.
Finally, condition (e) implies that once a token reaches any sink node i ∈ T it can leave the network immedi-

ately, so that the state of sinks nodes is kept zero, xi ≡ 0. Indeed, suppose that a token moves trying to discover
the shortest path in a network where there are two sink nodes i, j ∈ T connected by a negative path p, L(p) < 0,
and, for simplicity, only one source h ∈ S. If the shortest possible path connects the source h to the sink j and
passes through node i, it turns out that tokens would actually leave the network earlier, as soon as they reach
node i, through a “suboptimal” shortest path: if they continued moving, the length of the traveled path might
be reduced even further by leaving the network in node j. This assumption is specific to the proposed policy, but
it is not limiting: each sink node i ∈ T can be converted into a non-sink node and connected to some new sink
node j ∈ T through an arc (i, j) with γij = 0 (and possibly σij = 0), to maintain the same shortest paths, see
Fig. 7.4.

Conditions in Assumption 7.1 are not restrictive, as they are typically made in shortest path problems to
ensure the existence of a solution: under them, the unconstrained problem can be solved in polynomial time by
some centralized algorithms.

Assumption 7.2:
Tokens are:

(a) memoryless of the traveled path;

(b) only in case of a constrained system, able to update (by integrating) the cumulative constrained cost c of
their traveled paths.



7.4 Assumptions 87

1 2 32 −1
source sinksink

⇒

if there are negative paths connecting two sinks,
the state cannot be admissible

if it is imposed that xi ≡ 0 for all i ∈ T

1 2 3

2b 3b

2 −1

0 0

source

new
sinks

Figure 7.4: Assumption 7.1.e is not limiting: an equivalent network without negative paths connecting two sink nodes can always be
constructed.

Assumption 7.2 means that, along with the requirement for a decentralized policy, the least amount of infor-
mation is required to make decisions about the tokens’ movements.

Assumption 7.3:
Token movements are:

(a) asynchronous;

(b) fast: once a token is injected in the network, or in general it first starts moving from a node, it reaches
the destination node before any other token is inserted in the network.

In Assumption 7.3 condition (a) means that each token moves autonomously, without coordination with the
other tokens, coherently with the assumption of a decentralized policy. Condition (b) means that the time taken
by tokens to move in the network is of orders of magnitude smaller than the time intervals between successive
injections of tokens in the network. In the practice, this latter assumption can be relaxed by requiring that there
cannot be multiple tokens traveling simultaneously in adjacent nodes.

Assumption 7.4: Slow-fast dynamic system
Network G has two kinds of time dynamics:

1. Fast dynamics. Each token moving in the network G takes a negligible time to complete its path, as long
as elementary transitions are possible.

2. Slow dynamics. After a token is injected at time tk, a new token can be injected at time tk+1 with
the interval tk+1 − tk long enough to ensure that the token that started moving at tk has reached its
destination node (possibly a sink).

Assumption 7.4 implies that at each time at most one token can move in the network. At each tk, the other
tokens that are not said token are assumed “frozen”. Tokens that were injected prior to tk have already reached a
destination node, and, if this is a sink node, they have also already left the network. Then, to study the variation
of the state of the network and the behavior of the tokens, it is sufficient to consider only the final network state
reached after the token that had started moving at tk stops moving, which will be the network state at tk+1.

Remark that assuming that only one token at a time can move in the entire network is needed just to easily
study the system and its properties. In a realistic scenario, several tokens move simultaneously in the network.
The point is that the tokens are studied considering them one at the time. Clearly, this is absolutely legitimate
when tokens do not interact: having simultaneous movements involving different nodes produces the same effects
on the state of the network as imposing that only one token at a time can move. When different tokens travel
simultaneously from/to the same node, it is reasonable to assume that the node can process only one token at a
time, locally, with an arbitrary priority. Then, it is not difficult to see that the overall effect corresponds to the
case in which the tokens are considered separately and reach an admissible state. Then, as it will be also shown
in the examples from Chapters 10 to 12, dropping this assumption does not change the properties of the system.
Moreover, it will be shown that under a certain condition of the state (“admissible state”), which will always be
eventually reached, if only one token is injected, this will automatically be the only one to move in the network,
until it either stops or exit the network: if the frequency of injection is not too fast, the above assumption is
satisfied without knowing the state of the entire network.

Remark 7.5:
Assumption 7.4 introduces some determinism in the mechanism in a somewhat arbitrary way.
Relaxing Assumption 7.4 means: allowing simultaneous movements of tokens involving different nodes, assuming
a negligible time just for the elementary arc transitions, and allowing new token injections before a moving



88 Part II, Chapter 7 — Problem setup

token reaches its destination. Then, all the elementary transitions should be taken into account to study the
state evolution. If two tokens have to move from the same node, giving precedence to one or to the other might
makes a difference in the resulting state.
The results that will be achieved in this Part II will still hold, however, the handling of the problem would
become much more complicated.

7.5 Problem statement and its variations

The main problem that will be considered in this Part deals with traveling agents injected in a constrained system.

Problem 7.1: Constrained problem
Define a decentralized policy that, in the long run, makes each token injected in the source nodes S reach sink
nodes in T , along a feasible path of minimum length and of constrained cost not greater than Cmax.

A special (relaxed) case of this problem is obtained by disregarding the secondary costs σij , allowing all the
paths regardless of their constrained cost.

Problem 7.2: Unconstrained problem
Define a decentralized policy that, in the long run, makes each token injected in the source nodes S reach sink
nodes in T , along a path of minimum length.

This unconstrained version of the problem is much simpler than the constrained version. Indeed, recall that the
problem of finding the constrained shortest path is an NP-hard problem, while the (unconstrained) shortest path
can be discovered in polynomial time by some well-known centralized algorithm like the Dijkstra’s algorithm [78]
and the Bellman-Ford algorithm [79, 80]. Then, the unconstrained problem will be first addressed in the next
Chapter 8. The solution to the constrained problem will be built upon the solution to the unconstrained case in
Chapter 9.

Note that, in practice, the constrained Problem 7.1 reduces to the unconstrained Problem 7.2 either when
σij ≡ 0 (for any Cmax ∈ N) or when Cmax = ∞: the outcome is the same. However, as will be discussed
in Chapter 9, the adopted policy has different performance depending on whether the secondary costs σij are
disregarded, or they are assumed zero, or it is assumed that Cmax =∞.



CHAPTER8
A decentralized agent-based policy

finding the shortest paths

In this Chapter an unconstrained system is assumed and Problem 7.2 is addressed. A decentralized threshold
policy is introduced, by which tokens are routed from node to node. In the long run, this policy makes all the
newly injected tokens reach the closest sink along the shortest paths.

As the main result, it will be shown, by analyzing the slow dynamics, that the system may reach only a subset
of all possible states, named the set of admissible states, and it will eventually reach an (admissible) steady-state.
Such a steady-state is associated with the shortest path routing for all tokens.

8.1 Admissibility of the state

The concept of the admissibility of the state of the network is first introduced to define the proposed policy and
its properties.

Definition 8.1: Admissibility in an unconstrained system.

The state x of a network G is admissible if and only if xi − xj ≤ γij for all (i, j) ∈ A.

The following definitions are also introduced based on the definition of admissible state:

Definition 8.2:
An arc (i, j) ∈ A is said:

• above-threshold if xi − xj > γij ;

• at-threshold if xi − xj = γij ;

• below-threshold if xi − xj < γij ;

• under-threshold if xi − xj ≤ γij , i.e., if it is either below or at-threshold.

A token in node i ∈ N is said:

• above-threshold if there exists an above-threshold arc (i, j), j ∈ Ni joining node i and an adjacent node j;

• at-threshold if there exists an at-threshold-arc (i, j), j ∈ Ni, but no above-threshold arc (i, j), j ∈ Ni;

• below-threshold if there exists no above-threshold or at-threshold arc (i, j), j ∈ Ni.

• under-threshold if there exists no above-threshold arc (i, j), j ∈ Ni.

By the definition of admissible state, the following property is derived: a state is admissible if for any two
nodes i, j ∈ N there is no direct path between them, from i to j, with cost smaller than the difference of the
states of the two nodes, xi − xj .



90 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

Lemma 8.1:
The state x of a network G is admissible if and only if

xi − xj ≤ L(p), (8.1)

for all i, j ∈ N , for all paths p connecting i to j.

From the above Lemma, the set of admissible states is empty if

• there is a negative circuit p = i = h1, h2, . . . , hp = i because Eq. (8.1) becomes xi − xj = 0 ≤ L(p), which
does not hold, as L(p) < 0. Then, Assumption 7.1.c is needed.

• there is a negative path p that joins two sink nodes i, j ∈ T . Indeed, Eq. (8.1) becomes xi − xj = 0 ≤ L(p),
which does not hold, because L(p) < 0. Then, Assumption 7.1.e is needed.

There exist infinite configurations of the system in which the state of the network is admissible. Indeed, recall
that states might be negative, too, and the definition of admissibility considers differences of values, instead of
absolute values. The set of all the admissible states of the network is denoted by O ⊂ Zn.

8.2 Dynamics of the state of the network

Tokens movements in a network can be described by the corresponding sequence of elementary transitions, from
the fast dynamic perspective. The movements of tokens, however, change the state of the network.

Consider a network whose state is x and assume that a token is just injected in source node i ∈ S at time tk = t0k:
the immediate effect of this operation is to increase (possibly temporarily) the state xi of node i by 1, as a new
token is present in there, i.e., xi ← xi + 1. To describe this behavior, the input vector ν = [ν1, ν2, . . . , νn]

⊤ ∈ Nn

is introduced, whose generic component νh, associated with node h ∈ N , is defined as

νh =

{︄
1, if the injection occurs at node h,

0, otherwise.

Recalling the assumption that only one token at a time can enter the network and move in-between two time
instants of the slow dynamic, it must be

∑︁
h νh ∈ {0, 1} and, in particular,

∑︁
h νh = 1 if and only if there is a

token injection, and
∑︁

h νh = 0 otherwise. Let ei ∈ Zn be the ith canonical basis vector, i.e., the vector whose
components are 1 at the ith position, and 0 otherwise. Then, if a token is injected in node i, it must be ν = ei
(otherwise, it is ν = [0, . . . , 0]⊤). Consequently, xh ← xh + νh for any node h ∈ N , that is x← x+ ν = x+ ei.

Now, consider a network whose state is x and assume that a token performs an elementary transition from
node i ∈ N to non-sink node j \ T ∈ N at a generic time trk of the fast dynamic: the immediate effect of this
operation is to decrease the state xi of node i by 1 (the token has just left this node) and increase (possibly
temporarily) the state xj of node j by 1, as a new token is present in there, i.e., xi ← xi − 1 and xj ← xj + 1.
Again, the token is necessarily the only one to move in the network at that time. To describe this behavior,
the control vector u ∈ Nm = [u1, u2, . . . , um]⊤ is introduced, whose generic component h, associated with arc
h = (i, j) ∈ A, is defined as

uh = uij =

{︄
1, if the elementary transition occurs along arc h = (i, j),

0, otherwise.

Again,
∑︁

h uh = 1 if and only if there is an elementary transition, and
∑︁

h uh = 0 otherwise. Then, if an
elementary transition occurs from node i to non-sink node j along arc h = (i, j), it must be u = eh (otherwise, it
is u = [0, . . . , 0]⊤). Consequently, xi ← xi − uij and xj ← xj + uij for any node arc h ∈ A.

If j ∈ T is a sink node, it must have a zero state anytime by definition, i.e., xj ≡ 0, even after an elementary
transition moves a token in this sink node j: the token is simply instantaneously expelled from the network to
have admissibility, i.e., xj ← (xj + 1) − 1 = xj = 0. So, an elementary transition from node i ∈ N to sink node
j ∈ T results in just xi ← xi − 1.

Example 8.1:

Consider the network in Fig. 7.2. Let x(tk) be the current state at time tk. Assume that a token is injected at
time tk in node 1 and travels a path p = {1, 2, 3}. The following elementary operations are performed:

• time tk = t0k (fast dynamic): the token is injected in node 1, hence x1 ← x1 + 1;



8.2 Dynamics of the state of the network 91

Table 8.1: Overall effects on the network state x of all the network transition of a token moving from a source node i up to a
destination node j, along a given traveled path, in the unconstrained case. ei is the ith canonical basis vector.

DESTINATION

ORIGIN External environment (j ∈ T ) A node in the network (j ∈ N \ T )
External environment (i ∈ S) x← x x← x+ ej
Already in the network (i ∈ N ) x← x− ei x← x− ei + ej

• time t1k (fast dynamic): the token moves to node 2, hence x2 ← x2+1 and x1 ← x1−1; this latter operation
cancels the state variation in node 1, which returns to the value it had before the token injection;

• time t2k (fast dynamic): the token moves to node 3, hence x3 ← x3+1 and x2 ← x2−1; this latter operation
cancels the state variation in node 2, which returns to the value it had before the token injection; the
node has reached its destination.

Considering the complete chain of elementary transitions, only the state of node 3 has been modified: x(tk+1) =
x(tk) + e3.

So far, only single elementary transitions or single token injections have been considered, from the perspective
of the fast dynamic. The whole chain of operations can be modeled from the perspective of the slow dynamic.
Overall, the state of the network obtained after the token has reached its destination and stopped moving is
well-defined:

• if a token is injected (from the external environment) in source node i ∈ S and moves up to a non-sink
destination node j ∈ N \ T where it stops moving and is deposited, only the state of node j is affected, so
that the network state is updated as x← x+ ej ;

• if a token is injected (from the external environment) in source node i ∈ S and moves up to sink destination
node j ∈ T where it is expelled (to the external environment), the network state does not change: x← x;

• if a token already present in the network in any node i ∈ N moves up to a non-sink destination node
j ∈ N \ T where it stops moving and is deposited, both the states of nodes i and j are affected (the token
is just transferred), so that the network state is updated as x← x− ei + ej ;

• if a token already present in the network in any node i ∈ N moves up to sink destination node j ∈ T where
it is expelled (to the external environment), only the state of node i is affected, so that the network state is
updated as x← x− ei.

Note that the overall state variation due to the traveling of a token does not depend on the traveled path, but only
on the origin of the token (i.e., whether it was injected from the external environment or it was already present
in the network) and its destination (i.e., whether it stops in a non-sink node where it is deposited, or it reaches a
sink node where it is expelled from the network). The above-mentioned results are summarized in Table 8.1.

Consequently, it is not necessary to temporize the fast dynamic explicitly to study the system: only the slow
dynamics is therefore temporized, by assuming a change at time tk, k = 0, 1, 2, . . . whenever a round of fast
dynamics (a network transition) completes and possibly a new token is injected. Indeed, whenever a new token
is to be moved at time tk of the slow dynamic, after a network transition the state will be updated as detailed in
Table 8.1. Then, the next token transition at tk+1 can be considered. Still, a policy must be specified to determine
controls uij and the actual destination of the moving token, i.e., the sequence of its elementary transitions.

The input and the control can be redefined from the slow dynamic perspective, by taking into account all the
elementary transitions that occurred during a network transition. Hereinafter, they will be specified as

u(k) =
∑︂

r

u(trk) and ν(k) = ν(t0k),

where the relations hold component-wise. Note that the second relation follows from the assumption that a token
injection may occur only at tk = t0k. Then, the slow dynamics of network G is specified for each node by the
following state equation

xi(k + 1) =

⎧
⎨
⎩
xi(k)−

∑︂

j∈Ni

uij(k) +
∑︂

j:i∈Nj

uji(k) + νi(k), if i ̸∈ T (non-sink node),

0, if i ∈ T (sink node).

(8.2)



92 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

This can be compactly written as
x(k + 1) = x(k) +Bu(k) + v(k), (8.3)

where B is the generalized incidence matrix1 of network G whose rows associated with the sink nodes are multiplied
by 0 (i.e., sink nodes are treated as external environment). Equations of this type have been used in the context
of flow network and manufacturing [127, 24].

8.3 Decentralized transition rule

The control uij introduced in the previous Section specifies whether an elementary transition along arc (i, j) is
permitted and occurs, or not. The following simple transition rule is introduced, which specifies the network
transition of a moving token: a token injected in a source node i of a network in state x undergoes a sequence of
elementary transition from node to node until it remains above-threshold in the nodes that it reaches; eventually,
either it reaches a node j where it is under-threshold or it reaches a sink node where it leaves the network.

First, recall that the elementary transitions in the fast dynamics are not temporized. Then, under Assump-
tion 7.4, the decentralized threshold policy can be formalized as follows.

Policy 8.1: Decentralized threshold policy (unconstrained system).

Consider the following conditions for the control uij specifying the policy for each arc (i, j) ∈ A:

a) at most a token can enter a node, i.e.,

∑︂

j:i∈Nj

uji + νi ≤ 1, ∀i ∈ N ; (8.4a)

b) at most a token can leave a node, i.e.,

∑︂

j∈Ni

uij ≤ 1, ∀i ∈ N ; (8.4b)

c) a transition along an arc (i, j) ∈ A may occur only if the arrival of a token in i makes the difference between
the number of tokens present in i and in j exceed the value of the arc cost γij , i.e., only if

xi +
∑︂

l:i∈Nl

uli + νi − xj > γij . (8.4c)

Then, the control is

uij =

{︄
1, if Eq. (8.4a) and Eq. (8.4b) and Eq. (8.4c) hold,

0, otherwise.
(8.5)

Conditions a) and b) in Policy 8.1 simply means that each node can process only one token at a time: it can
either receive a single token and/or move it out, or do nothing. In other words, the same node can process multiple
tokens between two time instants of the slow dynamic, but not simultaneously. However, it will be shown that
the proposed policy ensures that no token can return to the same node (assuming the network does not change).

In condition c), recall that at each instant of the slow dynamic tk, initially (at t0k) the arrival of a token
is possible only if this is injected from the external environment, so that

∑︁
l:i∈Nl

uli = 0 in Eq. (8.4c) at the
beginning of each network transition. Later on, it can be non-zero: assuming, for instance, that an elementary
transition occurs from node l to node i, i.e., uli = 1, to test the condition for the successive elementary transition
condition for the arc (i, j),

∑︁
l:i∈Nl

uli will be non-zero in Eq. (8.4c).

Example 8.2:

Reconsider the network in Fig. 7.2. Let x(k) = [2, 1, 0, 0, 0]⊤ be the current state at time tk. Recall that
γ1,2 = γ2,3 = γ3,4 = 1, γ1,3 = 4 and γ2,4 = 3 and assume that a token is injected at time tk in node 1. The
following elementary operations are performed:

• initially, the token is injected in node 1, hence ν1 = 1 and
∑︁

l:1∈Nl
ul1 = u4,1 = 0; then, considering arc

1The incidence matrix is a n × m matrix whose columns describe the arcs of the network, and the rows the nodes; the generic
column Bh associated with arc h = (i, j) has only two non-zero elements: Bh,i = −1 and Bh,j = 1; arcs connecting the nodes of the
network with the external environment have only one non-zero entry (see, e.g., Example 8.2; refer to subsection 14.1.3 at Page 140
for more details).



8.3 Decentralized transition rule 93

(1, 2), condition Eq. (8.4c) becomes x1+u4,1+ν1−x2 = 2+0+1−1 = 2 > γ1,2 = 1, so that u1,2 = 1 and
the transition is allowed: the token moves to node 2. Note that the transition along arc (1, 3) was not
possible, because condition Eq. (8.4c) did not hold, as x1 + u4,1 + ν1 − x3 = 2+ 0+ 1− 0 = 3 < γ1,3 = 4;

• then, considering arc (2, 3), condition Eq. (8.4c) becomes x2+u1,2+ν2−x3 = 1+1+0−0 = 2 > γ2,3 = 1,
so that u2,3 = 1 and the transition is allowed: the token moves to node 3. Note that the transition along
arc (2, 4) was not possible, because condition Eq. (8.4c) did not hold, as x2+u1,2+ν2−x4 = 1+1+0−0 =
2 < γ2,4 = 3;

• the network transition is completed, because a transition along arc (3, 4) is not possible, since condition
Eq. (8.4c) does not hold, as x3 + (u2,3 + u1,3) + ν3 − x4 = 0 + (1 + 0) + 0− 0 = 1 = γ3,4 = 1.

Letting the arcs 1 = (1, 2), 2 = (1, 3), 3 = (2, 3), 4 = (2, 4), 5 = (3, 4), 6 = (4, 1), 7 = (4, 5), for this network
transition it holds that

u(k) =
[︁

1 0 1 0 0 0 0
]︁⊤
,

and
ν(k) =

[︁
1 0 0 0 0

]︁⊤
.

Also, the generalized incidence matrix B of the network where the sink node is treated as external is

B =

⎡
⎢⎢⎢⎢⎣

−1 −1 0 0 0 1 0
1 0 −1 −1 0 0 0
0 1 1 0 −1 0 0
0 0 0 1 1 −1 −1
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎦
.

Considering the complete chain of elementary transitions, only the state of node 3 has been modified. Indeed,

x(k + 1) = x(k) +Bu(k) + ν(k) =

⎡
⎢⎢⎢⎢⎣

2
1
0
0
0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

−1
0
1
0
0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

2
1
1
0
0

⎤
⎥⎥⎥⎥⎦
= x(k) + e3.

Policy 8.1 has the following properties:

• it is decentralized, as each transition is decided on the basis of local information, i.e., uij for arc (i, j)
depends only on νi, xi, xj , γij , for all j ∈ Ni;

• it makes all the elementary transitions that may occur happen: a token continues moving as long as
Eqs. (8.4a) to (8.4c) continue holding; if the token reaches a node where it is under-threshold, the net-
work transition is complete for that token.

• it imposes that all the routes followed by the moving tokens are paths (and not walks). More formally, the
subnetwork of G induced by the arcs (i, j) such that uij = 1:

– includes no circuits, due to Eqs. (8.4a), (8.4c) and (8.5) and Assumption 7.1.c on the absence of
non-positive circuits in G (see proof of the next Theorem 8.1 in Appendix B);

– is composed of not-intersecting paths, due to Eqs. (8.4a) and (8.4b).

• in presence of arcs with negative γij < 0, negative states may be reached. All the results provided so far, as
well as those reported next, hold without changes. Indeed, in Policy 8.1, condition Eq. (8.5) does depend
on difference of states, rather than their absolute values.

Remark 8.1:
If the state x of the network is currently admissible at time tk and no new token is injected in the network, by
Policy 8.1, no token moves. Indeed, at time tk, for any node i ∈ N , νi = 0 and there is no token arrival from
other nodes initially, so that

∑︁
l:i∈Nl

uli = 0. Then, condition Eq. (8.4c) reduces to xi−xj > γij , which is false
for all j ∈ Ni, by definition of admissible state. Hence, uij = 0 for all arcs (i, j) ∈ A.

If the state x of the network is currently admissible at time tk and a new token is injected in source node i ∈ S,
by Policy 8.1, this is the only one to move and “instantaneously” reaches as destination either a node from
which no transition is possible or a sink node (see the next Theorem 8.1). Indeed, the same findings of the



94 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

previous case apply; the only difference is that now, just for the source node i in which the token is injected,
νi = 1. Then, condition Eq. (8.4c) reduces to xi + 1− xj > γij , which may be true or false:

• if the token is below-threshold in i (i.e., xi − xj < γij for all j ∈ Ni), Eq. (8.4c) is false and the token
stops.

• if the token is at-threshold in i (i.e., xi − xj = γij for some j ∈ Ni), Eq. (8.4c) is true and the token
moves to node j. Once in node j, the process is repeated, recalling that now νj = 0, but uij = 1.

Formally, it holds that

x(k + 1) =

{︄
x(k), if the injected token reach a sink,

x(k) + ej , if the injected token reaches node j ̸∈ T .

Finally, if the state x of the network is currently not admissible at time tk and no new token is injected in the
network, by Policy 8.1, a token always starts moving, despite νi = 0 for all i ∈ N and

∑︁
l:i∈Nl

uli = 0. Indeed,
there exists at least one arc (i, j) which is above-threshold (xi − xj > γij) and condition Eq. (8.4c), which
reduces to xi − xj > γij , is automatically satisfied. So a network transition is triggered, which results in

x(k + 1) =

{︄
x(k)− ei, if the moving token reach a sink,

x(k)− ei + eh, if the moving token reaches node h ̸∈ T .

Recall that by assumption, if a token already present in the network can move, it takes priority over the injected
ones.

8.4 Properties of the state of the system

Hereinafter, a system composed by a network G governed by dynamics described by Policy 8.1 and state Eq. (8.2)
will be denoted by (G, f). The properties of the state of this system are reported next.

8.4.1 Special admissible states

A special subset of the set of admissible states O is the rest set ∂O ⊆ O, which contains all the fixed points of
Eq. (8.2), i.e., all the states x which are not modified: x(k + 1) = x(k). This might happen only for admissible
states: if x were non-admissible, a token already in the network would trigger a network transition which inevitably
modifies the state, as the traveled path cannot be a circuit, see Table 8.1. Then, such network transitions are
necessarily triggered by a token injection, and result in the token reaching a sink node and leaving the network.

Definition 8.3:
The admissible state x ∈ O is a rest state if it belongs to the rest set x ∈ ∂O, i.e., if there there exists at least
one source node i ∈ S such that injecting a token in there (v(k) = ei) leaves the state unchanged: if x(k) = x
then x(k + 1) = x.

The rest state x̄ ∈ ∂O is said a global rest state if injecting a token in any source node in S, no matter which,
leaves the state unchanged.

A maximal rest state x̄̄x is a global rest state with the property that injecting a token in any node in N (roughly
assuming that any node can become a source) leaves the state unchanged.

In general, there are multiple rest states and global rest states x̄. Also, each global rest state is a steady-state,
since with it the number of tokens stopped in the network nodes cannot change:

V (x̄) = V̄ .

If the system reaches a global rest state, it is guaranteed that all the tokens injected in the sources reach a
sink node and leave the network. To solve Problem 7.1, Policy 8.1 must drive the state Eq. (8.2) of (G, f) to a
global rest state.

Instead, it will be shown later in subsection 8.5.1 that the maximal rest state x̄̄x is unique. Several properties
of this special global rest state will also be pointed out.



8.4 Properties of the state of the system 95

8.4.2 Networks in an admissible state

Here, the case in which the initial state x of the network is admissible is considered.
The first result is that any admissible state is bounded, as stated by the next Lemma.

Lemma 8.2: Boundedness of the admissibility states

In a system (G, f) with x(k) ∈ O, it holds that

V (x(k)) ≤ γ̄ n(n− 1)

2
,∀k > 0.

Another important result is that for any admissible state x(k) ∈ O, a new well-defined admissible state
x(k + 1) ∈ O is reached when applying Policy 8.1 (well-posedness and positive invariance), as stated by the next
Theorem. In other words, once the state is admissible, it remains admissible, unless the network is modified.

Theorem 8.1: Well posedness and positive invariance

A system (G, f) initialized with x(0) ∈ O is well posed and the set O of the admissible states is positively
invariant and finite. In particular, for each time k ≥ 0, either x(k+1) = x(k) or x(k+1) = x(k) + ej for some
j ∈ N .

Note that, in general, no bound can be expressed for the number k̄ of tokens needed to reach a global rest
state, unless further assumptions are made. Indeed, assume that there are multiple source nodes: if the tokens
are all injected in only one source, a global rest state might never be reached. Moreover, any new token injected
in the sources whose state has already converged (as well as the state of the nodes of the outgoing paths from
these sources) contributes to increasing the value of k̄, but not the value of V (x). Indeed, k̄ depends on when,
how often and how regularly new tokens are inserted in each source.

A persistent token injection must be assumed to claim some results.

Definition 8.4:
The injection of tokens in a source is said persistent if the injected tokens number is unbounded.

Then, for any initial state x(0) ∈ O, a global rest state is reached after the insertion of a finite number of
tokens, if this occurs in all the source nodes. A bound can be provided assuming a single-source network.

Theorem 8.2:
A system (G, f) initialized with x(0) ∈ O always reaches a rest state in ∂O in finite time k̄ if at each time
k = 0, . . . , k̄− 1 a new token is injected into the network (under persistent injection). In particular, the system
reaches a global rest state if a sufficiently high number of tokens is inserted in all the source nodes. For a
single-source network, the maximum number of new tokens that need to be inserted to reach a global rest state
is

K̄ = γ̄
n(n− 1)

2
− V (x(0)),

where V (x(0)) is the initial number of tokens present in the buffers of the network nodes, i.e., k̄ ≤ K̄.

Some considerations about the complexity

The time to reach a global rest state, measured in number of injected tokens, is exponential in the size of the
problem input [2].

8.4.3 Networks in a non-admissible state

Here, the case in which the initial state x of the network is not admissible is considered. The same Policy 8.1 under
Assumption 7.4 is applied. However, due to the definition of non-admissible state, one or more arcs satisfy the
above-threshold condition Eq. (8.4c) (even if there is no token injection): hence, multiple elementary transitions
involving tokens already present in the buffer of the nodes are possible. Recall that to ensure that only one token
at a time can move in the network, as required by Assumption 7.4, a priority criterion is adopted, prioritizing the
traveling of the tokens already present in the network (see Section 7.3).

The non-admissible state condition is, however, only temporary if no new token is injected: the system (G, f)
will eventually reach a state in O in finite time. Then, the results from subsection 8.4.2 can be applied.

Theorem 8.3: Attractiveness of O
A system (G, f) initialized with x(0) ̸∈ O always reaches a state in O in finite time if no new token is injected
into the network.



96 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

8.5 Optimality of the traveled paths

In this Section a system (G, f) in an admissible state is considered; this is not a limitation because, by Theorem 8.3,
an admissible state in O is reached anyway in finite time if the state is not admissible.

Then, an (injected) token moving from node i ∈ N to some other node j ∈ N (not necessarily a sink), always
reaches such node moving along the shortest path (or one of the shortest paths in case of multiple possibilities)
with respect to the costs γij .

Theorem 8.4: Shortest path

A system (G, f) in an admissible state x(k) ∈ O at time k is given. If v(k) = ei for some i ∈ N the injected
token reaches its destination node j following the unconstrained shortest path from i to j.

In the special case in which the reached node is a sink, i.e., j ∈ T , the optimality of the outgoing path followed
by the injected token is ensured.

Corollary 8.1: Shortest outgoing path

A system (G, f) in an admissible state x(k) ∈ O at time k is given. If a token injected in a source node i ∈ S
reaches a sink node j ∈ T along the (shortest unconstrained) path p, then

• j is among the closest sink nodes to i, i.e., there exists no j′ ∈ T such that L(p′) < L(p), where p′ is the
shortest path from i to j′;

• xi(k) = L(p);

• in general, xh(k) = L(ph), where ph is the sub-path of p starting from node h and reaching j, for all the
nodes h ∈ p of the path.

This is the most important result of this Part: despite a very simple decentralized policy is adopted to route
the memoryless agents using only local information, in the long run, the shortest paths emerge, and each new
injected token can eventually leave the network traveling along them.

8.5.1 Maximal rest state

The concept of maximal rest state can now be better specified as the (unique) state in which the amount of tokens
in each node is equal to the minimum length to the closest sink.

Definition 8.5: Alternative equivalent definition

The maximal rest state x̄̄x of a system (G, f) is the unique global rest state defined as

x̄̄x = {x̄̄xi = L(pi) : i ∈ N},

where L(pi) is the length of the shortest path from node i to its closest sink node. If i ∈ T , its “closest” sink
node is the very i, resulting in x̄̄xi = L(pi) = 0, in accordance with the definition of sink node.

If the network is in the maximal rest state, a new token injected in any node i ∈ N of the network immediately
reaches a sink node following the shortest path of length L(pi). Recall that if the network were in a global rest
state, this statement would be true only for new tokens injected in any source node i ∈ S ⊆ N of the network.

The maximal rest state x̄̄x has the following important properties, which follows from Corollary 8.1:

• x̄̄x depends only on the network structure, as the shortest paths between nodes are properties of the network;

• x ≤ x̄̄x component-wise, for all admissible states x ∈ O;

• x̄̄x is a global rest state for any source set S;

• for any global rest state x̄ of a network, x̄ ≤ x̄̄x component-wise and x̄i = x̄̄xi for all nodes along at least one
shortest path connecting each source to the closest sink.

8.5.2 Multiple source nodes, sink nodes, and shortest outgoing paths

The results presented so far do not make any particular assumption on the number of source nodes, sink nodes,
and possible shortest paths between them (even for a single-source-single sink network). Here, the effects of having
these conditions are summarized.

Having multiple source nodes simply means that tokens are injected in more than one node. A global rest x̄
will be eventually reached under persistent injection in all the sources, and, since any global rest state is upper



8.6 Dynamic networks 97

bounded by the maximal rest state x̄̄x, generally the number of nodes i ∈ N for which x̄i = x̄̄xi increases as the
number of sources increases. The main exception is the case in which these new sources are placed along the
shortest paths between an existing source and the closest sink.

As already discussed, having multiple sink nodes simply means that tokens have multiple points to leave the
network. Eventually, each token injected in a given source will reach the closest sink to that source, i.e., it will
leave the network along the shortest path possible, once a global rest state is reached.

Note that a multiple-sinks network can be transformed into a single-sing network, by transforming all the sink
nodes i ∈ T into non-sink nodes, and connecting them to a new single external sink node O by some arcs (i, O),
with γiO = 0 (and possibly σiO), so that the shortest paths of this new network have not changed; then, all the
injected tokens exit through sink node O along the shortest path from i to O, which automatically passes through
the original sink node that was closer to i.

Remark 8.2:
A special network is the one where the nodes i ∈ N are partitioned into sources and sinks, i.e., such that
S ∪ T = N with S ∩ T = ∅; there is only one unique global rest state, which coincides with the maximal rest
state x̄̄x. If the assumption S ∩ T = ∅ is dropped, the same holds: in this case, a token injected in a sink node
is immediately expelled from the network.

Finally, when there are multiple shortest outgoing paths from node i (even to different sinks), these have all
the same (minimal) length, so the maximal rest state x̄̄xi is still unique. If the system is in the maximal rest state,
all these multiple shortest paths are active and potentially available for new tokens; conversely, if the system is in
a generic global rest state, at least one is active, but not necessarily all of them. Note that if multiple outgoing
shortest paths exist and are traversable by the tokens, it means that for some nodes there are necessarily multiple
outgoing arcs which are all above threshold when a token arrives in there. Depending on the policy of choice
for the next node to visit in case of multiple arcs above threshold, some of these shortest paths may never be
traversed.

Example 8.3:
Consider the network in Fig. 8.1 with three sources s1, s2, s3 and four sinks d1, d2, d3, d4, and γi,j = 1 for all
arcs (i, j), and assume the state of the network is a global rest state. All the tokens injected in source node
s1 reach the sink d2 through the independent unique shortest path highlighted in red. From source node s2
three possible outgoing shortest paths exist to nodes d3, d4, which are highlighted in blue. Assume that xi = x̄̄xi
for all the nodes along these shortest paths. A policy must be specified to determine which path to take, at
nodes s2 and i. All the tokens injected in source node s3 join one of the possible shortest paths from node s2,
reaching d3 to leave the network. No token is collected at sink node d1.

s2

s3

i

d3

d4

s1

d2
d1

Figure 8.1: A simple network G with three sources s1, s2, s3 and four sinks d1, d2, d3, d4. All the arc costs are assumed unitary,
γij = 1. The shortest paths from each source are highlighted. The highlighted nodes have a state equal to the corresponding
maximal rest state components xi = x̄̄xi.

8.6 Dynamic networks

In this Section, the case in which Policy 8.1 is adopted in a scenario in which the network configuration is dynamic
is considered. In particular, the following are assumed time-varying: the topology of network G(k) = (N (k),A(k)),
the cost of each arc γij(k) for all (i, j) ∈ A(k), the set of the source nodes S(k) and the one of the sink nodes
T (k). It turns out that the proposed policy is adaptive.

Under the assumption that Assumption 7.1 continue to hold for all time k ≥ 0, once the configuration of the
network changes, the “initial state” of the new configuration of the system will be non-zero, in general. Still,
the results presented so far are independent from the initial state. Indeed, by Theorems 8.3 and 8.4, whenever
a network changes its configuration, if the new initial state is not admissible, first an admissible state will be
reached, and then a new global rest state will be reached too, achieving the optimality in the new scenario. An



98 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

advantage of Policy 8.1 is that the transient among different configurations is, in general, fast compared to the case
in which the optimization restarts from zero, since the results from previous optimization phases are exploited.

A network can change from k to k+1, due to a connection (arc) which becomes active or inactive, or by a change
of cost or by a node, possibly a source or a sink, which becomes active/inactive. Because of the modifications on
the network, the admissibility of the state x(k), the set O, the rest set ∂O and maximum rest state x̄̄x can change,
too. In any case, it is assumed that Assumption 7.1 continue holding.

To simplify, the following notation is used next:

• At time k, before the modification: G = G(k), N = N (k), A = A(k), γh = γh(k), S = S(k), T = T (k),
x = x(k), x̄̄x = x̄̄x(k), and so on;

• At time k + 1, after the modification: G′ = G(k + 1), N ′ = N (k + 1), A′ = A(k + 1), γ′h = γh(k + 1),
S ′ = S(k + 1), T ′ = T (k + 1), x′ = x(k + 1), x̄̄x′ = x̄̄x(k), and so on.

Below, the above-mentioned simple modifications on the network involving a single node î ∈ N or arc ĥ = (î, ĵ) ∈ A
are briefly analyzed in more detail. Then, it is easy to generalize to simultaneous modifications, as the effects are
overlapped.

1. Failure of an arc: arc ĥ = (î, ĵ) ∈ A is removed (disabled) from G, thus A′ = A∖ {ĥ}.

2. Increasing a cost: the cost of arc ĥ = (î, ĵ) ∈ A is increased by ∆ĥ > 0, thus γ′
ĥ
= γĥ +∆ĥ.

Firstly, note that Item 1 can be seen as a special case of Item 2, assuming ∆ĥ = +∞: the cost of ĥ becomes
so large that it is like the arc does not exist anymore.

In both Items 1 and 2, the new admissible state set O′ is a superset of O: O′ ⊇ O, so any admissible state
x remains such. This holds because xi − xj ≤ γij ≤ γ′ij for all (i, j) ∈ A.
A non-admissible state x might become admissible if the only arc that makes it such is h̄. Conversely, ∂O
may change.

The maximum rest state x̄̄x′ can only be greater or equal to x̄̄x component-wise, because for the paths (from

any node in N to the closest sink) passing through ĥ, whose cost is increased, there might be new alternative

shorter paths not passing through ĥ.

In both cases, if x ∈ ∂O, the newly injected tokens might need to find a new outgoing shortest path if ĥ
was in one of the paths followed by them prior to the modification and no alternative path is available yet,
either because such path is no more available (Item 1) or its cost has increased too much (Item 2).

3. Insertion of an arc : arc ĥ = (î, ĵ) /∈ A is added (re-enabled) to G, thus A′ = A ∪ {ĥ}.

4. Decreasing a cost: the cost of arc ĥ = (î, ĵ) ∈ A is decreased by ∆ĥ > 0, thus γ′
ĥ
= γĥ −∆ĥ.

In both Items 3 and 4, the new admissible state set O′ is a subset of O: O′ ⊆ O, so an admissible state may
become not admissible if the involved arc h̄ becomes not admissible. In this latter case, a transition time
interval is needed to reach an admissible state in O′.

A non-admissible state x cannot become admissible, as the arcs that are non-admissible remains and xi−xj >
γij ≥ γ′ij for some (i, j) ∈ A.
The maximum rest state x̄̄x′ can only be smaller or equal to x̄̄x component-wise, since there can be new
alternative shortest paths (from any node in N to the closest sink) passing through ĥ.

5. Adding a source: node î ∈ N \ S becomes a source, thus S ′ = S ∪ {î}.

6. Removing a source : node î ∈ S stops being a source, thus S ′ = S ∖ {î}.
For both Items 5 and 6, the admissible state set O′ does not change, because the admissibility property does
not depend on the location of the source nodes. Hence, if x is admissible, x′ remains admissible, while if x
is non-admissible, x′ remains non-admissible.

For the same reason, the maximum rest state x̄̄x′ remains the same as x̄̄x, too.

Instead, the global rest set might change. In Item 5, ∂O′ ⊆ ∂O: tokens injected in î might need to discover
the new shortest outgoing paths, even if x ∈ ∂O. This condition might be avoided if the new source î is
located in one of the shortest outgoing paths followed by the tokens injected in S. Conversely, in Item 6,
∂O′ ⊇ ∂O: if x ∈ ∂O, it also holds that if x ∈ ∂O′ and the optimal steady-state is already reached.



8.6 Dynamic networks 99

7. Adding a sink: node î ∈ N \ T becomes a sink, thus T ′ = T ∪ {î}. The state xî, if positive, is depleted
of the token stored in there and is forced to be x′

î
= 0, so V (x) ≥ V (x′) (assuming xî ≥ 0).

An admissible state x of G remains admissible if and only if, after setting xî = 0, all the arcs connected to

î are admissible.

The maximum rest state x̄̄x′ can only be smaller or equal to x̄̄x component-wise, since any alternative shortest
path (from any node in N to the closest sink) could reach the new sink î, which is possibly closer.

If x ∈ ∂O, the newly injected tokens might need to find new shortest paths to î, if these are shorter than
the current optimal ones.

8. Removing a sink: node î ∈ T stops being a sink, thus T ′ = T ∖ {î}. Also, the state of î stops being
forced to zero.

This operation does not modify the admissibility property of state x of G.
The maximum rest state x̄̄x′ can only be greater or equal to x̄̄x component-wise, since any alternative shortest
path (from any node in N to the closest sink) cannot reach sink î anymore.

If x ∈ ∂O, new injected tokens might need to find new shortest paths if î was in the closest sink they were
reaching and no alternative optimal paths are available, yet.

9. Failure of a node: one node î is removed (disabled) from G, which means that all the (ingoing or outgoing)
arcs connected to that node î are disabled, too (see the effects of Item 1). Moreover, if that node î is a
source or a sink node, such source or sink is also removed (see Items 6 and 8). Thus N ′ = N ∖ {î}, A′ ⊆ A,
S ′ ⊆ S and T ′ ⊆ T . Also, all the token stored in î are (possibly temporarily) lost, V (x) ≥ V (x′) (assuming
xî ≥ 0).

10. Insertion of a node: node î is added (re-enabled) to G, which means that all the (ingoing or outgoing)
arcs connected to that node î are re-enabled, too (see the effects of Item 3). Moreover, if that node î was
a source or a sink (before it was previously disabled), such source or sink is also re-enabled (see Items 5
and 7). Thus, N ′ = N ∪{î}, A ⊆ A′, S ⊆ S ′ and T ⊆ T ′. Also, if î is re-enabled, all the tokens which were
stored in î could possibly be restored.

In both Items 9 and 10, the state vector x changes space, losing/acquiring one component. The admissibility
of a state is preserved after removal (Item 9), meaning that the new state (in the new space) is admissible; if
x ∈ ∂O, new injected tokens might need to find new shortest paths, if î was in one of the paths followed by
them prior to the modification and no alternative path is available yet. The admissibility is not preserved
in general after activating a node with new connections (Item 10): if x ∈ ∂O, new injected tokens might
find new shortest paths passing through î.

A final point to be investigated is whether a persistently changing network can become indefinitely congested,
i.e., if the number of tokens in the network can grow up to infinity. The following sufficient Assumption is
introduced.

Assumption 8.1:
• At time k an event can be either an injection of one token or a network reconfiguration. In the latter
case, sufficient time is given before inserting new tokens so that the system can reach an admissible state.

• The costs of the arcs are non-negative (and upper bounded by γ̄): 0 ≤ γij ≤ γ̄, for all arcs (i, j).
• Assumption 7.1 holds for any network configuration.

• The number of nodes of the network is upper bounded by a positive number n̄.

Under the above Assumption, the network cannot become indefinitely congested, because, under the assumption
of non-negative arc costs, the number of tokens in the network coincides with the value of V (x) and can never
exceed the value γ̄n̄(n̄− 1)/2.
Indeed, consider a change of configuration at a time k′. By assumption, x(k′) was admissible before the modifica-
tion, and hence V (x(k′)) ≤ γ̄|N (k′)|(|N (k′)|−1)/2 ≤ γ̄n̄(n̄− 1)/2 (see Lemma 8.2). After a finite number of time
instants, at some time k′′ ≥ k′, a new admissible state is reached, for which the same inequality reported above
holds. This continues holding for any admissible state of any possible configuration. Note that, by Theorem 8.2,
if x(k′) become not admissible after the change of configuration at a time k′, V (x(k)) cannot increase between k′

and k′′. This means that the total number of tokens in the network is bounded.



100 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

8.7 Non-integer arc costs

So far it has been assumed that the arcs’ costs γij have integer values. From an algorithmic perspective, this
has advantages in terms of space efficiency, speed of arithmetic operations, and stability [81, 82]. Indeed, when
working with non-integer arithmetic, numerical errors might be critical when applying the proposed threshold
mechanism. However, in a more realistic scenario, non-integer arc costs ˜︁γij might be necessary. To continue using
the proposed policy, these non-integer costs ˜︁γij have to be transformed to some integer costs γij , so that the
proposed policy is applied to the same network whose arcs have these integer costs.

A first trivial possibility is just rounding these costs, possibly after scaling them by a factor α ∈ Q, as

γij = round(α˜︁γij).

This rounding inevitably introduces some approximation errors that may change the distribution of the short-
est paths [81]. The same applies when using the ceiling or the flooring functions [81]. Computing an integer
approximation that does not topologically change the shortest paths is an NP-hard problem [82].

Example 8.4: Approximating the non-integer arc costs as integers: rounding, flooring and ceiling

Consider the network in Fig. 8.2 with non-integer arc costs ˜︁γij . The actual (unique) shortest path is p3 =
{1, 2, 5, 4}, with L(p3) = 5.7.

1 2 3 4

5

2.5 3 1.8

1.1 0.84 2.1
source sink

Actual network with non-integer arc costs γ̃ij

1 2 3 4

5

3 3 2

1 14 2
source sink

Network with arc costs round(γ̃ij)

1 2 3 4

5

2 3 1

1 04 2
source sink

Network with arc costs floor(γ̃ij)

1 2 3 4

5

3 3 2

2 14 3
source sink

Network with arc costs ceil(γ̃ij)

Figure 8.2: A network with non-integer arc costs ˜︁γij . Different networks are obtained by approximating the arc costs to integers
using the rounding, flooring, and ceiling functions. The shortest paths are highlighted.

When the network costs are rounded, a new shortest path p5 = {1, 5, 4} emerges, other than p3, whose length
increases to L(p3) = L(p5) = 6. When the network costs are approximated using the flooring function, the
only shortest path is p2 = {1, 2, 5, 3, 4}, with length L(p2) = 4: p3 is no longer an optimal path. Finally,
when the network costs are approximated using the ceiling function, two new shortest paths p4 = {1, 5, 3, 4}
and p5 = {1, 5, 4} emerge, with length L(p4) = L(p5) = 7: again, p3 is no longer an optimal path. These
results are summarized in Table 8.2. In all the three considered cases approximating the non-integer costs by
simply rounding or taking the flooring or the ceiling, the distribution of the shortest paths changes, in terms
of traversed arcs, number of paths, and path costs. While some shortest paths are eventually discovered, these
are not the same as the ones of the original actual network.

Table 8.2: Length L(p) for each possible path p1, p2, p3, p4, p5 of the actual network in Fig. 8.2 with actual costs ˜︁γij , and the
networks where the costs are approximated to integers. Values in bold refer to the shortest (unconstrained) paths in each network.

Costs of
the arcs

Length of
p1 = {1, 2, 3, 4}

Length of
p2 = {1, 2, 5, 3, 4}

Length of
p3 = {1, 2, 5, 4}

Length of
p4 = {1, 5, 3, 4}

Length of
p5 = {1, 5, 4}˜︁γij 7.3 6.2 5.7 6.6 6.1

round(˜︁γij) 8 7 6 7 6
floor(˜︁γij) 6 4 5 5 6
ceil(˜︁γij) 8 8 8 7 7

Note that applying the proposed policy without rounding the non-integer costs, i.e., using the non-integer arc
costs as thresholds, is equivalent to taking the flooring of the costs, hence this does not ensure convergence to the



8.7 Non-integer arc costs 101

actual shortest paths. Indeed, for the above-threshold condition, recalling that floor(˜︁γij) ≤ ˜︁γij , it follows that:

xi − xj > ˜︁γij ≥ floor(˜︁γij),

hence, regardless of using the original arc cost as threshold or its flooring, a transition occurs and a token moves
from node i to node j. For the below or at threshold condition, recalling that a real number can be written as
the sum of its flooring and its fractional part 0 ≤ frac(˜︁γij) < 1, and that xi − xj is integer, it follows that:

xi − xj ≤ ˜︁γij = floor(˜︁γij) + frac(˜︁γij) < floor(˜︁γij) + 1, that is xi − xj ≤ floor(˜︁γij),

hence, in both cases, no transition occurs from node i to node j.

Example 8.5: Using non-integer arc costs as thresholds

Consider an arc (i, j) with actual cost ˜︁γij = 2.6. The states of its end nodes are xi and xj . Let xj = 1 and
consider the following three cases:

• if xi = 3, the below threshold condition holds when considering the actual cost as threshold, and the at
threshold condition holds when taking its flooring, making no token move from node i to node j:

xi − xj = 2 < ˜︁γij = 2.6 and xi − xj = 2 = floor(˜︁γij) = 2;

• if xi = 4, the above threshold condition holds both when considering the actual cost as threshold and
when taking its flooring, making a token move from node i to node j:

xi − xj = 3 > ˜︁γij = 2.6 and xi − xj = 3 > floor(˜︁γij) = 2;

• if xi = 5, the above threshold condition holds both when considering the actual cost as threshold and
when taking its flooring, making a token move from node i to node j:

xi − xj = 4 > ˜︁γij = 2.6 and xi − xj = 4 > floor(˜︁γij) = 2.

These facts can also be visualized in Fig. 8.3, recalling the step representation of an arc. Note that when xi = 4,
one can argue that the step blocks the transition. This condition can be modeled by taking the ceiling of the
arc costs, but still, the shortest path distribution might change.

γ̃ij

xj

xi

i j

xi = 3, threshold γ̃ij

NO

γ̃ij

xj

xi

i j

xi = 4, threshold γ̃ij

OK

γ̃ij

xj

xi

i j

xi = 5, threshold γ̃ij

OK

floor(γ̃ij)

xj

xi

i j

xi = 3, threshold floor(γ̃ij)

NO

floor(γ̃ij)

xj

xi

i j

xi = 4, threshold floor(γ̃ij)

OK

floor(γ̃ij)

xj

xi

i j

xi = 5, threshold floor(γ̃ij)

OK

ceil(γ̃ij)

xj

xi

i j

xi = 3, threshold ceil(γ̃ij)

NO

ceil(γ̃ij)

xj

xi

i j

xi = 4, threshold ceil(γ̃ij)

NO

ceil(γ̃ij)

xj

xi

i j

xi = 5, threshold ceil(γ̃ij)

OK

Figure 8.3: Examples of token transition for a non-integer cost arc. Using the non-integer arc cost as threshold is equivalent to
using its flooring.



102 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

Hereinafter, it is assumed that the arc costs have rational values, which is a natural assumption in path
problems. Let ˜︁γij ∈ Q be the (actual) non-integer cost of the generic arc (i, j) ∈ A of the network, which can be
written as the ratio between an integer numerator nij ∈ Z and a positive integer denominator dij ∈ N∖ {0},

˜︁γij =
nij
dij

.

Then, the least common multiple (lcm) of the denominators dij of the arcs’ costs is computed as

µ = lcm({|dij |: (i, j) ∈ A}).

Notice that, by the definition of µ, µ˜︁γij is integer. Then, the network with costs γij = µ˜︁γij is an integer cost
network, with the same shortest paths as the one with costs ˜︁γ, as the path lengths are just scaled by µ. Then,
the proposed policy can be successfully applied.

When the arc costs are scaled to get integer costs γij = µ˜︁γij , it is no longer true that, for each node i ∈ N ,
the value of the maximal rest state xi is equal to the length Lmin,i of the actual shortest paths (i.e., with respect
to costs ˜︁γ) from i to the closest sink; it is rather scaled by µ, that is

xi = µLmin,i.

As an alternative approach, scaling the arc costs can be avoided by introducing the “value” ρ ∈ Q assigned to
each token and changing the interpretation of the “state” xi of a node i ∈ N . Let Xi be the number of tokens
present in the buffer of node i. So far, a value of ρ = 1 was essentially given to each token, and the state xi was
interpreted as the number of tokens stored in there:

xi = Xi.

Then, whenever a token moves from i to j, it holds that:

xi ← xi − 1 and xj ← xj + 1.

Now, the state xi is interpreted as the total “value” of the tokens present in the buffer of the node, which is
the number of tokens in there multiplied by the generic value ρ:

xi = ρXi.

Then, whenever a token moves from i to j, its value is just “transferred”:

xi ← xi − ρ and xj = xj + ρ.

As a result,
xi = Lmin,i.

Remark 8.3:
Applying the proposed policy with ρ = 1 and (integer) costs µ˜︁γij as thresholds is equivalent to applying it with
ρ = 1/µ and (non-integer) costs ˜︁γij as thresholds. Indeed, the transition conditions are, respectively,

xi − xj = Xi −Xj > µ˜︁γij ,

and

xi − xj = ρXi − ρXj =
Xi −Xj

µ
> ˜︁γij ,

which are equivalent.

For both the equivalent approaches proposed to deal with non-integer costs, the main limitations are:

• the scaling factor µ (and ρ) must be the same for all arcs, otherwise, the shortest paths’ distribution might
change. In other words, µ is a fixed global parameter that must be known in advance;

• the larger is the precision of the costs, the larger is the number of tokens required to converge, even if costs
are in the same range;

• when using ρ = 1/µ and the non-integer costs ˜︁γij as threshold, non-integer arithmetic is involved.



8.8 An enhanced policy considering virtual tokens 103

Example 8.6:
Consider again the network from Example 8.4, reported in again on the left of Fig. 8.4, with actual costs
˜︁γ = [2.5, 4, 3, 1.1, 1.8, 0.8, 2.1] = [5/2, 4/1, 3/1, 11/10, 9/5, 4/5, 21/10]. From the denominators of these costs,
it results that µ = 10. Then, the proposed threshold policy is applied to this network, assigning the value
ρ = 1/µ = 0.1 to the tokens. Equivalently, the network on the right of Fig. 8.4 with integer costs γ = µ˜︁γ =
(using ρ = 1) can be considered, which has the same shortest paths, just with costs scaled by µ.

1 2 3 4

5

2.5 3 1.8

1.1 0.84 2.1
source sink

Actual network with non-integer arc costs γ̃ij

1 2 3 4

5

25 30 18

11 840 21
source sink

Network with integer arc costs µγ̃ij,
which is topologically equivalent

Figure 8.4: A network with non-integer arc costs ˜︁γij . On the left, a network that has integer costs γij and is topologically equivalent
to it in terms of shortest paths is represented.

Consider now the network in Fig. 8.5, with costs ˜︁γ = [2.505, 4.053, 3.068, 1.107, 1.824, 0.815, 2.112] = [501/200,
4053/1000, 767/250, 1107/1000, 228/125, 163/200, 264/125]. By taking µ = 1000, the network with costs γ = µ˜︁γ
is obtained. Despite having the same topology of the network in Fig. 8.4, with the costs being in the same
range, just with higher precision, applying the proposed policy here requires far more tokens to converge.

1 2 3 4

5

2.505 3.068 1.824

1.107 0.8154.053 2.112
source sink

Actual network with non-integer arc costs γ̃ij

1 2 3 4

5

2505 3068 1824

1107 8154053 2112
source sink

Network with integer arc costs µγ̃ij,
which is topologically equivalent

Figure 8.5: The same of Fig. 8.4, with the only difference being that the rational costs ˜︁γij are in the same range, but have an
higher precision.

8.8 An enhanced policy considering virtual tokens

It has been shown that Policy 8.1 is optimal, in the sense that, under certain assumptions, it drives the state of
a network to a global rest state, which guarantees that eventually, all newly injected tokens in the sink nodes of
the network are able to reach the closest sink node, through the shortest paths, and do not get lost. However, one
of the main drawbacks of Policy 8.1 is that most of the tokens injected during the transitory phase cannot reach
the sinks, as they are deposited in the node buffers to “fill” their states and possibly allow the successive tokens
to proceed moving.

Trivially, this might be mitigated by sending non-informative tokens during the initial transitory, and informa-
tive tokens when a global rest state is reached, so that no information is lost. However, the problem of detecting
locally the time at which the convergence occurs remains.

A simple variation of the threshold Policy 8.1 ensures that all the injected tokens, even those arriving during
the initial transient, reach a sink node, hence can be informative, in the case in which paths are not constrained
and the following Assumption is introduced.



104 Part II, Chapter 8 — A decentralized agent-based policy finding the shortest paths

Assumption 8.2:
Network G is strongly connected.

The concept of virtual (non-informative) tokens is reconsidered, which are generated locally in a node to make
elementary transitions always possible whenever an informative token arrives in there.

Policy 8.2: Enhanced decentralized threshold policy (unconstrained system).

When an (informative) token reaches a node i ∈ N in which the above-threshold condition does not hold for
any outgoing arc, i.e.,

xi(k) + 1− xj(k) ≤ γij , ∀j ∈ Ni,

instead of stopping the token, generate a block of γiĵ + xĵ(k) − xi(k) virtual tokens in i, where ĵ =
argminj∈Ni

{γij + xj(k) − xi(k)}, so that the value of state xi immediately becomes: xi(k) → xĵ(k) + γiĵ
and the arc (i, ĝ) becomes above-threshold. Then, the informative token moves to the node ĵ.

This enhanced policy ensures that the more the number of virtual tokens are generated by the traveling agents
along their way, the less the number of (actual, informative) tokens needs to be injected in the source nodes of
the network to converge to a global rest state. Essentially, the generation of a block of virtual tokens at a given
time is equivalent to having injected the same amount of (actual) tokens in the network at different earlier times.

Then, this policy becomes independent from the arc costs values γij and results in way better performance
compared to the original Policy 8.1. The number of injected tokens needed to reach a global rest state depends
on the number of arcs of the shortest paths and, in general, the enhancements become more evident as γ̄ grows.

Example 8.7:

Consider an arc (i, j) with states xi = xj = 0 and cost γij = 1000. An arrival of 1000 injected tokens in i is
required to allow the transition to node j using Policy 8.1; with the enhanced Policy 8.2, as soon as the first
token arrives in i, the generation of virtual tokens “fills” the state xi and allows immediate transition to j. The
immediate next token arriving in i can reach j without further operations.

The assumption of a strongly connected network ensures that tokens cannot travel indefinitely or be stuck in
nodes with no outgoing arc. As the injected tokens continue moving from node to node, and the costs (thresholds)
are finite, it is guaranteed that such informative tokens always reach sink nodes, as the state approaches the
maximal rest state.

Still, the fact that all the injected tokens can reach a sink node does not mean that all the tokens reach it
through the shortest paths. Indeed, the tokens injected initially, before the global rest state is reached, might take
longer non-optimal routes. A sufficient number of virtual tokens are to be generated to reach a global rest state.
Differently from the case considered so far, those routes might also be walks: tokens might return to the same
node, because generating a block of virtual tokens at a single time is equivalent to injecting the same amount of
tokens at different times, and tokens injected at different times might traverse the same nodes.

Finally, remark that while the number of injected tokens needed to converge to a global rest state is reduced,
the number of “elementary transitions” (i.e., generation of virtual tokens), and hence the time necessary to reach
that global rest state, remains pseudo-polynomial in the size of the problem input.



CHAPTER9
A decentralized agent-based policy

finding the constrained shortest paths

In this Chapter a constrained system is assumed and Problem 7.1 is addressed. A decentralized threshold policy
is obtained, which is built on the decentralized policy presented in the previous Chapter 8. Indeed, it will be
shown that this new problem can be equivalently seen as an (unconstrained) shortest path problem in the so-called
expanded network, which is derived from the actual considered network. In the long run, this policy makes all the
newly injected tokens reach the closest sink along the constrained shortest paths.

For the simplicity of explanation, the constrained costs will be assumed non-negative for all the arcs of the
network (σij ≥ 0); the extension to negative σij is straightforward and will be briefly discussed, too.

9.1 Constrained costs and feasible routes

Just like in the unconstrained case, tokens travel in the network, from node to node, according to a given policy,
which determines whether they can proceed moving or they must stop at some node. Whenever a token is forced
to stop in a non-sink node, it is deposited in the corresponding buffer.

Recall that in a constrained system, each token keeps track of the constrained cost c = C(p) of its traveled
route p: this information is needed to avoid the token taking unfeasible paths, whose constrained cost is greater
than a given value Cmax ∈ N. This is different from an unconstrained system, where basically all the paths are
feasible, so this information is not required.

Specifically, at time 0 is assumed that c = 0 for all the tokens. A token that is injected into the network later
on also has c = 0. Then, whenever a generic token moves from node i ∈ N to an adjacent node j ∈ Ni through
an arc (i, j) ∈ A with constrained cost σij , it updates its constrained cost as

c← c+ σij .

A token currently in node i ∈ N is said to fall asleep in i if any tentative to leave the node would result in a
violation of constraint Eq. (7.3), making its traveled path infeasible. In particular, if:

c+ σij > Cmax, ∀(i, j) ∈ A, j ∈ Ni. (9.1)

An asleep token cannot continue moving; thus, it stops definitively in node i, independently from the adopted
policy.

Let C be the set of all the possible values assumed by c ≤ 0 considering all the possible routes in the network,
and C = |C| the size of this set. Also, denote N = nC and M = mC. Finally, let Cij be the set of all the possible
values assumed by c ∈ C to get a feasible transition from arc i to arc j: Cij = {c : c ∈ C and c + σij ∈ C}.
Note that, for the generic arc (i, j) ∈ A, for any c ∈ Cij , both c ≤ Cmax and c + σij ≤ Cmax must hold, i.e.,
c ≤ min{Cmax, Cmax − σij}.

In the specific case considered here, in which non-negative σij ≥ 0 are considered and c is initialized to 0,
the range of values that can be assumed by c is indeed [0, Cmax], i.e., C = {0, 1, . . . , Cmax}, C = Cmax + 1,
N = n(Cmax + 1), M = m(Cmax + 1), Cij = {0, 1, ..., Cmax − σij}.

Recall that to account for possible constraints on the routes, the tokens deposited in each node i ∈ N are
buffered according to their constrained cost c, i.e., the total constrained cost paid by such tokens to reach such



106 Part II, Chapter 9 — A decentralized agent-based policy finding the constrained shortest paths

node. Then, now a multi-component state is considered for each node:

xi = [x0i , x
1
i , . . . , x

Cmax
i ]⊤ ∈ ZC ,

where xci is the number of tokens with constrained cost c stopped in node i (including asleep tokens), defined with
respect to the “zero level” of the node. There is a component for each possible value assumed by the cost c ∈ C,
so that there are C = Cmax + 1 components in xi.

Then, the state of the network has N = nC = n(Cmax + 1) components:

x = [x1, x2, . . . , xn]
⊤ = [x01, x

1
1, . . . , x

Cmax
1 , x02, x

1
2, . . . , x

Cmax
2 , . . . , x0n, x

1
n, . . . , x

Cmax
n ]⊤ ∈ ZN .

9.2 Admissibility of the state

The definition of admissible state is slightly different from that of the unconstrained system from Section 8.1,
because of the constraints given by the route feasibility and the multi-component states xci that are introduced in
each node. Hence, it is revised as follows.

Definition 9.1: Admissibility in a constrained system

The state x of a network G is admissible if and only if xci − x
c+σij

j ≤ γij for all (i, j) ∈ A, for all c ∈ Cij .

A token in generic node i ∈ N with constrained cost c assumes a constrained cost c + σij after moving to
some adjacent node j ∈ Ni: only “compatible” tokens buffered in the two nodes are compared when evaluating
the admissibility of the state of the network, which is measured by the corresponding state components xci and

x
c+σij

j . This must hold for all the arcs (i, j), and for all the possible values that c can assume to get a feasible
transition. In the simplified case assumed here, in which σij ≥ 0, Cij = {0, 1, ..., Cmax − σij}.

The definitions of below, at, above, under-threshold from Definition 8.2 can be easily adapted to the constrained
case, by considering “xci − x

c+σij

j ” instead of “xi − xj”.

9.3 Dynamics of the state of the network

Everything from Section 9.3 could be reformulated, taking into account the state components xci instead of the
states xi.

Again, from the fast dynamic perspective, tokens’ movements in the network can be described by the corre-
sponding sequence of elementary transitions, which change the state of the network based on the constrained cost
of the moving token.

In particular, injecting a token in source node i ∈ S at time tk = t0k results in the increasing of the state
component x0i of node i by 1, i.e., x0i ← x0i + 1, since all the newly injected tokens have c = 0. This behavior is
now described by the input vector

ν = [ν01 , ν
1
1 , ..., ν

Cmax
1 , ν02 , ν

1
2 , ..., ν

Cmax
2 , . . . , ν0n, ν

1
n, ..., ν

Cmax
n ]⊤ ∈ NN ,

whose generic component νch, associated with node h ∈ N (and corresponding to state component xch) is defined
as

νch =

{︄
1, if the injection occurs at node h and c=0,

0, otherwise.

Note that νch ≡ 0 for all possible non-zero values assumed by c. Then, xch ← xch + νch for any node h ∈ N and for
any possible c ∈ C, that is x ← x + ν = x + ea, with a = C(i− 1) + 1 + c defining the only non-zero element of
vector ea ∈ NN , that is the ath canonical basis vector.

Instead, if a token with constrained cost c performs an elementary transition from node i ∈ N to non-sink
node j ∈ N \ T at a generic time trk of the fast dynamic, the state component xci of node i is decreased by 1 and

the state component x
c+σij

j of node j is increased by 1, i.e., xci ← xci − 1 and x
c+σij

j ← x
c+σij

j + 1. Now, the
control describing the possible movement of a token along an arc (i, j) depends on the constrained cost c = C(p)
of its traveled route p up to i. Then, this behavior is described by the control vector

u = [u01, u
1
1, ..., u

Cmax
1 , u02, u

1
2, . . . , u

Cmax
2 , . . . , u0m, u

1
m, . . . , u

Cmax
m ]⊤ ∈ NM ,



9.4 Decentralized transition rule 107

whose generic component uch, associated with arc h = (i, j) ∈ A, is defined as

uch = ucij =

⎧
⎨
⎩
1, if an elementary transition of a token with constrained cost c

(of its traveled route up to node i) occurs along arc h = (i, j),

0, otherwise.

Consequently, xci ← xci − ucij and x
c+σij

j ← x
c+σij

j + ucij for any node arc h ∈ A and for any possible c ∈ C.
If j ∈ T is a sink node, it must have an empty state anytime by definition, for any possible value of c ∈ C,

i.e., xcj ≡ 0, as it is assumed that any token arriving in a sink is instantaneously expelled from the network.
An elementary transition of a token with constraint cost c from node i ∈ N to sink node j ∈ T results in just
x
c+σij

j ← x
c+σij

j + ucij .

The overall state variation due to the traveling of a token depends on the origin of the token, its destination,
and the traveled route (but just on its constrained cost, and not on the specific traversed nodes). Even in this
case, it is therefore possible to temporize the slow dynamic only. The slow dynamics of network G is specified for
each node i ∈ N and for each possible value of the constrained cost c ∈ C by the following state equation

xci (k + 1) =

⎧
⎨
⎩
xci (k)−

∑︂

j∈Ni

ucij(k) +
∑︂

j:i∈Nj

u
c−σji

ji (k) + νci (k), if i ̸∈ T (non-sink node),

0, if i ∈ T (sink node).

(9.2)

9.4 Decentralized transition rule

The control ucij introduced in the previous Section specifies whether an elementary transition along arc (i, j) is
permitted and occurs, or not, for a token which has constrained cost c when in node i. The idea of the transition
rule is the same as the one presented in Section 8.3: a token injected in a source node i of a network in state
x continues moving from node to node until it remains above-threshold in the nodes that it reaches; eventually,
either it reaches a node j where it is under-threshold or it reaches a sink node where it leaves the network.

Then, the decentralized threshold Policy 8.1 can be easily adapted to this case as follows, taking into account
that tokens might fall asleep if their route would become infeasible by continuing moving.

Policy 9.1: Decentralized threshold policy (constrained system).

Consider the following conditions for the control ucij specifying the policy for each arc (i, j) ∈ A and constrained
costs c ∈ C:

a) at most a token can enter a node, regardless of its constrained cost c, i.e.,

∑︂

j:i∈Nj

∑︂

c−σji∈C
u
c−σji

ji + ν0i ≤ 1, ∀i ∈ N ; (9.3a)

b) at most a token can leave a node, i.e.,

∑︂

j∈Ni

∑︂

c∈C
ucij ≤ 1, ∀i ∈ N ; (9.3b)

c) a token in node i with constrained cost c can move to node j through arc (i, j) only if

xci +
∑︂

l:i∈Nl

uc−σli

li + ν0i − x
c+σij

j > γij ; (9.3c)

d) a necessary condition to allow the transition of a token with constrained cost c in node i along an arc (i, j)
is

c+ σij ≤ Cmax, for some j ∈ Ni. (9.3d)

Then, the control is

ucij =

{︄
1, if Eq. (9.3a) and Eq. (9.3b) and Eq. (9.3c) and Eq. (9.3d) hold,

0, otherwise.
(9.4)



108 Part II, Chapter 9 — A decentralized agent-based policy finding the constrained shortest paths

Conditions a) and b) in Policy 9.1 simply mean that each node can process only one token at a time. Recall
that νci = 0 for all c ̸= 0. Condition c) adapts the transition rule to the case in which constrained costs are to be
taken into account. Condition d) is meant to avoid paths becoming infeasible, possibly making tokens fall asleep.

Policy 9.1 remains decentralized but, generally, as it will be shown, it does not guarantee that all the routes
followed by the moving tokens are paths (and not walks).

Remark 9.1:
If the state x of the network is currently admissible at time tk and no new token is injected in the network, no
token moves.

If the state x of the network is currently admissible at time tk and a new token is injected in source node i ∈ S,
this is the only one possibly moving in the network.

Finally, if the state x of the network is currently not admissible at time tk and no new token is injected in the
network, a token already present in the network moves, which takes priority over the injected ones.

9.5 Expanded network model

The problem of finding the constrained shortest path in a given network G can be reduced to finding the (uncon-
strained) shortest path in the so-called expanded network [118, 119]. This property can be exploited to prove that
the decentralized Policy 9.1 solves the considered Problem 7.1.

The expanded network of G(N ,A), which will be denoted by GE(NE ,AE), has the following characteristics.

• It is composed by n nodes replicated for C steps (each one corresponding to a specific constrained cost
c ∈ C), so that |NE |= |N ||C|= nC. Let ic be the ith node of G replicated at step c of GE , for c ∈ C.

• Any arc (i, j) ∈ A is replicated, at most, C − 1 times in GE , becoming (ic, jc+σij ) for c ∈ Cij , so that
|A|≤ |AE |≤ |A|(C − 1) = m(C − 1).

If σij = 1 for all (i, j) ∈ A, i.e., if the number of arcs that a token can traverse is upper bounded,
|AE |= m(C − 1).

• For each source i ∈ S of G, a single source is set in node i0 of GE .

• For each sink i ∈ T of G, C sinks are set in GE , in nodes ic, for c ∈ C.

Recall that if σij ≥ 0, C = Cmax + 1, C = {0, 1, ..., Cmax}, and Cij = {0, 1, ..., Cmax − σij}.
In the next Examples 9.1 and 9.2, two examples of expanded networks are reported.

The information about the constrained costs of the arcs of G is now modeled directly in the topology of GE ,
hence an unconstrained system can be considered: no constraint is imposed on the paths of the expanded network
GE , and, consequently, each node ic ∈ NE has a single-component (scalar) state xic .

There is a one-to-one correspondence between the (scalar) state xic of any node ic ∈ NE and xci , the c-th
component of the (vector) state xi of node i ∈ N . By construction, there is also a one-to-one correspondence
between any unique feasible path or walk p between any pair of nodes in G, traveled by a token taking into account
its constrained cost C(p) ≤ Cmax, and a unique path in GE , with the same length L(p). Finally, if a token falls
asleep in node i ∈ N of G, this corresponds to reaching a non-sink node ic ∈ NE with no outgoing arcs.

Theorem 9.1:
Given a system (G, f) under Assumption 7.1, its expanded network GE :

• is acyclic if and only if there exists no circuit φ in G such that C(φ) = 0 (zero constrained cost) and, in
particular, any walk in G becomes a valid path in GE ;

• presents a positive length L(ϕ) > 0 for any circuit φ in G with C(φ) = 0.

The above Theorem ensures that there are no non-positive length circuits in GE : then, GE is an unconstrained
network satisfying Assumption 7.1.

Note that some nodes of GE might not be reachable by the tokens injected in the sources: in the case in which
the initial state x is admissible, the corresponding state components in G will always remain 0, if the initial state
is zero and Policy 9.1 is applied. If the initial state is not admissible, there might be some transitions of tokens
between any pair of nodes, even those not reachable by the sources. The transitions of tokens with c < min{C}
should be denied by default.



9.6 Properties of the system 109

Example 9.1:
Consider again the network G from Fig. 7.2, reported here in Fig. 9.1, left. The corresponding expanded network
GE is depicted on the right, in the case in which Cmax = 2.
Note that GE is acyclic. Arcs derived from arc (4, 5) of G are directed “downward”, since σ4,5 = 0; all the other
arcs are directed “rightward”, since in this example σij > 0 for all the others arcs (i, j) ̸= (4, 5). Multiple sinks
are derived in node GE from node 5 of G.
Note that a token traveling path 1→ 2→ 3 in G would fall asleep in node 3. In GE this corresponds to reaching
node 32, which has no outgoing arcs, through path 10 → 21 → 32.
Also, in GE nodes 20, 30, 40, 50, 11, 41, 51, 12, 22 are not reachable by the source node 10, meaning that, in G,
x02(k) = x03(k) = x04(k) = x05(k) = x11(k) = x14(k) = x15(k) = x21(k) = x22(k) = 0,∀k ≥ 0 if x(0) ∈ O is admissible
and initialized to 0.

1

2

3

4 5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1 0, 0

10

20

30

40

50

11

21

31

41

51

12

22

32

42

52

1

1

4

1

3

1

1

4

1

3

1

1

0 0 0

node 1

node 2

node 3

node 4

node 5

c = 0 c = 1 c = 2 = Cmax

Figure 9.1: The simple network G from Fig. 7.2 (left) and the corresponding expanded network GE , when Cmax = 2 (right). The
values γij and σij are indicated for each arc (i, j) of G; the value γij is indicated for each arc (i, j) of GE . In GE , nodes highlighted
in grey are not reachable by tokens injected in the sources.

Example 9.2:
Consider the network G in Fig. 9.2, left. The corresponding expanded network GE is depicted on the right, in
the case in which Cmax = 4.
The possible feasible routes in G are paths p1 = {1, 4}, p2 = {1, 2, 3, 4} and walk w1 = {1, 2, 3, 1, 4}. An unique
unconstrained path is associated with each of them in GE : pE,1 = {10, 41}, pE,2 = {10, 21, 32, 43} and walk
pE,3 = {10, 21, 32, 13, 44}, respectively.

1

4

2 3

20, 1

4, 1

1, 1 10, 1

1, 1

1, 1

10

20

30

40

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

4420

44

20

1

1

10

1

4

20

1

1

10

1

4

20

1

1

10

1

4

20

1

1

10

1

Figure 9.2: A simple network G (left) and the corresponding expanded network GE when Cmax = 4 (right). The values γij and σij

are indicated for each arc (i, j) of G; γij is indicated for each arc (i, j) of GE . In GE , nodes highlighted in grey are not reachable
by tokens injected in the sources. The possible paths/walks in G are highlighted, as well as the corresponding paths in GE .

9.6 Properties of the system

All the properties that are valid for Policy 8.1 introduced for the unconstrained system are valid for Policy 9.1
introduced for the constrained system. In particular, in the long run, tokens injected in the network G, which
are routed by applying Policy 9.1 and whose routes p are constrained by C(p) ≤ Cmax, eventually are all able to



110 Part II, Chapter 9 — A decentralized agent-based policy finding the constrained shortest paths

reach the closest sink though the shortest constrained paths. If the network is dynamic, the constrained system
is able to adapt to dynamic conditions, too. The reason is explained next.

Firstly, by applying the results proven in Section 8.4 to network GE , which satisfy Assumption 7.1, all the
tokens injected in any source node (i0, i ∈ S), which are routed applying Policy 8.1, will eventually be routed
to the closest sink (jc, j ∈ T , for some 0 ≤ c ≤ Cmax) through the shortest paths, in the long run. This solves
Problem 7.2 for the network GE . Then, the next Theorem proves that a solution for Problem 7.2 in GE actually
solves Problem 7.1 in G. As there is a one-to-one correspondence between applying Policy 8.1 in GE and applying
Policy 9.1 in G, this proves the statements reported above.

Theorem 9.2:
A system (G, f) is given that satisfies Assumptions 7.1 to 7.4. Then a shortest path from a source i0 (with
i ∈ S) to a sink jc (with j ∈ S and for some 0 ≤ c ≤ Cmax) in its expanded network GE corresponds to a
shortest feasible path in G.

Note that from the proof of the above Theorem (see Appendix B), the condition C(φ) ≥ 0 for any circuit φ
in G from Assumption 7.1 is necessary. Otherwise, the shortest feasible route from a source to a sink in G might
turn out to be a walk.

Remark 9.2:
Applying Policy 9.1 to a constrained system (G, f) is equivalent to consider an unconstrained (and uniquely
defined) system (GE , f) where Policy 8.1 is applied.

This is the second most important result of this Part: despite a very simple decentralized policy is adopted to
route the memoryless agents using only local information, in the long run, the constrained shortest paths emerge,
and each new injected token can eventually leave the network traveling along them. The constrained shortest path
problem can be traced back to an unconstrained shortest path problem in the corresponding expanded network;
it should be noted, however, that the latter is larger by some factor C.

Some considerations about the complexity

The time to reach a global rest state, measured in number of injected tokens, is exponential in the size of the
problem input [2].

Remark 9.3:
When Cmax =∞, Problem 7.1 reduces to Problem 7.2. However, applying the policy derived for the constrained
system is inefficient, as all the (possibly infinite) state components xci are still accounted for (despite considering
just the scalar states xi of the unconstrained system would be sufficient). While, most of these components
will be 0 (as the resulting route is a path and not a walk), it is like the problem is actually solved in the more
complex expanded network.
When σij = 0 for all arcs (i, j) ∈ A, Problem 7.1 reduces, again, to Problem 7.2. Now, the set of the nodes of
the portion of the expanded network that is reachable is equal to N . Hence, now the problem is solved in the
same network.

9.7 Negative arc costs

Given Remark 9.2, the proposed policy continues to work even in the presence of arcs (i, j) ∈ A of network G
with negative costs γij (under Assumption 7.1). The initial state is not admissible if it is initialized to zero; then,
initially, there are some elementary transitions of tokens already in the network; only transitions of tokens with
constrained cost c ≥ min{C} can be considered, since this is the minimum value that c can assume.

In particular, if σij ≥ 0 for all arcs (i, j) ∈ A, the cost paid by each injected token is necessarily c ≥ 0. Instead,
if there are some arcs (i, j) ∈ A of network G with negative constrained costs σij (under Assumption 7.1), the
possible values that the constrained cost c paid by each traveling token along its traveled path include negative
values. This means that some components xci of the state of some node i ∈ N with c < 0 can be reachable.
However, thanks to the assumption of the absence of circuits p with negative constrained costs C(p) in G and the
fact that the constrained cost c of each token is initialized with c = 0, it can be easily seen that c is lower bounded
by some finite non-positive value L ∈ Z such that all the components xci , c < L are never reached, so they could
be set to 0 and be neglected. This can be easily verified by visualizing the expanded network.

All the discussion presented so far, including Theorem 9.2, is still valid by considering C = {L, ..., 0, ..., Cmax}
instead of C = {0, ..., Cmax}, i.e., considering C = Cmax + 1 − L components xci of the states xi for each node,
N = nC = n(Cmax + 1 − L) components xci and νci of the state x and input ν, respectively, and, finally,
M = mC = m(Cmax + 1− L) components uch of the control u.



9.7 Negative arc costs 111

Example 9.3:

Consider the network G in Fig. 9.3, left, which has arc (1, 3) with negative constrained cost σ1,3 = −2 and all
positive circuits with respect to the constrained costs σij . The corresponding expanded network GE is reported
on the right. Note that GE is acyclic, despite some arcs deriving from arc (1, 3) being directed “leftward”. Note
that no reachable node exists for c < −2, so the reachable portion of the expanded network is finite; hence,
here L = −2.

1

2

3 4

1, 2

4,−2

1, 1 3, 1

1, 3

1, 1

10

20

30

40

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

1−1

2−1

3−1

4−1

1−2

2−2

3−2

4−2

. . .

. . .

. . .

. . .

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1 1 1111

1 1111

4 4 4 4 44

Figure 9.3: A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the corresponding expanded
network GE (right), assuming Cmax = 4. In GE , nodes highlighted in grey are not reachable by tokens injected in the sources. G
has only positive circuits with respect to the constrained costs σij .

Consider now the network G in Fig. 9.4, left, which has arc (1, 3) with negative constrained cost σ1,3 = −2 and
circuit p = {1, 3, 4, 1} with C(p) = 0. The corresponding expanded network GE is reported on the right. Note
that GE is no more acyclic, since the (positive) cycles p = {10, 3−2, 4−1, 10} and p = {14, 32, 43, 14} are present
(see Theorem 9.1). Note that no reachable node exists for c < −2, so the reachable portion of the expanded
network is finite; hence, here L = −2.

1

2

3 4

1, 2

4,−2

1, 1 3, 1

1, 1

1, 1

10

20

30

40

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

1−1

2−1

3−1

4−1

1−2

2−2

3−2

4−2

. . .

. . .

. . .

. . .

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1 1 1111

1 1 1 1111

4 4 4 4 4

Figure 9.4: A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the corresponding expanded
network GE (right), assuming Cmax = 4. In GE , nodes highlighted in grey are not reachable by tokens injected in the sources.
Circuit p = {1, 3, 4, 1} in G has C(p) = 0.

Finally, consider the network G in Fig. 9.5, left, which has arc (1, 3) with negative constrained cost σ1,3 = −2 and
circuit p = {1, 3, 4, 1} with C(p) = −1. The corresponding expanded network GE is reported on the right. Note
that GE has now infinite possible routes, e.g., p = {10, 22, 43, 14, 32, 42, 13, 31, 41, 12, ..., 1c, 3c−2, 4c−2, 1c−1, ...}.
All the states xci with c ≤ Cmax are reachable, and L is unbounded. This is the reason for which Assumption 7.1
is required, stating that there cannot be any negative circuit with respect to the costs σij .

1

2

3 4

1, 2

4,−2

1, 1 3, 1

1, 0

1, 1

10

20

30

40

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

1−1

2−1

3−1

4−1

1−2

2−2

3−2

4−2

. . .

. . .

. . .

. . .

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1 1 1111

1 1 1 1 111

44 4 4 4 4

Figure 9.5: A simple network G (left) with an arc (1, 3) with negative constrained cost σ1,3 = −2 and the corresponding expanded
network GE (right), assuming Cmax = 4. In GE , all the nodes are reachable. Circuit p = {1, 3, 4, 1} in G has C(p) = −1.



112 Part II, Chapter 9 — A decentralized agent-based policy finding the constrained shortest paths

9.8 Non-integer arc costs

The same considerations from Section 8.7 regarding the possibility of using non-integer arc costs γij apply here,
because of Remark 9.2. In particular, Remark 8.3 is simply adapted in Remark 9.4.

Remark 9.4:
Let Xc

i be the number of tokens in node i with constrained cost c, and xci the corresponding state/value.
Applying the proposed policy with ρ = 1 and (integer) costs µ˜︁γij as thresholds is equivalent to applying it with
ρ = 1/µ and (non-integer) costs ˜︁γij as thresholds. Indeed, the transition conditions are, respectively,

xci − x
c+σij

j = Xc
i −X

c+σij

j > µ˜︁γij , and c+ σij ≤ Cmax,

and

xci − x
c+σij

j = ρXc
i − ρX

c+σij

j =
Xc

i −X
c+σij

j

µ
> ˜︁γij , and c+ σij ≤ Cmax,

which are equivalent.

Regarding the secondary costs σij , let ˜︁σij ∈ Q be the generic non-integer secondary costs, again, assumed
rational. Then, as these secondary costs are used in the constraints of the paths, the policy continues to work.
The main drawback of having rational costs is that the size of C increases, and so does the number of states xci and
convergence time, too. Again, a value ν ∈ N can be defined such that all the constrained costs ν˜︁σij are integer;
as of Eq. (7.2) the secondary cost of a path p becomes νC(p), and constraint Eq. (7.3) is indeed equivalent to
νC(p) ≤ νCmax.

9.9 An enhanced policy considering virtual tokens

As a result of Remark 9.2, the enhancement policy from Section 8.8 can be easily adapted to the constrained case,
too, by using the state components xci instead of the scalar xi.

However, now tokens that fall asleep are still lost, thus it cannot be guaranteed that initially all the injected
tokens are collected in the sinks, even if the network is strongly connected.

Policy 9.2: Enhanced decentralized threshold policy (constrained system).

When an (informative) token with constrained cost c ∈ C reaches a node i ∈ N in which it falls asleep, i.e., if

c+ σij > Cmax for all (i, j) ∈ A, j ∈ Ni,

stop in node i. Otherwise, if the above-threshold condition does not hold for any outgoing arc of node i that
keeps the followed route feasible, i.e.,

xci (k) + 1− xc+σij

j (k) ≤ γij , ∀j ∈ Ni such that c+ σij ≤ Cmax,

instead of stopping the token, generate a block of γiĵ + x
c+σiĵ

ĵ
(k)− xci (k) virtual tokens in i, where

ĵ = arg min
j∈Ni, s.t.

c+σij≤Cmax

{γij + x
c+σij

j (k)− xci (k)},

so that the value of state xi immediately becomes: xci (k) → x
c+σiĵ

ĵ
(k) + γiĵ and the arc (i, ĵ) becomes above-

threshold. Then, the informative token moves to the node ĵ.



CHAPTER10
Illustrative example in a small network

In this Chapter, the proposed policy is applied to the tokens injected in the simple network of Fig. 7.2, both for
the constrained and unconstrained system. Since the network is very small, the evolution of the states of the
nodes and the routes traveled by the tokens can be easily analyzed.

These proposed policies have been implemented in C and compiled as Matlab MEX functions; simulations
were performed in Matlab. All the simulations were performed on a dual-core Intel Core i3 at 2.3 GHz with 8 GB
of RAM.

10.1 Scenario and data

The simple network of Fig. 7.2 is considered, which is composed of 5 nodes and 7 arcs. Tokens are injected
periodically in the source node 1 and, as soon as they reach the sink node 5, they leave the network.

The initial state is zero for all the nodes. As all the arc costs are non-negative, such initial state is admissible.
Initially, the network is assumed static, and the transitory is studied. Then, after the system stabilizes, the

following modifications are applied (see Fig. 10.1):

• At k = 20, the cost of arc (1, 2) is increased to γ1,2 = 4.

• At k = 30, node 6 is added, enabling arcs (1, 6), (3, 6), (4, 6) and (6, 4), with costs γ1,6 = 2, γ3,6 = 5,
γ4,6 = 5, γ6,4 = 1, and σ1,6 = σ3,6 = σ4,6 = σ6,4 = 1.

• At k = 40, sink node 7 is added, which is connected to node 6 by an arc (6, 7) with γ6,7 = 0 and σ6,7 = 0.

• At k = 50, node 2 is set as a source.

• At k = 60, node 1 stops being a source.

• At k = 70, sink node 5 is removed.

• At k = 105, the cost of arc (4, 6) is decreased to γ4,6 = 2.

• At k = 115, arcs (2, 1) and (1, 4) are enabled, with γ2,1 = γ1,4 = 1 and σ2,1 = σ1,4 = 1.

• At k = 125, arc (1, 6) is disabled.

• At k = 140, node 3 is disabled.

10.1.1 Simulation settings

To simulate real environments, the fast dynamic needs to be temporized. This means that all the elementary
node-to-node transitions are to be accounted for explicitly.

The interval between two time instants k and k + 1 of the slow dynamics corresponds to N + 1 instants of
the fast dynamics. A new token is injected at each time k of the slow dynamic. Then, if the network is in an
admissible state, the injected token is the only one in the network that is allowed to move; at each instant of the
fast dynamic the injected token traverses an arc, until either it is not allowed to move anymore, or it has reached
a sink: this occurs before the next token is injected. Conversely, if the network is in a non-admissible state, at
each instant of the fast dynamic, simultaneous transactions involving different nodes are allowed.



114 Part II, Chapter 10 — Illustrative example in a small network

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

At k = 0 - Original network.

1

2

3

4

5

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

At k = 20 the cost of arc
(1, 2) increases to 4.

1

2

3

4

5

6

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

2, 1 5, 1 5, 1

1, 1

At k = 30 node 6 is inserted,
enabling some arcs.

1

2

3

4

5

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

2, 1 5, 1 5, 1

1, 10, 0

At k = 40 sink node 7 is inserted,
enabling arc (6, 7).

1

2

3

4

5

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

2, 1 5, 1 5, 1

1, 10, 0

At k = 50 node 2 is set as a source.

1

2

3

4

5

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

2, 1 5, 1 5, 1

1, 10, 0

At k = 60 node 1 stops being a source.

1

2

3

4

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

2, 1 5, 1 5, 1

1, 10, 0

At k = 70 sink node 5 is removed.

1

2

3

4

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

2, 1 5, 1 2, 1

1, 10, 0

At k = 105 the cost of arc (4, 6) decreases.

1

2

3

4

67

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

2, 1 5, 1 2, 1

1, 10, 0

1, 1
1, 1

At k = 115 arcs (2, 1) and
(1, 4) are enabled.

1

2

3

4

67

1, 1

4, 1

4, 1

1, 1

3, 1

1, 1

1, 1

5, 1 2, 1

1, 10, 0

1, 1
1, 1

At k = 125 arc (1, 6) is disabled.

1

2

4

67

1, 1

4, 1 3, 1

1, 1

2, 1

1, 10, 0

1, 1
1, 1

At k = 140 node 3 is disabled.

Figure 10.1: (A simple network). The initial network at time k = 0 and the successive modifications occurred at the indicated time
k. The existing unconstrained shortest paths are hightailed in yellow, and the existing constrained shortest paths in green.

Moreover, whenever the agent is in a node that has more than one outgoing arc satisfying the above-threshold
condition, a choice model must be specified for determining in which node to move in. Two different types of
choices are considered for the next node to move in:

• deterministic choice model: the agent scans the outgoing arcs in a predefined order and chooses to traverse
the first one that is above-threshold;

• stochastic choice model: the agent randomly chooses the outgoing above-threshold arc to traverse.

10.2 Metrics

The following metrics are introduced to evaluate the system, which are computed once the global rest state
(steady-state) is reached, for each network configuration:

• Lss: average length L(p) of the paths travelled by the tokens injected at steady-state;

• Css: average constrained cost C(p) of the paths travelled by the tokens injected at steady-state;

• Ess: average number of arcs of the paths traveled by the tokens injected at steady-state;

• Tss: time (expressed in number of injected tokens) needed to reach a global rest state (steady-state), where
tokens injected in any source will always leave the network, without accumulating in the nodes, i.e., k such
that V (x(k)) = V̄ ;

• Vss: total number of tokens deposited in the nodes when the global rest state (steady-state) is reached, i.e.,
V (x(k)) = V̄ ;



10.3 Results and discussion 115

• lss: number of injected tokens that have been lost during the transitory, when the global rest state (steady-
state) is reached, because either they are stopped in a node, or their path is not feasible, or the node they
are deposited has been removed. This is computed as the difference between the tokens injected in the
network over a considered time interval, minus the tokens which are expelled through the sink nodes, in the
same time interval. A negative value of lss is possible when at the beginning of the considered time interval
the state is not admissible, because in that case, some tokens already in the network might be able to move
and leave the network.

• Nna: time (expressed in number of injected tokens) needed for the state of the network to become admissible,
if the initial state is non-admissible. This may happen when there are negative-weighted arcs and zero initial
state, or when the initial state is non-zero, or when the network changes. 0 means the initial state is already
admissible.

10.3 Results and discussion

The results reported below consider the deterministic choice model. Indeed, for this simple network, the results
adopting the stochastic choice model are almost the same as the ones adopting the deterministic choice model, with
little to no differences, hence they are omitted. The reason is that tokens rarely have more than one possibility
for choosing the next node to move in.

At first, the network has been considered static (see the original network at k = 0 in Fig. 10.1). The paths
followed by the first injected tokens at each instant of the slow dynamics k = 1, 2, ... until a global rest state is
reached are displayed in Fig. 10.2, for both the unconstrained and constrained cases, adopting both the original
policy and the enhanced one. The effects on the states of the nodes can be retrieved from Table 10.1, where the
values of such states after each transition are reported. It can be seen that a global rest state is reached very fast,
in very few time instants; as expected, the enhanced policy is faster than the original one.

Regarding the behavior of the tokens injected during the initial transitory, consider the original policy. From
Fig. 10.2 and Table 10.1, the first few injected tokens cannot reach the sink nodes, as they are stopped in the
internal nodes of the network, increasing the corresponding states. In particular, when a token, at time k, reaches
a non-sink node j along a path traversing P > 1 nodes, the next injected tokens will travel paths that are shorter
and shorter in terms of traversed arcs. Once the traveled path is actually composed only by the source node, a
longer traversed path composed by P or more tokens can be traversed (a simple explanation for this fact follows
from subsection 6.1.2 at Page 74). In general, a behavior of this kind emerges also in more complex networks and
paths, although it must be taken into account that generally many alternative paths may exist, so this process
will take longer: depending on the adopted policy, tokens might continue taking longer paths as long as they
are available. When the initial state is not zero, the behavior of the tokens is similar, however, it is faster, since
the buffers of the nodes might be already partially filled. After the transient, all the injected tokens are routed
through the shortest paths.

For the constrained case, similar considerations can be made, however now tokens stop also because their
traveled paths would become infeasible if they continued moving. Then, all the traveled paths are feasible, i.e.,
their constrained cost is at most Cmax = 2. After the transient, all the tokens are routed through the constrained
shortest paths. Compared to the unconstrained case, more tokens are required to reach a steady-state. This is
expected, since the constrained problem has a larger complexity and can be equivalently seen as an unconstrained
problem in the network in Fig. 9.1, which is about Cmax times larger than the original one in Fig. 7.2.

Note that, in both cases, the number of tokens V (x(k)) in the system increases by 1 at each token insertion,
until a global rest state is reached.

Regarding the enhanced policy, it can be seen that the global rest state is reached faster: the improvements
coming from the enhanced policy are, however, not that much evident here, due to the simplicity of the network.

For the unconstrained scenario, all injected tokens actually leave the network through the shortest path (see
Fig. 10.2). While it is expected that all the injected tokens can leave the network, the fact that this occurs along
the shortest outgoing path is specific to this particular simple example. Still, from Table 10.1, the steady-state is
reached only after few time instants of the slow dynamic; indeed, the first few injected tokens modify the state of
the nodes along their traveled paths, to proceed.

For the constrained scenario, even in this simple example, the enhanced policy does not prevent the first
injected tokens to take infeasible paths. Still, it takes less time for these paths to be blocked, due to the first
injected tokens that modify the state of the nodes along their traveled paths to continue moving until such paths
become infeasible. Eventually, all the injected tokens are routed through the constrained shortest paths.

Note that now, in both cases, the number of tokens V (x(k)) in the system can increase by more than 1 at
each token insertion, until a global rest state is reached.



116 Part II, Chapter 10 — Illustrative example in a small network

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 0

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 1

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 2

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 3

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 4

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 5

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 6

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 7

(a) Unconstrained system, original policy.

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 0

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 1

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 2

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 3

(b) Unconstrained system, enhanced policy.

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 0

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 1

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 2

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 3

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 4

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 5

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 6

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 7

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 8

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 9

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 10

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 11

(c) Constrained system, original policy.

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 0

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 1

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 2

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 3

1

2

3

4

5

1, 1

4, 1

1, 1

3, 1

1, 1

1, 1

0, 0

k = 4

(d) Constrained system, enhanced policy.

Figure 10.2: (A simple network). The path travelled by the first tokens injected at times tk, i.e., the kth instants of the slow dynamic,
during the initial transitory, until the steady-state is reached. If a path stops in a node, it means that the token is deposited in that
node. For the enhanced policy, states are also modified along the way. The effects on the states of the nodes can be retrieved from
Table 10.1, where the values of such states are reported.



10.3 Results and discussion 117

Table 10.1: (A simple network). The state xi(k) of the nodes reached after the transitions of the token injected at time tk, i.e., the
kth instant of the slow dynamic, during the initial transitory (see the paths in Fig. 10.2). If a constrained system is considered, the
state components xc

i (k) are also indicated. Dots indicate that the steady-state is reached. Bold numbers indicate the states that have
just been modified, due to the token stopping in a node, or, for the enhanced policy, to virtual tokens.

Original policy Enhanced policy

k: 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6

Unconstrained
system

x1 0 1 1 2 2 2 3 3 · · · 0 1 2 3 3 · · ·
x2 0 0 1 1 1 2 2 2 · · · 0 1 2 2 2 · · ·
x3 0 0 0 0 1 1 1 1 · · · 0 1 1 1 1 · · ·
x4 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 · · ·
x5 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 · · ·

V (x) 0 1 2 3 4 5 6 6 · · · 0 3 5 6 6 · · ·

Constrained
system

x0
1 0 1 1 2 2 2 3 3 3 4 4 4 · · · 0 1 2 3 4 4 · · ·

x1
1, x2

1 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·
x0
2, x2

2 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·
x1
2 0 0 1 1 1 2 2 2 3 3 3 3 · · · 0 1 2 3 3 3 · · ·

x0
3, x1

3 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·
x2
3 0 0 0 0 1 1 1 2 2 2 3 3 · · · 0 1 2 3 3 3 · · ·

x0
4, x1

4, x2
4 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·

x0
5, x1

5, x2
5 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·

x1 0 1 1 2 2 2 3 3 3 4 4 4 · · · 0 1 2 3 4 4 · · ·
x2 0 0 1 1 1 2 2 2 3 3 3 3 · · · 0 1 2 3 3 3 · · ·
x3 0 0 0 0 1 1 1 2 2 2 3 3 · · · 0 1 2 3 3 3 · · ·
x4 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·
x5 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · ·

V (x) 0 1 2 3 4 5 6 7 8 9 10 10 · · · 0 3 6 9 10 10 · · ·

Consider now the simulation over a larger time period, where modifications are applied over time to the
network, producing different configurations (see Fig. 10.1). Since the adaption time is generally almost immediate
even when adopting the original policy, the results obtained when adopting the enhanced policy are omitted.

The behavior of the states of the nodes of the network is reported in Fig. 10.3. In particular, in Fig. 10.3a
the time evolution of the states xi of each node i is depicted for the unconstrained system. Initially, the system
reaches a global rest state x̄ starting from a zero state, and, after each modification, the system adapts way
faster, without resetting the state. Some modifications have longer adaption times (e.g., at k = 70, when a sink
is removed); still, a new global rest state x̄ is reached faster than starting from an empty state.

The time evolution of the states xci (k) and xi(k) =
∑︁Cmax

c=0 xci (k) when paths are constrained by Cmax = 2
is reported in Figs. 10.3b and 10.3d. The state variables converge to higher values than the corresponding ones
in the unconstrained case, because there are in general more than one non-zero components of the state in each

0 20 30 40 50 60 70 105 115 125 140 150

k

0

2

4

6

x
i(
k
)

(a) xi(k) for each node of the unconstrained system. Dotted line:
x̄̄xi(k) for the sources.

0 20 30 40 50 60 70 105 115 125 140 150

k

0

5

10

x
i(
k
)

(b) xi(k) =
∑︁Cmax

c=0 xc
i (k) for each node of the constrained system,

Cmax = 2. Dotted: x̄̄xi(k) for the sources of the unconstrained system.

0 20 30 40 50 60 70 105 115 125 140 150

k

0

10

20

30

V
(x

(k
))

(c) Blue: V (x(k)) for the unconstrained system; dotted red: V (x̄̄x(k))
for the unconstrained system; yellow: V (x(k)) for the constrained
system with Cmax = 2.

0 20 30 40 50 60 70 105 115 125 140 150

k

0

2

4

6

x
c i
(k

)

(d) xc
i (k), c ∈ {0, . . . , Cmax}, for each node of the constrained system,

Cmax = 2. Dotted line: x̄̄xi(k) for the sources of the unconstrained
system.

Figure 10.3: (A simple network). Time evolution of the states of the nodes, considering the modifications from Fig. 10.1 on the
network.



118 Part II, Chapter 10 — Illustrative example in a small network

node, and the length of the shortest feasible paths might be larger than that of the unconstrained shortest paths.
In Fig. 10.3c, the V (x(k)) of both systems are compared. It is confirmed that the unconstrained system always

converges faster than the constrained one, i.e., overall fewer tokens are required. When modifying the network,
the maximal rest state x̄̄x might change, and so does V (x̄̄x); as expected, V (x(k)) ≤ V (x̄(k)) for the unconstrained
system and, as the network is very simple, it saturates at global rest state, namely V (x̄(k)) = V (x̄̄x(k)).

Some animations of these simulations are available at https://users.dimi.uniud.it/~franco.blanchini/
examples_mkv.html, showing the evolution over time of the nodes’ states and the paths followed by the tokens.

The metrics introduced in Section 10.2 are reported in Table 10.2, for each possible network configuration;
each interval starts at the time k in which a change occurs in the network and stops when the next change occurs.

Analyzing the metrics Lss, Css, Ess and comparing them with the paths depicted in Fig. 10.1 for each network
configuration, it can be verified that the shortest paths are discovered, both constrained and unconstrained. For
some configurations of the network, the shortest paths on the unconstrained and constrained system coincide (see
Fig. 10.1); the time to reach a steady-state and the total number of tokens in the network is not necessarily the
same, however, because of the slightly different policy that uses multi-component states in the constrained system,
and the fact that during the transitory some paths with constrained costs greater than Cmax, which are not viable
in the constrained case, might be traversed by the tokens in the unconstrained case.

Removing arcs/nodes/sinks or increasing arc costs might increase the accumulation of tokens in the network,
as the length of the shortest paths might increase (see metric Vss). Conversely, restoring nodes/arcs or inserting
sinks, or decreasing the arc costs might decrease the number of tokens in some nodes, as the length of the shortest
paths might decrease. In these four latter cases, at k = 30, 40, 105, 115, the network briefly becomes non-admissible
(see metric Tna); a new admissible state is reached very quickly. Removing sources does not have any effect, while
inserting some of them makes the corresponding states increase, reaching the maximal values.

When the network is admissible, some injected tokens (the only ones moving) cannot reach the sinks, because
they are accumulated in the nodes instead, and they get lost, see the metric lss. Many tokens are lost during the
initial transitory, while very few during the successive ones, after each modification on the network. The main
exception is the modification at k = 70, where a sink node is removed: the reason is that outgoing paths to this
node are no more available, and new ones are to be discovered. Instead, when the network is not admissible,
some tokens that are already present in the nodes can move, possibly leaving the network: this is the reason for
which the metric lss assumes negative values (more tokens leave the network than the ones injected in a given
time interval). Eventually, in the unconstrained system, 9 of the 150 injected tokens stop in the nodes, without
reaching the sinks, and 3 are lost due to the failing of node 3. In the constrained case, 26 of the 150 injected
tokens stop in the nodes, and 8 are lost due to the failing of node 3.

Finally, as already stated, the network is so simple that applying a deterministic or stochastic choice model
produces very few differences, as the number of alternative paths is reduced. The main difference can be seen
when k ∈ [125, 139], where two shortest (unconstrained) outgoing paths exists (see Fig. 10.1), which have the
same minimum length. When adopting the deterministic choice model, only one of them is chosen, by all the
injected tokens; when adopting a stochastic model, each token takes one of the two randomly.

Table 10.2: (A simple network). Comparison of the simulation results at each configuration of the network, considering the
modifications from Fig. 10.1 on the network. A deterministic choice model is assumed.

Time
interval

Unconstrained, original Constrained, original
Cmax

Lss Css Ess Tss Vss lss Tna Lss Css Ess Tss Vss lss Tna

[ 0, 19] 3 3 4 6 6 6 0 4 2 3 10 10 10 0 2
[ 20, 29] 5 2 3 1 8 2 0 5 2 3 1 12 2 0 2
[ 30, 39] 3 2 3 0 7 -1 1 3 2 3 0 11 -1 1 2
[ 40, 49] 2 1 2 0 5 -2 1 2 1 2 0 9 -2 1 2
[ 50, 59] {2, 2} {1, 2} {2, 3} 0 5 0 0 {2, 2} {1, 2} {2, 3} 3 11 2 0 2
[ 60, 69] 2 2 3 0 5 0 0 2 2 3 0 11 0 0 2
[ 70, 99] 5 4 5 8 14 9 0 6 2 3 17 29 18 0 2
[105, 114] 4 3 4 1 11 -3 2 5 2 3 0 27 -2 1 2
[115, 124] 3 2 3 1 10 -1 2 3 2 3 0 27 0 1 2
[125, 139] 4 3 4 1 12 2 0 5 2 3 3 31 4 0 2
[140, 150] 4 3 4 0 9 0 0 5 2 3 0 23 0 0 2

Note: Each row refers to a different network configuration (see Fig. 10.1). Cmax is given for the constrained system. Metrics.
Lss: average length L(p) of the paths travelled by the tokens injected at steady-state; Css: the corresponding constrained cost
C(p); Ess: the corresponding number of traversed arcs; Tss: time (number of injected tokens) needed to reach a global rest state,
i.e., k such that V (x(k)) = V̄ ; Vss: the corresponding value of V (x(k)) = V̄ at global rest state; lss: total number of tokens lost
during the transitory, because either they are stopped in a node, or their path is not feasible, or the node they are deposited has
been removed; Tna: time (number of injected tokens) needed for the state of the network to become admissible, if the initial state
in non-admissible. For the time interval [50, 59], Lss, Css, Ess are inficated for both the sources, separately.

https://users.dimi.uniud.it/~franco.blanchini/examples_mkv.html
https://users.dimi.uniud.it/~franco.blanchini/examples_mkv.html


CHAPTER11
Illustrative example in

a large grid network

In this Chapter the proposed policies Policies 8.1 and 9.1 are applied to a large grid network of 2500 nodes
and 19404 arcs with integer (possibly negative) arcs’ costs. The choice of the grid network is due to being able
to visualize the results easily, as well as some emergent behaviours, i.e., macroscopic phenomenons that can be
observed only in larger systems, and that are not evident at microscopic/local level. First, a static scenario is
considered, and the effects of applying a deterministic or stochastic choice model are evaluated. Then, some
modifications on the network are applied, to show that the policies are adaptive in dynamic environments.

These proposed policies have been implemented in C and compiled as Matlab MEX functions; simulations
were performed in Matlab. All the simulations were performed on a dual-core Intel Core i3 at 2.3 GHz with 8 GB
of RAM.

11.1 Scenario and data

Consider the map of size 50× 50 pixels represented in Fig. 11.1a, where each pixel is associated with a node i and
is characterized by an integer value representing its “altitude” hi. A network is created, connecting each node to
all the existing neighbor nodes in its 8-neighborhood through an arc. To assign a (possibly negative) cost to each
arc (i, j) ensuring Assumption 7.1, the values hi and hj of the pixels associated with i and j, respectively, are
considered and, given the difference dh = hj − hi, such cost is computed as:

γij =

{︄
ceil(m−(dh− h0)), if dh ≤ h0,
ceil(m+(dh− h0)), otherwise,

where h0 ∈ Z, h0 < 0, represents the difference dh associated with a zero cost, and m−,m+ ∈ R, with 0 <
m− < m+, ensure positive circuits. Negative gradients of hi such that dh < h0 correspond to negative cost
arcs. Intuitively, when traveling uphill some energy needs to be spent (positive costs), while when traveling
downhill some energy can be recovered (negative costs). Indeed, this expression is a simplification of the energy
conservation rule for energy recuperation systems (e.g., regenerative braking for electric vehicles): physically, due
to the conservation of energy, traveling in a circuit will never result in a negative consumption (or, equivalently,
a positive regeneration).

The following parameters have been used: h0 = −30,m− = 0.4 and m+ = 0.9. Also, the constrained cost is
set to 1 for all arcs σij = 1 for each arc, i.e., the number of traversed arcs is limited.

The resulting network has 2500 nodes and 19404 arcs, with γij ∈ [−97, 273]. Six sources s1, . . . , s6 and four
sinks d1, . . . , d4 are set (see red and blue dots in Fig. 11.1a, respectively).

For evaluation purposes, the length of the shortest path from each node to each sink can be easily computed
offline, using the Bellman-Ford algorithm. Similarly, to determine the (minimum) value of the total constrained
cost Cmax to be imposed, the minimum constrained cost from each source to each sink can be computed, too.
For the given source nodes, these results are summarized in Table 11.1. Cmax = 25 is considered.

Also, the maximal rest state x̄̄x for the unconstrained system is reported in Fig. 11.1b, where each pixel,
associated with a node i, shows the value of x̄̄xi, i.e., the minimum distance from i to the closest sink. Recall that
the maximal rest state is independent from where the sources are located. Obviously, nodes around the sinks have



120 Part II, Chapter 11 — Illustrative example in a large grid network

Table 11.1: (A large grid network). Minimum length Lmin and minimum constrained cost Cmin of the paths between each source
si and each sink di. Here, Cmin is also the constrained cost of the shortest paths (except for s2 → d3, where the shortest path has
C = 31). Values in bold refer to the shortest (unconstrained) path from each source. Values in italics refer to the shortest feasible
path from each source when Cmax = 25.

d1 d2 d3 d4

Lmin Cmin Lmin Cmin Lmin Cmin Lmin Cmin

s1 608 27 496 14 383 28 1527 43
s2 1058 12 1141 6 1367 23 2133 35
s3 637 18 637 9 529 23 1145 20
s4 597 25 817 22 776 40 720 13
s5 698 28 750 19 635 33 660 10
s6 844 35 896 26 608 32 640 11

s1

s2

s3

s4
s5

s6

d1

d2

d3

d4

hi

0 356 711 1067 1422 1778

(a) Map of hi. There are hills in the yellow areas, and the altitude
decreases as the color becomes bluer: arc costs γij are negative for the
arcs directed downhill, and non-negative otherwise. Note that tokens
injected in s2 have to travel uphill to reach a sink, along a positive
length path. Conversely, possible tokens present in the yellow areas
tend to travel downhill, along negative paths.

7xi

-258 0 287 559 832 1104

(b) Map of the maximal rest states x̄̄xi for the unconstrained system,
which are equal to the length of the shortest path from each node i to
the closest sink. There is a larger accumulation of tokens in the yellow
areas, e.g., around source s2, as the tokens injected in there have to
travel uphill to reach a sink, paying a positive cost. The number of
tokens is below the zero reference level (negative states) in the violet
areas, e.g., in the areas with the larger altitude, as tokens tend to go
downhill to reach a sink, paying a negative cost.

Figure 11.1: (A large grid network). The map of the network. Red circles: source nodes; blue circles: sink nodes, colored pixels:
nodes of the network. The color of each pixel represents the corresponding value of hi and x̄̄xi, respectively, with gray representing 0.
Each node is connected to its existing 8-neighborhood nodes.

x̄̄xi close to zero. Nodes from which the shortest path to the closest sink is directed downhill tend to have negative
x̄̄xi, while if such path is directed uphill, the corresponding x̄̄xi is positive.

Initially, this network, initialized with a zero state, is assumed static and the initial transitory that leads
the state of the network to a global rest state is analyzed. Recall that since there are some negative cost arcs,
initially the state is non-admissible, and some transitions of virtual/non-informative tokens occur, but eventually,
an admissible state is reached and, later on, the system reaches a global rest state.

Then a dynamic scenario is considered, evolving from the previous case; successive modifications on the network
are performed, each one occurring after the system stabilizes (see Fig. 11.7 at Page 125, first columns).

• At k = 18000001, some nodes are removed.

• At k = 21000001, some of these are re-enabled.

• At k = 24000001, some nodes stop being sources.

• At k = 27000001, some nodes become new sources.

• At k = 42000001, some nodes become new sinks.

• At k = 45000001, some nodes stop being sinks.

Both the stochastic and deterministic choice models are considered, for both the unconstrained and constrained
system, applying the original Policies 8.1 and 9.1. The simulation settings are those from subsection 10.1.1. Metrics
from Section 10.2 have been computed from each simulated case and compared.



11.2 Results and discussion 121

xi(k)

-280 0 389 724 1058

(a) Map of the rest state x̄i(k) for the unconstrained system, deter-
ministic choices.

xi(k)

-271 0 261 526 792 1058

(b) Map of the rest state x̄i(k) for the unconstrained system, stochas-
tic choices.

xi(k)

-5785 0 6724 12978 19232

(c) Map of the rest state x̄i(k) for the constrained system, Cmax = 25,
deterministic choices.

xi(k)

-5552 0 6847 13046 19245

(d) Map of the global rest state x̄i(k) for the constrained system,
Cmax = 25, stochastic choices.

Figure 11.2: (A large grid network). The map of the network. Red circles: source nodes; blue circles: sink nodes, colored pixels:
nodes of the network. The color of each pixel represents the corresponding value of x̄i(k) at steady-state (global rest state), with gray
representing 0. The lines represent the paths traveled by 10000 injected tokens; from white thin lines, when few tokens traversed each
arc, to thicker black lines, when almost all the tokens traversed them.

11.2 Results and discussion

At first, consider the static scenario in the network from Fig. 11.1. In Fig. 11.2, the steady-state of the network
is represented, for both the unconstrained system and the constrained system (with Cmax = 25), applying both
the deterministic and stochastic choice model. The unconstrained systems, for both the choice models, reach such
global rest states around time k = 106, while both the constrained systems around time k = 1.35 · 107.

In the images, the color of each pixel now represents the state x(k) of the nodes at steady-state (i.e., it is a

global rest state x(k) = x̄). For simplicity, in the constrained systems x̄i =
∑︁Cmax

c=0 x̄ci is represented for each node
i. The state x̄ mostly does not depend on the applied choice model. In the unconstrained case, states are upper
bounded by the maximal rest state from Fig. 11.1b, x̄ ≤ x̄̄x, as expected, and for many nodes they are even the
same. Moreover, the states are way larger for the constrained system, because in that case the individual state
components x̄ci for c = 0, 1, . . . , Cmax = 25 are all accounted in x̄i.

The paths traveled by 10000 injected tokens (at steady-state) are also depicted, which are the shortest paths
from each source to the closest sinks. For the unconstrained system, the global rest states x̄ in Figs. 11.2a and 11.2b
are characterized by the following states of the source nodes s1, . . . , s6: x̄s1(k) = 383, x̄s2(k) = 1058, x̄s3(k) = 529,
x̄s4(k) = 597, x̄s5(k) = 635, x̄s6(k) = 608, corresponding to the optimal path lengths (see Table 11.1). More
generally, x̄i = x̄̄xi for all the nodes i along such paths.

Instead, for the constrained system, from Table 11.1 it can be seen that the shortest outgoing paths from s1,



122 Part II, Chapter 11 — Illustrative example in a large grid network

0 1 3 5 6 8 10 12 13

k #105

0

500

1000

x
i(
k
)

(a) Unconstrained system, stochastic choices.

0 3 6 9 12 15 18

k #106

0

5000

10000

15000

x
i(
k
)

(b) Constrained system, stochastic choices.

Figure 11.3: (A large grid network). Time profile of the states xi(k) of a subset of nodes, including the sources, which are highlighted
by thick lines. Dotted lines represent x̄̄xi(k) for the source nodes computed for the unconstrained case: the state of the source nodes
converge to these values in the unconstrained case.

0 1 3 5 6 8 10 12 13

k #105

0

2

4

6

V
(x

(k
))

#105

(a) Detail of the initial transitory for the unconstrained system.
Solid lines: stochastic choice model; darker dashed lines: determin-
istic choice model.

0 2 4 6 8 10 12 14 16 18

k #106

0

2

4

6

V
(x

(k
))

#106

(b) Detail of the initial transitory for the constrained system. Solid
lines: stochastic choice model; darker dashed lines: deterministic
choice model.

Figure 11.4: (A large grid network). Blue: V (x(k)) for the unconstrained system; dotted red: V (x̄̄x(k)) for the unconstrained system;
yellow: V (x(k)) for the constrained system with Cmax = 25.

s5 and s6 to the closest sinks are not feasible when Cmax = 25, then new feasible shortest paths are formed,
reaching different sinks with a larger length. The shortest outgoing paths from the other three sources s2, s3 and
s4 are equal to those that emerged in the unconstrained systems, because they are feasible. The global rest states
x̄ in Figs. 11.2c and 11.2d are characterized by the following states of the source nodes s1, . . . , s6: x̄

0
s1(k) = 496,

x̄0s2(k) = 1058, x̄0s3(k) = 529, x̄0s4(k) = 597, x̄0s5(k) = 660, x̄0s6(k) = 640, equal to the optimal feasible path lengths.
Finally, note that here multiple equivalent shortest (feasible) outgoing paths from the sources exist; they are

discovered and traversed by the tokens when using a stochastic model, while only one of them is chosen when using
a deterministic model. Still, as the global rest state is similar in both cases, all these paths are still potentially
available if a change of choice model occurs in the latter case.

Consider now the transient to get the steady-state. The time evolution of the state of a subset of nodes
(including all the sources) is shown in Fig. 11.3 for both the unconstrained and constrained system, assuming the
stochastic choice model (for the deterministic one the behavior is almost identical). In both cases, the states start
increasing and eventually they stabilize. In the unconstrained case, the states of the source variables reach the
corresponding x̄̄xi. Note that the state of different sources converges at different times. In the constrained case,
despite xi =

∑︁Cmax

c=0 xci , is represented, generally a similar behavior can be observed.
The global behavior can be observed in Fig. 11.4, where the time evolution of V (x(k)) is represented. Solid

lines refer to the stochastic choice model, and darker dashed lines to the deterministic choice model: note that in
both the unconstrained and constrained system they are about the same. Compared to the case in Chapter 10,
the difference between the constrained and unconstrained system is more evident here, as now the equivalent
network for the constrained system would be about Cmax + 1 = 26 times larger than the original one. In the
constrained system, much more tokens are required to be injected into the network and stored in the nodes. Also,
the network is not saturated, as nodes far from the source nodes are not reached by the injected tokens.

The transient can be visualized directly in the network in Fig. 11.5 for the stochastic choice model, both for
the constrained and unconstrained cases (for the deterministic model, it is similar). The color of each pixel is
the state x(k) at a particular time k; the paths of the tokens traveling in the previous 105 (Fig. 11.3a) and 106

(Fig. 11.3b) time units are also shown.
Consider the unconstrained system. Since there are negative cost arcs, the initial state is not admissible,

so initially, there are a lot of simultaneous transitions of tokens already present in the network (such paths are
included in Fig. 11.5a for the image at k = 105: note that there have been transitions in almost all the network).
As such tokens move, the states of the nodes with negative gradients of hi such that dh < h0 become negative,
transferring tokens to nodes with smaller values of hi. An admissible state is reached almost immediately, at
k = 6, and then it remains such, where only the injected tokens move, spreading in the network and modifying
its state. Their exploration area grows over time until the closest sink (or an area where the shortest outgoing



11.2 Results and discussion 123

k = 0 k = 1 · 105 k = 2 · 105 k = 3 · 105 k = 4 · 105 k = 5 · 105 k = 6 · 105

k = 7 · 105 k = 8 · 105 k = 9 · 105 k = 10 · 105 k = 11 · 105 k = 12 · 105

(a) Unconstrained system, stochastic choices.

k = 0 k = 1 · 106 k = 2 · 106 k = 3 · 106 k = 4 · 106 k = 5 · 106 k = 6 · 106 k = 7 · 106

k = 8 · 106 k = 9 · 106 k = 10 · 106 k = 11 · 106 k = 12 · 106 k = 13 · 106 k = 14 · 106 k = 15 · 106

(b) Constrained system, stochastic choices.

Figure 11.5: (A large grid network). Evolution of the nodes’ state map of both the unconstrained and constrained systems, adopting
both the deterministic and stochastic choice model, to get the final global rest states of Fig. 11.2. The paths traveled by the tokens
in the previous 105 (Fig. 11.3a) and 106 (Fig. 11.3b) time units are represented.

paths have already been discovered) is reached. Then, they are routed through the shortest paths. Locally, the
states converge at different times, depending on the closeness to the sinks and sources: close sources (indirectly)
cooperate to make the states of the surrounding area converge earlier. Isolated sources tend to take more time
to converge. In the end, 552628 injected tokens stop in the nodes and cannot reach the sinks (when using the
deterministic model, they are 552561).

For the constrained system, the behavior is similar; however, now the exploration area of the tokens is limited.
The state becomes admissible at k = 50 and, in the end, 6134934 injected tokens are deposited in the nodes
without reaching the sinks, hence are lost (when using the deterministic model they are 6104811).

To summarize, three emergent behaviours can be observed. First, the reaching of an admissible state, and then
of a global rest state, without the single tokens “be aware” of this. Second, the gradual growth of the exploration
area from each source until some closer sinks are found; generally, this area remains localized around those nodes,
without covering the entire network, especially for very large networks; the exploration area is clearly limited in
the constrained case. Third, the discovery of the shortest (possibly constrained) outgoing paths from each source;
in a deterministic choice model, once one of these is found from a given source, all the tokens injected next follow
this same path; in a stochastic choice model, a similar phenomenon to the one observed in lightnings [105] occurs,
in which the non-optimal paths are still taken by some injected tokens, but become shorter and shorter, until they
“vanish” and eventually all the injected tokens take one of the existing shortest outgoing paths.

Consider now the dynamic scenario where modifications are applied to the network, as depicted in the images on
the first column of Fig. 11.7. In the same figure, in the second to fourth columns, the global rest state x̄ reached
after each modification is represented, for the considered cases. In those images, the paths traveled by 40000
injected tokens at steady-state are also represented, which are the shortest feasible ones for the unconstrained and
constrained system with Cmax = 25, respectively.

The system adapts to the modifications on the network and new updated shortest paths emerge in all cases.

Again, note that the main difference between the deterministic and stochastic choice model is in the number
of possible traveled paths followed by the newly injected tokens: in the deterministic model, only one specific path



124 Part II, Chapter 11 — Illustrative example in a large grid network

Table 11.2: (A large grid network). Comparison of the simulation results at each configuration of the network in Fig. 11.1, considering
the modifications from Fig. 11.7.

Time interval
Constrained, deterministic Constrained, stochastic

Cmax

Lss Css Tss Vss lss Tna Lss Css Tss Vss lss Tna

[ 0, 18000000] 635 26 989256 545771 552561 5 635 25 1010853 546249 552628 5 n/a
[18000001, 21000000] 700 18 329459 551806 90274 0 700 18 329461 552013 90125 0 n/a
[21000001, 24000000] 654 22 35304 558400 6647 4 654 22 35128 557614 5639 4 n/a
[24000001, 27000000] 606 28 0 558400 0 0 606 28 0 557614 0 0 n/a
[27000001, 42000000] 501 22 186965 591611 33211 0 501 22 186476 591132 33518 0 n/a
[42000001, 45000000] 458 16 21 524242 -66912 22 458 16 19 528926 -61836 20 n/a
[45000001, 66000000] 713 15 1625841 1011294 487052 0 713 15 1633274 1017210 488284 0 n/a

Time interval
Constrained, deterministic Constrained, stochastic

Cmax

Lss Css Tss Vss lss Tna Lss Css Tss Vss lss Tna

[ 0, 18000000] 663 16 13722936 6014733 6104811 47 663 16 13596550 6049551 6134934 49 25
[18000001, 21000000] 702 11 1515979 5593978 482348 0 702 12 1573258 5628983 488688 0 25
[21000001, 24000000] 684 14 1652689 6047602 454232 22 684 14 1823133 6077752 448890 13 25
[24000001, 27000000] 630 16 0 6047602 0 0 630 16 0 6077752 0 0 25
[27000001, 42000000] 568 15 12992321 8258115 2210513 0 568 15 12981552 8286966 2209214 0 25
[42000001, 45000000] 470 14 1649 7424832 -818076 387 470 14 1409 7477152 -796398 357 25
[45000001, 66000000] 713 15 19073067 12999899 5575067 0 713 15 19262010 13083292 5606140 0 25

Note: Each row refers to a different network configuration (see Figs. 11.2 and 11.7). Metrics. Lss: average length L(p) of the
paths travelled by the tokens injected at steady-state; Css: the corresponding constrained cost C(p), which is equal to Ess, the
corresponding number of traversed arcs; Tss: time (number of injected tokens) needed to reach a global rest state, i.e., k such that
V (x(k)) = V̄ ; Vss: the corresponding value of V (x(k)) = V̄ at global rest state; lss: total number of tokens lost during the transi-
tory, because either they are stopped in a node, or their path is not feasible, or the node they are deposited has been removed; Tna:
time (number of injected tokens) needed for the state of the network to become admissible, if the initial state in non-admissible.

is followed by all the tokens, while in the stochastic one, there are multiple possibilities, including the latter.
The time evolution of V (x(t)) over the entire time horizon for the constrained and unconstrained systems

adopting the stochastic choice model is represented in Fig. 11.6 (for the deterministic choice model it is about
the same). The same considerations from Section 10.3 apply here. However, here it is more evident that the
unconstrained system adapts faster than the constrained one.

Finally, in Table 11.2 the considered metrics are reported for each interval occurring between two successive
modifications on the network, for both the constrained and unconstrained system, and for both the stochastic
and deterministic choice models. The findings discussed above are confirmed. Note that the state becomes non-
admissible when at k = 21000001, when inserting some nodes/arcs, and k = 42000001, when setting some new
sink nodes (other than being non-admissible at k = 0), but it remains such for a brief period (see the rows with
Tss ̸= 0). Moreover, note that the system is adapted immediately at k = 24000001, i.e., when new sources are
set, as expected (since the state was a global rest state just before the modification on the network), see metric
Tss. Finally, tokens might be lost because either they are forced to stop in a node or because such node fails.
Recall that the final total number of tokens that are lost is equal to the sum of the values in the lss column.
Note that when k = 42000001, i.e., when new sink nodes are set, lss < 0: this happens because the state becomes
a non-admissible state, and all the possible tokens deposited in the surrounding of the nodes move to leave the
network; the number of such tokens is larger than the number of injected token in the considered interval.

Some animations of these simulations are available at https://users.dimi.uniud.it/~franco.blanchini/
examples_mkv.html, showing the evolution over time of the nodes’ states and the paths followed by the tokens.

0
1.
8
2.
1
2.
4
2.
7

4.
2
4.
5

6.
6

k #107

106

107

V
(x

(k
))

Figure 11.6: (A large grid network). Blue: V (x(k)) for the unconstrained system; dotted red: V (x̄̄x(k)) for the unconstrained system;
yellow: V (x(k)) for the constrained system with Cmax = 25. The full time horizon is represented. The y-axis is in log-scale.

https://users.dimi.uniud.it/~franco.blanchini/examples_mkv.html
https://users.dimi.uniud.it/~franco.blanchini/examples_mkv.html


11.2 Results and discussion 125

Modifications
on the map

at time k = km

UNCONSTRAINED

DETERMINISTIC

(steady-state)

UNCONSTRAINED

STOCHASTIC

(steady-state)

CONSTRAINED

DETERMINISTIC

(steady-state)

CONSTRAINED

STOCHASTIC

(steady-state)

k
m

=
1.
8
·1
0
7

k
m

=
2.
1
·1
0
7

k
m

=
2.
4
·1
0
7

k
m

=
2.
7
·1
0
7

k
m

=
4.
2
·1
0
7

k
m

=
4.
5
·1
0
7

Figure 11.7: (A large grid network). First column evolution of the map of Fig. 11.2, occurring at different times k = km. Black
pixels: obstacles (disabled nodes); white pixels: enabled nodes; red circles: source nodes; blue circles: sink nodes; green shapes:
sources/sinks/group of nodes that have just been modified. Second to fifth columns: the corresponding global rest state of
the network reached after the system stabilizes after each modification, for the unconstrained system with deterministic choices
(evolving from Fig. 11.2a), the unconstrained system with stochastic choices (evolving from Fig. 11.2b), the constrained system with
deterministic choices and Cmax = 25 (evolving from Fig. 11.2c), and constrained system with stochastic choices and Cmax = 25
(evolving from Fig. 11.2d). White pixels are obstacles. The paths traveled by the tokens in the previous 40000 time units are
represented.





CHAPTER12
Illustrative example in

a large small-world network

In this Chapter the proposed policies Policies 8.1, 8.2, 9.1 and 9.2 are applied to a class of small-world networks.
Small-world networks are networks where there is a small average path length between any pair of nodes and a
high local clustering of the nodes. A base network is first generated randomly according to a given procedure; then,
some variations of this network are constructed by varying, for instance, the number of nodes or the magnitude
of the arc costs. The effects of these modifications on some metrics are then evaluated and compared. To focus
on the performance, a static scenario is considered. Moreover, arc costs are assumed to be non-negative, so that
the state is always admissible.

These proposed policies have been implemented in C and compiled as Matlab MEX functions; simulations
were performed in Matlab. All the simulations were performed on a dual-core Intel Core i3 at 2.3 GHz with 8 GB
of RAM.

12.1 Scenario and data

Some Watts-Strogatz small-world networks are considered [128], which are random graphs that have small-world
network properties, such as clustering and short average path length. Each network is randomly generated
according to the following procedure, exploiting a provided Matlab function [129]:

1. An undirected ring lattice with n nodes of mean degree δ (assumed even) and nδ/2 arcs is created, in which
each node is connected to its δ/2 nearest neighbors on each side.

2. The terminal node of each edge connecting nodes i and j is rewired with probability β, avoiding duplicated
edges or self-loops. When β = 0, no edge is rewired and a ring lattice is obtained. When β = 1, every edge
is rewired and a purely random graph is obtained.

3. A directed network of m = nδ arcs is obtained by replacing each undirected arc with two arcs (i, j) and
(j, i) in opposite directions. Integer costs are assigned randomly to each arc, with γij ∈ [1, γmax] and
σij ∈ [1, σmax] for some γmax, σmax ∈ N.

4. A single source s is set in node “1”. A single sink d is set so that the length of the shortest path from s to
d is min(L({s, . . . , d})) ≈ mean{min(L({s, · · · , i}) : i ∈ N}. Cmax is chosen so that feasible paths exist.

First, a default base network is generated using n = 1000 (number of nodes), δ = 4 (mean nodes out-degree),
β = 0.15 (rewiring probability), γmax = 50 (maximum cost), σmax = 10 (maximum secondary cost), Cmax = 65
(for the constrained system). The resulting network has m = nδ = 4000 edges and is depicted in Fig. 12.1.

Then, different variants of this network are generated by varying each time one of the following characteristics,
and keeping all the other parameters unchanged:

• the number of nodes, considering n ∈ {100, 1000, 10000, 50000};

• the mean out-degree, considering δ ∈ {4, 8, 16, 32};

• the number Esp of arcs of the shortest path between the source and the sinks, by varying the location of
the sink node, using Esp = {5, 11, 15, 19};



128 Part II, Chapter 12 — Illustrative example in a large small-world networkDirected Watts-Strogatz Small World Graph with n = 1000 nodes, m = 4000 edges, 2K = 4 mean out-degree, - = 0:15

s
1
=1

d
1
=922

Figure 12.1: (A large small-world network). Directed Watts-Strogatz small-world graph with n = 1000 nodes, m = 4000 edges, δ = 4
mean out-degree, and rewiring probability β = 0.15. The effects of changing some characteristics of this network will be evaluated.
Arc costs are omitted. The source and sink nodes are highlighted in red and blue, respectively. The shortest path between them is
highlighted in green.

• the magnitude of the costs, considering scaled costs Kγ · γij with Kγ ∈ {1, 10, 100};

• the magnitude of the constrained costs, considering scaled constrained costs Kσ · σij and scaled Kσ ·Cmax,
with Kσ ∈ {1, 10, 100};

• (for the constrained system only) the maximum constrained cost, Cmax ∈ {34, 65, 95, 120}.

In all cases, a stochastic choice model is considered. Simulations are performed considering both the uncon-
strained and constrained system, applying both the original Policies 8.1 and 9.1, and the enhanced Policies 8.2
and 9.2. A static scenario is considered. Recall that, as the arc costs are all positive, the state of the system,
initialized with a zero state, is always admissible and is non-negative. The simulation settings are those from
subsection 10.1.1. Metrics from Section 10.2 have been computed from each simulated case and compared.

12.2 Results and discussion

The network configuration at steady-state is represented in Fig. 12.2, for the base network in Fig. 12.1, considering
both the original and the enhanced strategies, both for the constrained and unconstrained system.

Consider the unconstrained system, first. By comparing the exact (Fig. 12.2a) and the enhanced policy
(Fig. 12.2b) cases, it can be seen that in both the same shortest path emerge, which is highlighted in red and
coincides with the optimal one from Fig. 12.1. In the enhanced case, nodes tend to have larger states. However,
recalling that the enhanced strategy ensured that in a strongly connected network like this one, all the injected
tokens are received in the sinks, it happens that in Fig. 12.2a, the states represent actual tokens that have been
injected in the network and have been deposited in the nodes, while in Fig. 12.2b, the states are composed only
by virtual tokens. Moreover, the spreading of the accumulation of virtual tokens over the network in the second
case is due to the traveling tokens moving from node to node with no limitation, until the only sink is found.

For the constrained system, in both the exact (Fig. 12.2a) and the enhanced (Fig. 12.2b) cases the same shortest
path emerges, again, but now it is not equal to the optimal (unconstrained) one, because that is unfeasible. Now
the state of the nodes (xi =

∑︁
c x

c
i ) in the enhanced case in Fig. 12.2d is way more similar to that of the original

case Fig. 12.2c, although it remains generally larger. Indeed, recall that in a constrained system, when paths
become unfeasible, tokens are not allowed to proceed, and stop in the nodes instead. When using the enhanced
policy, tokens are allowed to move for a longer time, as soon as their constrained cost c ≤ Cmax, while using the
original strategy they might stop earlier.

For comparison, numerical values of the metrics summarizing the simulation results at global rest state for the
above base case and its variations are reported in Table 12.1. First, to confirm the above-mentioned findings, the
metrics for the base case can be taken from the second row of such table and analyzed. The enhanced policy finds
the same optimal paths (in terms of L(p) and C(p), see metrics Lss, Css and Ess in the table) as the original policy,
in both the unconstrained and constrained case. The shortest path that emerges in the unconstrained system has



12.2 Results and discussion 129

Table 12.1: (A large small-world network). Comparison of the simulation results at global rest state when varying the network character-
istics. The network is built using the Watts-Strogatz small-world graph model.

Parameter
to vary

Unconstrained, original Unc., enhanced Constrained, original Constr., enhanced
Cmax

Lss Css Ess Tss Vss lss Tss Vss lss Lss Css Ess Tss Vss lss Tss Vss lss

n

100 104 40 7 1361 1344 1344 17 4509 0 122 28 6 9010 8886 8886 1042 15582 1018 32
1000 167 95 14 16427 16245 16245 64 78522 0 175 64 10 281645 279459 279459 22717 494319 22382 65

10000 218 125 20 159774 158746 158746 248 1075638 0 229 81 12 3024376 3013981 3013981 240217 5325649 239205 85
50000 277 199 31 710604 709164 709164 341 6993467 0 302 123 19 44519968 43769899 43769899 2436421 86177388 2387745 136

δ

4 167 95 14 16427 16245 16245 64 78522 0 167 95 14 315195 309832 309832 12163 978229 11901 100
8 69 52 7 6786 6632 6632 42 37282 0 69 52 10 42498 41621 41621 3819 359209 3688 100

16 31 62 10 3325 3283 3283 36 17653 0 31 62 7 19699 19389 19389 3370 190531 3289 100
32 16 54 8 1956 1895 1895 64 8488 0 16 54 8 7483 7301 7301 2494 98433 2370 100

Esp

5 94 31 5 1155 1141 1141 12 41419 0 94 31 5 6712 6552 6552 355 46851 332 100
11 130 74 11 4699 4616 4616 30 60187 0 130 74 11 58029 56692 56692 2470 258335 2326 100
15 201 102 15 39993 39671 39671 71 110753 0 206 89 13 1261169 1229403 1229403 47694 2455789 46391 100
19 259 113 19 95199 94795 94795 110 157699 0 264 100 17 4223367 4174069 4174069 170082 5514798 167605 100

Kγ

1 167 95 14 16427 16245 16245 64 78522 0 175 64 10 281645 279459 279459 22717 494319 22382 65
10 1670 95 14 158364 158148 158148 64 785220 0 1750 64 10 2716498 2714274 2714274 172647 4613687 172217 65

100 16700 95 14 1577358 1577178 1577178 64 7852200 0 17500 64 10 27064645 27062424 27062424 1675252 45967239 1674833 65

Kσ

1 - - - - - - - - - 175 64 10 281645 279459 279459 22717 494319 22382 65
10 - - - - - - - - - 175 640 10 274952 272982 272982 22789 476523 22386 645

100 - - - - - - - - - 175 6400 10 274952 272982 272982 22789 476523 22386 6450

Cmax

34 - - - - - - - - - 286 34 10 274704 274324 274324 72998 291584 72813 34
65 - - - - - - - - - 175 64 10 281645 279459 279459 22717 494319 22382 65
95 - - - - - - - - - 167 95 14 306771 301805 301805 12381 889270 12138 95

120 - - - - - - - - - 167 95 14 339537 333303 333303 11441 1342708 11129 120

Note: Each row refers to a different network. Default parameters which are not specified in each row: number of nodes n = 1000, mean
nodes out-degree δ = 4, rewiring probability β = 0.15, maximum cost γmax = 50, maximum secondary cost σmax = 10, costs’ scaling
factors Kγ = 1, Kσ = 1. Esp: number of edges in the shortest paths. Cmax is given for the constrained system. Metrics. Lss: cost
L(p) paid by each token injected at global rest state; Css: the corresponding constrained cost C(p); Ess: the corresponding number of
traversed arcs; Tss: the time in which the global rest state is reached, i.e., k such that V (x(k)) = V̄ ; Vss: the corresponding V̄ at global
rest state; lss: total number of tokens lost during the transitory, because either they are stopped in a node or their path is not feasible.
Lss, Css, Ess for the enhanced unconstrained (resp. constrained) policy are exactly the same as the ones for the original unconstrained
(resp. constrained) policy, hence omitted.

constrained cost Css > Cmax, while in the constrained system the shortest path is feasible Css < Cmax, but has
a longer length Lss compared to the unconstrained case.

Moreover, when using the enhanced strategy, the number of tokens (the state) deposited in the nodes is
generally larger compared to the case when using the original strategy, especially for the unconstrained system
(see metric Vss). When applying the original strategy, the number of lost tokens is equal to the number of tokens
deposited in the nodes Vss = lss, which means that all of these were injected and got lost (see metric lss). However,
note that when applying the enhanced strategy in the unconstrained case, no informative injected token is lost,
lss = 0, so the tokens deposited in the nodes are all virtual; differently, some informative tokens are asleep in the
constrained system, despite most of the deposited tokens are still virtual as lss < Vss: the number of lost tokens
is however smaller compared to the case in which the original policy is applied.

Finally, the unconstrained enhanced policy takes considerably less time to reach the global rest state (see
metric Tss). While this is true also for the constrained case, it is less evident, since some tokens fall asleep and
cannot continue moving in the network, filling the nodes’ states.

These considerations are generally valid for the other rows of the table, which refer to the networks obtained
varying a characteristic of the base one. Note that when the unconstrained shortest path is feasible (Css < Cmax),
the same shortest path emerges in the constrained system, too, having the same minimal length Lss. Increasing
the network size, decreasing the mean out-degree of the nodes, and increasing the number of edges in the shortest
paths result in a larger number of tokens required to converge (see the rows referring to the variation of n, δ, and
Esp). For the original policy, increasing the arcs costs γij worsen the performance; the unconstrained enhanced
policy is unaffected, while this is not true in the constrained case as tokens might fall asleep (see the rows referring
to the variation of Kγ). Finally, for the constrained system, scaling both σij and Cmax by the same integer factor
does not vary the performance, as the corresponding expanded networks have the same topology (see the rows
referring to the variation of Kσ). Instead, by increasing only Cmax, the performance degrades for the original
policy, while it improves for the enhanced one (see the rows referring to the variation of Cmax); the reason is that
in both cases, the equivalent expanded network is just larger, but for the specific enhanced case, tokens are also
allowed to travel more (not necessarily modifying all the state components). As the network scales up to a larger
one, the emerging behaviours that can be observed are the same as the ones from Section 11.2.



130 Part II, Chapter 12 — Illustrative example in a large small-world network

[UNC, STO, ORI] Time 310000

s_1=1

d_1=922

0

28

56

84

112

140

167
xi(k)

(a) Unconstrained system, stochastic choices, original strategy.

[UNC, STO, ENH] Time 310000

s_1=1

d_1=922

0

28

56

84

112

140

167
xi(k)

(b) Unconstrained system, stochastic choices, enhanced strategy.

Figure 12.2: (A large small-world network). The network of Fig. 12.1 at steady-state after having applied the proposed policies for
the network in Fig. 12.1.. The color of each node represents its state x̄i(t) at steady-state (global rest state). The paths followed by
the tokens are highlighted in red. (continued on the next page).



12.2 Results and discussion 131

[CON, STO, ORI] Time 310000

s_1=1

d_1=922

0

834

1668

2502

3336

4170

5003
xi(k)

(c) Constrained system, stochastic choices, original strategy.

[CON, STO, ENH] Time 310000

s_1=1

d_1=922

0

867

1734

2601

3468

4335

5201
xi(k)

(d) Constrained system, stochastic choices, enhanced strategy.

Figure 12.2: (A large small-world network). (continued) The network of Fig. 12.1 at steady-state after having applied the proposed
policies for the network in Fig. 12.1. The color of each node represents its state x̄i(t) at steady-state (global rest state). The paths
followed by the tokens are highlighted in red.





PART III
Decentralized flow control

for fair and sparse solutions

Based on [3], published: Franco Blanchini, Carlos Andrés Devia, Giulia Giordano, Raffaele Pesenti, and Francesca Rosset. “Fair
and Sparse Solutions in Network-Decentralized Flow Control”. In: IEEE Control Systems Letters 6 (2022). © 2022 IEEE, pp. 2984–
2989. doi: 10.1109/LCSYS.2022.3181341

https://doi.org/10.1109/LCSYS.2022.3181341




CHAPTER13
Introduction to Part III

This Part presents the work introduced in [3], which is the result of the collaboration between Franco Blanchini,
Carlos Andrées Devia, Giulia Giordano, Raffaele Pesenti, and me.

Consider a flow network composed of a certain number of nodes and arcs. In each node, there is a buffer that
contains a given amount of a resource. This resource can be continuously transferred between nodes along the
existing arcs creating a continuous flow, and possibly modifying the buffer levels of the resource over time. This
flow might be controlled by applying a given control to get some desired behavior.

Suppose that the network is connected to the external environment and assume that an uncontrolled fixed
outflow demand of the resource (i.e., a flow directed toward the external environment) is required. Assume that
there is also a controllable inflow (i.e., a flow coming from the external environment) that provides the required
resource over time. For instance, consider a fluid network in which the nodes are some tanks containing water
and the arcs are pipes connecting the tanks. Assume that from some tanks a water demand is required for usage.
Some external reservoirs are connected to the network, which provide water when required.

By controlling the flow of the arcs in the network, this demand can be met. It is desirable to stabilize the
system, too, to avoid fluctuations over time; indeed, when the system is stabilized, the buffer levels of the tanks
are constant: the total flow that enters any given tank is compensated by the total flow leaving it. In general,
however, there are many different distributions of the flows stabilizing the network and meeting the demand, so
that an optimization can be performed.

In this Part, the asymptotic minimization of the p-norm p
√︁∑︁|fij |p of the (controllable) flows fij in the

network is considered. Depending on the value of p, the distribution of the flows in the network has some
particular characteristics that might be useful. For instance, if p = 1, it turns out that the flow tends to be
concentrated in only few arcs, while being zero in the other ones: the solution tends to be sparse. Considering
a single (controllable) inflow and a single (uncontrollable) outflow demand, the flow distribution that meets the
demand is concentrated in the arcs along the shortest paths between the corresponding nodes. If p = 2, the flow

tends to be spread in all the arcs, and a configuration that minimizes an ”energy”
√︂∑︁

f2ij is achieved. If p =∞,

the maximum flow is minimized, and a fair solution is achieved, where it is not possible to decrease the flow in a
given arc, without having to increase by a larger quantity the flow in some other arc.

Getting the optimal distribution minimizing the p-norm (which is a global variable) and meeting the demand
is certainly possible by assuming all the data about the network is known; indeed, some linear-quadratic pro-
gramming problems can be formulated. However, for many reasons, including the network being too large, such
information might not be available. Having a network-decentralized control is therefore advantageous, as it only
uses local information, without needing to know the entire network. To this aim, a control is introduced, which is
decentralized in the sense that the control to be applied to each arc might depend only on the information about
the two buffers at the extremes, in particular on the difference between the two states, according to a given law
depending also on the value of p. Note that there are some similarities between this and the decentralized policy
from Part I: although the problem is certainly different, in both decisions are made at arc level, depending only
on local information regarding the difference of the states of its endnodes. Remark, as in Part II, that having a
decentralized policy is also advantageous as it is fault-tolerant, and it easily supports large, unknown and dynamic
networks, and privacy.

When 1 < p <∞ it turns out the control is continuous and that the steady-state required solution asymptot-
ically minimizing the p-norm of the flow, stabilizing the network, and providing the resource is actually obtained.
An important aspect to be considered is that the required distribution is obtained asymptotically: an initial
transient is present, in which the buffer levels vary.

When p = 1 or p = +∞, as the cost functional is not convex anymore, the optimal solution might not be



136 Part III, Chapter 13 — Introduction to Part III

i

xi
zero level for the buffer in node i

hi (buffer level)
≡ xi (state)

i

Figure 13.1: Graphical representation of the state xi of a node i: assuming a zero reference level, the state can be seen as the
(continuous) level of resource in the node.

unique; the control, however, is no longer continuous and cannot be applied, as it introduces chattering. It will
be shown that the proposed control must be applied for p → 1 and p → +∞, respectively, to get suboptimal
solutions arbitrarily close to the optimal 1 and ∞-norm solution.

Suppose now that some of the uncontrolled flows depend on the buffer levels. Unsurprisingly, the control
proposed above is not effective anymore. An enhanced proportional-integral control having the same properties
as the original control is introduced, which is decentralized and does not depend on the unknown dynamics. The
same optimality results reported above holds also in this case.

It is interesting to notice that when applying the original control, the state components (buffer levels of the
nodes) converge to the optimal Lagrange multiplier vector of the considered optimization problem, which is fixed
once p is fixed. In other words, the buffer levels at steady-state cannot be controlled. Instead, when applying the
enhanced proportional-integral control supporting unknown dynamics, the state always converges to 0; however,
now it is the integral variable vector that converges to the same optimal Lagrange multiplier vector mentioned
above (assuming no unknown dynamics at zero states: as it will be seen, this is not restrictive).

The feature of the enhanced control of driving the state to zero is useful for buffer level control. Indeed, one
might want to solve the considered problem while keeping the level of the buffers in the node under control, at
some fixed generic set-point levels. This condition is obtained asymptotically, once the state notion is suitably
redefined, see Section 13.1.

Now consider some weighted networks. So far, each arc was implicitly assumed to be given a unitary cost;
here, it is assumed that arcs have real-valued costs, which might be taken into account when minimizing the flow
distribution. In this regard, the minimization of the weighted p-norm p

√︁∑︁|fijωij |p of the flow could be required.
The larger the arc cost, the larger the contribution to the weighted p-norm of the flow. Hence, intuitively, the flow
tends to occupy the arcs whose cost is small. The problem can be transformed into a simple p-norm minimization
problem of the control, by suitably scaling the control/flow components, see Section 13.1.

To summarize, in many different conditions, applying a local control is effective in solving the considered
problem. Optimality is achieved when 1 < p < ∞, while a suboptimal 1 or ∞-norm solution can be made
arbitrarily close to the optimum, at least in theory.

Numerical errors deriving from the implementation of the control will be investigated.

In the rest of this Chapter, first, the intuitive idea behind the proposed control is presented in Section 13.1;
after that, the literature review is briefly reported in Section 13.2 and the main contributions summarized in
Section 13.3. Then, in Chapter 14 the setup is described, and the considered problem is stated. In Chapter 15
networks with just a fixed uncontrolled demand that has to be met are considered and the proper decentralized
control is studied, which also minimizes the p-norm of the flow vector. In Chapter 15 the control is suitably
adapted to support networks with uncontrolled flows depending on the buffer levels, buffer level control, and
weighted p-norm minimization. A brief discussion about the numerical issues emerging when implementing the
control is also reported. Finally, in Chapter 17, the results of some simulations are reported to validate the
proposed approach, and better evaluate the effects of the choices of the control and of p. Proofs are however
omitted and can be found in [3].

13.1 The main idea

The main idea behind this Part is similar to that from Part II. Indeed, consider a directed network composed of
some nodes and some directed arcs. It is assumed that there is a buffer in each node; the state xi of a node i is
defined as the amount/level hi of a given resource deposited in it with respect to an initial zero level of the node,
see Fig. 13.1.

This resource is assumed “continuous” and can be transferred from node to node according to an applied
decentralized control, which regulates this flow. For arc (i, j), this is characterized by the control uij of the arc



13.2 Literature review 137

i

j

xi
xj zero level for the buffers

hi ≡ xi hj ≡ xj

i j

control uij = Φp(xi − xj)

actual flow fij ≡ uij

Figure 13.2: Graphical representation of the flow fij between two nodes i and j.

i

xi
zero level for the buffer in node i

hi (buffer level)

xi (state)

h̄ (setpoint)

i

Figure 13.3: Graphical representation of the alternative definition of the state to support buffer level control.

i

j

xi
xj

ωij

zero level for the buffers

hi ≡ xi hj ≡ xj

i j

control uij = Φp(xi − xj)

actual flow fij = uij/ωij
with ωij = 2

Figure 13.4: Graphical representation of the alternative flow definition to support weighted p-norm minimization.

depending only on the state of the two arcs’ endnodes and is given by a function Φp depending on some p. The
corresponding flow is equal to the control fij ≡ uij , see Fig. 13.2.

In the network, there are some nodes in which a fixed flow (a demand) is imposed and must be met. Applying
the proposed control under proper assumptions results in stabilizing the network, meeting the demand, and
asymptotically minimizing the p-norm p

√︁∑︁|fij |p of the flow vector. As it will be seen, the choice of the value of
p influences the distribution of the flows over the arcs. Generally, large values of p tend to spread the flow in all
the arcs, while values of p close to 1 generally tend to concentrate the flows in just some arcs.

Enhancements to the control include the support for unknown dynamics depending on the buffer levels. In
this case, the control becomes a proportional-integral control, which still depends on local quantities: uij =
uij(p,Φp, xi − xj), but not on those uncontrolled flows. This enhanced control drives the state of the nodes to
zero at some steady-state. This fact can be exploited to drive the buffer levels of the nodes to some set point h̄,
by redefining the state of generic node i as xi = hi − h̄i, see Fig. 13.3, which yields hi = h̄i at steady-state.

The final enhancement includes the support for the minimization of the weighted p-norm p
√︁∑︁|fijωij |p, taking

into account some arc costs ωij . The main difference now is that the relation between the flow and the control
changes as fij = uij/ωij , so scaling is performed. For instance, see Fig. 13.4 and compare with Fig. 13.2: despite
the same states and control, the flow is halved.

13.2 Literature review

The field of flow networks has been widely explored [130]; in particular, lots of research has been done regarding
data transmission [131, 132], transportation networks [133, 134, 135, 136, 137], production-distribution systems
[138, 139], irrigation [140], heating [141, 142], cyber-physical energy networks [143], general compartmental systems
[144, 145, 146].

Here, the focus is given to the network-decentralized control of the flows in these networks. This topic was
first introduced in [136, 131] and then studied in [139, 147, 148, 144, 149].

Just few works consider the asymptotic optimization of the norm of the resulting flow. In [147] a saturated
network-decentralized control is presented, which asymptotically minimizes the 2-norm. The asymptotic 1-norm
minimization is considered in [149], for the special case of single-source-single-sink flow network, where the flow
is directed along the shortest path at steady-state. A mechanism of this kind can be used to describe natural



138 Part III, Chapter 13 — Introduction to Part III

phenomena such as lightning discharge [150], too. [151] extends this decentralized control from [147] to more
general classes of smooth and strictly convex functionals.

Note that while the p-norm functional is indeed a smooth and strictly convex functional when 1 < p < +∞,
the same is not true anymore for the ∞ and 1-norm functionals, so [151] is not applicable in these cases.

13.3 Contributions

To summarize, the main contribution of this Part (and [3]) is the definition of a local control that provides, among
others, a global optimal result, the minimization of the p-norm of the flow vector; as it will be shown, this fact
is possible because the considered cost function is a separable cost function [147, 151], i.e., the total cost can be
written as the sum of the partial costs corresponding to the single arcs. In particular:

• the specification of a decentralized flow control strategy by means of a nonlinear function Φp to control the
flow along the arcs, requiring only the knowledge of local information, i.e., the states of the arcs’ endnodes
(no information about the rest of the network is required);

• if an external flow demand is present, the proposed control ensures that this is met at steady-state;

• depending on the value of p, the proposed control ensures that the p-norm of the flow vector is minimized
at steady-state, when 1 < p < +∞;

• when p = 1 or p = ∞ no optimality result is guaranteed: a suboptimal solution arbitrarily close to the
optimum can be obtained by considering the limits of the control for p→ 1 and p→∞, respectively;

• the control can be enhanced to support unknown flow dynamics depending on the buffer levels (by considering
a proportional-integral control), buffer level control, and weighted p-norm minimization (scaling the control
components).



CHAPTER14
Problem setup

In this Chapter, the considered system composed of a fluid network is first introduced. Then, the main assumptions
and the main problem to be solved are stated, as well as some variations.

14.1 Flow networks

A flow network is considered, with n nodes and m arcs. The set of the nodes of the network is denoted by
N = {1, 2, . . . , n} and the set of the arcs of the network is denoted by A = {1, 2, . . . ,m}.

The elements of the system are presented in detail in the following subsections.

14.1.1 Buffers in the nodes

A buffer is present in each node. The buffer level of the generic node i ∈ N is indicated by hi. It is assumed that
hi = 0 is the zero reference level of the node: a negative buffer level corresponds to a physical level below this
point. Moreover, a state is also associated with each buffer (node), and this is denoted by xi for generic node i.

The vectors h(t) ∈ Rn of the nodes’ buffer levels at time t, and x(t) ∈ Rn of the nodes’ states at time t are
introduced,

h(t) =

⎡
⎢⎣
h1(t)
...

hn(t)

⎤
⎥⎦ , x(t) =

⎡
⎢⎣
x1(t)
...

xn(t)

⎤
⎥⎦ .

For simplicity, at first, it will be assumed that the states of the nodes are indeed the corresponding buffer
levels,

x(t) ≡ h(t); (14.1)

then, they will be both referred simply by x(t). The state will be redefined in Section 16.2.

14.1.2 Controlled flows associated with the arcs

An orientation and a controllable flow are associated with each arc: the flow is positive if it is physically directed
along the arc orientation, negative if it is directed along the opposite direction, and zero otherwise.

Some of these arcs are connected to the external environment: the flow associated with an arc oriented
toward the external environment is called outflow, while the flow associated with an arc coming from the external
environment is called inflow. The same convention for the flow sign mentioned above is applied here: for instance,
a negative outflow is a flow associated with an arc orientated toward the external environment, but physically
entering the network. The flows associated with arcs connecting two nodes of the network, hence not directly
connected to the external environment, will be referred by internal flows.

The arcs associated with controllable flows will be referred to as controllable arcs. Such flows are decided on
the basis of an applied control. A weight may also be associated with each controllable arc, and the control might
take this into account.

For the generic arc k ∈ A (either joining node i ∈ N to node j ∈ N , or node i ∈ N to the external environment,
or the external environment to node i ∈ N ), this control is indicated by uk(t), the weight by ωk, and the flow by
fk(t) = fk(uk(t)).



140 Part III, Chapter 14 — Problem setup

The vectors f ∈ Rm of the arcs’ flows, u ∈ Rm of the arcs’ controls and ω ∈ Rm of the arcs’ weights are
introduced,

f =

⎡
⎢⎣
f1
...
fm

⎤
⎥⎦ , u =

⎡
⎢⎣
u1
...
um

⎤
⎥⎦ , ω =

⎡
⎢⎣
ω1

...
ωm

⎤
⎥⎦ .

For simplicity, at first, the weights of the arcs will be neglected, and it will be assumed that the flows of the
arcs are equal to the corresponding applied controls,

u(t) ≡ f(t); (14.2)

then, they will be both referred simply by u(t). When those weights will be taken into account in Section 16.3,
the flow and the control will not be coincident anymore.

14.1.3 The network incidence matrix

The topology of the network is specified by the (generalized) incidence matrix BI ∈ Rn×m, whose columns describe
the controllable arcs in terms of the nodes they join. In other words, its rows describe the nodes of the network
in terms of the incident arcs,

BI =

⎡
⎣
⎡
⎣

a
rc

1

⎤
⎦ . . .

⎡
⎣

a
rc
m

⎤
⎦
⎤
⎦ =

⎡
⎢⎣

[︁
node 1

]︁
...[︁

node n
]︁

⎤
⎥⎦ .

In particular, its components are defined as follows:

BI,ik =

⎧
⎪⎨
⎪⎩

−1, if arc k ∈ A leaves node i ∈ N ,
1, if arc k ∈ A enters node i ∈ N ,
0, otherwise.

(14.3)

Then, there can be three cases:

• the kth arc associated with an internal flow from node i to node j is described by the kth column of BI ,
whose elements are all zero, except for Bik = −1 and Bjk = 1;

• the kth arc associated with an inflow toward node j is described by the kth column of BI , whose elements
are all zero, except for Bjk = 1;

• the kth arc associated with an outflow leaving node i is described by the kth column of BI , whose elements
are all zero, except for Bik = −1.

Note that the external environment can also be represented by an additional node.

The “weighted” incidence matrix

The information about the arcs’ weights ω can be taken into account by computing a “weighted” incidence matrix
Bω ∈ Rn×m. Let Ω ∈ Rm×m be defined as the diagonal matrix of the arc costs, as

Ω = diag(ω) =

⎡
⎢⎣
ω1 . . . 0
...

. . .
...

0 . . . ωm

⎤
⎥⎦ . (14.4)

Then, Bω is defined as
Bω = BIΩ

−1. (14.5)

Essentially, each column of BI is multiplied by the inverse of the weight of the associated arc, that is

Bω,ik =

⎧
⎪⎨
⎪⎩

− 1
ωk
, if arc k ∈ A leaves node i ∈ N ,

1
ωk
, if arc k ∈ A enters node i ∈ N ,

0, otherwise.

(14.6)

This matrix Bω will be exploited in Section 16.3, when the arcs’ weights will be taken into account.



14.1 Flow networks 141

14.1.4 External, unknown, constant demand

In each node, an uncontrollable external constant flow that is unknown is imposed and must be met by setting
the controllable flows of the network.

By convention, these flows are associated with some additional arcs oriented from each node toward the external
environment. Essentially, they are uncontrollable constant outflows and, therefore, they are called demand. They
follow the same sign convention presented for the controllable arcs: a negative demand is actually a physical
request of flow from the outside to the node of the network, and a positive demand is actually a physical request of
flow from the node of the network to the outside. The nodes with zero demand have no additional arcs connected
toward the outside.

Remark 14.1:
The incidence matrix BI (as well as Bω) describes only the arcs whose flows can be controlled. Hence, the arcs
associated with the demand are not represented in there.

For the generic node i ∈ N , this demand is indicated by di. Then, the vector d ∈ Rn of the nodes’ demand is
introduced,

d =

⎡
⎢⎣
d1
...
dn

⎤
⎥⎦ .

The demand is said balanced if there is no overall net demand, i.e., if 1̄
⊤
d = 0.

14.1.5 Unknown dynamics affecting the buffer levels

Some additional uncontrollable flows might be present, which depends on the buffer levels by an unknown dynamic.
These can be internal flows, inflows (uncontrolled flow injections), or outflows (losses).

For simplicity, these are modeled by specifying the total uncontrolled flow entering each node. For the generic
node i ∈ N , this is modeled by the unknown function Ai(x), with the convention that if the total uncontrolled
flow entering a node is negative, it is physically leaving it.

The vector A(x(t)) ∈ Rn describing the unknown dynamics for the uncontrollable flows entering the nodes at
time t is introduced,

A(x(t)) =

⎡
⎢⎣
A1(x(t))

...
An(x(t))

⎤
⎥⎦ .

For simplicity, at first the unknown dynamics A(x) will not be considered,

A(x) ≡ 0̄. (14.7)

They will be considered in Section 16.1.

Example 14.1:
Consider the network in Fig. 14.1.

1

2

3

4

5

6

7

1

2

2
1

4

2

2
1

4

2

4

4

41

4

d7

Figure 14.1: An example network. Red arcs are controllable arcs. The blue dashed arc has an uncontrollable constant demand.

The controllable arcs are labeled as follows. Arc 1: (ext., 1); arc 2: (1, 2); arc 3: (1, 3); arc 4: (2, 3); arc 5:
(2, 4); arc 6: (3, ext.); arc 7: (3, 4); arc 8: (3, 6); arc 9: (4, 1); arc 10: (4, 5); arc 11: (4, 7); arc 12: (5, 2); arc 13:
(5, 7); arc 14: (6, 4); arc 15: (6, 7).
Then, the incidence matrix BI , the arc costs vector ω and the weighted incidence matrix Bω = BIΩ

−1 are



142 Part III, Chapter 14 — Problem setup

BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 −1 −1 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 −1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 −1 −1 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 −1 −1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω⊤ =
[︁

1 1 2 2 1 4 4 2 4 2 1 4 4 2 4
]︁
,

Bω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −0.5 0 0 0 0 0 0.25 0 0 0 0 0 0
0 1 0 −0.5 −1 0 0 0 0 0 0 0.25 0 0 0
0 0 0.5 0.5 0 −0.25 −0.25 −0.5 0 0 0 0 0 0 0
0 0 0 0 1 0 0.25 0 −0.25 −0.5 −1 0 0 0.5 0
0 0 0 0 0 0 0 0 0 0.5 0 −0.25 −0.25 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 −0.5 −0.25
0 0 0 0 0 0 0 0 0 0 1 0 0.25 0 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There is a non-zero demand only at node 7. Then, the demand vector d is

d⊤ =
[︁
0 0 0 0 0 0 d7

]︁
.

Now assume that there are some unknown uncontrolled flows αk(x) depending on the state x, as depicted in
Fig. 14.2, left.

Uncontrolled flows depending on the state x.

1

2

3

4

5

6

7

d7

α1(x)

α2(x)

α3(x)

α4(x)

α5(x)

An equivalent representation of the uncontrolled flows depending on the state x.

1

2

3

4

5

6

7

d7

A1(x) = −α1

A5(x) = −α3

A7(x) = α1

A6(x) = −α2 + α3 − α4

A1(x) = α2 + α5

Figure 14.2: The example network. Green arcs are uncontrollable arcs, whose flow depends on the state of the nodes. On the left,
the actual uncontrolled flows αk(x) are represented; on the right, the equivalent representation using functions Ak(x).

The system can be modeled as in Fig. 14.2, right, by specifying the net uncontrolled flows leaving each node,
which are specified by vector A(x),

A(x)⊤ =
[︁
A1(x) A2(x) 0 0 A5(x) A6(x) A7(x)

]︁
.

14.1.6 The state equation

The buffer level of each node varies over time based on the flow in the arcs incident to the node. Taking into
account the above-mentioned simplifications Eqs. (14.1), (14.2) and (14.7), a class of systems of the form

ẋ(t) = Bu(t)− d, (14.8)

is considered, where the equality holds component-wise and B ∈ Rn×m is an assigned matrix.

When B is indeed the network incidence matrix BI , vector Bu indicates the controllable flows entering the
nodes at time t. Recalling that d is an uncontrollable constant outflow, it turns out that the state (buffer level)
variation ẋ(t) is indeed the net flow entering the nodes. Recall that if this net flow is negative for some node, a
physical flow is actually leaving the node and, accordingly, its buffer level decreases. Conversely, if it is positive,
a physical flow is actually entering the node, and, accordingly, its buffer level increases.

To meet the demand d, the stabilization of the network is also required.

Definition 14.1:
The network is stabilized if for any initial condition x(0), x(t) is bounded as ∥x(t)∥≤ C, where C > 0 depends
on x(0), and it converges to a steady-state x̄, where ẋ = 0, as t goes to infinity.



14.2 Assumptions and requirements 143

Therefore, at steady-state, the following expression must hold

Bu(t) = d. (14.9)

When B ≡ BI , the physical flow entering a node must leave it immediately. If the demand is not balanced,

1̄
⊤
Bu(t) = 1̄

⊤
d ̸= 0, and there might be some controlled inflows or outflows to stabilize the network.

When the above-mentioned simplifications are removed, the state equation slightly varies. In particular, the
system becomes

ẋ(t) = A(x) +Bu(t)− d, (14.10)

when Eq. (14.7) does not hold any more and the unknown dynamics A(x) are present. Accordingly, at steady-state,
when the network stabilizes, this becomes

Bu(t) = d−A(x̄); (14.11)

the unknown dynamics are still present, but they become constant and must be compensated by the control. This
case will be discussed in Section 16.1.

When Eq. (14.1) does not hold anymore, the state and the buffer levels of the nodes are no more coincident.
Then, one might want to specify the buffer level variation ḣ(t). An expression for ẋ(t) can be found, depending
on the relation between the two quantities. This will be discussed in Section 16.2.

Finally, when Eq. (14.2) does not hold anymore, the flow and the control of the arcs are no more coincident.
Then, the state variation might depend on f(t) rather than u(t). This will be discussed in Section 16.3.

14.2 Assumptions and requirements

No special assumption is made for the system, except for the next standing assumption, which is needed to
guarantee that there exists a control u stabilizing the network (i.e., such that Bu = d) [147, 139], when A(x) = 0.

Assumption 14.1:

Matrix B has full row rank (m ≥ n).

If B is an incidence matrix, Assumption 14.1 implies that at least one column Bk of B must have a single
non-zero entry, associated with a controlled inflow or outflow.

Moreover, it is required that the control u(t) is network-decentralized.

Definition 14.2:
A state feedback control u is network-decentralized if each component uk only depends on the buffer levels
xi corresponding to nonzero entries Bik of the kth column of B (and possibly on the arc cost ωk), and is
independent of the demand d (and of A(x), if an unknown dynamic is present).

In particular, if B is an incidence matrix (or a weighted incidence matrix), the control uk applied to the kth arc
might depend only on

• the states xi and xj , if the arc joins node i ∈ N to node j ∈ N (and possibly on the arc cost ωk);

• the state xi, if the arc joins node i ∈ N to the external environment, or vice-versa (and possibly the arc
cost ωk).

Remark 14.2:
The definition of network decentralized control can be extended to generic matrices B requiring that control
uj depends only on the node values i for which Bij ̸= 0.

When the unknown dynamic A(x) is present, the following Assumption is also made.

Assumption 14.2:

The nonlinear term A(·) is unknown. It is assumed that

A(0) = 0,



144 Part III, Chapter 14 — Problem setup

and that A(x) is Lipschitz, namely, there exists a non-negative L ∈ R, L ≥ 0, such that, for each x, z ∈ Rn,

∥A(z)−A(x)∥2≤ L∥z − x∥2.

The assumption A(0) = 0 is not restrictive, because a nonzero term A(0) could always be included in d, by
considering A(x) and d as

A(x)← ˜︁A(X) = A(x)−A(0),
d← ˜︁d = d−A(0).

Indeed, from Eq. (14.10), it holds that

ẋ(t) = A(x) +Bu(t)− d = A(x) +Bu(t)− d+A(0)−A(0)
= [A(x)−A(0)] +Bu(t)− [d−A(0)] = ˜︁A(x) +Bu(t)− ˜︁d.

Assuming that A(x) is Lipschitz is reasonable in physical systems, since the realistic dynamics of interest have
a finite rate of variation in practice.

14.3 Minimization of the p-norm of the flow

The asymptotic minimization of the p-norm of the flow vector f(t) that stabilizes the network will be considered.

Definition 14.3: p-norm
Consider a vector f ∈ Rm and p ∈ R, 1 ≤ p ≤ ∞. The p-norm of vector f is

||f ||p= p

√︄∑︂

k

|fk|p. (14.12)

Let u⋆p be the optimal control stabilizing the network and leading to the optimal p-norm flow distribution
f⋆p . Under the simplifications Eqs. (14.2) and (14.7), remarking that u(t) ≡ f(t), i.e., u∗p ≡ f∗p , this optimal
flow/control is the solution of the following problem,

u∗p = min
Bu−d=0

||u||p. (14.13)

Here, the optimal flow distribution does not depend on the buffer levels/states. When simplification Eq. (14.7)
is not made, i.e., there are some uncontrolled flows governed by A(x), the constraint changes, so the problem
becomes

u∗p = min
A(x̄)+Bu−d=0

||u||p. (14.14)

Now, the optimal flow distribution depends on the states of the nodes reached at steady-state. The control that
will be introduced in Section 16.1 to support this case always drives the state vector to zero, x(t) → x̄ = 0̄. In
fact, under Assumption 14.2, problem Eq. (14.14) reduces to Eq. (14.13).

The distribution in the network of the optimal p-norm flow f∗p depends on the value of p. On the one hand,
small values of p tend to concentrate the flow only along few arcs. In particular, the limit case p = 1 encourages
sparse solutions, see Fig. 14.3, top-left: typically, the flow tends to be assigned only to the arcs along the shortest
paths (with respect to unitary arc costs), while the others have no flow, although this is not a strict rule (see the
next Example 14.2).

On the other hand, large values of p tend to spread the flow among all the arcs of the network. In particular,
the limit case p = +∞ tends to promote fair solutions, see Fig. 14.3, bottom-left, where the flow is distributed
in all the arcs and there exists at least one arc for which, if its flow is reduced, a larger flow must be imposed to
some other arc.

14.3.1 Minimization of the weighted p-norm of the flow

Sometimes, one wants to take into account the arc costs ω when minimizing the norm of the flow vector. Then,
the asymptotic minimization of the weighted p-norm of the flow vector f(t) will also be considered.



14.3 Minimization of the p-norm of the flow 145

Example of sparse solution minimizing the 1-norm of the flow

1

2

3

4

5

6

7

1

2

2
1

4

2

2
1

4

2

4

4

41

4

d7

Example of sparse solution minimizing the weighted 1-norm of the flow

1

2

3

4

5

6

7

1

2

2
1

4

2

2
1

4

2

4

4

41

4

d7

Example of fair solution minimizing the ∞-norm of the flow

1

2

3

4

5

6

7

1

2

2
1

4

2

2
1

4

2

4

4

41

4

d7

Example of fair solution minimizing the weighted ∞-norm of the flow

1

2

3

4

5

6

7

1

2

2
1

4

2

2
1

4

2

4

4

41

4

d7

Figure 14.3: Examples of fair and sparse solutions. The colors of the arcs refer to the modulo of the corresponding flow. The total
demanded flow is marked in yellow. Darker tones refer to fractions of this flow. Zero-flows are reported in gray.

Definition 14.4: weighted p-norm

Consider a vector f ∈ Rm, an assigned weight vector ω ∈ Rm, and p ∈ R, 1 ≤ p ≤ ∞. Let Ω = diag(ω). The
weighted p-norm of vector f is

||Ωf ||p= p

√︄∑︂

k

|ωkfk|p. (14.15)

As will be explained in Section 16.3, simplification Eq. (14.2) is not to be made when considering the weighted
norm minimization: the flow f(t) and the control u(t) are no more coincident. Then, the optimal flow f∗p
minimizing the weighted p-norm at steady-state is the solution to the following optimization problem:

f∗p = min
Bf−d=0

||Ωf ||p. (14.16)

It will be shown that, by setting u = Ωf , this problem becomes equivalent to

f∗p = min
BΩ−1Ωf−d=0

||Ωf ||p ⇐⇒ u∗p = min
BΩ−1u−d=0

||u||p, (14.17)

which is essentially the same as of problem Eq. (14.13), just using matrix BΩ−1 instead of B. In particular, if B
is the incidence matrix BI , the weighted incidence matrix Bω = BIΩ

−1 is to be used.
The distribution in the network of the optimal weighted p-norm flow f∗p still depends on the value of p, as well

as the values of the arc weights ω. The same behavior as the one in the unweighted p-norm case can be observed:
as p → 1, the solutions tend to be sparse, see Fig. 14.3, top-right, with the flow generally assigned only to the
arcs along the shortest paths, (with respect to the arc costs ω), while when p → +∞, the solutions tend to be
fair, see Fig. 14.3, bottom-right.

Example 14.2:

Consider Example 1 from [3] and, in particular, the network reported in Fig. 14.4 (left), composed by a single
node (buffer), two controllable flows u1 ∈ R and u2 ∈ R associated with two arcs coming from the external
environment, and an unknown constant demand d ∈ R. The two arcs have weights ω1 = 1/4 and ω2 = 1/3.
Then,

ω =

[︃
1/4
1/3

]︃
, Ω =

[︃
1/4 0
0 1/3

]︃
, BI =

[︁
1 1

]︁
, Bω = BIΩ

−1 =
[︁
4 3

]︁
.

The steady-state equation of the system is
Bu− d = 0.

The optimal p-norm control, solution of Eq. (14.13) with B = BI , is represented in Fig. 14.4 (center) for
p = 1, 2,∞; the optimal p-norm control, solution of Eq. (14.13) with B = Bω, is represented in Fig. 14.4 (right)
for p = 1, 2,∞. The latter, under u = Ωf , equivalently minimizes the weighted p-norm of the flow vector f (see
Eq. (14.17)). The computations and an explanation are given next. The example from [3] is here extended,



146 Part III, Chapter 14 — Problem setup

considering a more generic case.

1/4

u1

1/3

u2

d

d

d
u2 = d− u1

u∗(1) (infinite

solutions)

u∗(2) = u∗(∞) =
(
d
2 ,

d
2

)

u1

u2

Solutions when B = BI = [ 1 1 ].

d
4

d
3 u2 = d−4u1

3

u∗(∞) =
(
d
7 ,

d
7

)

u∗(2) =
(
4d
25 ,

3d
25

)

u∗(1) =
(
d
4 , 0
)

u1

u2

Solutions when B = Bω = [ 4 3 ]

Figure 14.4: The flow problem in Example 14.2 (left) and the optimal controls that minimize the p-norm (center) and the weighted
p-norm (right) of the flow vector, for p = 1 (yellow), p = 2 (cyan), p = ∞ (red). (based on : [3], © 2022 IEEE)

Consider a generic B =
[︁
a1 a2

]︁
, with a1 ≥ 0, a2 > 0 and a generic d:

a1u1 + a2u2 = d.

Then, setting u1 = r, it holds that u2 = d−a1r
a2

. The minimum p-norm control u∗(p) can be computed as follows:

• for p = 1, the function to minimize is

g(r) = |u1|+|u2|= |r|+
⃓⃓
⃓⃓d− a1r

a2

⃓⃓
⃓⃓ .

g(r) is a non-constant piecewise-linear non-negative function, so at least one of the knot points is a
minimum point. It is immediate to see that these knot points are located at the r such that |r|= 0 or⃓⃓
⃓d−a1r

a2

⃓⃓
⃓ = 0. Then, there are two knots at

r1 = 0, and r2 =
d

a1
,

(which coincide when d = 0). Note that g(r1) = |d/a2| and g(r2) = |d/a1|. Then, there are three
possibilities:

– if g(r1) > g(r2), i.e., if a1 > a2, the minimum point is r2 and is unique; therefore,

u∗(1) =

[︃
d
a1

0

]︃
.

See Fig. 14.5, top-left.

– if g(r1) < g(r2), i.e., if a1 < a2, the minimum point is r1 and is unique; therefore

u∗(1) =

[︃
0
d
a2

]︃
.

See Fig. 14.5, top-right.

– if g(r1) = g(r2), i.e., if a1 = a2, both r1 and r2 are minimum points; consequently, all the points
lying in the segment joining r1 and r2 (i.e., the r such that 0 ≤ r ≤ d/a1 if d ≥ 0, or d/a1 ≤ r ≤ 0,
if d < 0) are minimum points, too. Therefore, there are infinite possible solutions and there is
multistability (unless d = 0, when r1 and r2 coincide and there is only one minimum point, r = 0).
Then,

u∗(1) ∈
{︃[︃

r
d
a1
− r

]︃
: min

(︃
0,
d

a1

)︃
≤ r ≤ max

(︃
0,
d

a1

)︃}︃
.

Note that the solutions u∗(1) =
[︁
0 d/a2

]︁⊤
and u∗(1) =

[︁
d/a1 0

]︁⊤
are both possible. See Fig. 14.5,

bottom-center.

In the first and second cases, only one arc has a non-zero flow, and a “true” sparse solution is obtained.
In the third case, however, the flow is in general partitioned in the two arcs.



14.3 Minimization of the p-norm of the flow 147

If B = BI , with f(t) = u(t), this becomes f∗(1) = u∗(1) ∈ {
[︁
r d− r

]︁⊤
: min (0, d) ≤ r ≤ max (0, d)},

and there are infinite possible optimal flow distributions; for instance, u∗(1) =
[︁
d 0

]︁⊤
or u∗(1) =

[︁
0 d

]︁⊤
,

where the flow is concentrated in only one arc, or u∗(1) =
[︁
d/2 d/2

]︁⊤
or u∗(1) =

[︁
d/4 3d/4

]︁⊤
, where the

flow is distributed in both arcs. In any case, the 1-norm of the flow/ control is minimized. The arcs are
equivalent, as they have the same weight.

If B = Bω, with u(t) = Ωf(t), this becomes u∗(1) =
[︁
d/4 0

]︁⊤
, as the arc weights are taken into account;

then, the optimal flow is f∗(1) =
[︁
d 0

]︁⊤
. The 1-norm of the control and the weighted 1-norm of the flow

are minimized. Note that BIf
∗
(1) − d = 0, and that the flow is concentrated in the arc with the minimum

weight ω1 = 1/4.

• for p = 2, the (convex) function to minimize is

g(r) =
√︂
u21 + u22 =

√︄
r2 +

(︃
d− a1r
a2

)︃2

=

√︄
(a22 + a21) r

2 − 2a1dr + d2

a22
.

Consider the equivalent problem of minimizing h(r) = a22g
2(r) =

(︁
a22 + a21

)︁
r2 − 2a1dr + d2. Then, its

derivative must be zero:
dh(r)

dr
= 2

(︁
a22 + a21

)︁
r − 2a1d = 0,

which holds for r = a1d
a2
2+a2

1
. Then,

u∗(1) =

[︄
a1d

a2
2+a2

1
a2d

a2
2+a2

1

]︄
.

Note that the solution is unique and can also be computed as u(2) = (BB⊤)−1B⊤d. The two arcs are
working at the “minimum energy” u21 + u22. See Fig. 14.5, bottom-left.

If B = BI , with f(t) = u(t), this becomes f∗(2) = u∗(2) =
[︁
d/2 d/2

]︁⊤
, and the flow is equally split in the

two arcs: the 2-norm of the flow/control is minimized.

If B = Bω, with u(t) = Ωf(t), this becomes u∗(2) =
[︁
4d/25 3d/25

]︁⊤
, as the arc weights are taken into

account; then, the optimal flow is f∗(2) =
[︁
16d/25 9d/25

]︁⊤
. Note that BIf

∗
(2) − d = 0. The 2-norm of

the control and the weighted 2-norm of the flow are minimized.

• for p =∞, the function to minimize is

g(r) = max (|u1|, |u2|) = max

(︃
|r|,
⃓⃓
⃓⃓d− a1r

a2

⃓⃓
⃓⃓
)︃

=

⎧
⎨
⎩
|r|, if |r|≥

⃓⃓
⃓d−a1r

a2

⃓⃓
⃓ ,⃓⃓

⃓d−a1r
a2

⃓⃓
⃓ , otherwise.

Note that g(r) is a piecewise-linear non-negative function. There can be two cases:

– if a1 = 0, recalling that a2 ̸= 0, g(r) is constant and equal to g(r) = d/a2 when |r|≤ d/a2. Hence,
there are infinite minimum points, which are given by |r|≤ d/a2, and there is multistability. Then,

u∗(∞) ∈
{︃[︃

r
d
a2

]︃
: |r|≤

⃓⃓
⃓⃓ d
a2

⃓⃓
⃓⃓
}︃
.

Note that a1u
∗
(∞),1 + a2u

∗
(∞),2 = a2u

∗
(∞),2 = d regardless of u∗(∞),1. See Fig. 14.5, bottom-right.

– if a1 ̸= 0, there is no interval of r in which g(r) is constant. Then, the minimum is in one of the
knot points, hence, among the zeros of

|r|=
⃓⃓
⃓⃓d− a1r

a2

⃓⃓
⃓⃓ .

The solutions to this equality are at most two,

r1 =
d

a1 + a2
, and, if a1 ̸= a2, r2 =

d

a1 − a2
,



148 Part III, Chapter 14 — Problem setup

which coincide and are equal to 0 if d = 0 and a1 ̸= a2. Noting that g(r1) = |r1|≤ |r2|= g(r2) when
a1 ̸= a2, the minimum point is always r1. Then,

u∗(∞) =

[︃ d
a1+a2

d
a1+a2

]︃
.

Note that the flow is now the same for the two arcs, u1 = u2. See Fig. 14.5, bottom-center.

If B = BI , with f(t) = u(t), this becomes f∗(∞) = u∗(∞) =
[︁
d/2 d/2

]︁⊤
, and the flow is equally split in

the two arcs: the ∞-norm of the flow/control is minimized.

If B = Bω, with u(t) = Ωf(t), this becomes u∗(∞) =
[︁
d/7 d/7

]︁⊤
, as the arc weights are taken into

account; then, the optimal flow is f∗(∞) =
[︁
4d/7 3d/7

]︁⊤
. The ∞-norm of the control and the weighted

∞-norm of the flow are minimized.

d
a1

d
a1

d
a2

u2 = d−a1u1

a2

|u1|+ |u2| =
||u||1 = k

|u1|+ |u2| = ∥u∗(1)∥1

u∗(1) =
(

d
a1
, 0
)

u1

u2

Minimum 1-norm (case a1 > a2).

d
a1

d
a1

u2 = d−a1u1

a2

= d
a1
− u1

|u1|+ |u2| =
||u||1 = k

|u1|+ |u2| = ∥u∗(1)∥1

u∗(1) (infinite solutions)

u1

u2

Minimum 1-norm (case a1 = a2).

d
a2

d
a1

d
a2

u2 = d−a1u1

a2

|u1|+ |u2| =
||u||1 = k

|u1|+ |u2| = ∥u∗(1)∥1

u∗(1) =
(
0, d

a2

)

u1

u2

Minimum 1-norm (case a1 < a2).

d
a1

d
a2

u2 = d−a1u1

a2

√
|u1|2 + |u2|2 =
||u||2 = k

√
|u1|2 + |u2|2 = ∥u∗

(2)∥2

u∗(2) = (µ1, µ2)

µ1 = a1d
a2
1+a2

2

µ2 = a2d
a2
1+a2

2

u1

u2

Minimum 2-norm.

d
a1

µ

d
a2

u2 = d−a1u1

a2

max (|u1|, |u2|) =
||u||∞ = k

max (|u1|, |u2|) = ∥u∗
(∞)

∥∞

u∗(∞) = (µ, µ)

µ = d
a1+a2

u1

u2

Minimum ∞-norm (case a1 ̸= 0).

d
a2

u2 = d−a1u1

a2
= d

a2

max (|u1|, |u2|) =
||u||∞ = k

max (|u1|, |u2|) = ∥u∗
(∞)

∥∞

u∗(∞) (infinite solutions)

u1

u2

Minimum ∞-norm (case a1 = 0).

Figure 14.5: The optimal controls (u1, u2) minimizing the p-norm ||u||p such that a1u1+a2u2 = d, for d ≥ 0, a1 ≥ 0, a2 > 0, and for
p = 1, p = 2, p = ∞. The optimal solution(s) can be obtained as the (non-empty) intersection between the line u2 = (d−a1u1)/a2
(blue line) and the curve given by the locus of the points for which ||u||p= k = constant, for the smallest possible k (yellow line).

14.4 Problem statement for the considered model

In the sequel, the following problems are considered for the considered class of systems.

Problem 14.1:
Consider a network described by incidence matrix B. Find a network-decentralized flow control strategy u(t)
that stabilizes the flow network and asymptotically yields the minimum p-norm of the flow f(t) ≡ u(t) fulfilling
the demand d.

Some variations will also be considered, and the control will be enhanced to support them. Firstly, some
uncontrollable flows depending on the buffer levels and modeled by an unknown dynamic will be introduced. The
problem to consider is essentially the same as Problem 14.1: the network needs to be stabilized regardless of the
presence of the unknown dynamic.

Problem 14.2: support for unknown dynamics

Consider a network described by incidence matrix B. Find a network-decentralized flow control strategy u(t)
that stabilizes the flow network even in the presence of some unknown dynamic A(x) and asymptotically yields
the minimum p-norm ||u(t)||p of the flow u(t) fulfilling the demand d.

A second variation considers the case in which a set-point h̄ is set for the buffer levels.



14.4 Problem statement for the considered model 149

Problem 14.3: support for buffer level control

Consider a network described by incidence matrix B. Find a network-decentralized flow control strategy u(t)
that stabilizes the flow network, asymptotically yields the minimum p-norm ||u(t)||p of the flow u(t) fulfilling
the demand d, and simultaneously guarantees that h(t)→ h̄, the reference set-point, as t→ +∞.

The third and last variation considers the weights of the arcs when minimizing the p-norm of the flow vector.

Problem 14.4: support for weighted p-norm
Consider a network described by incidence matrix B and with arc costs described by vector ω. Find a network-
decentralized flow control strategy u(t) that stabilizes the flow network and asymptotically yields the minimum
weighted p-norm ||Ω−1f(t)||p of the flow f(t) fulfilling the demand d.





CHAPTER15
Networks with an uncontrolled demand

In this Chapter, Problem 14.1 is addressed. In particular, a network with an uncontrolled demand d is considered.
There are no uncontrolled flows depending on the buffer levels, nor set-point for the buffer levels. Also, possible
arcs’ weights are neglected. In other words, the simplifications Eqs. (14.1), (14.2) and (14.7) are applied. Hence,
the states of the nodes are assumed equal to the corresponding buffer levels Eq. (14.1); then, both will be indicated
by x(t). Also, it is assumed that the flow of each arc coincides with its control Eq. (14.2); then, both will be
indicated by u(t). A flow control u(t) must be applied to stabilize the network, meet this demand and minimize
the p-norm of the flow vector.

15.1 Decentralized control for p-norm minimization

The following preliminary Theorem derived from [151] will be exploited to formulate the control to solve Prob-
lem 14.1.

Theorem 15.1: Strictly convex cost
Consider the cost

J(u) =

m∑︂

k=1

fk(uk),

where the functions fk : R → R are continuously differentiable and strictly convex with strictly increasing
derivatives, hence invertible. Consider the unique solution u∗ to the problem

u∗ = arg min
Bu−d=0

J(u), (15.1)

as well as the strictly increasing functions

gk(uk) =
d

duk
fk(uk),

with g(u) = [g1(u1), . . . , gm(um)]⊤, and their inverse functions

ϕk(ξk) = g−1
k (ξk),

with ϕ(ξ) = [ϕ1(ξ1), . . . , ϕm(ξm)]⊤. Then, under Assumption 14.1, the network-decentralized control

u(t) = ϕ(−B⊤x(t))

ensures convergence of the trajectories of system Eq. (14.8) to the unique steady-state x̄, whose components
are equal to λ∗, the Lagrange multipliers of the optimization problem Eq. (15.1), unique solution of

Bϕ(−B⊤λ∗)− d = 0, (15.2)

that is x(t)→ x̄ ≡ λ∗, as well as u(t)→ u∗.

The following component-wise function is introduced, which depends on p

Φp(ξ) = sign(ξ) |ξ| 1
p−1 . (15.3)



152 Part III, Chapter 15 — Networks with an uncontrolled demand

This function is visualized in Fig. 15.1 for some different values of p. When p = 1 (see the yellow line) and when
p = +∞ (see the red line), this function is discontinuous. For all the other values of p, 1 < p < ∞, Φp is a
symmetric, continuous and increasing function, that is also continuously differentiable and strictly convex with
strictly increasing derivatives.

1

1

−1

−1

ξ

Φp(ξ)
p = 1
p = 1.1
p = 2
p = 9
p = ∞

Figure 15.1: Function Φp(ξ) for some values of p. (source: [3], © 2022 IEEE)

Then, the following control law is proposed

u(t) = Φp(−γB⊤x(t)), γ > 0, (15.4)

which does not depend on the demand d and is network-decentralized, as required, when B is a (possibly weighted)
incidence matrix. Indeed, given the definition of incidence matrix, the term B⊤x is a vector whose components
are associated with the controlled arcs, and each of them depends only on the state variables of the corresponding
arc end nodes. Then, despite B captures the network topology, only local information is used by the control of
each arc, and the knowledge of the entire network is not required. There can be three cases:

• the kth component of Eq. (15.4) associated with an arc describing an internal flow from node i to node j
depends only on

[−γB⊤x]k = γ(xi − xj);

• the kth component of Eq. (15.4) associated with an arc describing an inflow toward node j depends only on

[−γB⊤x]k = −γxj ;

• the kth component of Eq. (15.4) associated with an arc describing an outflow leaving node i depends only
on

[−γB⊤x]k = γxi.

Example 15.1:
Consider the network in Fig. 14.1 from Example 14.1, and ignore the arc costs. Let B = BI and apply control
Eq. (15.4).
For brevity, consider only: arc 1, (ext., 1), associated with an inflow; arc 3, (1, 3), associated with an internal
flow; and arc 6, (3, ext.), associated with an outflow. The corresponding control components are:

u1(t) = Φp(−γ
[︁
B⊤x(t)

]︁
1
) = Φp(−γx1) = sign(−x1) |−γx1|

1
p−1 ,

u3(t) = Φp(−γ
[︁
B⊤x(t)

]︁
3
) = Φp(γ(x1 − x3)) = sign(x1 − x3) |γ(x1 − x3)|

1
p−1 ,

u6(t) = Φp(−γ
[︁
B⊤x(t)

]︁
6
) = Φp(γx3) = sign(x3) |γx3|

1
p−1 .

The other control components are similarly computed.

The proposed control is network decentralized, since its kth component, uk(t) = [Φp(−γ
[︁
B⊤x(t)

]︁
)]k is a

function of B⊤
k x(t), where B⊤

k is the kth row of B⊤, which has at most two nonzero components if B is an
incidence matrix. For general B matrices, the control would depend exclusively on the components of the state
that correspond to nonzero entries. For instance, B⊤

k = [0 − 2 0 − 1 1 0 0 0] would mean that uk depends on
x2, x4 and x5 only, which are the only nodes that are directly affected by the kth flow.

The optimality of the proposed control is discussed in the following subsections.

15.1.1 Optimality when 1 < p < +∞
When 1 < p <∞, control Eq. (15.4) guarantees that an optimal and unique solution for Problem 14.1 is reached,
as shown by the next Proposition.



15.2 Sub-optimality 153

Proposition 15.1: p-norm minimization
Let Assumption 14.1 be satisfied. For any real p ∈ R, with 1 < p < ∞, consider the vector u∗p as the unique
solution to the problem

u∗p = arg min
Bu−d=0

∥u∥p. (15.5)

For any γ > 0, control Eq. (15.4) ensures convergence of the state of Eq. (14.8) to the equilibrium x̄ = λ∗p, the
Lagrange multiplier of the optimization problem Eq. (15.5), unique solution of

BΦp(−γB⊤λ∗p)− d = 0. (15.6)

The control at steady-state u∗p = Φp(−γB⊤x̄) minimizes ∥u∥p under the constraint Bu− d = 0.

Then, for 1 < p < +∞,

u(t)→ u∗p, (15.7a)

x(t)→ λ∗p, (15.7b)

which means that the states/buffer levels at steady-state are fixed and non-controllable.

Remark 15.1:
The main feature of the problem that makes the decentralized control Eq. (15.4) reach a global optimality
result is the fact that the cost function of the considered optimization problem Eq. (15.5) is separable [147,
151], being the p-norm a separable quantity; this follows from Theorem 15.1, which holds for generic separable
costs under some given assumptions for the partial costs.

Moreover, when B = BI is an incidence matrix, the following property holds for the p-optimal control u∗p.

Proposition 15.2: No-waste at steady-state

Let B be an incidence matrix under Assumption 14.1. Then, the total controlled net inflow (i.e., the sum of the
controlled inflows minus the sum of the controlled outflows) matches the total uncontrolled net outflow

∑︁
k dk.

Moreover, assume that dk ≥ 0, ∀k (resp. dk ≤ 0, ∀k). Then, the optimal p-norm controlled flow u∗p, 1 < p <∞,
has no outflow (resp. no inflow) components associated with arcs to/from the external environment.

15.1.2 Limit cases: p = 1 and p = +∞
Proposition 15.1 considers 1 < p <∞. Here, the cases in which p = 1 or p = +∞ are analyzed. When p = +∞,
the control Eq. (15.4) is no longer continuous:

Φ∞(ξ) = sign(ξ),

while when p = 1, Eq. (15.4) is no longer a function:

Φ1(ξ) =

⎧
⎪⎨
⎪⎩

0, for |ξ|< 1,

−∞, for ξ ≤ −1,
+∞, for ξ ≥ 1.

Both of these cases can also be visualized in Fig. 15.1: the yellow line represents Φ1(ξ) and the red line represents
Φ∞(ξ).

In those two cases, the lack of strict convexity of Φp(ξ) makes Theorem 15.1 not applicable in proving Propo-
sition 15.1. Indeed, the resulting controls would be discontinuous and this introduces chattering on the control,
hence no asymptotic flow optimality or uniqueness can be ensured.

Still, the continuous control Eq. (15.4) for p either large or close to 1 can be used to get a suboptimal solution.
Indeed, in those cases, Proposition 15.1 holds. The sub-optimality of these solutions is discussed in the next
Section 15.2.

15.2 Sub-optimality

In this Section, the limits of ∥u∗p∥p for p → ∞ and p → 1 are studied. It is shown that a suboptimal solution
arbitrarily close to the optimum can be achieved by taking p very large or close to one, respectively.



154 Part III, Chapter 15 — Networks with an uncontrolled demand

15.2.1 Suboptimal fair solutions: using p→ +∞
The next Theorem concerns the limits of the norm ∥u∗p∥p for p→ +∞.

Theorem 15.2: ∞-norm case
As p→∞, the p-norm optimal costs converge from above to the ∞-norm optimal cost:

∥u∗p∥p→ ∥u∗∞∥∞.

A straightforward consequence of this Theorem concerns the limits of the ∞-norm of u∗p for p → +∞ and is
stated in the following Corollary.

Corollary 15.1: ∞-norm case
As p→∞, the ∞-norm of the optimal p-norm control converge from above to the ∞-norm optimal cost:

∥u∗p∥∞→ ∥u∗∞∥∞.

In particular, letting m be the size of vector ∥u∗p∥∞,

∥u∗∞∥∞≤ ∥u∗p∥∞≤ ∥u∗p∥p≤ ∥u∗∞∥p≤ p
√
m∥u∗∞∥∞.

Theorem 15.2 and Corollary 15.1 guarantee that the control Eq. (15.4), applied with p large enough, not only
ensures the convergence of the state to the equilibrium x̄, but also yields a steady-state flow that can be made
arbitrarily close to the optimal fair one, getting a suboptimal solution whose ∞-norm can be made arbitrarily
close to the optimum ∞-norm cost.

Remark 15.2:
The optimal ∞-norm flow u∗∞ might be not unique, as the ∞-norm is not strictly convex. Instead, the optimal
p-norm flow u∗p is unique for all values 1 < p <∞. Then, the optimal flow u∗p converges to one of those (possibly
not-unique) optimal solutions u∗∞ when p→∞. If u∗∞ is unique, the optimal flow u∗p converges to that unique
optimal solution.

15.2.2 Suboptimal sparse solutions: using p→ 1

The next Theorem concerns the limits of the norm ∥u∗p∥p for p→ +1.

Theorem 15.3: 1-norm case
As p→ 1 from above, the p-norm optimal costs converge from below to the 1-norm optimal cost:

∥u∗p∥p→ ∥u∗1∥1.

A straightforward consequence of this Theorem concerns the limits of the 1-norm of u∗p for p→ 1 and is stated
in the following Corollary.

Corollary 15.2: 1-norm case
As p→ 1, the 1-norm of the optimal p-norm control converge from above to the 1-norm optimal cost:

∥u∗p∥1→ ∥u∗1∥1.

In particular, letting m be the size of vector ∥u∗p∥1,

∥u∗p∥p≤ ∥u∗1∥p≤ ∥u∗1∥1≤ ∥u∗p∥1≤ m(1− 1
p )∥u∗p∥p≤ m( p−1

p )∥u∗1∥1.

Theorem 15.3 and Corollary 15.2 guarantee that the control Eq. (15.4), applied with p enough close to 1, not
only ensures the convergence of the state to the equilibrium x̄, but also yields a steady-state flow that can be made
arbitrarily close to the optimal sparse one, getting a suboptimal solution whose 1-norm can be made arbitrarily
close to the optimum 1-norm cost.

Remark 15.3:
Just like the ∞-norm case, the optimal 1-norm flow u∗1 might be not unique, as the 1-norm is not strictly
convex, too. Instead, the optimal p-norm flow u∗p is unique for all values 1 < p <∞. Then, the optimal flow u∗p
converges to one of those (possibly not-unique) optimal solutions u∗1 when p→ 1. If u∗1 is unique, the optimal
flow u∗p converges to that unique optimal solution.



15.3 Dynamic environment 155

15.3 Dynamic environment

So far, a static environment has been considered. In this Section, the case of a dynamic environment is briefly
analyzed.

Recall that the proposed control Eq. (15.4) is independent from the network topology, the demand, and the
initial state of the buffer levels. Moreover, the main optimality result in Proposition 15.1 does not make any
assumption on those quantities (except for Assumption 14.1). In other words, given any network configuration,
the proposed control stabilizes the network and eventually yields the optimal flow distribution (when 1 < p <∞).

If a modification occurs to the network changing the network topology, the demand, or the state of the buffers,
the network just assumes a new configuration. If Assumption 14.1 is still satisfied, the same control guarantees
that eventually a new optimal flow distribution is reached (when 1 < p <∞).

Changes to the network include:

• removal of an existing controllable arc (e.g., if there is a failure in such arc);

• insertion of a new controllable arc;

• removal of a node; in this case, the arcs incident to that node are removed, too (e.g., if there is a failure in
such node);

• insertion of a new node; this means that new arcs connected to this node can be inserted;

• variation of the demand, which might become 0 in some nodes;

• variation of the value of p, i.e., of the p-norm to be minimized;

• (variation of the arc costs ω, variation of the buffer level set point x̄, variation of the unknown dynamics
A(x), see Chapter 16).

Clearly, to stabilize the network, the new configuration must be kept for a sufficient time.

Remark 15.4:
The insertion or removal of arcs or nodes clearly modify the incidence matrix B. For instance, by inserting a
new controllable arc, a new column is to be inserted in B; by removing a node, the corresponding row is to be
removed (and possibly the columns of the arcs incident to that node, too). Still, recall that the control of each
arc depends only on the difference between the state of its end nodes, so the changes in the dimensions of B
do not affect the control.

When a generic system is considered, i.e., when matrix B satisfies Assumption 14.1, but it is not necessarily
an incidence matrix, the control is still effective if a modification to B occurs, which makes the control adaptive.

15.4 Optimal solutions by linear-quadratic programming

To evaluate the network-decentralized control, it is useful to introduce some linear quadratic programming prob-
lems to efficiently compute the optimal control u⋆p which minimizes the required norm stabilizing the network
Eq. (15.5). These computations are to be performed offline, and all the network data is to be known.

In particular, consider a generic linear-quadratic programming problem with q variables described by vector
y ∈ Rq×1, r inequality constraints and s equality constraints, which can be written in the form

min
u

1

2
y⊤Hy + f⊤y, (15.8a)

s.t. A · y ≤ b, (15.8b)

Aeq · y = beq, (15.8c)

lb ≤ y ≤ ub, (15.8d)

where the matrices H ∈ Rq×q, A ∈ Rr×q, Aeq ∈ Rs×q and the vectors f, lb, ub ∈ Rq×1, b ∈ Rr×1, beq ∈ Rs×1 are
to be defined.

The formulations of these linear-quadratic programming problems depend on the value of p. In the following,
the formulations for p = 1, 2,∞ are reported, which are the three main cases of interest.



156 Part III, Chapter 15 — Networks with an uncontrolled demand

15.4.1 Optimal 1-norm solution

The problem to consider is
u∗1 = arg min

Bu−d=0
∥u∥1,

with

∥u∥1= 1

√︄∑︂

k

|uk|1 =
∑︂

k

|uk|.

Then, the following problem is considered:

min
u

∑︂

k

|uk|, (15.9a)

s.t. Bu− d = 0. (15.9b)

To implement this efficiently via linear programming, this problem needs to be manipulated as follows. Recalling
that the absolute value can be written as

|uk|= max(−uk, uk),
vector σ ∈ Rm×1 is introduced, whose components σk satisfy σk ≥ |uk|≥ 0 for all k ∈ A, that is

σk ≥ −uk, and σk ≥ uk.

Then, the following equivalent linear programming problem is to be considered, which minimizes the sum of the
components of σ:

min
u,σ

∑︂

k

σk, (15.10a)

s.t. Bu− d = 0, (15.10b)

σk ≥ uk, ∀k ∈ A, (15.10c)

σk ≥ −uk, ∀k ∈ A, (15.10d)

σk ≥ 0, ∀k ∈ A. (15.10e)

This can be simply implemented in the form of problem Eq. (15.8) by taking

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...
um
σ1
...
σm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, lb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∞
...
−∞
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ub =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+∞
...

+∞
+∞
...

+∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 . . . 0 −1 . . . 0
...

. . .
...

...
. . .

...
0 . . . −1 0 . . . −1
1 . . . 0 −1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aeq =

⎡
⎢⎣ B

⃓⃓
⃓⃓
⃓⃓
⃓

0 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎦ , beq = d.

Remark 15.5:
The 1-norm optimal flow, solution of Eq. (15.9), might be not unique. Problem Eq. (15.10) provides a possible
u∗1 minimizing the 1-norm, so that the minimal ∥u∗1∥1 is obtained.

15.4.2 Optimal 2-norm solution

The problem to consider is
u∗2 = arg min

Bu−d=0
∥u∥2,



15.4 Optimal solutions by linear-quadratic programming 157

with

∥u∥2= 2

√︄∑︂

k

|uk|2 = 2

√︄∑︂

k

u2k.

Firstly, minimizing ∥u∥2 is equivalent to minimizing ∥u∥22. Then, the following quadratic programming problem
is presented:

min
u

∑︂

k

u2k, (15.11a)

s.t. Bu− d = 0. (15.11b)

This can be simply implemented in the form of problem Eq. (15.8) by taking

y =

⎡
⎢⎣
u1
...
um

⎤
⎥⎦ , H =

⎡
⎢⎣
2 . . . 0
...

. . .
...

0 . . . 2

⎤
⎥⎦ , f =

⎡
⎢⎣
0
...
0

⎤
⎥⎦ , lb =

⎡
⎢⎣
−∞
...
−∞

⎤
⎥⎦ , ub =

⎡
⎢⎣
+∞
...

+∞

⎤
⎥⎦ ,

A, b = ∅, Aeq = B, beq = d.

Remark 15.6:
Problem Eq. (15.11) is convex and has a unique optimal solution u∗2, which provides the optimal 2-norm cost
∥u∗2∥2.

15.4.3 Optimal ∞-norm solution

The problem to consider is
u∗∞ = arg min

Bu−d=0
∥u∥∞,

with

∥u∥∞= ∞

√︄∑︂

k

|uk|∞ = max (|uk|) .

Then, the following problem is presented:

min
u

max (|uk|) , (15.12a)

s.t. Bu− d = 0. (15.12b)

As in the case of the 1-norm, to implement this efficiently, the modulo in the objective function needs to be
linearized. However, now only a single variable π ∈ R needs to be introduced, which satisfies π ≥ max (|uk|) ≥
|uk|≥ 0 for all k ∈ A, that is

π ≥ −uk, and π ≥ uk.
Then, the following equivalent linear programming problem is to be considered, which minimizes π:

min
u,π

π, (15.13a)

s.t. Bu− d = 0, (15.13b)

π ≥ −uk, for k ∈ A, (15.13c)

π ≥ uk, for k ∈ A, (15.13d)

π ≥ 0. . (15.13e)

This can be simply implemented in the form of problem Eq. (15.8) by taking

y =

⎡
⎢⎢⎢⎣

u1
...
um
π

⎤
⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎣

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 0

⎤
⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , lb =

⎡
⎢⎢⎢⎣

−∞
...
−∞
0

⎤
⎥⎥⎥⎦ , ub =

⎡
⎢⎢⎢⎣

+∞
...

+∞
+∞

⎤
⎥⎥⎥⎦ ,



158 Part III, Chapter 15 — Networks with an uncontrolled demand

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 . . . 0 −1
...

. . .
...

...
0 . . . −1 −1
1 . . . 0 −1
...

. . .
...

...
0 . . . 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aeq =

⎡
⎢⎣ B

⃓⃓
⃓⃓
⃓⃓
⃓

0
...
0

⎤
⎥⎦ , beq = d.

Remark 15.7:
The∞-norm optimal flow, solution of Eq. (15.12), might be not unique. Problem Eq. (15.13) provides a possible
u∗∞ minimizing the ∞-norm, so that the minimal ∥u∗∞∥∞ is obtained.



CHAPTER16
Enhancements to the control

In this Chapter, some enhancements to the control proposed in Chapter 15 are presented.
In particular, at first Problems 14.2 to 14.4 are addressed, where the simplifications Eqs. (14.1), (14.2)

and (14.7) are removed.
Then, the problems due to the numeric implementation of the control are discussed, and some possible solutions

to reduce their effects are also presented.

16.1 Handling networks with unknown dynamics

In this Section, Problem 14.2 is addressed, where the simplification Eq. (14.7) is not made, but simplifications
Eqs. (14.1) and (14.2) are kept. In particular, a network with an uncontrolled demand d and some uncontrolled
flows depending on the buffer levels described by the dynamic A(x) (see subsection 14.1.5) is considered. There
is no set-point for the buffer levels, and possible arcs’ weights are neglected.

Then, a network-decentralized flow control strategy u(t) must be applied to stabilize the network, meet the
demand d regardless of the unknown dynamics, and asymptotically minimize the p-norm of the flow vector.

As discussed in subsection 14.1.6, the system state equation becomes Eq. (14.8), that is

ẋ(t) = A(x) +Bu(t)− d.

Due to the term A(x), the control Eq. (15.4) presented in Chapter 15 cannot ensure that at steady-state x = 0
(i.e., under Assumption 14.2, A(x) = 0). Therefore, it has to be adapted for this purpose.

To this aim, an integral variable ξi ∈ R is introduced for each node i, which is proportional to the corresponding
state xi. Vector ξ ∈ Rn is therefore defined, as

ξ =

⎡
⎢⎣
ξ1
...
ξn

⎤
⎥⎦ .

Then, the following proportional-integral control is proposed, whose specification depends on the value of p:

u(t) =

{︄
−γB⊤x+Φp(−γB⊤ξ), if 1 < p ≤ 2,

Φp(−γB⊤(x+ ξ)), if 2 ≤ p < +∞, (16.1a)

ξ̇(t) = αx, ξ(0) = 0, (16.1b)

with α > 0 arbitrarily given.
This control does not depend on the demand d, nor the unknown dynamic A(x). When 2 ≤ p < ∞, the

integral variable is added to the state variable in the nonlinear function Φp from Eq. (15.3). When 1 < p ≤ 2 the
system is stabilized by a linear term depending on the state and the integral variable is in Φp. Note that, when
p = 2, the two cases of the formulation of the control are the same:

−γB⊤x+Φ2(−γB⊤ξ) = Φ2(−γB⊤(x+ ξ)) = −γB⊤(x+ ξ).

The control remains decentralized. Indeed, each control component uk depends only on state variables and
their integrals corresponding to nonzero entries of the kth column of B (i.e., the kth row of B⊤).



160 Part III, Chapter 16 — Enhancements to the control

Example 16.1:
Consider the network in Fig. 14.1 from Example 14.1, and ignore the arc costs. Let B = BI and apply control
Eq. (16.1).
For brevity, consider only: arc 1, (ext., 1), associated with an inflow; arc 3, (1, 3), associated with an internal
flow; and arc 6, (3, ext.), associated with an outflow. The corresponding control components are:

u1(t) =

{︄
−γ[B⊤x]1 +Φp(−γ[B⊤ξ]1) = −γx1 +Φp(−γξ1), if 1 < p ≤ 2,

Φp(−γ[B⊤(x+ ξ)]1) = Φp(−γ(x1 + ξ1)), if 2 ≤ p < +∞,

u3(t) =

{︄
−γ[B⊤x]3 +Φp(−γ[B⊤ξ]3) = γ(x1 − x3) + Φp(γ(ξ1 − ξ3)), if 1 < p ≤ 2,

Φp(−γ[B⊤(x+ ξ)]3) = Φp(γ(x1 + ξ1 − x3 − ξ3)), if 2 ≤ p < +∞,

u6(t) =

{︄
−γ[B⊤x]6 +Φp(−γ[B⊤ξ]6) = γx3 +Φp(γξ3), if 1 < p ≤ 2,

Φp(−γ[B⊤(x+ ξ)]6) = Φp(γ(x3 + ξ3)), if 2 ≤ p < +∞.

The other control components are similarly computed.

16.1.1 Optimality when 1 < p <∞
The next Theorem claims the optimality of control Eq. (16.1) when 2 ≤ p <∞.

Theorem 16.1: Dynamic network-decentralized control
For 2 ≤ p <∞, under Assumptions 14.1 and 14.2, consider the proportional-integral control

u = Φp

(︁
−γB⊤(x+ ξ)

)︁
, (16.2a)

ξ̇ = αx, ξ(0) = 0, (16.2b)

with α > 0 arbitrarily given. Consider the initial domain

x(0) ∈ X0 =

{︃
x : ∥x∥2≤ ρ20 =

ρ2

8
− 3

2
∥ξ̄∥2

}︃
,

with given ρ2 > 12∥ξ̄∥2, where ξ̄ = λ∗p, the Lagrange multiplier of the optimization problem Eq. (15.5), is the
unique vector that solves

BΦp

(︁
−γB⊤ξ̄

)︁
− d = 0.

Then, there exist γ > 0 such that x(t) → 0, (and then A(x(t)) → 0, by Assumption 14.2), u(t) → u∗p and

ξ(t)→ ξ̄ = λ∗p.

Note that, by Theorem 16.1, when 2 ≤ p <∞ control Eq. (16.1) makes the state converge to zero, x→ x̄ = 0̄.
By Assumption 14.2, this means that at steady-state A(x̄) = A(0̄) = 0̄ and that the steady-state condition
Eq. (14.11) coincides to Eq. (14.9). In other words, the optimal flow stabilizing the network to some steady-state
x̄ in the presence of an unknown dynamic A(x) is

u∗p = min
A(x̄)+Bu−d=0

||u||p= min
Bu−d=0

||u||p. (16.3)

This justifies the reference to Eq. (15.5) in Theorem 16.1: under Assumption 14.2, λ∗p is indeed also the optimal
Lagrange multiplier vector of problem Eq. (16.3).

Theorem 16.1 cannot hold when considering 1 < p < 2, see [3]. Indeed, the control is defined differently in
Eq. (16.1) for 1 < p < 2. The following Assumption is needed to prove the next Theorem 16.2.

Assumption 16.1:
The optimal flow u∗p corresponding to d has at least n nonzero components. The corresponding columns of B
have rank n.

Then, the optimality of the control Eq. (16.1) when 1 < p ≤ 2 follows from the following Theorem:

Theorem 16.2:
Let 1 < p ≤ 2 and Assumptions 14.1, 14.2 and 16.1 be satisfied with A(x) smooth. The closed-loop system
admits the unique steady-state x = 0 and ξ = ξ̄ and u is the optimal u∗p. The steady-state is locally stable for



16.2 Support for buffer level control 161

γ > 0 large enough (which exists because BB⊤ is positive definite), such that

[Ā− γBB⊤]⊤ + [Ā− γBB⊤] = −Q ≺ 0,

where Ā is the Jacobian of A(x) evaluated at 0.

To summarize, the control Eq. (16.1) guarantees that, when 1 < p < +∞, at steady-state the optimal and
unique solution of the optimization problem Eq. (16.3) is reached. Also, the state is always driven to zero,
regardless of the values of p,B, d,A(x): this property will be exploited in the next Section 16.2 to support buffer
level control. Then,

u(t)→ u∗p, (16.4a)

x(t)→ 0̄, (16.4b)

ξ(t)→ λ∗p. (16.4c)

Remark 16.1:
Proposition 15.2 continues to hold if there is an uncontrolled dynamic A(x) with A(x)→ 0, even if the external

uncontrolled demand also takes into account the effect of the dynamics: d̂ = d−A(0).

Consider now the limit cases of p = 1 and p = +∞. As Φp is discontinuous for p = 1 and p = +∞, no
asymptotic flow optimality or uniqueness can be ensured for the control Eq. (16.1). As in Chapter 15, sub-
optimal fairer solutions arbitrarily close to the optimum ∞-norm flow can be achieved by applying the control
Eq. (16.1) for p → ∞, and sub-optimal sparser solutions arbitrarily close to the optimum 1-norm flow can be
achieved by applying the same control Eq. (16.1) for p→ 1 (see Section 15.2).

Remark 16.2: Dynamic environment

For the same reasons presented in Section 15.3, the control Eq. (16.1) is still adaptive. If a modification occurs to
the network and the new configuration is kept for a sufficient time, the network stabilizes and eventually, the flow
distribution still minimizes the required norm, provided that Assumptions 14.1 and 14.2 (and Assumption 16.1
when 1 < p < 2) are still satisfied.

16.1.2 Optimal solutions by linear-quadratic programming

To evaluate the network-decentralized control in the presence of an unknown dynamic, some linear quadratic
programming problems can be formulated to efficiently compute the optimal control which minimizes the required
norm stabilizing the network.

The optimization problem to consider is indeed Eq. (16.3), as under Assumption 14.2, control Eq. (16.1) makes
x(t)→ 0̄ with A(0̄) = 0̄. That is exactly the same problem as Eq. (15.5), the one considered in Chapter 15. Hence,
to find optimal solutions u∗p offline, the linear-quadratic programming problem formulations from Section 15.4 can
be used.

Recall that if A(0̄) = 0̄ is removed from Assumption 14.2, the following transformation must be applied,

d→ A(0̄) + d.

16.2 Support for buffer level control

In this Section, Problem 14.3 is addressed, where a set-point is imposed for the buffer levels: the support for buffer
level control is therefore introduced. A network with just an uncontrolled demand d is considered: there are no
uncontrolled flows depending on the buffer levels, and possible arcs’ weights are neglected, i.e., simplifications
Eqs. (14.2) and (14.7) are kept.

Then, a network-decentralized flow control strategy u(t) must be applied to stabilize the network, meet the
demand d, asymptotically minimize the p-norm of the flow vector and simultaneously guarantee that the set-point
of the buffer levels is reached at steady-state.

To this aim, simplification Eq. (14.1) is removed, and the state is redefined as follows. Recall that h(t) is the
vector describing the buffer levels of the nodes, and h̄ is the vector of the corresponding set points describing some
desired buffer levels.

Suppose that at steady-state, the buffer level hi of each node i must be driven to its set point h̄i. Then, the
following must be enforced

h(t)→ h̄. (16.5)



162 Part III, Chapter 16 — Enhancements to the control

So far, the state of every node has been essentially set as its buffer level, as of simplification Eq. (14.1). Now,
that this simplification is removed, the state of each node i is redefined as the difference between its buffer level
hi and its set point h̄i. Then, the state becomes

x(t) = h(t)− h̄. (16.6)

By this definition, by Eq. (16.5), it follows that the state necessarily has to converge to zero, that is

x(t)→ h̄− h̄ = 0̄. (16.7)

Then, the control Eq. (16.1) can be exploited to support buffer level control. Indeed, recall that this control
guarantees that at steady-state the state becomes zero, as of Theorems 16.1 and 16.2. Thus, an optimal and
unique solution u∗p is obtained when 1 < p < +∞ even if a set point is imposed for the buffer levels: the integral
variables ξ(t) converge to the optimal Lagrange multiplier vector λ∗p of the optimization problem Eq. (16.3). Then,

u(t)→ u∗p, (16.8a)

x(t)→ 0̄, (16.8b)

h(t)→ h̄, (16.8c)

ξ(t)→ λ∗p. (16.8d)

Note that this control Eq. (16.1) can be used even if there are no uncontrolled flows due to some unknown
dynamics: if A(x) ≡ 0, the state is still driven to zero. The support for handling possible unknown dynamics is
also automatically guaranteed, under the proper assumptions. The same properties regarding the adaptability to
dynamic environments, and the possibility to get suboptimal 1 and ∞-norm solutions apply.

Remark 16.3:
Instead of specifying the dynamic of the state x(t), the dynamics of the buffer levels can be specified

ḣ(t) = A(h) +Bu(t)− d, (16.9)

where the unknown dynamics depend on the buffer levels, too. By Eq. (16.6), it holds that ḣ(t) ≡ ẋ(t). Then,
the corresponding state equation is

ẋ(t) = A(x+ h̄) +Bu(t)− d. (16.10)

If h̄ ̸= 0̄, the equation can be rewritten as

ẋ(t) = A(x+ h̄) +Bu(t)− d+A(h̄)−A(h̄)
= [A(x+ h̄)−A(h̄)] +Bu(t)− [d−A(h̄)]
= Â(x) +Bu(t)− d̂,

where the following quantities have been defined,

Â(x) = A(x+ h̄)−A(h̄),
d̂ = d−A(h̄).

Note that if the state is driven to zero, Â(x̄) = Â(0̄) = 0̄, under Assumption 14.2.

16.2.1 Optimal solutions by linear-quadratic programming

The optimal flow distribution does not depend on the buffer levels. Hence, when the buffer level control is required,
the optimal solution u∗p is computed as in Section 15.4, even if there is an unknown dynamic, see subsection 16.1.2.

16.3 Support for weighted norm minimization

In this Section, Problem 14.4 is addressed, where arcs’ weights are taken into account when minimizing the norm
of the flow vector: the support for weighted p-norm minimization is therefore introduced. A network with just an
uncontrolled demand d is considered: for simplicity, suppose that there are no uncontrolled flows depending on
the buffer levels, nor set-points for the buffer levels, i.e., simplifications Eqs. (14.1) and (14.7) are kept.



16.3 Support for weighted norm minimization 163

Recall that u(t) is the vector describing the control applied to the arcs, f(t) is the vector of the corresponding
flows, and ω is the vector of the corresponding arcs’ weights. Then, a network-decentralized flow control strategy
u(t) must be applied to stabilize the network, meet the demand d, and asymptotically minimize the weighted
p-norm of the flow vector f(t), that is ∥Ωf(t)∥p, with Ω = diag(ω).

To this aim, simplification Eq. (14.2) is removed, and the relation between the flow and the control is redefined
as follows.

Assume that the state variation depends on the flows f(t), rather than the controls, and some matrix C ∈ Rn×m

satisfying Assumption 14.1, that is
ẋ(t) = Cf(t)− d. (16.11)

Then, the relation between the flow and the control is set so that for arc k ∈ A, the flow fk is equal to the
control uk multiplied by the arc weight ωk, that is uk(t) = ωkfk(t). Equivalently,

u(t) = Ωf(t).

Moreover, matrix B ∈ Rn×m is defined as
B = CΩ−1.

As Ω is a diagonal matrix, if B satisfies Assumption 14.1, so does C and vice-versa.

On the one hand, a reason for imposing these relations is that the weighted p-norm of the generic flow f(t),
which is to be minimized, is equal to the p-norm of the generic control u(t) for all t, by construction:

∥Ωf(t)∥p≡ ∥u(t)∥p.

On the other hand, another reason is that the state variation Cf(t) due to the flow is equal to the state
variation Bu(t) due to the control, that is,

ẋ(t) = Cf(t)− d = CΩ−1Ωf(t)− d = Bu(t)− d.

This means that the problem of finding a stabilizing control u(t) minimizing the weighted p-norm of the flow
vector f(t) in a weighted network under Eq. (16.11) becomes equivalent to the problem of finding a stabilizing
control u(t) minimizing the p-norm of u(t) ≡ f(t) in a network under Eq. (14.8). This latter case is the one
considered in Chapter 15. Hence, the control Eq. (15.4),

u(t) = Φp(−γB⊤x) = Φp(−γ
[︁
Ω−1

]︁⊤
C⊤x)

can be successfully applied to solve Problem 14.4. Then, the actual flow can be easily computed as

f(t) = Ω−1Φp(−γB⊤x) = Ω−1Φp(−γ
[︁
Ω−1

]︁⊤
C⊤x).

Note that if C is the network incidence matrix, C = BI , the matrix B to be used in the control is the corre-
sponding weighted incidence matrix B = Bω = BIΩ

−1, see subsection 14.1.3. The control remains decentralized.
Indeed, there can be three cases:

• the kth component of Eq. (15.4) associated with an arc with cost ωk describing an internal flow from node
i to node j depends only on the term [−γB⊤x]k = γ

ωk
(xi − xj);

• the kth component of Eq. (15.4) associated with an arc with cost ωk describing an inflow toward node j
depends only on the term [−γB⊤x]k = − γ

ωk
xj ;

• the kth component of Eq. (15.4) associated with an arc with cost ωk describing an outflow leaving node i
depends only on the term [−γB⊤x]k = γ

ωk
xi.

Example 16.2:
Consider the network in Fig. 14.1 from Example 14.1, and take into account the arc costs. Let B = Bω and
apply control Eq. (15.4).
For brevity, consider only: arc 1, (ext., 1), associated with an inflow with ω1 = 1; arc 3, (1, 3), associated with
an internal flow with ω3 = 2; and arc 6, (3, ext.), associated with an outflow with ω6 = 4. The corresponding
control components are:

u1(t) = Φp

(︁
−γ
[︁
B⊤x(t)

]︁
1

)︁
= Φp

(︃
− γ

ω1
x1

)︃
= sign (−x1)

⃓⃓
⃓−γx1

1

⃓⃓
⃓

1
p−1

,



164 Part III, Chapter 16 — Enhancements to the control

u3(t) = Φp

(︁
−γ
[︁
B⊤x(t)

]︁
3

)︁
= Φp

(︃
γ

ω3
(x1 − x3)

)︃
= sign (x1 − x3)

⃓⃓
⃓⃓γ(x1 − x3)

2

⃓⃓
⃓⃓

1
p−1

,

u6(t) = Φp

(︁
−γ
[︁
B⊤x(t)

]︁
6

)︁
= Φp

(︃
γ

ω6
x3

)︃
= sign (x3)

⃓⃓
⃓γx3

4

⃓⃓
⃓

1
p−1

.

The other control components are similarly computed.

Remark 16.4:
Under B = CΩ−1 and u(t) = Ωf(t), if there is an uncontrolled unknown dynamic A(x), i.e., Eq. (16.11) is
modified into

ẋ(t) = A(x) + Cf(t)− d = A(x) +Bu(t)− d,
or a set-point is imposed for the buffer levels, the optimal control stabilizing the network and asymptotically
minimizing the weighted p-norm of the flow vector f(t) is Eq. (16.1), i.e.,

u(t) =

{︄
−γB⊤x+Φp(−γB⊤ξ), if 1 < p ≤ 2,

Φp(−γB⊤(x+ ξ)), if 2 ≤ p < +∞.
ξ̇(t) = αx, ξ(0) = 0.

The corresponding flow is

f(t) = Ω−1u(t) =

{︄
−γΩ−1B⊤x+Ω−1Φp(−γB⊤ξ), if 1 < p ≤ 2,

Ω−1Φp(−γB⊤(x+ ξ)), if 2 ≤ p < +∞.

16.3.1 Optimal solutions by linear-quadratic programming

As already explained, to find the optimal control u∗p minimizing the weighted p-norm of the flow f(t) under
Eq. (16.11), the equivalent problem of minimizing the p-norm of the control u(t) = Ωf(t) under Eq. (14.8) can be
considered instead, considering matrix B = CΩ−1.

Then, the optimal control vector u∗p can be found as in Section 15.4, even if there is an unknown dynamic,
see subsection 16.1.2, or buffer level control, see subsection 16.2.1. The only difference is that the transformation
B → CΩ−1 must be applied.

The corresponding optimal flow distribution f∗p is simply f∗p = Ω−1u∗p.

16.4 Numerical issues

Despite the controls Eq. (15.4) and Eq. (16.1) are theoretically continuous for any 1 < p < +∞, in practice, when
implementing them as numerical controls, due to numerical errors and finite precision, the values of p cannot be
chosen arbitrarily large or close to 1.

Indeed, to simulate the system or implement the control, it must be discretized. A well-known procedure
for numerical integration of ordinary differential equations is the Euler method. Consider discrete time instants
t0 = 0, t1, . . . , tk, tk+1, . . . , and, for generic variable σ(t), denote

σ(k) := σ(tk).

Let δ ∈ R+ be a given sampling period such that tk+1 − tk = δ. The state equations Eq. (14.8) and Eq. (14.10)
become

x(k + 1) = x(k) + δ(Bu(k)− d),
and

x(k + 1) = x(k) + δ(A(x(k)) +Bu(k)− d),
respectively. The appropriate control to be used, either Eq. (15.4) or Eq. (16.1), must be discretized, as well,
becoming, respectively,

u(k) = Φp(−γB⊤x(k)),



16.4 Numerical issues 165

and

u(k) =

{︄
−γB⊤x(k) + Φp(−γB⊤ξ(k)), if 1 < p ≤ 2,

Φp(−γB⊤(x(k) + ξ(k))), if 2 ≤ p < +∞,
ξ(k + 1) = ξ(k) + δαx(k), ξ(0) = 0.

Also, to perform computations in a finite-precision machine, variables have to be quantized.

Two problems arise:

• the first one is due to how numbers are represented in computers (roundoff errors);

• the second one is due to the approximations needed to perform math operations (like derivatives) in com-
puters, in particular, because δ cannot be chosen arbitrarily close to 0 (truncation errors).

Then, solutions arbitrarily close to the optimum cannot be achieved: the range of the values of p that can be
successfully used is limited.

16.4.1 Roundoff errors

Consider the first problem and let δ → 0, i.e., neglect truncation errors. Then, assume that the control is
implemented using double-precision data type according to the IEEE Standard 754 for double precision, using 64
bits; for instance, this is the default for Matlab variables.

For simplicity, take the function Φp(ξ), defined in Eq. (15.3), for ξ ≥ 0, which becomes

Φp(ξ) = ξ
1

p−1 .

Let realmax = (2 − 2−52) · 21023 ≈ 1.7977 · 10+308 be the largest finite floating-point number. Whenever

Φp(ξ) = ξ
1

p−1 > realmax, Φp(ξ) is treated as +∞ in the computations. Infinities propagate through computations;
then, both the control and the state become +∞ and diverge. This occurs when

ξ > (realmax)p−1.

A similar phenomenon is the following. Let ϵ0 = 4.9407 · 10−324 be the distance from 0 to the next larger

double-precision number. Whenever Φp(ξ) = ξ
1

p−1 < ϵ0, Φp(ξ) is treated as 0 in the computations. This occurs
when

ξ < (ϵ0)
p−1.

As p→ 1, function Φp to be used in the computations becomes more and more similar to Φ1. The interval of
ξ for which Φp(ξ) ̸= Φ1(ξ) increases as p increases.

Then, to implement the control to avoid making it (and hence the state) diverge or make it discontinuous,
values of p not too close to 1 and proper values of γ must be used, so that

(ϵ0)
p−1 < |γB⊤x|< (realmax)p−1

(if control Eq. (15.4) is to be applied) is not too tight.

Moreover, consider Φp(ξ) for ξ close to 0. In particular, take ξ = ϵ0, i.e., the smallest positive floating-point
value for ξ; the corresponding value assumed by Φp(ξ) is

Φp(ϵ0) = ϵ
1

p−1

0 .

As Φp(0) = 0, around ξ = 0 there is a discontinuity of size ϵ
1

p−1

0 , whose gap increases as p increases. Then, as
p→ +∞, the function becomes more and more similar to Φ1(ξ).

Then, to implement the control to avoid making it (and hence the state) discontinuous, values of p not too large
and proper values of γ must be used, so that the resulting gap is not too large, and can therefore be considered
negligible.

Example 16.3:
Assume that the control is implemented using double-precision data type according to the IEEE Standard 754
for double precision, using 64 bits.
In Table 16.1, the range of values of ξ for which Φp(ξ) ̸= Φ0(ξ) is reported for some values of p. Outside this



166 Part III, Chapter 16 — Enhancements to the control

interval, Φp(ξ) ≡ Φ0(ξ), i.e., it is either Φp(ξ) ≡ 0 or Φp(ξ) ≡ +∞.

Table 16.1: Range of values of ξ for which Φp(ξ) ̸= Φ1(ξ) when variables are represented according to the IEEE Standard 754 for
double precision. Outside this range, Φp(ξ) is either 0 or +∞.

p range

1.0001 0.9283 < |ξ|< 1.0736
1.001 0.4750 < |ξ|< 2.0335
1.01 5.8471 · 10−4 < |ξ|< 1.2093 · 103
1.1 4.6707 · 10−33 < |ξ|< 6.6907 · 1030

In Table 16.2, the gap of the discontinuity of Φp(ξ) at ξ = 0, i.e., Φp(ϵ0) − Φp(0) = Φp(ϵ0), where ϵ0 is the
minimum non-zero value for ξ, is reported for some values of p.

Table 16.2: The gap of the discontinuity of Φp(ξ) at ξ = 0, i.e., Φp(ϵ0)−Φp(0) = Φp(ϵ0), where ϵ0 is the minimum non-zero value
for ξ, when variables are represented according to the IEEE Standard 754 for double precision.

p gap

10 1.1942 · 10−36

100 5.4235 · 10−4

1000 0.4746
10000 0.9283

The range of values of p that can be used to get fair and sparse solutions, which are obtained for p → ∞
and p → 1, respectively, increases as the number of bits representing variables increases. Still, as shown in the
simulations in Chapter 17, a solution very close to the optimum is eventually achieved, even for non-extreme
values of p, e.g., p = 1.1 and p = 9, respectively; if these are implemented using double precision with 64 bits, the
above-mentioned problems can be certainly neglected, see Example 16.3.

16.4.2 Truncation errors

Consider now the second problem, which results in truncation errors. The cause of this is that the derivatives
ẋ(t) and possibly ξ̇(t) must be discretized to be implemented.

As already mentioned, the simplest way to do this is approximating the derivative through the (forward) Euler
method as

ẋ(t) ≈ x(k)− x(k − 1)

δ
,

where δ is the sampling period, and similarly for ξ(k).
As δ increases, the approximation error for the derivative increases, and this produces chattering or diverging

when p → 1 or p → ∞. Indeed, this error produces larger variations on the argument of function Φp(ξ) to be
used in the control. Recalling that as p → 1, Φp(ξ) becomes steeper around ξ = 1, and that as p → ∞, Φp(ξ)
becomes steeper around ξ = 0, large variations on the control may result in even larger variations on the flow and
numerical instability. This occurs even for values of p not too close to 1 or not too large, see Fig. 15.1.

A trivial way to reduce these errors is by reducing the sampling period δ. However, adopting a very small
sampling period might slow down the computations. Also, due to limited precision, a very small δ might also
worsen the numerical errors.

Another possible solution to reduce the chattering when p→∞ and the diverging of the control when p→ 1,
is applying a low-pass (LP) filter with time constant τf > 0 to the control u(k), like

u(k) = u(k − 1) +
δ

τf
(u(k)− u(k − 1)).

As u(0) = 0, this prevents the control to diverge when p → 1, and the on-off behavior due to chattering is
smoothed.

While this proposed solution does not solve all the above-mentioned problems, the range of values of p that
can be successfully used is generally larger compared to the case in which this filter is not present, see Chapter 17.



CHAPTER17
Illustrative example in

a system of interconnected tanks

In this Chapter an example of application of the proposed control is presented for a simple fluid network repre-
senting a system of interconnected tanks.

Several simulations are presented, showing the effectiveness of the proposed control both in stabilizing the
network and minimizing the p-norm of the control network, even in the presence of an unknown dynamic depending
on the buffer levels, buffer level control, and weighted p-norm minimization.

These proposed controls have been implemented Matlab. All the simulations were performed on a dual-core
Intel Core i3 at 2.3 GHz with 8 GB of RAM.

17.1 Scenario and data

Consider the fluid network represented in Fig. 17.1, where there are n = 9 nodes representing some tanks, whose
levels are h ∈ R9 and whose states are x ∈ R9, and m = 19 controllable arcs connecting the tanks, associated
with the controls u ∈ R19 and the controllable flows f ∈ R19.

1 2 3

4 5 6

7 8 9

1

0.4 0.4

1

0.4 0.4

1

0.40.4

1

0.4 0.4

0.4

1

0.4

0.4

0.4 0.4 0.4

Figure 17.1: Fluid network: controlled arcs (red arrows), with weight ωk for each controlled arc k; losses (green arrows); demands
(blue arrows). (source: [3], © 2022 IEEE)

The 9× 19 incidence matrix BI of the network, describing the controllable arcs, is

BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 1 −1 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 −1 1 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 1 1 −1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, a weight is associated with each arc (see Fig. 17.1). Then, given the vector of the arc weights,

ω⊤ =
[︁

1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 1 0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 0.4
]︁
,



168 Part III, Chapter 17 — Illustrative example in a system of interconnected tanks

recalling that Ω = diag(ω), the corresponding weighted incidence matrix is

Bω = BIΩ
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −ν 0 0 0 0 0 0 0 0 0 0 −ν 0 0 0 ν 0 0
0 ν −ν 0 0 0 0 0 0 −1 0 0 0 0 −ν 0 0 ν 0
0 0 ν 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 ν
1 0 0 −1 −ν 0 0 0 0 0 0 0 0 0 0 −ν 0 0 0
0 0 0 0 ν −ν 0 0 −ν 1 0 0 ν −1 0 0 0 0 0
0 0 0 0 0 ν 1 −ν 0 0 0 0 0 0 ν 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −ν 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ν 0 ν −ν 0 0 0 ν 0 0 0
0 0 0 0 0 0 0 ν 0 0 0 ν 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ν = 1/0.4 = 2.5.

There is fixed uncontrolled demand from nodes 7 and 9; the demand vector is

d⊤ =
[︁
0 0 0 0 0 0 0.7 0 0.3

]︁
.

Also, there might be some uncontrolled losses from nodes 4, 6 and 8, which depend on the corresponding buffer
levels. In particular, these unknown dynamics are modeled for numerical purposes by function

A(h) = b−
√︁
b2 +Hh,

where H ∈ Rn×n is defined as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0.001 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.002 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.001 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b ∈ Rn as
b⊤ =

[︁
0 0 0 0.002 0 0.003 0 0.003 0

]︁
.

For some of the performed simulations, no unknown dynamic is assumed; hence, A(h) ≡ 0.

Moreover, for some simulations, buffer level control to the non-zero set point h̄ ∈ Rn is imposed, where

h̄
⊤
=
[︁
17.69 20.37 22.70 16.59 22.42 17.93 19.54 20.68 15.66

]︁
.

The problem of minimizing the weighted p-norm of the flow ||Ωf(t)||p is considered; indeed, recall that this
requires only the scaling of the control components as

u(t) = Ωf(t),

so that ||u(t)||p≡ ||Ωf(t)||p is equivalently to be minimized.

Finally, letting B = Bω, the dynamics of the buffer levels are given by

ḣ(t) = A(h) +BIf(t)− d = A(h) +Bu(t)− d,

with initial conditions h(0) = h0 given by

h⊤0 =
[︁
15.51 18.41 19.01 18.80 17.34 18.36 19.63 18.12 19.77

]︁
.

Then, recalling that x = h− h̄ when A(h) ≡ 0 does not hold, the system evolves according to (see Remark 16.3)

ẋ(t) = A(x+ h̄) +Bu(t)− d.

This system is studied in three different conditions:



17.1 Scenario and data 169

• case (A), in which there is no unknown dynamic (i.e., A(h) ≡ 0) and no buffer level control is imposed. In
this case, the state is defined as x(t) = h(t). The original control Eq. (15.4) is applied.

• case (B), in which there is no unknown dynamic (i.e., A(h) ≡ 0), but buffer level control to h̄ is imposed.
In this case, the state is defined as x(t) = h(t)− h̄. The enhanced control Eq. (16.1) is applied.

• case (C), in which there is the non-zero unknown dynamic A(h) and buffer level control to h̄ is also imposed.
In this case, the state is defined as x(t) = h(t)− h̄. The enhanced control Eq. (16.1) is applied. Note that,
at steady-state, x → 0: the losses A(h̄) are non-zero and must be compensated by the control. Still, recall
that the control is independent from A(h).

17.1.1 Simulations’ setup

Three different aspects are tested, applying the proposed control to the network described above.
For evaluation purposes, the optimal controls u∗1, u

∗
2 and u

∗
∞ can be computed offline, using the linear-quadratic

problems formulated in Section 15.4 and subsections 16.1.2, 16.2.1 and 16.3.1.

Test 1: analysis of the system evolution

Firstly, the evolution of the system over time is analyzed. A scenario in which the p-norm to be minimized varies
over time is considered.

In particular, three consecutive time intervals are considered:

• for 0 ≤ t < 600, the 2-norm is to be minimized. Hence, the proper control is applied for p = 2, which
guarantees that the unique optimal solution is eventually reached;

• for 600 ≤ t < 1200, the ∞-norm is to be minimized. As the control with p =∞ does not ensure optimality,
the proper control is applied for p = 9, getting a suboptimal solution whose norm is very close to the optimal
one;

• for 1200 ≤ t < 1800, the 1-norm is to be minimized. Again, the control with p = 1 does not ensure
optimality. Then, the proper control is applied for p = 1.1, getting a suboptimal solution whose norm is
very close to the optimal one.

All the three cases (A), (B) and (C) are studied.
The following parameters are adopted: sampling time δ = 0.0001, α = 0.05, γ = 0.03 (when p = 2), γ =

0.000001 (for p = 9), γ = 0.06 (for p = 1.1).

Test 2: the problem of the chattering

Then, the problem of the chattering of the control due to numerical errors when using p→∞ is analyzed. Only
the specific case (C), in which there is the unknown dynamic A(h) and buffer level control to h̄ is also imposed, is
considered, where control Eq. (16.1) is applied. First, the system is simulated four times over a horizon of length
700, each one using a different value of p, specifically p = 9, 10, 11, 12. Severe chattering emerges as p increases.

To mitigate this, the same simulations are repeated applying a real-time low-pass filter with time constant τf
to the control. Recall that at steady-state, the low pass filter has no effects.

The following parameters are adopted: δ = 0.001, τf = 0.01, α = 0.05, γ = 000001.

Test 3: the effects of the choice of p

Finally, the effects of the choice of the value of p on the steady-state solution are analyzed. Again, only the specific
case (C), in which there is the unknown dynamic A(h) and buffer level control to h̄ is also imposed, is considered,
where control Eq. (16.1) is applied. To avoid chattering issues, the control is filtered in real-time with a low-pass
filter with time constant τf . Several simulations are performed: each one considering a specific value of p:

p ∈ {1.01, 1.02, . . . , 1.28, 1.29, 1.3, 1.4, 1.5, . . . , 3.8, 3.9, 4, 5, 6, 7, 8, 9, 10}.

For each value of p, the system is simulated long enough to reach the steady-state. Then, the components of u∗(t)
and some of its norms are compared for the range of considered values of p.

The following parameters are adopted: δ = 0.001, τf = 0.01, α = 0.05, γ = 0.06 (for p < 1.1), γ = 0.03 (for
1.1 ≤ p ≤ 7), γ = 0.0000001 (for p > 7). However, recall that the steady-state does not depend on the specific
parameters γ, α which are used in the control. Also, recall that the final flow vector u∗(t) that is achieved is
unique for 1 < p <∞.



170 Part III, Chapter 17 — Illustrative example in a system of interconnected tanks

17.2 Results and discussion

For Test 1, the results are reported in Figs. 17.2 to 17.4, for the three cases (A), (B) and (C), respectively, which
show the evolution of the components of the vectors related to the nodes (subfigures on the left) and to the arcs
(subfigures on the right). In particular, the evolution of the components of the following quantities is shown:
the buffer level vector h(t), the corresponding state vector x(t), the corresponding integral variable vector ξ(t)
(if control Eq. (16.1) is applied), the control vector u(t); the corresponding actual flow vector f(t) = Ω−1u(t).
Moreover, also the time evolution of the norms ∥u(t)∥1, ∥u(t)∥2, ∥u(t)∥+∞, ∥u(t)∥1.1, ∥u(t)∥9, is reported, as well
as the optimal ∥u∗1∥1, ∥u∗2∥2, ∥u∗∞∥+∞. In such graphs (except the ones reporting the norms), each color refers to
a specific node or arc; the same color in different graphs refers to the same node or arc. Numerical values for
some quantities reached at steady-state are reported in Tables 17.1 to 17.3, for the three cases (A), (B) and (C).

For the variables related to the nodes, in case (A), where x(t) ≡ h(t), the buffer level/state components reach
some negative values h̄ and stabilize; recall that in this case no set-point was imposed for the buffer levels. Instead,
in both cases (B) and (C), the buffer levels reach the desired levels given by h̄. Consequently, now that the state
is defined as x(t) = h(t)− h̄, the state x(t) converges to zero in all the three intervals.

Moreover, the variables ξ(t), which have been introduced for control Eq. (16.1) and are proportional to the
integral of x(t), converge to some negative values ξ̄, too. Comparing the numeric values of the components of
ξ̄ from case (B) with the corresponding components x̄ from case (A), the two vectors match. This confirms the
findings from Proposition 15.1 and Theorem 16.1; note that these correspond to the optimal Lagrange multipliers
of the optimization problem considered in case (A) and (B), which depend on the p-norm to be minimized but is
independent from the fact that a set point is imposed. Instead, comparing the numeric values of the components of
ξ̄ from case (B) with those from case (C), slightly different values are achieved, because the corresponding optimal
problems of which they are Lagrange multipliers are different (due to the presence of the losses at steady-state
due to the unknown dynamics A(h̄) in case (C)).

For the variables related to the arcs, in each interval, for all the three cases (A), (B) and (C), the control
converges to some u∗p depending on the value of p. In particular, in the first interval, the 2-norm optimal control
u∗2 is reached. In the second interval, the control vector ū∗p converges to a control that is slightly different from
the optimal u∗∞, because the optimal ∞-norm distribution is not unique, and the value of p is not very large.
In the third interval, the steady-state solution is very close to the optimal 1-norm one u∗1. The same applies to
the corresponding flows, which are slightly different from the corresponding controls, as they are weighted by the
inverse of the arcs’ costs. Note that some chattering emerges when using p = 9 (see orange lines, in the second
interval), but this is just temporary.

Comparing the numeric values of the components of u∗p from cases (A) and (B), the values are the same
at steady-state, since the optimal flow does not depend on the fact that a set point is set. The corresponding
components from case (C) are slightly different, because the steady-state losses A(h̄) are to be taken into account.

In any case, from Tables 17.1 to 17.3, it can also be seen that, for any p, at steady-state the total controlled
inflow matches the total uncontrolled outflow, taking into account both the demand and the losses modeled by
the nonlinear dynamics, if present, that is:

u∗p,17
ω17

+
u∗p,18
ω18

+
u∗p,19
ω19

=
∑︂

k

[︁
d−A(h̄)

]︁
k
.

Regarding the corresponding norms, in each interval, the 1, 2 and ∞-norms of the control vector, which are
equal to the corresponding weighted norms of the flow vector, approach the required optimal ones: in particular,
in the first interval, at steady-state, the optimal 2-norm is reached, i.e., ∥u(t)∥2→ ∥u∗2∥2, in all the three cases
(A), (B) and (C), confirming the optimality of the control. In the second and third intervals the ∞ and 1-norm
of the control, respectively, are very close to the optimal ones, i.e., ∥u(t)∥∞→ ∥u∗∞∥∞ in the second interval, and
∥u(t)∥2→ ∥u∗1∥1 in the third interval; indeed, both results were expected to be suboptimal.



17.2 Results and discussion 171

Table 17.1: (Test 1, case (A)). The steady-state vectors for the case considering a network with no unknown dynamics (A(x(t)) ≡ 0)
and no buffer level control, minimizing the weighted norm of the flow vector.

(a) The steady-state solution u∗
p, the optimal u∗

q and their norms.

p q u∗
p (steady-state control) u∗

q (computed via linear/quadratic programming) ∥u∗
p∥p ∥u∗

p∥q ∥u∗
q∥q

2 2 [ 0.092,−0.025,−0.056, 0.118,−0.073,−0.038, 0.080,
0.139, 0.136, 0.073,−0.233,−0.035, 0.157, 0.040,
0.145, 0.063, 0.169, 0.144, 0.088]⊤

[ 0.092,−0.025,−0.056, 0.118,−0.073,−0.038, 0.080,
0.139, 0.136, 0.073,−0.233,−0.035, 0.157, 0.040,
0.145, 0.063, 0.169, 0.144, 0.088]⊤

0.496 0.496 0.496

9 ∞ [ 0.118,−0.044,−0.086, 0.184,−0.104,−0.071, 0.116,
0.106, 0.105, 0.116,−0.206,−0.054, 0.130, 0.094,
0.130, 0.078, 0.134, 0.134, 0.133]⊤

[ 0.104,−0.036,−0.072, 0.200,−0.085,−0.050, 0.097,
0.128, 0.127, 0.091,−0.200,−0.026, 0.145, 0.045,
0.139, 0.047, 0.150, 0.139, 0.111]⊤

0.216 0.207 0.200

1.1 1 [ 0.002,−0.000,−0.000, 0.002,−0.000,−0.000, 0.001,
0.120, 0.279, 0.000,−0.279,−0.000, 0.279, 0.000,
0.120, 0.000, 0.280, 0.120, 0.000]⊤

[−0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.120, 0.280, 0.000,−0.280, 0.000, 0.280, 0.000,
0.120, 0.000, 0.280, 0.120,−0.000]⊤

1.249 1.482 1.480

(b) The steady-state vector x̄ and integral vector ξ̄.

p q x̄ ξ̄

2 2 [−2.251,−1.913,−1.170,−5.320,−4.348,−3.841,−9.257,−6.154,

−5.690]⊤
n/a

9 ∞ [−0.040,−0.040,−0.039,−0.079,−0.073,−0.073,−1.395,−0.079,

−0.079]⊤
n/a

1.1 1 [−5.870,−5.391,−2.682,−14.656,−11.738,−10.783,−23.474,

−17.606,−16.176]⊤
n/a

(a) The components of the buffer level vector h(t) over time.
Each color refer to a specific node.

(b) The components of the flow vector f(t) = Ω−1u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(c) The components of the state vector x(t) over time.
Each color refer to a specific node.

(d) The components of the control vector u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(e) The components of the integral vector ξ(t) over time.
Not applicable for this case (α = 0).

(f) Solid lines represent the norms ∥up∥1 (red), ∥up∥2 (blue) and
∥up∥∞ (green), which respectively get close to the optimal ∥u∗

1∥1,
∥u∗

2∥2 and∥u∗
∞∥∞ (dashed lines) in the first (p = 1.1), second (p = 2),

and third (p = 9) intervals.

Figure 17.2: (Test 1, case (A)). Time evolution profiles for the case considering a network with no unknown dynamics (A(x(t)) ≡ 0)
and no buffer level control, minimizing the weighted norm of the flow vector.



172 Part III, Chapter 17 — Illustrative example in a system of interconnected tanks

Table 17.2: (Test 1, case (B)). The steady-state vectors for the case considering a network with no unknown dynamics (A(x(t)) ≡ 0),
but with buffer level control to h̄, minimizing the weighted norm of the flow vector.

(a) The steady-state solution u∗
p, the optimal u∗

q and their norms.

p q u∗
p (steady-state control) u∗

q (computed via linear/quadratic programming) ∥u∗
p∥p ∥u∗

p∥q ∥u∗
q∥q

2 2 [ 0.092,−0.025,−0.056, 0.118,−0.073,−0.038, 0.080,
0.139, 0.136, 0.073,−0.233,−0.035, 0.157, 0.040,
0.145, 0.063, 0.169, 0.144, 0.088]⊤

[ 0.092,−0.025,−0.056, 0.118,−0.073,−0.038, 0.080,
0.139, 0.136, 0.073,−0.233,−0.035, 0.157, 0.040,
0.145, 0.063, 0.169, 0.144, 0.088]⊤

0.496 0.496 0.496

9 ∞ [ 0.118,−0.044,−0.086, 0.184,−0.104,−0.071, 0.116,
0.106, 0.105, 0.116,−0.206, 0.042, 0.130, 0.094,
0.130, 0.078, 0.134, 0.134, 0.133]⊤

[ 0.104,−0.036,−0.072, 0.200,−0.085,−0.050, 0.097,
0.128, 0.127, 0.091,−0.200,−0.026, 0.145, 0.045,
0.139, 0.047, 0.150, 0.139, 0.111]⊤

0.216 0.206 0.200

1.1 1 [ 0.002, 0.000,−0.000, 0.002,−0.000, 0.000, 0.001,
0.120, 0.279, 0.000,−0.279, 0.000, 0.280, 0.000,
0.120, 0.000, 0.280, 0.119, 0.001]⊤

[−0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.120, 0.280, 0.000,−0.280, 0.000, 0.280, 0.000,
0.120, 0.000, 0.280, 0.120,−0.000]⊤

1.249 1.483 1.480

(b) The steady-state vector x̄ and integral vector ξ̄.

p q x̄ ξ̄

2 2 [−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,

−0.000]⊤
[−2.251,−1.913,−1.170,−5.321,−4.348,−3.841,−9.258,−6.154,

−5.690]⊤

9 ∞ [ 0.000, 0.000, 0.000, 0.000, 0.000,−0.000, 0.000,−0.000,

0.000]⊤
[−0.040,−0.040,−0.039,−0.079,−0.073,−0.073,−1.395,−0.079,

−0.079]⊤

1.1 1 [ 0.000,−0.000, 0.003,−0.000, 0.000,−0.002, 0.000, 0.000,

−0.002]⊤
[−5.871,−5.389,−3.259,−14.607,−11.740,−10.780,−23.476,

−17.608,−16.172]⊤

(a) The components of the buffer level vector h(t) over time.
Each color refer to a specific node.

(b) The components of the flow vector f(t) = Ω−1u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(c) The components of the state vector x(t) over time.
Each color refer to a specific node.

(d) The components of the control vector u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(e) The components of the integral vector ξ(t) over time.
Each color refer to a specific node.

(f) Solid lines represent the norms ∥up∥1 (red), ∥up∥2 (blue) and
∥up∥∞ (green), which respectively get close to the optimal ∥u∗

1∥1,
∥u∗

2∥2 and∥u∗
∞∥∞ (dashed lines) in the first (p = 1.1), second (p = 2),

and third (p = 9) intervals.

Figure 17.3: (Test 1, case (B)). Time evolution profiles for the case considering a network with no unknown dynamics (A(x(t)) ≡ 0),
but buffer level control to h̄, minimizing the weighted norm of the flow vector.



17.2 Results and discussion 173

Table 17.3: (Test 1, case (C)). The steady-state vectors for the case considering a network with unknown dynamics A(x(t)) and buffer
level control to h̄, minimizing the weighted norm of the flow vector.

(a) The steady-state solution u∗
p, the optimal u∗

q and their norms (source: [3], © 2022 IEEE).

p q u∗
p (steady-state control) u∗

q (computed via linear/quadratic programming) ∥u∗
p∥p ∥u∗

p∥q ∥u∗
q∥q

2 2 [ 0.132,−0.033,−0.081, 0.118,−0.109,−0.037, 0.120,
0.155, 0.172, 0.102,−0.233,−0.054, 0.222, 0.047,
0.218, 0.063, 0.243, 0.210, 0.129]⊤

[ 0.132,−0.033,−0.081, 0.118,−0.109,−0.037, 0.120,
0.155, 0.172, 0.102,−0.233,−0.054, 0.222, 0.047,
0.218, 0.063, 0.243, 0.210, 0.129]⊤

0.641 0.641 0.641

9 ∞ [ 0.170,−0.063,−0.126, 0.184,−0.131,−0.052, 0.170,
0.131, 0.131, 0.169,−0.206,−0.058, 0.189, 0.117,
0.189, 0.074, 0.194, 0.194, 0.193]⊤

[ 0.178,−0.065,−0.126, 0.200,−0.119,−0.037, 0.173,
0.141, 0.150, 0.173,−0.200,−0.046, 0.189, 0.064,
0.183, 0.060, 0.196, 0.191, 0.195]⊤

0.244 0.206 0.200

1.1 1 [ 0.015, 0.000,−0.001, 0.000,−0.045, 0.000, 0.001,
0.120, 0.337, 0.000,−0.280, 0.000, 0.381, 0.000,
0.194,−0.000, 0.387, 0.193, 0.001]⊤

[ 0.000, 0.0000, 0.000,−0.000,−0.051, 0.000, 0.000,
0.120, 0.336, 0.000,−0.280, 0.000, 0.387, 0.000,
0.195, 0.000, 0.387, 0.195, 0.000]⊤

1.634 1.955 1.950

(b) The steady-state vector x̄ and integral vector ξ̄.

p q x̄ ξ̄

2 2 [−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,−0.000,

−0.000]⊤
[−3.234,−2.801,−1.720,−7.643,−6.196,−5.708,−11.590,−8.488,

−7.772]⊤

9 ∞ [−0.003,−0.003,−0.002,−0.004,−0.004,−0.004,−0.006,−0.004,

−0.004]⊤
[−0.799,−0.799,−0.774,−1.485,−1.451,−1.451,−2.797,−1.485,

−1.485]⊤

1.1 1 [ 0.000,−0.000, 0.005,−0.001, 0.000,−0.000, 0.000, 0.000,

−0.000]⊤
[−6.063,−5.656,−3.570,−16.999,−12.117,−11.315,−23.966,

−18.096,−16.707]⊤

(a) The components of the buffer level vector h(t) over time.
Each color refer to a specific node.

(b) The components of the flow vector f(t) = Ω−1u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(c) The components of the state vector x(t) over time.
Each color refer to a specific node.

(d) The components of the control vector u(t) over time.
Each color refer to a specific arc. Grey dotted lines: optimal values.

(e) The components of the integral vector ξ(t) over time.
Each color refer to a specific node.

(f) Solid lines represent the norms ∥up∥1 (red), ∥up∥2 (blue) and
∥up∥∞ (green), which respectively get close to the optimal ∥u∗

1∥1,
∥u∗

2∥2 and∥u∗
∞∥∞ (dashed lines) in the first (p = 1.1), second (p = 2),

and third (p = 9) intervals. (source: [3], © 2022 IEEE)

Figure 17.4: (Test 1, case (C)). Time evolution profiles for the case considering a network with unknown dynamics A(x(t)) and buffer
level control to h̄, minimizing the weighted norm of the flow vector.



174 Part III, Chapter 17 — Illustrative example in a system of interconnected tanks

0.000

0.407

0.815

1.222

1.629

Arcs:
|!

h
u

h
(t)|

-5.534

-2.767

0.000

2.767

5.534

Nodes:
x

i
(t) TIME 590.00 (p=2, q=2)

  1   2   3

  4   5   6

  7   8   9

0.4

1 0.4

0.4

1 0.4 1

0.4

1 0.4

loss 0.4

0.4 1 0.4

loss

0.4

dem
and

0.4

loss

dem
and

0.4

0.4

0.4

0.000

0.407

0.815

1.222

1.629

Arcs:
|!

h
u

h
(t)|

-5.534

-2.767

0.000

2.767

5.534

Nodes:
x

i
(t) TIME 990.00 (p=9, q=Inf)

  1   2   3

  4   5   6

  7   8   9

0.4

1 0.4

0.4

1 0.4 1

0.4

1 0.4

loss 0.4

0.4 1 0.4

loss

0.4

dem
and

0.4

loss

dem
and

0.4

0.4

0.4

0.000

0.407

0.815

1.222

1.629

Arcs:
|!

h
u

h
(t)|

-5.534

-2.767

0.000

2.767

5.534

Nodes:
x

i
(t) TIME 1590.00 (p=1.1, q=1)

  1   2   3

  4   5   6

  7   8   9

0.4

1 0.4

0.4

1 0.4 1

0.4

1 0.4

loss 0.4

0.4 1 0.4

loss

0.4

dem
and

0.4

loss

dem
and

0.4

0.4

0.4

0.000

0.407

0.815

1.222

1.629

Arcs:
|!

h
u

h
(t)|

-5.534

-2.767

0.000

2.767

5.534

Nodes:
x

i
(t) TIME 590.00 (p=2, q=2)

  1   2   3

  4   5   6

  7   8   9

0.4

1 0.4

0.4

1 0.4 1

0.4

1 0.4

loss 0.4

0.4 1 0.4

loss

0.4

dem
and

0.4

loss

dem
and

0.4

0.4

0.4

Figure 17.5: (Test 1, case (C)). The network at steady-state for each possible value of p, trying to minimize the q-norm. The color
of each arc h represents the modulo of the flow fh = uh/ωh.

An animation of the evolution of the network for case (C) is available at https://users.dimi.uniud.it/

~franco.blanchini/oneinf.html. A representation of the actual distribution of the flows Ω−1u(t) in the network
at steady-state, for the three time intervals in which p is set, is shown in Fig. 17.5, again for case (C).

It can be seen that when trying to minimize the 2 or∞-norm (using p = 2 and p = 9, respectively), the flow is
distributed in the arcs of the network. In particular, in the latter case, the maximum flow is minimal. Instead, the
steady-state distribution in the third interval, when trying to minimize the 1-norm using p = 1.1, clearly shows
that some shortest paths emerge, making the flow concentrated just in some arcs (the arcs represented in dark
blue have no flow). In particular, two main independent paths are formed to meet the demand, whose flows are
represented in red and green; note that some ramifications of the flows from such paths are present, to compensate
for the steady-state losses.

For Test 2, the results are summarized in Fig. 17.6. In particular, on the subplots on the left, the evolution of
the control components ui(t) over time is plotted, when p = 9, 10, 11, 12 without filtering the result. Chattering
clearly emerges as p increases, even with small values of p, e.g., for p = 10. A better tuning of the control
parameters α, γ and a smaller sampling period δ might reduce these unwanted issues. Still, using a smaller value
of p like 9 produces no apparent/negligible chattering.

On the subplots on the right, the evolution of the control components over time is plotted, when applying a
low-pass filter to the control. This alternative allows using some larger p and is also effective in reducing chattering
a lot, although the phenomenon starts to emerge too, as p increases. Again, better tuning of the parameter τf
might lead to better results.

For Test 3, the results are summarized in Fig. 17.7. In particular, in Fig. 17.7a, the trend of the optimal control
components u∗p are plotted, as a function of p. In Fig. 17.7b, the trends of the corresponding 1, 2,∞, p-norms are
plotted. Finally, in Fig. 17.7c the corresponding trend of the level of sub-optimality is plotted.

It actually turns out that there is no need to use extreme values of p to minimize the 1 and ∞-norms. All the
reported quantities vary continuously as p increases. When minimizing the 2-norm, the exact solution is obtained
exactly.

When trying to minimize the 1-norm, values of p in the range [1.01, 1.1] produce suboptimal solutions which
are very close to the 1-optimal ones, with a level of sub-optimality ∥u∗p∥1/∥u∗1∥1 being very close to 1, so there is
no need to use smaller values of p, which might introduce more numerical errors. Note that the optimal 1.01-norm
is also very close to the optimal 1-norm, i.e., ∥u∗1.01∥1.01≈ ∥u∗1∥1.

When trying to minimize the ∞-norm, values of p greater than 8 produce suboptimal solutions which are
close to the ∞-optimal ones (recall this is not unique), with a level of sub-optimality ∥u∗p∥∞/∥u∗∞∥∞ being below
1.05. Using larger values of p produce results which are closer to the optimum, however, the problem of the
chattering is to be taken into account. Note that also the optimal 10-norm is close to the optimal ∞-norm, i.e.,
∥u∗10∥10∼ ∥u∗∞∥∞.

https://users.dimi.uniud.it/~franco.blanchini/oneinf.html
https://users.dimi.uniud.it/~franco.blanchini/oneinf.html


17.2 Results and discussion 175

(a) p = 9, no low-pass filter applied.
(∥u∗

9∥9= 0.2442, ∥u∗
9∥∞= 0.2064)

(b) p = 9, with low-pass filter applied.
(∥u∗

9∥9= 0.2442, ∥u∗
9∥∞= 0.2064)

(c) p = 10, no low-pass filter applied. (d) p = 10, with low-pass filter applied.
(∥u∗

10∥10= 0.2383, ∥u∗
10∥∞= 0.2057)

(e) p = 11, no low-pass filter applied. (f) p = 11, with low-pass filter applied.
(∥u∗

11∥11= 0.2336, ∥u∗
11∥∞= 0.2051)

(g) p = 12, no low-pass filter applied. (h) p = 12, with low-pass filter applied.
(∥u∗

12∥12= 0.2299, ∥u∗
12∥∞= 0.2047)

Figure 17.6: (Test 2 ). Evolution over time of the components of the control applied to the arcs. Each color refers to a different arc.
Dashed lines are the control components of the optimal ∞-norm control computed via linear quadratic programming. For some values
of p chattering emerges, but its effects are clearly reduced by applying a low-pass filter.



176 Part III, Chapter 17 — Illustrative example in a system of interconnected tanks

(a) The components of u∗
p (orange lines). Red, blue and green dashed lines represent

the components of the optimal 1,2 and ∞ control components, respectively, computed
by linear-quadratic programming, and are reported as a reference.

(b) The p-norm of u∗
p (orange line). Red, blue and green lines are the corresponding

1,2 and ∞ norms of u∗
p, respectively. Red, blue and green dashed lines represent

the optimal norms ∥u∗
1∥1,∥u∗

2∥2,∥u∗
∞∥∞, respectively, computed by linear-quadratic

programming, and are reported as a reference.

(c) The sub-optimality of the control over time. The suboptimality of the q-norm is
defined as sq = ∥u∗

p∥q/∥u∗
q∥q .

Figure 17.7: (Test 3 ). Comparison of the (interpolated) trend of the steady-state (optimal) control u∗
p and its norms, for different

values of p.







Conclusion

In this thesis, the main results achieved during my Ph.D. have been presented.

In Part I the problem of scheduling a certain number of requests requiring a given amount of a limited resource,
minimizing the average waiting time has been considered. The maximum rate of supply is limited, and if the
system is congested, the timing and rate of the supply are to be modified to avoid overloading the system.

Firstly, batch solutions have been taken into account: an optimal control framework has been proposed,
which is capable of solving different scheduling problems for waiting time minimization supporting three supply
strategies: interruptible, non–interruptible, and variable rate. The support for these supplies is enforced by means
of some additional constraints.

The exact optimal problems result in Mixed-Integer Linear Programming problems: then, finding a solution
might be hard, depending on the size of the problem. A relaxed version of the problem resulting in a Linear
Programming problem, for which a solution can be computed very efficiently even for large instances, has been
studied. This can be seen both as a heuristic for the variable rate case, and as a way to find some lower bound
to the optimal average waiting time.

Since in practice the data of the requests are possibly not known in advance, some online heuristics have
been considered, both centralized and decentralized. While the centralized heuristics tend to perform better, the
knowledge of all the active unfulfilled requests is required to solve the problem. The decentralized ones have the
advantage that they just require the knowledge of local data: each request is scheduled only on the basis of the
amount of resource that it requests, as well as the aggregate information of the total supplied resource at a given
time. This makes them fault-tolerant and easily scalable.

The presented methodology could be applied in a hierarchical way as follows. The real–time scheduling of the
requests is decided on the basis of an online heuristic, which in general is based on some variables or specifications
to be tuned. Periodically, e.g., once every day, a global optimization is performed based on the data recorded in
the previous period: the optimal cost (or a lower bound) is used to evaluate the performance and efficacy of the
on–line part, and possibly re–tune the parameters of the heuristic.

In Part II the problem of finding a decentralized policy to route some tokens injected in the source nodes of
an unknown integer-weighted network with the aim of finding a way to leave it has been addressed. The proposed
decentralized policy is specified as a threshold mechanism based on tokens accumulating in the nodes. The state
of each node has been defined as the number of tokens deposited in each node. Then, the transition rule is very
simple and depends only on local information: a token can move from a node to another adjacent one only if the
“above threshold” condition holds, that is: the difference between the states of the corresponding nodes is greater
than the connecting arc cost, which is the threshold. Otherwise, if the above threshold condition does not hold
for any arc leaving the current node, the token stops and is deposited in there.

Initially, most tokens fail to leave the network, because they are stopped in the nodes; while this influences the
choices of the tokens injected later on, these tokens are “lost”. However, it has been shown that, in the long run,
not only the newly injected tokens eventually find a way to leave the network, but also they follow the shortest
paths to the closest sink nodes.

An enhanced version of the policy has been presented: now, if a token located in a given node could not
proceed to any other connected node, instead of being deposited in there, the state of the current node is virtually
increased until the above threshold condition is met, making the token eventually leave. If the network is strongly
connected, all the tokens can eventually find a way to leave the network, so no token is lost, although initially the
followed route is not necessarily the shortest one. With this enhanced version, the number of tokens needed to
reach the steady-state is also reduced.

Then, it has been shown that the policy can be extended to the case in which the possible paths that each
token can traverse are constrained: considering a secondary cost in each arc, a path is feasible only if its secondary
cost is bounded. While the unconstrained problem could be solved in polynomial time by means of a centralized
algorithm (Dijkstra, Bellman), the introduction of such constraints makes the problem NP-hard. To support this
case, multi-component states are considered in each node: every component refers to the number of tokens that
have paid a specific secondary cost to get in there. Then, the decentralized policy uses such state components; a
transition is denied also if the path would become infeasible by it. In this case, the tokens which travel too much



180 CONCLUSION

are indefinitely lost, even if the enhanced policy is applied. Still, in the long run, all the newly injected tokens
leave the network through the shortest feasible path to the closest sink.

In both the constrained and unconstrained case, it has been demonstrated that, by construction, the policy also
supports negative arc costs, multiple sources, multiple sinks, and dynamic time-varying networks, which makes
the policy adaptive. Also, as the policy is decentralized, knowledge of the whole network is not required, so that
the policy is easily scalable and fault-tolerant. Fractional arc costs could be supported too, but the performance
worsens as the precision increases.

The main result from this Part is that from local decisions, global optimality results emerge in the long run,
even in the presence of additional constraints that make the problem hard to be solved.

In Part III the problem of finding an online network-decentralized flow control stabilizing a flow network and
based on node buffers to asymptotically minimize the p-norm of the controlled flow meeting a given demand has
been addressed. The proposed control is network-decentralized in the sense that the controlled flow of each arc
depends only on the state of its two extreme nodes, as well as the value of p. The control is also independent
from the demand. Therefore, knowledge of the whole network is not required: this makes the proposed control
adaptive, easily scalable and fault-tolerant.

The control has also been enhanced to support uncontrollable unknown dynamics depending on the buffer
levels, buffer level control and weighted norms.

Both the proposed control and its enhanced versions guarantee that, when 1 < p < +∞, the unique optimal
solution minimizing the p-norm and stabilizing the network is eventually reached at steady-state. This is not true
anymore when p = 1 or p = +∞: the control becomes discontinuous and there can be multiple optimal solutions.
Still, as p→ 1, suboptimal sparser solutions arbitrarily closer to the optimal solution (minimizing the 1-norm) can
be reached. Similarly, as p→∞, suboptimal fairer solutions arbitrarily closer to the optimal solution (minimizing
the ∞-norm) can be reached.

As in Part II, the main result from this Part is that from local decisions, global optimality results emerge in
the long run, even in the presence of unknown demands and unknown uncontrolled flows.

In all the Parts I to III, several simulations have been performed to validate the proposed approaches in
different conditions.



Appendices





APPENDIXA
Proofs from Part I

In this Appendix, the proofs of the theorems and propositions from Part I are reported. Most of these proofs are
taken from [1] and are reported almost integrally, for completeness.

Proof of Theorem 2.1.

By the definition of zi(t) (see Eq. (2.11)),

∫︂ ∞

0

zi(t) dt =

∫︂ ti+δi

ti

1 dt = δi.

Moreover, as the supplied energy must be equal to the requested one, it follows that

∫︂ ti+δi

ti

ui(t)dt =

∫︂ ti+δi

ti

di(t)dt = τi ,

where the equivalence between the two integrals comes from the identity xi(ti) = xi(ti + δi) = 0.
Then, Eq. (2.13) is obtained by subtracting the two expression, recalling that δi = ωi + τi.

Proof of Proposition 2.1.

For the equivalence to Eq. (2.6a), note that di(t) = 0 for t < ti. Then, Eq. (2.14) becomes

xi(t) =
1

τi

∫︂ t

0

[−ui(ξ)]dξ , t < ti.

As τi > 0 and ui(t) ≥ 0 for all t, it follows that xi(t) ≤ 0 for t < ti. Then, by imposing Eq. (2.16), it must be
xi(t) = 0 before ti, which can be achieved only if ui(t) = 0, too.

For the equivalence to Eq. (2.6a), note that for t > ti + δi, Eq. (2.14) can be written as

xi(t) =
1

τi

∫︂ t

0

[di(ξ)− ui(ξ)]dξ

=
1

τi

∫︂ ti+δi

0

[di(ξ)− ui(ξ)]dξ +
1

τi

∫︂ t

ti+δi

[di(ξ)− ui(ξ)]dξ

=
1

τi

∫︂ ti+δi

0

[di(ξ)]dξ −
1

τi

∫︂ ti+δi

0

[−ui(ξ)]dξ +
1

τi

∫︂ t

ti+δi

[−ui(ξ)]dξ

=
1

τi
τi −

1

τi
τi +

1

τi

∫︂ t

ti+δi

[−ui(ξ)]dξ

=
1

τi

∫︂ t

ti+δi

[−ui(ξ)]dξ , t > ti + δi,

where the definition of completion time ci = ti + δi, and the specification of d(t) have been exploited. Again, as
τi > 0 and ui(t) ≥ 0 for all t, it follows that xi(t) ≤ 0 for t > ti + δi. Then, by imposing Eq. (2.16), it must be



184 APPENDICES , Appendix A — Proofs from Part I

xi(t) = 0 after ti, which can be achieved only if ui(t) = 0, too.

Proof of Proposition 2.2.

Assume that the request is fulfilled at time t∗. For all t ≥ t∗ ≥ ti + τi, Eq. (2.14) becomes

xi(t) =
1

τi

∫︂ t

0

[di(ξ)− ui(ξ)]dξ

=
1

τi

∫︂ ti+τi

0

[di(ξ)]dξ +
1

τi

∫︂ t∗

0

[−ui(ξ)]dξ +
1

τi

∫︂ t

t∗
[−ui(ξ)]dξ

=
1

τi
τi −

1

τi
τi +

1

τi

∫︂ t

t∗
[−ui(ξ)]dξ

=
1

τi

∫︂ t

t∗
[−ui(ξ)]dξ , for all t ≥ t∗ ≥ ti + τi,

where the specification of d(t) and the definition of fulfilled request,

∫︂ t∗

0

ui(t) dt = τi,

have been exploited. As τi > 0 and ui(t) ≥ 0 for all t, it follows that xi(t) ≤ 0 for all t ≥ t∗. Then, by imposing
Eq. (2.16), it must be xi(t) = 0 for all t ≥ t∗ ≥ ti + τi.

To prove the contrary, now assume xi(t) = 0 for all t ≥ t∗ ≥ ti + τi. Then, Eq. (2.14) becomes

0 =
1

τi

∫︂ t

0

[di(ξ)− ui(ξ)]dξ

=
1

τi

∫︂ ti+τi

0

[di(ξ)]dξ +
1

τi

∫︂ t∗

0

[−ui(ξ)]dξ +
1

τi

∫︂ t

t∗
[−ui(ξ)]dξ

=
1

τi
τi +

1

τi

∫︂ t∗

0

[−ui(ξ)]dξ +
1

τi

∫︂ t

t∗
[−ui(ξ)]dξ , for all t ≥ t∗ ≥ ti + τi.

The term 1
τi

∫︁ t∗

0
[−ui(ξ)]dξ does not depend on t, therefore it is a constant. Then, the latter equation holds for

all t ≥ t∗ ≥ ti + τi only if 1
τi

∫︁ t

t∗
[−ui(ξ)]dξ is a constant too, say equal to K. In particular, this is true even for

t = t∗, so that the value of this constant is

K =
1

τi

∫︂ t

t∗
[−ui(ξ)]dξ =

1

τi

∫︂ t∗

t∗
[−ui(ξ)]dξ = 0.

Then, it must be

τi =

∫︂ t∗

0

ui(ξ)dξ,

which means that the request is fulfilled.
This proves the first part of the proposition. The second claim is true because the completion time is the first

time instant in which the request becomes fulfilled.

Proof of Theorem 2.2.

The inequality ωi < δi is true by construction (see Eq. (2.5)). To prove the other two inequalities, note that
xi(t) = 0 outside the interval [ti, ti + δi]; therefore, the integral can be restricted to this interval. Then, consider
the two following optimal control problems

µmin (µmax) = min
ui

(max
ui

)

∫︂ ti+δi

ti

xi(t)dt,

s.t. ẋi(t) = [di(t)− ui(t)]/τi ,
ui(t) ∈ [0, 1], t ∈ [ti +∆i, ti + δi] ,

ui(t) = 0, t ̸∈ [ti +∆i, ti + δi] ,



APPENDICES , Appendix A — Proofs from Part I 185

xi(ti) = xi(ti + δi) = 0 .

It will be proven that µmin = ∆i and µmax = δi − τi = ωi. For a simple notation, drop all indices and assume
ti = 0. Then, the optimal control formulated on the interval [0, δ] becomes

µmin (µmax) = min
u

(max
u

)

∫︂ δ

0

x(t)dt,

s.t. ẋ(t) = [d(t)− u(t)]/τ,
u(t) ∈ [0, 1], for all t ∈ [∆, δ],

u(t) = 0 , for all t ∈ [0,∆],

x(0) = x(δ) = 0.

The associated Lagrangian function is
L(x, u, λ) = x+ λ(d− u) ,

where the parameter τ has been included in the multiplier λ. The optimal control is the minimizer u∗ of L(x, u, λ),

u∗(t) =

{︃
1 if λ(t) > 0,
0 otherwise.

The dynamic equation for λ is

λ̇(t) = −∂L(x, u, λ)
∂x

= −1 . (A.1)

Eq. (A.1) implies that λ is a linear function of the time t, λ(t) = −t, and, consequently, u∗ switches (at most)
once in the interval [∆, δ] passing from 1 to 0. Let t′ be the time instant in which this commutation occurs. Since

x(0) = 0 and x(δ) = 0, then
∫︁ δ

0
ẋ(t)dt = 0 , which implies

∫︂ t′

∆

u(t)dt = (t′ −∆) =

∫︂ δ

0

d(t) = τ,

so that t′ = ∆ + τ . The control is 1 on [∆,∆ + τ ] and zero thereafter. This corresponds to the NI case. The
integral ∫︂ δ

0

x(t)dt = µmin = ∆

is immediately computed as follows.
Case (a) If the i-th demand is satisfied immediately, then ui(t) = di(t) = 1 for all t ∈ [ti, ti + τi], while

ui(t) = di(t) = 0 elsewhere. Hence, d(t) ≡ u(t) and so xi(t) = 0 for all t. Then,
∫︁ δ

0
x(t)dt = µmin = ∆, which

means that i-th user experiences no delay in the supply.
Instead, if the demand is not immediately satisfied, but delayed, there exists t′′ such that, for all ti < t < t′′,
di(t) = 1 and ui(t) = 0, which means that xi(t) increases (linearly) in time. At time ti +∆i the user is eventually
admitted to the use of the resource; two more cases are possible.
Case (b) If ∆i ≤ τi, then t′′ = ti +∆i and

ẋ(t) =

⎧
⎨
⎩

1/τi , for t ∈ [ti, ti +∆i] ,
0 , for t ∈ [ti +∆i, ti + τi] ,
−1/τi , for t ∈ [ti + τi, ti + τi +∆i] .

(A.2)

See the plot on the left of Fig. 2.3 for a pictorial representation of xi(t) and di(t).

Eventually, at ti + τi +∆i, xi reaches zero (again). A the generic time t the value of the state variable xi(t)
represents the time, evaluated as a fraction of τi, needed by the user i to reach the state it would have had if
it had been admitted immediately at time ti. Consider, for instance, an instant ti + ˜︁t1 ∈ [ti, ti + ∆i]. In the
case of immediate admittance, the user i would have completed, at time ti + ˜︁t1, a fraction ˜︁t1/τi of its task.
Correspondingly, xi(ti + ˜︁t1) = ˜︁t1/τi represents the delay between the actual user, which has been waiting up to
ti + ˜︁t1, to the case of immediate admittance. This delay grows until the actual user i is admitted to the resource,
which occurs at time ti+∆i. After that, the delay with respect to the case of immediate admittance stops growing,
as ui(t) = di(t) = 1 for f ∈ [ti +∆, ti + τi]. Finally, at time ti + τi the user would have been fulfilled in the case
of immediate admittance, while the actual user still needs time to complete it. In particular, if ˜︁t2 is such that
ti+˜︁t2 ∈ [ti+ τi, ti+ τi+∆i], then xi(ti+˜︁t2) represents the time (as a fraction of τi) needed to complete the task.



186 APPENDICES , Appendix A — Proofs from Part I

Case (c) Instead, if ∆i ≥ τi, then t′′ = ti + τi and

ẋ(t) =

⎧
⎨
⎩

1/τi , for t ∈ [ti, ti + τi] ,
0 , for t ∈ [ti + τi, ti +∆i] ,
−1/τi , for t ∈ [ti +∆i, ti + τi +∆i] .

(A.3)

See Fig. 2.3, right for a pictorial representation. As before, at ti + τi +∆i, xi is zero. In this case, the delay with
respect to the case of immediate admittance grows up to 1, without exceeding this number, as the time needed
to complete the task is, at most, τi.

In all cases (a), (b) and (c) the area is equal to ∆i. In case (a), this is trivial, as ∆i = 0 and di − ui ≡ 0, so
Eq. (2.18) is satisfied. For cases (b) and (c), note that x(t) has a trapezoidal profile, so that its integral can be
simply computed.
In case (b), where 0 < ∆i < τi, from Fig. 2.3 (left) the area of the trapezoid is

∆i

τi

(τi +∆i) + (τi −∆i)

2
= ∆i .

In case (c), where ∆i > τi, from Fig. 2.3 (right) the area of the trapezoid is

1
(τi +∆i) + (∆i − τi)

2
= ∆i .

To prove that the maximum is ω, reconsider the Lagrangian function for maximization

L(x, u, λ) = −x+ λ(d− u)

to get the new adjoint equation

λ̇(t) = −∂L(x, u, λ)
∂x

= 1.

The control u switches from 0 to 1 (only) once at some time t′′. To find the precise value of t′′, note that, since
the supplied energy must be the same as the requested one,

∫︂ δ

t′′
u(t)dt = (δ − t′′) =

∫︂ δ

0

d(t) = τ,

so that t′′ = δ − τ . The maximizer control is 1 on [δ − τ, δ] and zero elsewhere, while d(t) is 1 over [0, τ ] and zero
elsewhere. Consequently,

∫︂ δ

0

x(t)dt =
1

τ

∫︂ δ

0

∫︂ t

0

d(σ)dσdt− 1

τ

∫︂ δ

0

∫︂ t

0

u(σ)dσdt =

[︃
τ2

2
+ τ(δ − τ)

]︃
· 1
τ
−
[︃
τ2

2

]︃
· 1
τ
= δ − τ = ω .

Proof of Theorem 3.1.

It follows immediately from Theorem 2.2 by the fact that, for the NI case, ∆i =
∫︁∞
0
xi(t)dt = ωi, δi = ∆i + τi,

and each τi is constant.

Proof of Proposition 3.1.

Let u∗i (t) be the optimal NI solution for user i and assume it should be admitted at time ti+∆i. When sampling,
ui must be delayed to the next sampled time kθ ≥ ti +∆i. The delay introduced is smaller than θ.

Consider the first request with i = 1; sampling introduces the delay kθ−(t1+∆1) < θ. If all the other requests
j = 2, 3, ..., n are assumed to be delayed of this same amount, the cumulative delay will be at most nθ. For the
second request i = 2, sampling will introduce a cumulative delay up to (n− 1)θ, because there are n− 1 requests
after it. Iterating, for j = 3, 4, ..., n, the cumulative delay will be

[n+ (n− 1) + (n− 2) + · · ·+ 1]θ = θ
n(n+ 1)

2
.



APPENDICES , Appendix A — Proofs from Part I 187

Proof of Proposition 3.2.

Let u∗i : R+ → {0, 1}, for i = 1, . . . , n, be the optimal solution for the NI case. On the one hand, in view of
Theorem 2.2 and Theorem 3.1, u∗1, . . . , u

∗
n minimize

∑︁n
i=1 ωi =

∫︁∞
0

∑︁n
i=1 xi(t)dt .

On the other hand, u∗1, . . . , u
∗
n give a feasible solution for problem Eq. (3.18), hence the optimal value of the

cost for the latter, denoted as X∗
rlx, must be less than or equal to Jrlx(u

∗
1, . . . , u

∗
n), which is the minimizer, in

general.
Note that X∗

rlx is the minimum value that Eq. (3.3) can assume in the VR class. Now, let v∗i : R+ → [0, 1],
for i = 1, . . . , n, be the optimal solution for the VR case minimizing

∑︁n
i=1 ωi. As of Theorem 2.2, considering

the (non-optimal) XV R =
∫︁∞
0

∑︁n
i=1 xi(t)dt for solution v

∗
i , it follows that X

∗
rlx ≤ XV R ≤ JV R(v

∗
1 , . . . , v

∗
n), which

means that X∗
rlx is a lower bound for the VR case.

From Eq. (3.2), it follows that X∗
rlx is a lower bound for

∑︁
i ωi for all the NI , IT and VR cases.

Proof of Proposition 3.3.

In [55] the optimality of the greedy strategy is proven, but that result cannot be applied here directly, because
no positivity constraint was considered for xi in there, while this is a requirement in the considered framework.
To solve the problem, the constraints xi(t) ≥ 0 can be pretended to be neglected, so that [55] can be applied and
optimality results. To do so, it is to be proven that if µ > 0 in Eq. (3.20), xi(t) cannot become negative, so the
constraint is automatically satisfied. In this regard, if by contradiction xi(t) < 0, the value of ui minimizing the
derivative of g(xi), namely,

ġ(xi(t)) = −µ(di(t)− ui(t))
would be u∗i (t) = 0, hence ẋi = di−u∗i = di ≥ 0. Then, xi(t) ≥ 0 is always satisfied, making Jpen =

∫︁∞
0

∑︁
i xi(t)dt.

This means that u∗i is optimal for the original problem, too.





APPENDIXB
Proofs from Part II

In this Appendix, the proofs of the theorems, and lemmas from Part II are reported. Most of these proofs are
taken from [2] and are reported almost integrally, for completeness.

Proof of Lemma 8.1.

If part) If x is admissible, xhs
−xhs+1

≤ γhs,hs+1
for each pair hs, hs+1 ∈ p. Let r be the number of (non-repeated)

nodes in path p. Then,
r−1∑︂

s=1

xhs − xhs+1 ≤
r−1∑︂

s=1

γhs,hs+1 = L(p),

where the first term does not depend on the actual path, but just from the starting and the terminal node:

r−1∑︂

s=1

xhs − xhs+1 = xh1 − xhr = xi − xj .

Only if part) If x is not admissible, there exists (i, j) ∈ A such that xi−xj > γij . For the trivial path p = {i, j}
made of the arc (i, j), it holds that L(p) = γij < xi − xj , which contradicts the above relation and completes the
proof.

Proof of Lemma 8.2.

Consider a network G with a single sink node j ∈ T and the admissible state x(k) ∈ O, for some k ≥ 0. If no
token is injected, v(k) = 0, and then x(k+1) = x(k) must hold; the state of the sink node, that is 0 by definition,
remains xj(k) = 0. Also, for all i ∈ N , xi(k) ≤ L(p) for all paths p joining i with such sink node j, by the above
argument and Lemma 8.1.

Now consider any anti-arborescence that joins all the nodes in N to the sink node, and let li be the number
of arcs of the path q from the generic node i to j, whose length fulfills L(q) ≤ liγ̄, with γ̄ being the maximum arc
cost.

By the two observations reported above, it holds that xi(k) ≤ liγ̄, and hence

V (x(k)) =
∑︂

i∈N
xi(k) ≤

∑︂

i∈N
liγ̄.

To complete the proof, recall that the following inequality holds for all the anti-arborescences:

∑︂

i∈N
liγ̄ ≤ γ̄

|N |(|N |−1)
2

;

in this expression, the equality holds if the anti-arborescence is a directed path.
When there are multiple sinks, the proof is an easy but a cumbersome generalization of this one; as xj = 0

for all j ∈ T , the above argument holds for each anti-arborescence joining all the nodes to each sink node. Also,
recall that a multiple-sink network can be transformed into an equivalent single-sink network, connecting all the
former sinks to a new sink with arcs of zero costs.



190 APPENDICES , Appendix B — Proofs from Part II

Proof of Theorem 8.1.

This Theorem is proven by showing that if x(k) ∈ O at a time k, then x(k + 1) ∈ O.
If at k no token is injected in G, then x(k + 1) = x(k) ∈ O by definition of O.

If at k a token is injected in a source node i ∈ S, note that Policy 8.1 imposes that only the injected token may
move through the network. Hence, two cases may occur.

Case x(k)+ ei ∈ O). By Condition Eq. (8.4c) on u() and Eq. (8.5), it follows that the state equation Eq. (8.2)
imposes x(k + 1) = x(k) + ei with x(k + 1) ∈ O.

Case x(k)+ei ̸∈ O). Assume by contradiction that a state x(k+1) ∈ O is not eventually reached. This means
that the token makes a walk of an infinite number of elementary transitions. Since the number of nodes is finite,
the token walk must include at least a circuit. Assume that the circuit is defined by the sequence of nodes

p = {ih ∈ N , h = 1, 2 . . . r} with i1 = ir.

Since uihih+1
= 1, for h = 1, . . . , r − 1, it implies

xih − xih+1
≥ γih,ih+1

.

Summing up for all the considered values of h, the following is obtained

r−1∑︂

h=1

xih − xih+1
= xi1 − xir = xi1 − xi1 = 0 ≥

r−1∑︂

h=1

γih,ih+1
. (B.1)

Hence, the length L(p) of the circuit p is non-positive, in contradiction with Assumption 7.1.c on the absence of
non-positive circuits. As the walk of the injected token has no circuit, it is a path from the source node i to the
destination node j. Hence, x(k + 1) = x(k) ∈ O if j is a sink node, and x(k + 1) = x(k) + ej otherwise. In the
latter case x(k + 1) ∈ O since xr(k + 1) = xr(k) for all nodes r ̸= j and because Policy 8.1 imposes that if the
token stops in j then xj(k) + 1− xr(k) = xj(k + 1)− xr(k) ≤ γjk for all r ∈ Nj .

Proof of Theorem 8.2.

An immediate consequence of Theorem 8.1 is that the number of tokens V (x) in the network is non–decreasing,
i.e, V (x(k + 1)) ≥ V (x(k)) when the state is admissible. Hence, V (x(k)) either converges to a finite value or
diverges to +∞. Lemma 8.2 excludes the latter possibility. Hence, V (x(k)) reaches a finite limit V̄ from below.
Since V is integer-valued, this limit is reached in a finite time k̄:

V (x(k)) = V̄ ≤ γ̄ |N |(|N |−1)
2

, k ≥ k̄. (B.2)

First, assume that at some time k′ a condition is reached in which whenever a new token is injected in a non-empty
subset of the sources nodes this triggers the expulsion of a token from a sink in T without increasing the state;
by Theorem 8.1, it necessarily holds that x(k′ + 1) = x(k′), and then V (x(k′ + 1)) = V (x(k′)), which means that
x(k̄) is a rest state. By Condition Eq. (B.2), k′ is finite: indeed, V (x(k′)) ≤ V̄ and k′ ≤ k̄.

Now assume that Condition Eq. (B.2) is reached (i.e., that V (x(k)) has converged to V̄ ) by persistently
injecting at least a token in each source node. Then, for k ≥ k̄, the injection of a new token in any source node
triggers the expulsion of a token from a sink in T , hence x(k + 1) = x(k) = x(k̄), which means that x(k̄) is a
global rest state.

In the special case of single-source network, initially, every token inserted in the network increases V (x(k)) by
1. Once a new token reaches a sink, all the successive ones do the same and V (x(k)) = V̄ is reached. Then, the
maximum number of tokens that needs to be inserted is equal to the upper bound of V̄ , minus the number of
tokens that are initially already present in the buffers of the network nodes, i.e., V (x(0)).

Proof of Theorem 8.3.

Under the theorem hypotheses, V (x(k)) is non-increasing, since tokens can only leave the network. Then, either
V (x(k)) converges to V from above or to −∞. The latter situation may not occur. Indeed, Policy 8.1 imposes
that a token in node i ∈ N may leave the network only along a path p = {hs ∈ N , s = 1, . . . r}, with h1 = i
and hr a sink node in T , such that condition xhs − xhs+1 ≥ γhs,hs+1 holds for s = 1, . . . r − 1. Summing up the
inequalities for all s = 1, . . . r − 1, it is obtained that also xi > L(p) hold and, being the number of nodes finite,



APPENDICES , Appendix B — Proofs from Part II 191

the value of V (x(k)) cannot keep on decreasing. Differently, V (x(k)) converges in finite time to V as V (x(k)) can
assume solely integer values.

Following the same reasoning in the proof of Theorem 2, the subnetwork of G induced by the arcs (i, j) traversed
by a moving token consists of a forest of non-intersecting paths and includes no circuits. Hence, if V (x(k)) = V
for k ≥ 0 then x(k) = x(k) for all k > k if no tokens are injected. Consequently, x(k) ∈ O.

Proof of Theorem 8.4.

Assume that at time k the state x(k) is admissible and that a new token is injected in node i. This token reaches
its destination node j along a path p = {i = h0, h1, . . . , hr = j}. Following the same arguments from the proof of
Theorem 8.2, it follows that

xi(k)− xj(k) =
r−1∑︂

s=0

γhs,hs+1
= L(p).

Now assume that an alternative path p′ = {i = h′0, h
′
1, . . . , h

′
r = j} shorter than p exists. Then,is holds that

L(p′) < L(p) = xi(k)− xj(k).

To complete the proof, observe that the above inequality implies that, by Lemma 8.1, the state x is not admissible
in contradiction with the hypothesis x(k) ∈ O, as Eq. (8.1) does not hold for p′.

Proof of Corollary 8.1.

The fact that p is the shortest path from i to j follows from Theorem 8.4.

The first and the second points follow immediately from the proof of Theorem 8.4, recalling that the state of
nodes j, j′ ∈ T is zero, xj ≡ xj′ ≡ 0, by definition of sink.

For the third point, the discussion reported above can be repeated, considering i = h.

Proof of Theorem 9.1.

Suppose all the circuits φ in G fulfill C(φ) =
∑︁

φ σij > 0. A token with constrained cost c in node i ∈ φ which
travels this circuit will reach node i again with cost c + C(φ) > c: this means that in GE the token, initially in
node ic, would reach a different node ic+C(φ) (which is closer to iCmax). So, any walk in G becomes a path in GE
when there are no non-positive circuits for the costs σij .

Now assume that a circuit φ with C(φ) = 0 and, by Assumption 7.1, L(φ) > 0, exists in G. Now, the token
traveling the circuit would reach again node i with the same constrained cost c in G, equivalently the token would
reach the same node ic in GE . Hence, any circuit with C(φ) = 0 in G corresponds to at most C = |C| circuits in
GE , each one with a positive length L(φE) = L(φ).

Conversely, suppose there exists a circuit φE in GE . A token in node ic ∈ φE traveling this circuit would reach
node ic again. This means that the token travels a circuit φ in G, too: starting in node i with constrained cost
c, it returns to i with the same c, and this is possible only if C(φ) = 0. The costs L(φ) and L(φE) paid by the
token are the same in both networks by construction, and positive by Assumption 7.1.

Proof of Theorem 9.2.

Let p = {hc11 , . . . , hcrr : hcss ∈ NE} be a shortest path in GE from the source hc11 to a sink. By Corollary 8.1, there
cannot exist another path p′ with L(p′) < L(p) that joins hc11 with any other sink; by construction, p corresponds
either to a feasible walk or a path in G, in particular the shortest one. It will be shown that the former alternative
is not possible.

Assume, by contradiction, that p corresponds to a walk ω in G. Because of Theorem 9.1, there must exist two
values s′, s′′, 1 ≤ s′ < s′′ ≤ r, such that the corresponding nodes h

cs′
s′ , h

cs′′
s′′ in the path

p = {hc11 , . . . , h
cs′
s′ , . . . , h

cs′′
s′′ , . . . , h

cr
r }

are associated with a same node i ∈ N , i.e., i = hs′ = hs′′ , so that the subpath

p′ = {hcs′s′ , . . . , h
cs′′
s′′ }



192 APPENDICES , Appendix B — Proofs from Part II

corresponds to a circuit φ of the walk ω in G with C(φ) = C(p′) > 0 and L(φ) = L(p′) > 0 by Assumption 7.1.
Consider now the new path

p′′ = {hc11 , . . . , h
cs′
s′ , h

cs′′+1−L(p′)

s′′+1 . . . , hcr−L(p′)
r }

of GE that, in G, corresponds to the walk ω′ obtained by removing the circuit φ from the walk ω, passing from

h
cs′
s′ to h

cs′′+1−L(p′)

s′′+1 directly. It holds that L(p′′) = L(p) − L(φ) < L(p) and C(p′′) = C(p) − C(φ) < C(p). So
ω′ remains feasible for G, and p′′ is a path of GE , shorter than p, which contradicts the fact that path p′′ with
L(p′′) < L(p) that joins hc11 with any sink cannot exist. Therefore, p must correspond to a shortest feasible path
of G.







Bibliography

[1] Francesca Rosset, Daniele Casagrande, Babak Jafarpisheh, Pier Luca Montessoro, and Franco Blanchini.
“Optimal Control Approach to Scheduling Power Supply Facilities: Theory and Heuristics”. In: IEEE
Transactions on Control of Network Systems 9.4 (2022). © 2022 IEEE, pp. 1679–1691. doi: 10.1109/
TCNS.2022.3165019.

[2] Francesca Rosset, Franco Blanchini, and Raffaele Pesenti. “An agent–based decentralized threshold policy
finding the constrained shortest paths”. In: (2022). Submitted.

[3] Franco Blanchini, Carlos Andrés Devia, Giulia Giordano, Raffaele Pesenti, and Francesca Rosset. “Fair
and Sparse Solutions in Network-Decentralized Flow Control”. In: IEEE Control Systems Letters 6 (2022).
© 2022 IEEE, pp. 2984–2989. doi: 10.1109/LCSYS.2022.3181341.

[4] Georgios C Chasparis. “Measurement-based efficient resource allocation with demand-side adjustments”.
In: Automatica 106 (2019), pp. 274–283.

[5] John S Vardakas, Nizar Zorba, and Christos V Verikoukis. “A survey on demand response programs in
smart grids: Pricing methods and optimization algorithms”. In: IEEE Communications Surveys & Tutorials
17.1 (2015), pp. 152–178.

[6] Tariq Samad, Edward Koch, and Petr Stluka. “Automated demand response for smart buildings and
microgrids: The state of the practice and research challenges”. In: Proceedings of the IEEE 104.4 (2016),
pp. 726–744.

[7] Sijie Chen and Chen-Ching Liu. “From demand response to transactive energy: state of the art”. In: Journal
of Modern Power Systems and Clean Energy 5.1 (2017), pp. 10–19.

[8] Miadreza Shafie-khah, Pierluigi Siano, Jamshid Aghaei, Mohammad AS Masoum, Fangxing Li, and João
PS Catalão. “Comprehensive review of the recent advances in industrial and commercial DR”. In: IEEE
Transactions on Industrial Informatics 15.7 (2019), pp. 3757–3771.

[9] Dario Bauso. “Dynamic demand and mean-field games”. In: IEEE Transactions on Automatic Control
62.12 (2017), pp. 6310–6323.

[10] Maria Lorena Tuballa and Michael Lochinvar Abundo. “A review of the development of Smart Grid tech-
nologies”. In: Renewable and Sustainable Energy Reviews 59 (2016), pp. 710–725.

[11] Daniel E Olivares, Ali Mehrizi-Sani, Amir H Etemadi, Claudio A Cañizares, Reza Iravani, Mehrdad Kaz-
erani, Amir H Hajimiragha, Oriol Gomis-Bellmunt, Maryam Saeedifard, Rodrigo Palma-Behnke, et al.
“Trends in microgrid control”. In: IEEE Transactions on smart grid 5.4 (2014), pp. 1905–1919.

[12] Marc Beaudin and Hamidreza Zareipour. “Home energy management systems: A review of modelling and
complexity”. In: Renewable and sustainable energy reviews 45 (2015), pp. 318–335.

[13] AM Vega, F Santamaria, and E Rivas. “Modeling for home electric energy management: A review”. In:
Renewable and Sustainable Energy Reviews 52 (2015), pp. 948–959.

[14] Hussain Shareef, Maytham S Ahmed, Azah Mohamed, and Eslam Al Hassan. “Review on home energy
management system considering demand responses, smart technologies, and intelligent controllers”. In: Ieee
Access 6 (2018), pp. 24498–24509.

[15] Usman Zafar, Sertac Bayhan, and Antonio Sanfilippo. “Home energy management system concepts, con-
figurations, and technologies for the smart grid”. In: IEEE access 8 (2020), pp. 119271–119286.

[16] Joy Chandra Mukherjee and Arobinda Gupta. “A review of charge scheduling of electric vehicles in smart
grid”. In: IEEE Systems Journal 9.4 (2015), pp. 1541–1553.

[17] Qinglong Wang, Xue Liu, Jian Du, and Fanxin Kong. “Smart charging for electric vehicles: A survey from
the algorithmic perspective”. In: IEEE Communications Surveys & Tutorials 18.2 (2016), pp. 1500–1517.

[18] Himadry Shekhar Das, Mohammad Mominur Rahman, S Li, and CW Tan. “Electric vehicles standards,
charging infrastructure, and impact on grid integration: A technological review”. In: Renewable and Sus-
tainable Energy Reviews 120 (2020), p. 109618.

https://doi.org/10.1109/TCNS.2022.3165019
https://doi.org/10.1109/TCNS.2022.3165019
https://doi.org/10.1109/LCSYS.2022.3181341


196 BIBLIOGRAPHY

[19] Nanduni I Nimalsiri, Chathurika P Mediwaththe, Elizabeth L Ratnam, Marnie Shaw, David B Smith, and
Saman K Halgamuge. “A survey of algorithms for distributed charging control of electric vehicles in smart
grid”. In: IEEE Transactions on Intelligent Transportation Systems 21.11 (2020), pp. 4497–4515.

[20] Julian Barreiro-Gomez, Hamidou Tembine, Leonardo Stella, Dario Bauso, and Patrizio Colaneri. “Risk-
Aware Control and Games in Engineering”. In: 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE. 2020, pp. 3860–3870.

[21] Zachary J Lee, Daniel Chang, Cheng Jin, George S Lee, Rand Lee, Ted Lee, and Steven H Low. “Large-scale
adaptive electric vehicle charging”. In: 2018 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm). IEEE. 2018, pp. 1–7.

[22] Zachary J Lee, George Lee, Ted Lee, Cheng Jin, Rand Lee, Zhi Low, Daniel Chang, Christine Ortega, and
Steven H Low. “Adaptive charging networks: A framework for smart electric vehicle charging”. In: IEEE
Transactions on Smart Grid 12.5 (2021), pp. 4339–4350.

[23] Franco Blanchini, Franca Rinaldi, and Walter Ukovich. “A network design problem for a distribution system
with uncertain demands”. In: SIAM Journal on optimization 7.2 (1997), pp. 560–578.

[24] Franco Blanchini, Raffaele Pesenti, Franca Rinaldi, and Walter Ukovich. “Feedback control of production-
distribution systems with unknown demand and delays”. In: IEEE Transactions on Robotics and Automa-
tion 16.3 (2000), pp. 313–317.

[25] Zachary J Lee, Tongxin Li, and Steven H Low. “ACN-data: Analysis and applications of an open EV
charging dataset”. In: Proceedings of the Tenth ACM International Conference on Future Energy Systems.
2019, pp. 139–149.

[26] Jean-Yves Le Boudec and Dan-Cristian Tomozei. “Worst-Case Optimal Battery Filling Policies With Con-
strained Adjustable Service”. In: IEEE Transactions on Automatic Control 60.10 (2015), pp. 2650–2660.

[27] Yunjian Xu, Feng Pan, and Lang Tong. “Dynamic scheduling for charging electric vehicles: A priority rule”.
In: IEEE Transactions on Automatic Control 61.12 (2016), pp. 4094–4099.

[28] Jiangliang Jin, Yunjian Xu, and Zaiyue Yang. “Optimal deadline scheduling for electric vehicle charging
with energy storage and random supply”. In: Automatica 119 (2020), p. 109096.

[29] Dhaou Said, Soumaya Cherkaoui, and Lyes Khoukhi. “Queuing model for EVs charging at public sup-
ply stations”. In: 2013 9th International Wireless Communications and Mobile Computing Conference
(IWCMC). IEEE. 2013, pp. 65–70.

[30] Tian Zhang, Wei Chen, Zhu Han, and Zhigang Cao. “Charging scheduling of electric vehicles with local
renewable energy under uncertain electric vehicle arrival and grid power price”. In: IEEE Transactions on
Vehicular Technology 63.6 (2014), pp. 2600–2612.

[31] Krishnan Muralitharan, Rathinasamy Sakthivel, and Yan Shi. “Multiobjective optimization technique for
demand side management with load balancing approach in smart grid”. In: Neurocomputing 177 (2016),
pp. 110–119.

[32] Zahoor Ali Khan, Adia Khalid, Nadeem Javaid, Abdul Haseeb, Tanzila Saba, and Muhammad Shafiq.
“Exploiting nature-inspired-based artificial intelligence techniques for coordinated day-ahead scheduling to
efficiently manage energy in smart grid”. In: IEEE Access 7 (2019), pp. 140102–140125.

[33] Shaojie Tang, Qiuyuan Huang, Xiang-Yang Li, and Dapeng Wu. “Smoothing the energy consumption: Peak
demand reduction in smart grid”. In: 2013 Proceedings IEEE INFOCOM. IEEE. 2013, pp. 1133–1141.

[34] Qiang Tang, Kezhi Wang, Yun Song, Feng Li, and Jong Hyuk Park. “Waiting time minimized charging and
discharging strategy based on mobile edge computing supported by software-defined network”. In: IEEE
Internet of Things Journal 7.7 (2020), pp. 6088–6101.

[35] Angelos Aveklouris, Maria Vlasiou, and Bert Zwart. “A stochastic resource-sharing network for electric
vehicle charging”. In: IEEE Transactions on Control of Network Systems 6.3 (2019), pp. 1050–1061.

[36] Leehter Yao, Zolboo Damiran, and Wei Hong Lim. “Energy management optimization scheme for smart
home considering different types of appliances”. In: 2017 IEEE international conference on environment
and electrical engineering and 2017 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS
Europe). IEEE. 2017, pp. 1–6.

[37] Mahnoosh Alizadeh, Hoi-ToWai, Mainak Chowdhury, Andrea Goldsmith, Anna Scaglione, and Tara Javidi.
“Optimal pricing to manage electric vehicles in coupled power and transportation networks”. In: IEEE
Transactions on control of network systems 4.4 (2017), pp. 863–875.

[38] Zeinab Moghaddam, Iftekhar Ahmad, Daryoush Habibi, and Quoc Viet Phung. “Smart charging strategy
for electric vehicle charging stations”. In: IEEE Transactions on transportation electrification 4.1 (2018),
pp. 76–88.



BIBLIOGRAPHY 197

[39] Mahnoosh Alizadeh, Hoi-To Wai, Andrea Goldsmith, and Anna Scaglione. “Retail and wholesale electricity
pricing considering electric vehicle mobility”. In: IEEE Transactions on Control of Network Systems 6.1
(2019), pp. 249–260.

[40] S Rasoul Etesami, Walid Saad, Narayan B Mandayam, and H Vincent Poor. “Smart routing of electric
vehicles for load balancing in smart grids”. In: Automatica 120 (2020), p. 109148.

[41] Giulio Ferro, Massimo Paolucci, and Michela Robba. “Optimal charging and routing of electric vehicles
with power constraints and time-of-use energy prices”. In: IEEE Transactions on Vehicular Technology
69.12 (2020), pp. 14436–14447.

[42] Peter Brucker. “Scheduling algorithms”. In: Fifth Edition. Springer, 2007.

[43] Michael Pinedo. “Scheduling: Theory, Algorithms, And Systems”. In: Fifth Edition. Springer, 2016.

[44] Konstantin Kogan and Eugene Khmelnitsky. Scheduling: control-based theory and polynomial-time algo-
rithms. Vol. 43. Springer Science & Business Media, 2013.

[45] Mathijs M. de Weerdt, Michael Albert, Vincent Conitzer, and Koos van der Linden. “Complexity of
Scheduling Charging in the Smart Grid”. In: Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems. AAMAS ’18. Stockholm, Sweden, 2018, pp. 1924–1926.

[46] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. “Optimization
and approximation in deterministic sequencing and scheduling: a survey”. In: Annals of discrete mathe-
matics. Vol. 5. Elsevier, 1979, pp. 287–326.

[47] Linus Schrage. “A proof of the optimality of the shortest remaining processing time discipline”. In: Oper-
ations Research 16.3 (1968), pp. 687–690.

[48] Saeed Rubaiee and Mehmet Bayram Yildirim. “An energy-aware multiobjective ant colony algorithm to
minimize total completion time and energy cost on a single-machine preemptive scheduling”. In: Computers
& Industrial Engineering 127 (2019), pp. 240–252.

[49] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. “Scheduling subject to resource constraints:
classification and complexity”. In: Discrete applied mathematics 5.1 (1983), pp. 11–24.

[50] Jan Karel Lenstra. “Sequencing by enumerative methods”. In: (1977).

[51] Jianzhong Du, Joseph Y-T Leung, and Gilbert H Young. “Minimizing mean flow time with release time
constraint”. In: Theoretical Computer Science 75.3 (1990), pp. 347–355.

[52] Nhan-Quy Nguyen, Farouk Yalaoui, Lionel Amodeo, Hicham Chehade, and Pascal Toggenburger. “Total
completion time minimization for machine scheduling problem under time windows constraints with jobs’
linear processing rate function”. In: Computers & Operations Research 90 (2018), pp. 110–124.

[53] E. Kalvelagen. Modeling number of machine start-ups. 2014. url: https://yetanothermathprogramming
consultant.blogspot.com/2014/12/modeling-number-of-machine-start-ups.html.

[54] Vadim Utkin. “Variable structure systems with sliding modes”. In: IEEE Transactions on Automatic control
22.2 (1977), pp. 212–222.

[55] Francesco Martinelli, Chang Shu, and James R Perkins. “On the optimality of myopic production controls
for single-server, continuous-flow manufacturing systems”. In: IEEE Transactions on Automatic Control
46.8 (2001), pp. 1269–1273.

[56] Pooya Rezaei, Jeff Frolik, and Paul DH Hines. “Packetized plug-in electric vehicle charge management”.
In: IEEE Transactions on Smart Grid 5.2 (2014), pp. 642–650.

[57] Zachary J. Lee, Sunash Sharma, Daniel Johansson, and Steven H. Low. “ACN-Sim: An Open-Source
Simulator for Data-Driven Electric Vehicle Charging Research”. In: IEEE Transactions on Smart Grid
12.6 (2021), pp. 5113–5123.

[58] Franco Blanchini, Daniele De Caneva, Pier Luca Montessoro, and Davide Pierattoni. “Control-based p-
persistent adaptive communication protocol”. In: ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7.2 (2012), pp. 1–18.

[59] Franco Blanchini, Daniele Casagrande, Giulia Giordano, and Pier Luca Montessoro. “A robust decentralized
control for channel sharing communication”. In: IEEE Transactions on Control of Network Systems 4.2
(2017), pp. 336–346.

[60] Francesca Rosset. “Agent-based control for distributed energy management: study and evaluation”. MA
thesis. University of Udine, 2019.

[61] Babak Jafarpisheh, Francesca Rosset, Franco Blanchini, and Pier Luca Montessoro. “Agent-Based Dis-
tributed Control for Schedulable Appliances in Home Energy Management Systems”. In: (). In preparation.

https://yetanothermathprogrammingconsultant.blogspot.com/2014/12/modeling-number-of-machine-start-ups.html
https://yetanothermathprogrammingconsultant.blogspot.com/2014/12/modeling-number-of-machine-start-ups.html


198 BIBLIOGRAPHY

[62] Jeff Frolik and P Hines. “Urgency-driven, plug-in electric vehicle charging”. In: 2012 3rd IEEE PES Inno-
vative Smart Grid Technologies Europe (ISGT Europe). IEEE. 2012, pp. 1–5.

[63] Jonathan Currie, David I Wilson, Nick Sahinidis, and Jose Pinto. “OPTI: Lowering the barrier between
open source optimizers and the industrial MATLAB user”. In: Foundations of computer-aided process
operations 24 (2012), p. 32.

[64] Tobias Achterberg. “SCIP: solving constraint integer programs”. In: Mathematical Programming Compu-
tation 1.1 (2009), pp. 1–41.

[65] Francesco Marra, Guang Ya Yang, Chresten Træholt, Esben Larsen, Claus Nygaard Rasmussen, and Shi
You. “Demand profile study of battery electric vehicle under different charging options”. In: 2012 IEEE
power and energy society general meeting. IEEE. 2012, pp. 1–7.

[66] Chengxiu Chen, Fei Shang, Mohamad Salameh, and Mahesh Krishnamurthy. “Challenges and advance-
ments in fast charging solutions for EVs: A technological review”. In: 2018 IEEE Transportation Electrifi-
cation Conference and Expo (ITEC). IEEE. 2018, pp. 695–701.

[67] Elpiniki Apostolaki-Iosifidou, Paul Codani, and Willett Kempton. “Measurement of power loss during
electric vehicle charging and discharging”. In: Energy 127 (2017), pp. 730–742.

[68] Caltech. ACN-Data – A Public EV Charging Dataset. url: https://ev.caltech.edu/dataset (visited
on 06/07/2020).

[69] DATA.GOV. Electric Vehicle Population Data. url: https://catalog.data.gov/dataset/electric-
vehicle-population-data (visited on 06/07/2020).

[70] EVCompare.io. All Electric Passenger Cars. url: https://evcompare.io/cars/ (visited on 06/07/2020).

[71] ClipperCreek. EVSE Selector Tool. url: https://www.clippercreek.com/charging-station-selecto
r-tool/ (visited on 06/07/2020).

[72] Franco Blanchini, Daniele Casagrande, Filippo Fabiani, Giulia Giordano, and Raffaele Pesenti. “A network-
decentralised strategy for shortest-path-flow routing”. In: 2019 IEEE 58th Conference on Decision and
Control (CDC). IEEE. 2019, pp. 1126–1131.

[73] Daniel Ratton Figueiredo and Michele Garetto. “On the emergence of shortest paths by reinforced random
walks”. In: IEEE Transactions on Network Science and Engineering 4.1 (2016), pp. 55–69.

[74] Sheng Yu, Baoxian Zhang, Cheng Li, and Hussein T Mouftah. “Routing protocols for wireless sensor
networks with mobile sinks: A survey”. In: IEEE Communications Magazine 52.7 (2014), pp. 150–157.

[75] Zaher Al Aghbari, Ahmed M Khedr, Walid Osamy, Ifra Arif, and Dharma P Agrawal. “Routing in wireless
sensor networks using optimization techniques: A survey”. In: Wireless Personal Communications 111.4
(2020), pp. 2407–2434.

[76] James Evans. Optimization Algorithms for Networks and Graphs: Revised and Expanded. CRC Press, 2017.

[77] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh Basalamah. “A
survey of shortest-path algorithms”. In: arXiv preprint arXiv:1705.02044 (2017).

[78] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische Mathematik 1
(1959), pp. 269–271.

[79] Richard Bellman. “On a routing problem”. In: Quarterly of applied mathematics 16.1 (1958), pp. 87–90.

[80] Lester R Ford Jr. Network flow theory. Tech. rep. Rand Corp Santa Monica Ca, 1956.

[81] Stefan Funke and Sabine Storandt. “Consistent rounding of edge weights in graphs”. In: Ninth Annual
Symposium on Combinatorial Search. 2016.

[82] Herman Haverkort, David Kübel, and Elmar Langetepe. “Shortest-path-preserving rounding”. In: Inter-
national Workshop on Combinatorial Algorithms. Springer. 2019, pp. 265–277.

[83] Christos H Papadimitriou and Mihalis Yannakakis. “Shortest paths without a map”. In: Theoretical Com-
puter Science 84.1 (1991), pp. 127–150.

[84] Ariel Felner, Roni Stern, Asaph Ben-Yair, Sarit Kraus, and Nathan Netanyahu. “PHA*: Finding the
shortest path with A* in an unknown physical environment”. In: Journal of Artificial Intelligence Research
21 (2004), pp. 631–670.

[85] Daniele Ferone, Paola Festa, Antonio Napoletano, and Tommaso Pastore. “Shortest paths on dynamic
graphs: a survey”. In: Pesquisa Operacional 37 (2017), pp. 487–508.

[86] Sunita and Garg Deepak. “Dynamizing Dijkstra: A solution to dynamic shortest path problem through
retroactive priority queue”. In: Journal of King Saud University-Computer and Information Sciences 33.3
(2021), pp. 364–373.

https://ev.caltech.edu/dataset
https://catalog.data.gov/dataset/electric-vehicle-population-data
https://catalog.data.gov/dataset/electric-vehicle-population-data
https://evcompare.io/cars/
https://www.clippercreek.com/charging-station-selector-tool/
https://www.clippercreek.com/charging-station-selector-tool/


BIBLIOGRAPHY 199

[87] Alireza Tahbaz-Salehi and Ali Jadbabaie. “A one-parameter family of distributed consensus algorithms
with boundary: From shortest paths to mean hitting times”. In: Proceedings of the 45th IEEE Conference
on Decision and Control. IEEE. 2006, pp. 4664–4669.

[88] Yinyan Zhang and Shuai Li. “Distributed biased min-consensus with applications to shortest path plan-
ning”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 5429–5436.

[89] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. “Ant colony optimization”. In: IEEE computational
intelligence magazine 1.4 (2006), pp. 28–39.

[90] Feng Yu, Yanjun Li, and Tie-Jun Wu. “A temporal ant colony optimization approach to the shortest path
problem in dynamic scale-free networks”. In: Physica A: Statistical Mechanics and its Applications 389.3
(2010), pp. 629–636.

[91] Andrei Lissovoi and Carsten Witt. “Runtime analysis of ant colony optimization on dynamic shortest path
problems”. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation. 2015,
pp. 1605–1612.

[92] Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio. “Applications of river formation dynamics”. In:
Journal of computational science 22 (2017), pp. 26–35.

[93] Grzegorz Redlarski, Mariusz Dabkowski, and Aleksander Palkowski. “Generating optimal paths in dynamic
environments using River Formation Dynamics algorithm”. In: Journal of Computational Science 20 (2017),
pp. 8–16.

[94] Xiaoge Zhang, Qing Wang, Andrew Adamatzky, Felix TS Chan, Sankaran Mahadevan, and Yong Deng.
“An improved physarum polycephalum algorithm for the shortest path problem”. In: The Scientific World
Journal 2014 (2014).

[95] Xiaoge Zhang, Felix TS Chan, Hai Yang, and Yong Deng. “An adaptive amoeba algorithm for shortest
path tree computation in dynamic graphs”. In: Information Sciences 405 (2017), pp. 123–140.

[96] Xuezhi Zhu, Wenjian Luo, and Tao Zhu. “An improved genetic algorithm for dynamic shortest path
problems”. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE. 2014, pp. 2093–2100.

[97] Ammar W Mohemmed, Nirod Chandra Sahoo, and Tan Kim Geok. “Solving shortest path problem using
particle swarm optimization”. In: Applied Soft Computing 8.4 (2008), pp. 1643–1653.

[98] Katja Verbeeck and Ann Nowe. “Colonies of learning automata”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 32.6 (2002), pp. 772–780.

[99] Sudip Misra and B John Oommen. “Dynamic algorithms for the shortest path routing problem: learning
automata-based solutions”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics) 35.6 (2005), pp. 1179–1192.

[100] Hamid Beigy and Mohammad Reza Meybodi. “A sampling method based on distributed learning automata
for solving stochastic shortest path problem”. In: Knowledge-Based Systems 212 (2021), p. 106638.

[101] William T Zaumen and JJ Garcia-Luna Aceves. “Dynamics of distributed shortest-path routing algo-
rithms”. In: Proceedings of the conference on Communications architecture & protocols. 1991, pp. 31–42.

[102] Horst F Wedde and Muddassar Farooq. “A comprehensive review of nature inspired routing algorithms for
fixed telecommunication networks”. In: Journal of Systems Architecture 52.8-9 (2006), pp. 461–484.

[103] Azzedine Boukerche, Begumhan Turgut, Nevin Aydin, Mohammad Z Ahmad, Ladislau Bölöni, and Damla
Turgut. “Routing protocols in ad hoc networks: A survey”. In: Computer networks 55.13 (2011), pp. 3032–
3080.

[104] Eiman Alotaibi and Biswanath Mukherjee. “A survey on routing algorithms for wireless ad-hoc and mesh
networks”. In: Computer networks 56.2 (2012), pp. 940–965.

[105] Franco Blanchini, Daniele Casagrande, Filippo Fabiani, Giulia Giordano, David Palma, and Raffaele Pe-
senti. “A threshold mechanism ensures minimum-path flow in lightning discharge”. In: Scientific reports
11.1 (2021), pp. 1–9.

[106] Frederick Bock and Scott Cameron. “Allocation of network traffic demand by instant determination of
optimum paths”. In: Operations Research. Vol. 6. 4. INST OPERATIONS RESEARCH MANAGEMENT
SCIENCES 901 ELKRIDGE LANDING RD, STE 400, LINTHICUM HTS, MD 21090-2909. 1958, pp. 633–
634.

[107] Robert M. Peart, Paul H. Randolph, and Thomas E. Bartlett. “Letter to the Editor—The Shortest-Route
Problem”. In: Operations Research 8 (1960), pp. 866–868.

[108] George J Minty. “A comment on the shortest-route problem”. In: Operations Research 5.5 (1957), pp. 724–
724.



200 BIBLIOGRAPHY

[109] Victor Klee. “A “string algorithm” for shortest path in directed networks”. In: Operations Research 12.3
(1964), pp. 428–432.

[110] Linkai Bu and Tzi-Dar Chiueh. “Solving the shortest path problem using an analog network”. In: IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 46.11 (1999), pp. 1360–
1363.

[111] Eleonora Papadimitriou, George Yannis, and John Golias. “A critical assessment of pedestrian behaviour
models”. In: Transportation research part F: traffic psychology and behaviour 12.3 (2009), pp. 242–255.

[112] Dario Bauso, Xuan Zhang, and Antonis Papachristodoulou. “Density Flow in Dynamical Networks via
Mean-Field Games”. In: IEEE Transactions on Automatic Control 62.3 (2017), pp. 1342–1355. doi: 10.
1109/TAC.2016.2584979.

[113] Hans C Joksch. “The shortest route problem with constraints”. In: Journal of Mathematical analysis and
applications 14.2 (1966), pp. 191–197.

[114] Michael R Garey. “A Guide to the Theory of NP-Completeness”. In: Computers and intractability (1979).

[115] Stefan Irnich and Guy Desaulniers. “Shortest path problems with resource constraints”. In: Column gen-
eration. Springer, 2005, pp. 33–65.

[116] Luigi Di Puglia Pugliese and Francesca Guerriero. “A survey of resource constrained shortest path problems:
Exact solution approaches”. In: Networks 62.3 (2013), pp. 183–200.

[117] Irina Dumitrescu and Natashia Boland. “Improved preprocessing, labeling and scaling algorithms for the
weight-constrained shortest path problem”. In: Networks: An International Journal 42.3 (2003), pp. 135–
153.

[118] Xiaoyan Zhu and Wilbert E Wilhelm. “Three-stage approaches for optimizing some variations of the
resource constrained shortest-path sub-problem in a column generation context”. In: European journal of
operational research 183.2 (2007), pp. 564–577.

[119] Xiaoyan Zhu and Wilbert E Wilhelm. “A three-stage approach for the resource-constrained shortest path
as a sub-problem in column generation”. In: Computers & Operations Research 39.2 (2012), pp. 164–178.

[120] Gabriel Y Handler and Israel Zang. “A dual algorithm for the constrained shortest path problem”. In:
Networks 10.4 (1980), pp. 293–309.

[121] Leonardo Lozano and Andrés L Medaglia. “On an exact method for the constrained shortest path problem”.
In: Computers & Operations Research 40.1 (2013), pp. 378–384.

[122] Xiaoge Zhang, Yajuan Zhang, Yong Hu, Yong Deng, and Sankaran Mahadevan. “An adaptive amoeba
algorithm for constrained shortest paths”. In: Expert Systems with Applications 40.18 (2013), pp. 7607–
7616.

[123] Hongping Wang, Xi Lu, Xiaoge Zhang, Qing Wang, and Yong Deng. “A bio-inspired method for the
constrained shortest path problem”. In: The Scientific World Journal 2014 (2014).

[124] Yannis Marinakis, Athanasios Migdalas, and Angelo Sifaleras. “A hybrid particle swarm optimization–
variable neighborhood search algorithm for constrained shortest path problems”. In: European Journal of
Operational Research 261.3 (2017), pp. 819–834.

[125] Yong Zheng, Min Han, Liuting He, Ya Li, Guanglin Xing, and Rui Hou. “A QoS-supported Multi-
constrained Routing Strategy Based on Ant-Colony Optimization for Named Data Networking”. In: 2018
1st IEEE International Conference on Hot Information-Centric Networking (HotICN). IEEE. 2018, pp. 18–
23.

[126] KePing Li, ZiYou Gao, Tao Tang, and LiXing Yang. “Solving the constrained shortest path problem using
random search strategy”. In: Science China Technological Sciences 53.12 (2010), pp. 3258–3263.

[127] Franco Blanchini, Franca Rinaldi, and Walter Ukovich. “A network design problem for a distribution system
with uncertain demands”. In: SIAM Journal on optimization 7.2 (1997), pp. 560–578.

[128] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-world’ networks”. In: Nature
393.6684 (1998), pp. 440–442.

[129] MathWorks documentation for MATLAB. Build Watts-Strogatz Small World Graph Model. 2015. url:
https://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-

model.html (visited on 07/18/2022).

[130] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. “Network flows”. In: (1988).

[131] Altuğ İftar and Edward J. Davison. “Decentralized control strategies for dynamic routing”. In: Optimal
Control Applications and Methods 23.6 (2002), pp. 329–355.

https://doi.org/10.1109/TAC.2016.2584979
https://doi.org/10.1109/TAC.2016.2584979
https://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html
https://www.mathworks.com/help/matlab/math/build-watts-strogatz-small-world-graph-model.html


BIBLIOGRAPHY 201

[132] Franklin Moss and Adrian Segall. “An optimal control approach to dynamic routing in networks”. In: IEEE
Transactions on Automatic Control 27.2 (1982), pp. 329–339.

[133] Mathias Bürger and Claudio De Persis. “Dynamic coupling design for nonlinear output agreement and
time-varying flow control”. In: Automatica 51 (2015), pp. 210–222.

[134] Giacomo Como. “On resilient control of dynamical flow networks”. In: Annual Reviews in Control 43
(2017), pp. 80–90.

[135] Samuel Coogan and Murat Arcak. “A compartmental model for traffic networks and its dynamical behav-
ior”. In: IEEE Transactions on Automatic Control 60.10 (2015), pp. 2698–2703.

[136] Altuğ İftar. “A linear programming based decentralized routing controller for congested highways”. In:
Automatica 35.2 (1999), pp. 279–292.

[137] Gustav Nilsson and Giacomo Como. “Generalized proportional allocation policies for robust control of
dynamical flow networks”. In: IEEE Transactions on Automatic Control (2022).

[138] Angelo Alessandri, Mauro Gaggero, and Flavio Tonelli. “Robust predictive control for the management
of multi-echelon distribution chains”. In: 53rd IEEE Conference on Decision and Control. IEEE. 2014,
pp. 6459–6464.

[139] Franco Blanchini, Stefano Miani, and Walter Ukovich. “Control of production-distribution systems with
unknown inputs and system failures”. In: IEEE Transactions on Automatic Control 45.6 (2000), pp. 1072–
1081.

[140] Michael Cantoni, Erik Weyer, Yuping Li, Su Ki Ooi, Iven Mareels, and Matthew Ryan. “Control of large-
scale irrigation networks”. In: Proceedings of the IEEE 95.1 (2007), pp. 75–91.

[141] Tjardo Scholten, Claudio De Persis, and Pietro Tesi. “Optimal steady state regulation of distribution
networks with input and flow constraints”. In: 2016 American Control Conference (ACC). IEEE. 2016,
pp. 6953–6958.

[142] Sebastian Trip, Tjardo Scholten, and Claudio De Persis. “Optimal regulation of flow networks with transient
constraints”. In: Automatica 104 (2019), pp. 141–153.

[143] Hyo-Sung Ahn, Byeong-Yeon Kim, Young-Hun Lim, Byung-Hun Lee, and Kwang-Kyo Oh. “Distributed
coordination for optimal energy generation and distribution in cyber-physical energy networks”. In: IEEE
transactions on cybernetics 48.3 (2018), pp. 941–954.

[144] Franco Blanchini, Elisa Franco, Giulia Giordano, Vahid Mardanlou, and Pier Luca Montessoro. “Com-
partmental flow control: Decentralization, robustness and optimality”. In: Automatica 64 (2016), pp. 18–
28.

[145] John A Jacquez and Carl P Simon. “Qualitative theory of compartmental systems”. In: Siam Review 35.1
(1993), pp. 43–79.

[146] Jieqiang Wei and Arjan J van der Schaft. “Load balancing of dynamical distribution networks with flow
constraints and unknown in/outflows”. In: Systems & Control Letters 62.11 (2013), pp. 1001–1008.

[147] Dario Bauso, Franco Blanchini, Laura Giarré, and Raffaele Pesenti. “The linear saturated decentralized
strategy for constrained flow control is asymptotically optimal”. In: Automatica 49.7 (2013), pp. 2206–2212.

[148] Franco Blanchini, Elisa Franco, and Giulia Giordano. “Network-decentralized control strategies for stabi-
lization”. In: IEEE Transactions on Automatic Control 60.2 (2015), pp. 491–496.

[149] Franco Blanchini, Daniele Casagrande, Filippo Fabiani, Giulia Giordano, and Raffaele Pesenti. “A network-
decentralised strategy for shortest-path-flow routing”. In: 2019 IEEE 58th Conference on Decision and
Control (CDC). IEEE. 2019, pp. 1126–1131.

[150] Franco Blanchini, Daniele Casagrande, Filippo Fabiani, Giulia Giordano, David Palma, and Raffaele Pe-
senti. “A threshold mechanism ensures minimum-path flow in lightning discharge”. In: Scientific reports
11.1 (2021), pp. 1–9.

[151] Franco Blanchini, Daniele Casagrande, Filippo Fabiani, Giulia Giordano, and Raffaele Pesenti. “Network-
decentralised optimisation and control: An explicit saturated solution”. In: Automatica 103 (2019), pp. 379–
389.

[152] Simone Milanesi, Francesca Rosset, Marta Colaneri, Giulia Giordano, Kenneth Pesenti, Franco Blanchini,
Paolo Bolzern, Patrizio Colaneri, Paolo Sacchi, Giuseppe De Nicolao, and Raffaele Bruno. “Early detection
of variants of concern via funnel plots of regional reproduction numbers”. In: Scientific Reports 13.1 (2023),
p. 1052. doi: 10.1038/s41598-022-27116-8.

[153] Franco Blanchini, Lorenzo Brunato, Carlo Drioli, Raffaele Pesenti, and Francesca Rosset. “Optimal tra-
jectory generation in corridors via quadratic programming and its receding horizon implementation”. In:
(2022). Submitted.

https://doi.org/10.1038/s41598-022-27116-8




List of publications
and submitted manuscripts

The main results I’ve worked on during the three years of my Ph.D. are presented in the following papers. Parts I
to III of this thesis are based on them.

• Francesca Rosset, Daniele Casagrande, Babak Jafarpisheh, Pier Luca Montessoro, and Franco
Blanchini. “Optimal Control Approach to Scheduling Power Supply Facilities: Theory and
Heuristics”. In: IEEE Transactions on Control of Network Systems 9.4 (2022). © 2022
IEEE, pp. 1679–1691. DOI: 10.1109/TCNS.2022.3165019

• Francesca Rosset, Franco Blanchini, and Raffaele Pesenti. “An agent–based decentralized
threshold policy finding the constrained shortest paths”. In: (2022). Submitted

• Franco Blanchini, Carlos Andrés Devia, Giulia Giordano, Raffaele Pesenti, and Francesca
Rosset. “Fair and Sparse Solutions in Network-Decentralized Flow Control”. In: IEEE
Control Systems Letters 6 (2022). © 2022 IEEE, pp. 2984–2989. DOI: 10.1109/LCSYS.2022.
3181341

During these three years of my Ph.D., I’ve also had the opportunity to work in some other topics, which are
not presented in this thesis. The two main resulting works are just briefly described below.

• Simone Milanesi, Francesca Rosset, Marta Colaneri, Giulia Giordano, Kenneth Pesenti, Franco
Blanchini, Paolo Bolzern, Patrizio Colaneri, Paolo Sacchi, Giuseppe De Nicolao, and Raffaele
Bruno. “Early detection of variants of concern via funnel plots of regional reproduction num-
bers”. In: Scientific Reports 13.1 (2023), p. 1052. DOI: 10.1038/s41598-022-27116-8

The first work [152] comes from the collaboration between Simone Milanesi, Marta Colaneri, Giulia Giordano,
Kenneth Pesenti, Franco Blanchini, Paolo Bolzern, Patrizio Colaneri, Paolo Sacchi, Giuseppe De Nicolao,
Raffaele Bruno, and me, and is inspired by the recent emergence and spread of the COVID-19 pandemic.
It is well known that the outbreaks of new variants of concern can have severe health-economic-social
consequences: the early detection of these events certainly help to contain the spread, or at least possibly
mitigate the effects.

A statistical tool based on funnel plots has been presented to monitor the regional reproduction numbers Rt’s
of a country and identify the regions whose Rt’s behave anomalously with respect to the average national
one, for instance, because a new variant has started spreading in there.

There are some advantages for applying the proposed methodology. The first one is that the method is
based on epidemiological data that is published daily, hence it is faster and requires a lower cost compared
to massive genomic sequencing, which is used to identify variants of concern. Note that funnel plots detect
anomalous regions, but not the causes of the anomaly: a specific further investigation is required, possibly
through genomic sequencing, which can be concentrated in the abnormal regions, instead of being performed
in the whole nation. Moreover, anomalies due to other causes, like for instance malfunctioning of the testing
infrastructure, can be detected. Another advantage is that funnel plots are designed to reduce the number
of false alarms due to the sample size, which is the number of infectious cases. Indeed, it is expected that
if this is low, the variability of the Rt is larger.

As an additional result, plotting the temporal evolution of the Rt’s as a function of the number of infectious
cases results in a clockwise spiral trend: indeed, when the Rt is above 1 the trajectories go rightwards,
because infectious cases tend to increase, while when the Rt is below 1 the trajectories go leftwards when
Rt is less than one, because the infectious cases tend to decrease.

The proposed methodology has been applied to five case studies that have really occurred recently: the first
emergence of the Delta variant in India in February 2021, the first emergence of the Omicron variant in

https://doi.org/10.1109/TCNS.2022.3165019
https://doi.org/10.1109/LCSYS.2022.3181341
https://doi.org/10.1109/LCSYS.2022.3181341
https://doi.org/10.1038/s41598-022-27116-8


204 LIST OF PUBLICATIONS AND SUBMITTED MANUSCRIPT

South Africa in November 2021, the initial spread of the Omicron variant in England in December 2021, the
initial spread of the Omicron variant in Italy in December 2021, and a malfunctioning episode of a diagnostic
infrastructure in England in September 2021, resulting in a large number of false positive cases reported. In
all cases, an early warning is raised by applying the proposed tool, which anticipates the official detection
that has actually occurred. This demonstrates the efficacy of the proposed approach in the early detection
of the anomalies regarding the COVID-19 spread.

• Franco Blanchini, Lorenzo Brunato, Carlo Drioli, Raffaele Pesenti, and Francesca Rosset.
“Optimal trajectory generation in corridors via quadratic programming and its receding hori-
zon implementation”. In: (2022). Submitted

The second work [153] comes from the collaboration between Franco Blanchini, Lorenzo Brunato, Carlo
Drioli, Raffaele Pesenti, and me. In this paper, the problem of generating a trajectory within a corridor
formed by a sequence of convex contiguous regions is considered, under the condition that the union of each
pair of consecutive regions is convex, too.

A model of the trajectory has been formulated as a finite-dimensional discrete-time linear system. In
particular, a specific node is to be determined within each region and the trajectory must pass through all
these points. Each node is characterized by a state, which describes the position and velocity components
of the moving point that reaches it. It is imposed that the time to move between two consecutive nodes is
given and that in each of these intervals, the curve components have to be polynomials. Specifically, the
components of the acceleration are forced to be first-order polynomials, whose coefficients are the decision
variables.

The trajectory must be the optimal one according to a given objective function to be minimized: the integral
of the square of the acceleration; the integral of the square of the speed; the integral of the square of the
derivative of the acceleration (jerk); the integral of the squared distance from the middle line; the sum of
squared distances between consecutive nodes. All of these objectives can be expressed as quadratic integral
cost functions of the state of the node points and the decision variables.

Also, other than imposing that the curve must lie within the corridor, several other constraints can be
imposed, too: continuity of the acceleration components, no retrograde movement of the moving point,
minimum (maximum) speed along a direction, maximum angle with respect to a fixed direction, maximum
(approximate) curvature. In any case, while these constraints must be fulfilled for all the time instants,
instead of imposing infinitely many constraints, it is possible to express them as linear functions of the state
of the node points and the decision variables.

Then, the resulting formulation reduces to a linear-quadratic programming problem with a finite number
of variables and constraints. An optimal trajectory can be easily computed even for large instances where
a very long sequence of regions is to be considered. Moreover, the problem can be efficiently implemented
using a receding horizon approach and, by introducing suitable conditions, recursive feasibility is ensured.
This allows for online control, capable of taking into account possible modifications of the corridor over
time; the support to unknown sequences of regions is also achieved.

Applications of this technique include car trajectory generation in a track and ship trajectory navigation
problems inside channels.


	Front Matter
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures

	Introduction
	Part I Admission control optimization for waiting time minimization
	Introduction to Part I
	The main idea
	Literature review
	Contributions

	Problem setup
	Resource supply facilities
	Request and supply characterization
	Supply strategies
	The waiting time as a function of the supply profile
	A state variable accounting for the delay

	The capacity of the system
	The minimization of the delay
	Linear Programming and Mixed-Integer Linear Programming problems

	Problem statement

	The optimal control framework
	The non-interruptible case
	Discrete-time implementation: Mixed integer programming using the LC and SU techniques

	The interruptible case
	Discrete-time implementation: Mixed integer programming using the LC and SU techniques

	The variable-rate case
	Discrete-time implementation: Mixed integer programming using the LC and SU techniques
	A relaxed problem to get a heuristic solution efficiently
	A greedy strategy for the relaxed problem

	Recap of the relations between the optimal costs and their lower bounds

	Online heuristics: centralized and decentralized solutions
	The non-interruptible case
	The greedy heuristic (NI strategy)
	The predictive control heuristic (NI strategy)
	The priority queue-based heuristic (NI strategy)
	The p-persistent-based heuristic (NI strategy)
	The reservation-variable-based heuristic (NI strategy)

	The interruptible case
	The greedy heuristic (IT strategy)
	The predictive control heuristic (IT strategy)
	The priority queue-based heuristic (IT strategy)
	The p-persistent-based heuristic (IT strategy)
	The reservation-variable-based heuristic (IT strategy)

	The variable-rate case
	The greedy heuristic (VR strategy)
	The predictive control heuristic (VR strategy)
	The priority queue-based heuristic (VR strategy)
	The p-persistent-based heuristic (VR strategy)
	The reservation-variable-based heuristic (VR strategy)


	Application to EV charging scheduling
	Scenario and data
	Data preprocessing
	The input data for the requests
	Parameters, simulation settings, and metrics

	Results
	Discussion


	Part II Decentralized agent-based policies for path problems
	Introduction to Part II
	The main idea
	Transition rule
	An example in a simple network
	Negative costs and states
	Constrained paths

	Literature review 
	Contributions

	Problem setup
	Weighted directed networks with moving tokens
	Possible traveled routes: paths, walks and circuits
	Buffers in the nodes

	Decentralized policies
	Timing of the system dynamics
	Assumptions
	Problem statement and its variations

	A decentralized agent-based policy finding the shortest paths
	Admissibility of the state
	Dynamics of the state of the network
	Decentralized transition rule
	Properties of the state of the system
	Special admissible states
	Networks in an admissible state
	Networks in a non-admissible state

	Optimality of the traveled paths
	Maximal rest state
	Multiple source nodes, sink nodes, and shortest outgoing paths

	Dynamic networks
	Non-integer arc costs
	An enhanced policy considering virtual tokens

	A decentralized agent-based policy finding the constrained shortest paths
	Constrained costs and feasible routes
	Admissibility of the state
	Dynamics of the state of the network
	Decentralized transition rule
	Expanded network model
	Properties of the system
	Negative arc costs
	Non-integer arc costs
	An enhanced policy considering virtual tokens

	Illustrative example in a small network
	Scenario and data
	Simulation settings

	Metrics
	Results and discussion

	Illustrative example in a large grid network
	Scenario and data
	Results and discussion

	Illustrative example in a large small-world network
	Scenario and data
	Results and discussion


	Part III Decentralized flow control for fair and sparse solutions
	Introduction to Part III
	The main idea
	Literature review
	Contributions

	Problem setup
	Flow networks
	Buffers in the nodes
	Controlled flows associated with the arcs
	The network incidence matrix
	External, unknown, constant demand
	Unknown dynamics affecting the buffer levels
	The state equation

	Assumptions and requirements
	Minimization of the p-norm of the flow
	Minimization of the weighted p-norm of the flow

	Problem statement for the considered model

	Networks with an uncontrolled demand
	Decentralized control for p-norm minimization
	Optimality when 1<p<+∞
	Limit cases: p=1 and p=+∞

	Sub-optimality
	Suboptimal fair solutions: using p→+∞
	Suboptimal sparse solutions: using p→1

	Dynamic environment
	Optimal solutions by linear-quadratic programming
	Optimal 1-norm solution
	Optimal 2-norm solution
	Optimal ∞-norm solution


	Enhancements to the control
	Handling networks with unknown dynamics
	Optimality when 1<p<∞
	Optimal solutions by linear-quadratic programming

	Support for buffer level control
	Optimal solutions by linear-quadratic programming

	Support for weighted norm minimization
	Optimal solutions by linear-quadratic programming

	Numerical issues
	Roundoff errors
	Truncation errors


	Illustrative example in a system of interconnected tanks
	Scenario and data
	Simulations' setup

	Results and discussion


	Conclusion
	Appendices
	Proofs from Part I
	Proofs from Part II

	Bibliography
	List of publications and submitted manuscripts

