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Abstract
We leverage generative NLP-basedmodels, specifically Transformer-
Based models, for multi-horizon univariate and multivariate power
consumption forecasting.We apply our approach to various datasets,
focusing on short-term (1 day) and long-term (1 week) forecasts.
We test several lag configurations with and without additional con-
textual information and achieve promising results. We evaluate the
forecasts’ effectiveness using a range of metrics, and aggregate the
results on a monthly basis for a comprehensive understanding of
the performance throughout the year.
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1 Introduction
The growing need for efficient energy management and sustainable
resource use has intensified the research looking into accurate fore-
casting of power consumption. Traditional methods like ARIMA
and SARIMA have long been used for prediction [9, 16, 24]. How-
ever, these methods struggle when dealing with large datasets, espe-
cially for medium- and long-term forecasts, due to issues like non-
stationarity and non-linearity in the data [11, 25]. Consequently,
advanced Deep Learning (DL) models are becoming popular in this
field. Among all models and architectures, Transformer-based mod-
els, originally introduced for natural language processing (NLP)
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tasks, have been recently recognized for their potential in temporal
sequence modeling and forecasting [20, 22, 27, 28].

This paper investigates the use of Transformer-based models,
particularly the T5 model, for multi-horizon univariate power con-
sumption forecasting, covering short and long-term forecasts and
evaluating different model’s configurations and the impact of con-
textual information. By customizing modeling and training tech-
niques, the study improves the T5 model’s performance on time
series forecasting tasks. To the best of our knowledge, this work
is the first to use generative NLP for time series energy power
consumption forecasting.

The code needed to replicate our experiments is made available
to the research community.1

2 Background and Related Work
The study of time series forecasting, particularly within the con-
text of energy consumption, has evolved significantly with ad-
vancements in machine and deep learning technologies. Initially
dominated by statistical methods such as ARIMA and Exponential
Smoothing [9, 16, 24], the focus has shifted towards more complex
models capable of handling complex patterns and external features
present in large datasets [13, 15, 23].

Traditional approaches in this field often rely on Recurrent Net-
works (RNNs) and their advanced forms, such as Long Short-Term
Memory (LSTM) networks [10] or Gated Recurrent Units (GRU)
[5]. these models are especially well-suited for modeling scenarios
where the prediction of a current value depends critically on previ-
ous observations. Recent developments have seen Transformer ar-
chitectures being adapted for time series forecasting [13]. These ar-
chitectures offer a complementary approach to classical RNN-based
methods, particularly benefiting from the Transformer’s ability to
handle dependencies within sequences. The flexibility of Transform-
ers has led to their successful application in areas with complex
contextual patterns, such as human mobility forecasting [27, 28]
and time series classification [22]. However, the direct application
of vanilla Transformer models to time series forecasting, particu-
larly in settings with contextual features, remains challenging due
to the absence of large-scale, domain-specific training datasets and
the need for specialized model architectures [28].
1https://osf.io/vmkeu/?view_only=4b3a7fc3ed9045eeaa13e26803907d7c
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Table 1: Summary of datasets used in this study.

Dataset Temporal Sampling Training Test
Acronym Range Periodicity Set Size Set Size

AAA 2014-2018 15 min 140,160 35,040
Spain 2015-2017 1 hour 17,520 8,760
ELD 2011-2013 15 min 70,080 35,040

Our approach builds on the concept of causal language models,
specifically leveraging the T5 model [19]. Unlike masked language
models like BERT [7], which learn bidirectional contexts, causal
models operate under a unidirectional framework. This makes them
particularly suitable for time series forecasting, where each predic-
tion is contingent solely on preceding data points and possibly on
external features.

3 Experimental Setting
3.1 Aims
We aim to predict future energy consumption using past observa-
tions, known as lags. Each Transformers-basedmodel is fed with the
maximum permissible past timestamps constrained by the model’s
context size limit, whereas for each baseline model we perform
a heuristic search over the lags, epochs, and model parameters
and report the scores for the model with higher effectiveness. We
train the models under two settings: using only previous lags and
incorporating external information including time and weather
features. Our goal is to assess the models’ effectiveness across two
different future horizons. The first forecast, t+1 day is achieved
considering t+96 for datasets with 15-minute intervals and t+24
for those with hourly intervals; the second long-range forecast, t+1
week, corresponds to t+672 for 15-minute intervals and t+168 for
hourly intervals datasets.

3.2 Data
We rely on three distinct datasets, each with different characteristics
and temporal ranges. Two of these datasets are publicly available,
while the third one is proprietary. Table 1 provides the statistics for
the datasets used. The first dataset, referred to as the AAA dataset,
originates from AcegasApsAmga S.p.A., an Italian company that is
part of the Hera Group. The company provides distribution services
for gas, electricity, water, environmental, and energetic services
to approx. 3.4 million citizens and businesses across more than
300 municipalities. This proprietary dataset includes data collected
from 2014 to 2018 for energy pods, detailing power consumption
on a 15-minute interval and includes the weather information. We
use data from 2014 to 2017 for training and 2018 for test.

The second dataset, publicly available and referred to as the Spain
dataset,2 is composed of hourly power consumption data from Spain
spanning from 2015 to 2017 for training and data from 2018 for
testing. It includes data about electrical consumption, generation,
pricing, and weather. The third dataset, also publicly available, is
2https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-
prices-and-weather

referred to as the ELD dataset.3 It includes electricity consump-
tion data from 370 clients from 2011 to 2013 for training and data
from 2014 for testing. This dataset contains consumption values
for Portuguese clients given in kWh for each 15-minute interval.
We specifically focus on the “MT_124” client, the one containing
the most data points.

3.3 Measures
We evaluate our models’ effectiveness using several standard er-
ror metrics, which are assessed monthly and then aggregated by
computing the mean and standard deviation over the test year,
providing a detailed view of the models’ annual performance. The
metrics used include Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Maximum Error (ME), and Root Mean
Squared Error (RMSE). These metrics assess different aspects of
models’ effectiveness. MAE provides a straightforward measure
of overall error magnitude, MAPE expresses these errors as a per-
centage offering a scale-relative assessment which is useful for
comparing different dataset and scales, ME identifies the largest sin-
gle forecast error highlighting the worst-case, and RMSE penalizes
larger errors more than smaller ones.

3.4 Deep Learning Baselines
We rely on several DL baselines for time series prediction. While
traditional methods like ARIMA and SARIMA have been effective
for simpler, smaller datasets, they struggle with the non-linearities
and non-stationarities typical in large-scale time series data. DL
models, on the other hand, are able to model complex patterns
and interactions at scale and can integrate multiple types of input
features which allows to handle external data and handle missing
values [3, 12]. The set of baselines are implemented relying on the
PyTorch-Forecasting4 framework.

We use Long Short-Term Memory (LSTM) [29] and Gated Recur-
rent Unit (GRU) [8] networks. We also consider the Neural Basis Ex-
pansion Analysis for Interpretable Time Series Forecasting (NBeats)
[15], which relies on a deep stack of fully connected layers to pre-
dict future time windows based on past data, the Temporal Fusion
Transformer (TFT) [13] model which employs attention mecha-
nisms to capture long- and short-range dependencies within time
series data and, finally, the Deep Autoregressive model (DeepAR)
model [23] which leverages recurrent networks to approximate and
forecast time series evolution.

3.5 Proposed Models
Our set of models were developed on the PyTorch and Hugging-
Face platforms, starting from the T5-base model5, which features a
12-block transformer architecture for a total of 220M parameters
[19]. We model the whole problem of time series forecasting as
a sequence-to-sequence problem [14]. Thus, we convert the time-
series data into textual format, a method which has proven to be
effective in different domains such as diagnostic texts [6, 17, 21],
human mobility forecasting [26–28], and time series classification
[22]. Specifically, we transform past observations and contextual
3https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
4https://pytorch-forecasting.readthedocs.io/en/stable/.
5https://huggingface.co/t5-base.
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features (i.e., date, time, and weather data) into strings, which we
then input to the model. We can represent our general prompting
as (braces indicate values while square brackets optional parts):

context: {contextual features}.
previous observations:{value} [at {time}], . . ., {value} [at {time}].

E.g., if the contextual features are temperature and humidity and
if we rely on 50 lags, a possible instance might be:

context: temperature 27C, humidity 75%.
previous observations: 0.85 at time t-1, . . ., 0.10 at time t-50.

We develop the following model variations. T5, the base model
as detailed above. We use as the contextual features (i.e., time, date,
and weather) and we fill the rest of the context with lags (i.e., pre-
vious values of the series). We did try with both the base and large
version of T5 but we observed similar results. Then, we develop
T5Lags+Quart model, a model variation that inputs lags labeled with
their respective quarters. This approach allows the model to inte-
grate seasonal trends and periodic patterns. The input is formatted
as “The value was 0.29 at Q1, 0.21 at Q2, . . .”, which helps the model
to handle recurring temporal patterns.We also use the T5Lags model,
which focuses solely on the sequential order of values without in-
cluding contextual data. This model should gain an advantage when
the focus is solely on the sequence of temporal values rather than
their specific time occurrence, and treats timestamps merely as
subsequent data points. The input is formatted as “0.29, 0.76, . . .”.
This approach allows for maximizing the number of lags input
into the model by minimizing the contextual information. We also
develop the T5Lags+MLM model, a version of T5 that performs the
masked language modeling task6, and thus is trained to predict
masked portions of the input sequence. We structure the task using
curriculum learning [1], thus presenting instances to the model in
a increasing order of difficulty. We achieve this by masking 5% of
the input sequence and progressively increasing to 25%, then, at
the end of the training, masking only the end of the sequence [18].

We also introduce the T5Cont model, which maximizes the num-
ber of contextual features included while minimizing the number
of lags. This approach prioritizes comprehensive contextual data
over sequential lag inputs. To further optimize this, we develop
the T5SelCont model, which selectively incorporates only the most
influential features identified through a correlation and clustering
analysis, allowing to double the number of input lags compared to
T5Cont. Finally, we introduce the T5Dual model, which incorporates
two separate T5 encoders to generate distinct representations: one
for the lags and another for contextual features, which are then
combined using an attention layer. This models allows to maximize
both the number of features and lags in input.

The experiments are conducted on a machine with 2 Nvidia 3090
GPUs. Each model is trained for three epochs using the multi-class
cross entropy loss function over the language model vocabulary
size [2]. For inference, we use a beam search technique to generate
the output sequence auto-regressively. Notably, we found the fine-
tuned models capable of generating floating point numbers directly,
without the need for explicit constraints.
6see https://huggingface.co/docs/transformers/model_doc/t5.
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Figure 1: Prediction at 1 day (top) and 1 week (bottom) for
T5SelCont and AAA dataset.

4 Experimental Results
Table 2 shows the effectiveness of the different models, with scores
computed by taking the average metric on a per-month bases over
the year used as test set. The ELD dataset does not come with
weather information, so not all the models are used on it. An exam-
ple of target and predicted scores is available in Figure 1.

We start by detailing the predictions for the subsequent day (i.e.,
t+1d), shown in the upper part of the table. The results highlight the
effectiveness of transformer-basedmodels, particularly T5Lags+MLM,
T5Cont, and T5SelCont. Overall, across all datasets, transformers-
basedmodels shows lower errors compared to baselinemodels, with
the only exception of ME for the Spain and ELD dataset, where they
are still among the most effective models. This suggests the ability
of LLMs to handle time series forecasting problems. If we inspect the
T5Cont and T5SelCont models, which focus on integrating extensive
and selected contextual information respectively, also perform well
across datasets, indicating the benefits of incorporating context
in input to improve the effectiveness of the forecast. In the ELD
dataset, where weather information is not present, transformers
models and particularly T5Lags and T5Lags+MLM, which focus solely
on the sequence of values, continue to show higher effectiveness
when compared to baselines. This result suggest that LLMs are
effective in handling temporal forecasting problems even in the
absence of contextual features, thus when dealing with univariate
series [4].

We now turn to inspect the error scores for the prediction over
the subsequent week (i.e., t+1w), shown in the lower part of Table 2.
Transformer-based models such as T5Lags+MLM, T5Lags+Quart, and
T5Dual again show higher effectiveness when compared to base-
lines, again with a single exception on the ME metric for the Spain
dataset, where they still are among the best models. By inspecting
the error metrics we see that T5SelCont, with its emphasis on high
quality contextual features, performs well in the AAA and Spain
datasets, remarking the importance of incorporating contextual
features. T5Dual, which relies on the dual encoders to handle both
lags and contextual data, shows robust results across datasets, again
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Table 2: Effectiveness of the forecasting. Lower errors are highlighted in bold.

AAA Spain ELD
Model Lags Pred MAE MAPE ME RMSE MAE MAPE ME RMSE MAE MAPE ME RMSE

LSTM – t+1d 0.066 0.180 0.357 0.089 0.128 0.259 0.503 0.166 0.098 0.245 0.405 0.117
GRU – t+1d 0.080 0.255 0.332 0.099 0.135 0.341 0.443 0.169 0.119 0.298 0.522 0.149

DeepAR – t+1d 0.066 0.187 0.364 0.090 0.121 0.273 0.382 0.147 0.106 0.265 0.433 0.127
NBeats – t+1d 0.061 0.171 0.347 0.085 0.116 0.254 0.413 0.145 0.106 0.265 0.520 0.129

TFT – t+1d 0.062 0.185 0.326 0.084 0.101 0.250 0.417 0.130 0.124 0.310 0.471 0.147
T5 45 t+1d 0.051 0.163 0.340 0.075 0.098 0.241 0.472 0.122 0.048 0.124 0.462 0.069

T5Lags+Quart 90 t+1d 0.050 0.160 0.358 0.073 0.086 0.235 0.471 0.112 0.038 0.093 0.451 0.064
T5Lags 135 t+1d 0.050 0.160 0.353 0.072 0.068 0.230 0.474 0.102 0.033 0.083 0.431 0.054

T5Lags+MLM 135 t+1d 0.046 0.150 0.347 0.067 0.060 0.223 0.470 0.093 0.026 0.065 0.460 0.040
T5Cont 50 t+1d 0.037 0.116 0.265 0.051 0.055 0.293 0.422 0.090 – – – –

T5SelCont 100 t+1d 0.036 0.111 0.254 0.049 0.059 0.319 0.477 0.095 – – – –
T5Dual 120 t+1d 0.038 0.124 0.247 0.052 0.069 0.307 0.447 0.101 – – – –

LSTM – t+1w 0.063 0.203 0.292 0.077 0.157 0.337 0.390 0.182 0.094 0.295 0.511 0.124
GRU – t+1w 0.113 0.299 0.479 0.152 0.215 0.455 0.532 0.248 0.122 0.305 0.531 0.151

DeepAR – t+1w 0.088 0.288 0.344 0.105 0.142 0.361 0.423 0.169 0.111 0.277 0.524 0.139
NBeats – t+1w 0.142 0.260 0.401 0.161 0.140 0.365 0.469 0.171 0.109 0.272 0.512 0.136

TFT – t+1w 0.100 0.339 0.349 0.122 0.151 0.388 0.485 0.188 0.127 0.317 0.550 0.158
T5 45 t+1w 0.064 0.206 0.331 0.085 0.121 0.317 0.556 0.167 0.052 0.134 0.483 0.075

T5Lags+Quart 90 t+1w 0.062 0.196 0.367 0.085 0.101 0.289 0.558 0.141 0.044 0.102 0.472 0.067
T5Lags 135 t+1w 0.061 0.201 0.371 0.083 0.091 0.297 0.566 0.131 0.035 0.088 0.433 0.057

T5Lags+MLM 135 t+1w 0.058 0.196 0.363 0.078 0.086 0.257 0.556 0.123 0.028 0.070 0.465 0.041
T5Cont 50 t+1w 0.058 0.186 0.308 0.075 0.071 0.264 0.467 0.106 – – – –

T5SelCont 100 t+1w 0.054 0.178 0.294 0.072 0.073 0.294 0.472 0.108 – – – –
T5Dual 120 t+1w 0.054 0.178 0.294 0.070 0.089 0.287 0.503 0.123 – – – –

confirming the importance of leveraging a composite approach to
maximize both lags and contextual information in input data, which
can improve the models’ forecasting capabilities. By inspecting the
ELD dataset we also see a confirmation that that when contex-
tual features are not available, transformers based models and in
particular T5Lags+MLM still outperform baselines.

Overall, the findings from Table 2 suggest the higher capability
of transformer-based models to deliver more accurate and reliable
energy consumption forecasts both for the next day and the subse-
quent week across various metrics. This is also confirmed visually
when inspecting Table 2, which shows that both for short- and
long-term forecast the model is able to accurately follow, though
with some errors, the general pattern of a target time-series. The
predictions for the other datasets are not shown for space issue but
exhibit a similar trend. The higher effectiveness of the NLP-based
models’ variations offers insights for some guidelines on selecting
the most suitable model based on specific scenarios. Notably, when
contextual data, especially weather information, is available, it is
convenient to employ models that maximize the use of high-quality
context and weather features. For instance, the T5SelCont model is
ideal when an analysis of the most representative features is avail-
able, whereas the T5Dual model can be used to bypass the feature
selection process and input both lags and contextual features to the
model, delegating this step to the attention layer of the model which
is employed after the dual encoding phase. Conversely, in scenarios
lacking rich contextual data, NLP-based models still outperform tra-
ditional baselines. Among these, models trained with sophisticated

strategies like T5Lags+MLM are preferred, although simpler models
like T5Lags also demonstrate robust performance across datasets. In
summary, our analysis confirms the comprehensive effectiveness
of NLP-based models, and particularly of modified large language
models, in handling the complexities of time series forecasting.

5 Conclusions and Future Work
This study demonstrates the potential of generative NLP-based
models for multi-horizon power consumption forecasting across
different datasets, both on their ability to predict energy consump-
tion in short- (next day), and long-term (next week). The experi-
mental results suggest the higher effectiveness of the developed
models, especially those relying on external features in capturing
the complexities of power consumption patterns more effectively
than traditional forecasting methods. The use of contextual fea-
tures such as time, date, and weather conditions, together with the
innovative modeling of input data in a natural language format,
has shown to significantly improve the forecasting effectiveness.

Future research will focus on improving predictive accuracy
by integrating more diverse contextual data and explore model
interpretability to provide clearer insights into energy consumption
patterns.
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