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The popularity of biometrics-based user identification has significantly increased over the last few years. User 
identification based on the face, fingerprints, and iris, usually achieves very high accuracy only in controlled 
setups and can be vulnerable to presentation attacks, spoofing, and forgeries. To overcome these issues, this work 
proposes a novel strategy based on a relatively less explored biometric trait, i.e., gait, collected by a smartphone 
accelerometer, which can be more robust to the attacks mentioned above. According to the wearable sensor-

based gait recognition state-of-the-art, two main classes of approaches exist: 1) those based on machine and deep 
learning; 2) those exploiting hand-crafted features. While the former approaches can reach a higher accuracy, 
they suffer from problems like, e.g., performing poorly outside the training data, i.e., lack of generalizability. 
This paper proposes an algorithm based on hand-crafted features for gait recognition that can outperform the 
existing machine and deep learning approaches. It leverages a modified Majority Voting scheme applied to 
Fast Window Dynamic Time Warping, a modified version of the Dynamic Time Warping (DTW) algorithm with 
relaxed constraints and majority voting, to recognize gait patterns. We tested our approach named MV-FWDTW 
on the ZJU-gaitacc, one of the most extensive datasets for the number of subjects, but especially for the number 
of walks per subject and walk lengths. Results set a new state-of-the-art gait recognition rate of 98.82% in a 
cross-session experimental setup. We also confirm the quality of the proposed method using a subset of the 
OU-ISIR dataset, another large state-of-the-art benchmark with more subjects but much shorter walk signals.
1. Introduction

Over the past decade, advancements in Computer Science have 
driven significant innovations across various research domains. For ex-

ample, Sahu et al. (2020, 2023) have defined decision-making frame-

works for building robust web applications and selecting the best re-

newable energy sources when faced with ambiguous or incomplete 
data. Different application areas have instead been explored by Gu et 
al. (2020) and Avola et al. (2022a, 2021), focusing on the explainabil-

ity of deep learning approaches applied to medical imaging analysis, 
which is critical for handling sensitive data. To ensure the effective-

ness of these advancements, addressing software reliability is essential 
in developing new solutions. Sahu et al. (2021) suggest models for pre-

dicting a system’s reliability over time. Furthermore, the works by Sahu 
and Srivastava (2018, 2020, 2021) also analyze software reliability in 
industrial and medical scenarios, focusing on identifying bugs in large 
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datasets. Another pressing concern regarding data is security, as dis-

cussed by Attaallah et al. (2022), which can lead to potential breaches 
Almulihi et al. (2022). These issues are of particular importance in spe-

cific fields and application areas, such as person re-identification and 
monitoring Avola et al. (2022b); Shao et al. (2021), and biometrics Fan 
et al. (2017). As a matter of fact, the latter field has gained popularity 
in recent years, with applications in personal security. Indeed, modern 
smartphones can be unlocked by fingerprint images captured by ded-

icated sensors or facial recognition through embedded cameras, while 
banks often use the former to authorize monetary transactions.

Among biometrics, it is possible to distinguish between two fami-

lies of traits, i.e., hard and soft. The former are generally related to 
physical characteristics and should present properties, i.e., universality, 
uniqueness, and permanence, desired for a robust and solid identifica-

tion of a human being. Some examples are the iris Bowyer and Burge 
(2016); Nguyen et al. (2017), the already mentioned fingerprints Li 
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et al. (2021); Marasco and Ross (2014), and the face Guo and Zhang 
(2019); Wang and Deng (2021). However, such traits are prone to spoof-

ing and forgery. Soft biometrics are instead related either to behavioral 
characteristics, which can be less reliable due to relative lack of perma-

nence in the long term, or to some physical traits that may lack in one 
or more of the previously mentioned properties, especially uniqueness 
as in the case of hair color or face shape. Soft biometrics of the sec-

ond group can be successfully exploited to identify a class of users, e.g., 
by hair color or gender, for supporting hard biometrics for identifica-

tion in a multi-biometric setting Maity et al. (2021). On the other hand, 
behavioral traits are generally more challenging to forge or spoof.

Gait is a behavioral trait that, as the voice, is also influenced by 
the physical structure of the subject’s body. Therefore, it presents some 
characteristics of hard biometrics, due to the high characterization of 
personal kinematic strategies, and some from the behavioral traits, such 
as the relative lack of permanence. It cannot be considered truly strong 
but still offers the advantages of soft traits, i.e., it is very robust against 
forgery and spoofing Muaaz and Mayrhofer (2017). Gait recognition 
has been studied following three approaches: 1) methods using floors 
equipped with pressure sensors Takeda et al. (2009), that offer a low 
feature resolution and are presently limited to gait analysis for diagno-

sis and rehabilitation; 2) methods processing video streams Singh et al. 
(2021), that are presently the most popular ones but suffer from typical 
problems of computer vision, such as intra-class variations due to differ-

ent poses, illumination, occlusion, and perspective, and from trajectory 
crossings; 3) more recent methods using built-in sensors, usually ac-

celerometers, of mobile devices such as smartphones and smartwatches 
Xu et al. (2017). This third category is less explored since the need 
for one or more worn devices entails the users’ awareness and collab-

oration. However, this can be taken for granted when using gait for 
authentication.

This paper presents a strategy for gait recognition from a single 
wearable sensor, an accelerometer, available in any smartphone. The 
designed system is suited for a real-life scenario where a registered user 
can access a restricted area simply by walking toward it, as proposed in 
De Marsico et al. (2019); Mecca (2018). As for De Marsico et al. (2019), 
it is possible to configure a mobile application to capture the signal from 
two beacons that automatically trigger the start and stop of data acqui-

sition along a hallway to a restricted area. Incidentally, it is possible 
to capture data with similar lengths and, therefore, easier to compare 
by a recognition server. The mobile application will send the acquired 
data to such a server to identify the user. The main advantages of this 
approach are that it does not require any specific user cooperation, ex-

cept for installing the application, and that the system can be used as an 
independent module when considering a multi-biometric setting (e.g., 
using a camera at the end of the hallway to capture one or more video 
frames to perform face recognition or to extract other visual features 
useful to improve the overall recognition accuracy).

Currently, two main groups of methods exist for performing gait 
recognition from wearable sensor data: 1) those based on machine 
learning, also via deep architectures; 2) those exploiting hand-crafted 
features. Machine and deep learning are widely used to solve almost any 
computational problem. On the one hand, they can outperform algo-

rithms using hand-crafted features without specific training, including 
those tackling gait recognition, as reported in Giorgi et al. (2017). On 
the other hand, these techniques suffer from typical problems, e.g., re-

quiring a really huge amount of training data, and performing poorly 
outside the benchmark from which the training data originated O’Ma-

hony et al. (2020). In the wearable-based gait recognition context, the 
lack of data is one of the main issues since there are really few datasets 
with a sufficient number of walk signals. Therefore, it still seems appro-

priate to investigate algorithms using hand-crafted features, possibly 
without training, to effectively solve problems in real-life scenarios, as 
in Van Gastel et al. (2015) and Ameur et al. (2019). Similarly, this 
paper shows how gait recognition can be improved by suitably de-
2

vised improvements to the basic algorithms in the existing literature. 
Computers & Security 137 (2024) 103643

To this aim, it presents the MV-FWDTW algorithm. It joins a modified 
Majority Voting scheme with a novel version of the existing DTW algo-

rithm, the Fast Window Dynamic Time Warping. As shown in the paper, 
MV-FWDTW achieves a recognition rate of 98.82% in a cross-session ex-

perimental setup. It reaches a 100% score at Rank #4 when considering 
the Cumulative Match Characteristic (CMC) curve, even with more than 
150 identities, thus outperforming existing deep learning approaches 
for gait recognition.

The presented MV-FWDTW algorithm compares the accelerometer 
time series for gait recognition. It is specifically designed to account 
for relaxed constraints, providing a faster and more accurate version 
of the DTW procedure and exploiting majority voting to increase the 
recognition rate. It is worth noting that, unlike machine and deep 
learning-based approaches, MV-FWDTW does not require any training. 
The evaluation of the proposed method relied on extensive experiments 
on the ZJU-gaitacc benchmark dataset, whose results demonstrate the 
effectiveness of the proposed pipeline. Moreover, it has been tested on 
a subset of the OU-ISIR Ngo et al. (2014) dataset, a large state-of-the-

art benchmark with more than 700 subjects but shorter walk signals, 
confirming its capability.

The paper contributions are as follows:

• a novel pre-processing strategy to de-noise and enhance signals 
from wearable sensors, exploiting state-of-the-art procedures and 
especially focusing on gait signals;

• a gait recognition module using a single wearable sensor suited for 
real indoor or outdoor scenarios, avoiding all the typical drawbacks 
of camera-based systems.

• a fast and accurate algorithm for gait recognition, MV-FWDTW, 
that does not require any training phase and proves its effectiveness 
on two large state-of-the-art datasets, namely ZJU-gaitacc and OU-

ISIR.

In the rest of the paper, Section 2 reviews the main related work 
on wearable sensor-based gait recognition. Section 3 describes the pro-

posed approach, focusing on both the pre-processing of signals and the 
comparison strategies. Section 4 details the datasets used to test the 
strategy, the experimental setup, and the achieved results. Finally, Sec-

tion 5 draws some conclusions and possible future research directions.

2. Related work

Wearable sensor-based gait recognition mostly relies on data ac-

quired from accelerometers (even if some proposals also use gyroscope 
data). A generic walk signal can be represented as 𝑊 = {𝑋, 𝑌 , 𝑍}, 
where 𝑋, 𝑌 , and 𝑍 are time series containing data from the three ac-

celerometer axes. Recognition strategies dealing with this kind of data 
can be divided into two categories: those relying on signal process-

ing/comparison and those exploiting neural networks. The approaches 
in both categories can be further subdivided into those splitting the 
walks into single steps (the portion of a gait cycle that includes the 
movement of a single leg only) or cycles (sequence of right and left 
steps), and those using fixed-length frames De Marsico and Mecca 
(2019). The division into steps or cycles is more complex to automate. 
It requires fine-tuned strategies to be effective due to the difficulty of 
accurately identifying the actual beginning and ending of a step/cycle. 
However, this signal subdivision is more related to the intrinsic cycling 
nature of walk dynamics and usually produces better results, especially 
in the case of signal processing/comparison strategies and in presence 
of walk signals with a different number of steps. After segmentation, 
these parts (or relevant feature vectors of prevailing statistical nature 
extracted from them) are compared. Alternative methods use the en-

tire signal without any kind of segmentation. The following subsections 
only consider few strategies dealing with the main dataset tested in our 

proposals, namely the ZJU-gaitacc Zhang et al. (2014). Interested read-
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ers can refer to the surveys in literature De Marsico and Mecca (2019); 
Wan et al. (2018) for a more comprehensive overview.

2.1. Signal processing/comparison strategies

The proposal in Sun et al. (2018) presents a speed-adaptive authen-

tication procedure based on Pearson Correlation Coefficient (PCC). Its 
first step is cycle segmentation. The 1-minute walk is processed through 
the Fast Fourier Transform (FFT) to estimate the cycle length during en-

rollment. The cycles are extracted starting from the first local minima 
and then looking for the following one with a displacement based on the 
previously estimated cycle length. During the testing phase, the input 
walk is divided into 8-second frames with an overlap of 4 seconds be-

fore applying the cycle segmentation. In both cases, the estimated cycles 
are normalized and interpolated to a fixed length to create a template. 
Recognition proceeds by comparing the templates from enrolled users 
and the probe (the unknown template to match) using the PCC.

The proposal in Mecca (2018) presents a strategy based on DTW that 
exploits the concept of gait stabilization. Such a phenomenon describes 
the natural stabilization of the human walk pattern after a certain num-

ber of steps. For this principle, the first and the last steps in a walk 
tend to be slightly different from the central ones because the starting 
(or ending) of the locomotor strategy always requires a voluntary ac-

tion (see Fernandez-Lopez et al. (2017)). Therefore, the first phase of 
the procedure relies on step segmentation, which is based on the esti-

mation of two parameters. The first one is the 10𝑡ℎ value of the list, 
in descending order, of the relative maxima on the Y axis. The second 
parameter is computed as 𝜇 − 𝜎, where 𝜇 and 𝜎 are the average and 
standard deviation of the acceleration values on the same axis. The seg-

mentation exploits these two parameters to find each step’s start and 
end and avoid choosing spikes due to noise. After segmentation, the 
first 𝑘 steps are discarded, with 𝑘 = 1, ..., 5, as well as the last one, and 
the remaining part of the walk signal is used as a template for the user. 
The same procedure is applied to the incoming probes. The recognition 
relies on the basic formulation of the DTW algorithm. The best results 
are achieved discarding the highest number of steps.

2.2. Neural network-based strategies

The strategy proposed in Giorgi et al. (2017) is based on a Deep 
Convolutional Neural Network (CNN). The data processing phase com-

prises cycle extraction, filtering, and normalization. The first step aims 
at inferring the start and the end of cycles by looking for peaks in the 
magnitude vector 𝑚𝑎𝑔, computed as 𝑚𝑎𝑔𝑖 =

√
𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖
∀𝑖. The 

second one enhances the signal quality using the low-pass Butterworth 
filter. The last step normalizes the cycles by linear interpolation. The 
obtained cycles are then used to train a Deep CNN. The proposal re-

ports very high accuracy results; however, the network has been trained 
and tested with data from the same session. This is a more straightfor-

ward yet unrealistic scenario unless aiming at re-identification only (or 
short-term recognition).

The work in Nemes and Antal (2021) presents strategies based on 
extracting and testing different features. During the pre-processing, 
walking signals are normalized in the [−1, 1] interval and then subdi-

vided into cycles or time-fixed frames (different sizes in separate tests) 
by exploiting the dataset annotations. However, such annotations are 
handmade, so this is not suitable for new walks in a real-life scenario. 
The procedure then extracts 3 groups of features, namely: the raw data 
(concatenating 𝑋, 𝑌 , and 𝑍 axes), a set of 59 statistical features from 
the magnitude vector, and a set of 64 features extracted by the en-

coder part of two different convolutional autoencoder networks. The 
classification relies on the Random Forest algorithm. The results con-

firm that the performance achieved by using the cycles is higher than 
by using fixed-time frames. Moreover, as expected, using data from the 
same session for training and testing increases the performance, with 
3

the above-mentioned scope limitations.
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3. Method

Let 𝑊 𝑖𝑑
𝑖

= {𝑋, 𝑌 , 𝑍} be the i-th walk belonging to the subject 𝑖𝑑, 
where 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛}, and 𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑛}
are three one-dimensional time series with the same length 𝑛. In this 
representation, the generic 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are the values collected by 
the accelerometer over the three space dimensions 𝑋, 𝑌 , and 𝑍 , re-

spectively, in the time instant 𝑖. Since each person walks at a different 
pace, the walk length 𝑛 to cover a similar distance can differ from 
subject to subject, but it can also be different for walks of the same 
person considering, e.g., the walking speed. The length difference can 
be a practical problem in the case of neural network-based approaches, 
where an identical length is often, if not always, required. Cutting the 
walks to have the same length is possible, but some helpful information 
and patterns could be lost. The proposed methodology uses a different 
strategy to overcome this limitation. The procedure entails two indepen-

dent tasks carried out by the pre-processing module and the comparison 
module.

3.1. Pre-processing module

The pre-processing module first identifies the relevant portion of the 
signal. In fact, when a human starts walking from a still stance, the first 
portion of the signal usually contains a lot of noisy data. Afterward, the 
module enhances the signal data quality by removing the overall noise 
to improve the results provided by the comparison module.

3.1.1. Retrieval of the relevant signal portion

This phase is based on the idea proposed in De Marsico and Mecca 
(2015, 2017). The procedure chooses the start and the end points of 
the relevant portion of the walk by exploiting a threshold 𝑇 computed 
over the values on the 𝑌 axis only. In fact, due to the intrinsic nature 
of the human walk, the vertical oscillations (in this case, those captured 
by the 𝑌 accelerometer axis) are empirically demonstrated to be more 
discriminative for gait recognition. 𝑇 is computed independently for 
each walk 𝑊 to account for both intra-class and inter-class variability 
as: 𝑇 = 𝜇 + 𝜎, where 𝜇 =

∑𝑛
𝑖=1 𝑦𝑖

𝑛
, and 𝜎 =

√
1
𝑛

∑𝑛

𝑖=1(𝑦𝑖 − 𝜇)2, i.e., the 
mean and standard deviation over the 𝑌 axis for a walk 𝑊 containing 
𝑛 samples. The start 𝑠 of the useful portion of 𝑊 is then set to the point 
corresponding to the first relative maximum greater than 𝑇 . The ending 
point 𝑒 is computed similarly, looking for the last relative maximum 
greater than 𝑇 . The 𝑠 and 𝑒 points are then projected onto the other 
two axes for the same sequence length. Given a walk 𝑊 (for sake of 
clarity of notation, we omit the subject’s ID and the walk index), this 
produces a reduced walk 𝑊 𝑒

𝑠
= {𝑋𝑒

𝑠
, 𝑌 𝑒

𝑠
, 𝑍𝑒

𝑠
}, where 𝑋𝑒

𝑠
, 𝑌 𝑒

𝑠
, and 𝑍𝑒

𝑠
are 

the reduced intervals on the accelerometer axes, while 𝑠 and 𝑒 are the 
starting and the ending points of the relevant sequence, respectively. A 
graphical example is illustrated in Fig. 1. This procedure improves the 
accuracy of the comparison module and provides a computational speed 
up since it discards a portion of non-meaningful samples De Marsico and 
Mecca (2017).

3.1.2. Noise removal and signal quality enhancement

This phase entails three steps. The former relies on the Z-score 
normalization. Given a reduced walk 𝑊 𝑒

𝑠
, in the normalized reduced 

walk 𝑊𝑛𝑜𝑟𝑚 = {𝑋𝑛𝑜𝑟𝑚, 𝑌𝑛𝑜𝑟𝑚,𝑍𝑛𝑜𝑟𝑚} the 𝑖-th element of each normalized 
time series is computed along the corresponding axis as 𝑥′

𝑖
= 𝑥𝑖−𝜇𝑋

𝜎𝑋
, 

𝑦′
𝑖
= 𝑦𝑖−𝜇𝑌

𝜎𝑌
, and 𝑧′

𝑖
= 𝑧𝑖−𝜇𝑍

𝜎𝑍
, respectively, with 𝑥𝑖 ∈𝑋𝑒

𝑠
, 𝑦𝑖 ∈ 𝑌 𝑒

𝑠
, 𝑧𝑖 ∈𝑍𝑒

𝑠

∀𝑖 = 1, … , 𝑛. Normalization also enhances signal quality by highlight-

ing the peaks and better delineating the wave shape. The second step 
removes noise by exploiting a moving average with window size 𝑘. 
For a normalized walk 𝑊𝑛𝑜𝑟𝑚 it computes a walk with averaged values 
𝑊𝑎𝑣𝑔 = {𝑋𝑎𝑣𝑔, 𝑌𝑎𝑣𝑔,𝑍𝑎𝑣𝑔}, where the following equations give the new 

𝑖-th element of each time series:
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Fig. 1. A graphical example of the relevant signal portion retrieval strategy. The 
first and the last relative maxima greater than 𝑇 are searched on the 𝑌 axis, 
identifying the start (𝑠) and the end (𝑒) points, respectively. These are then 
projected onto the 𝑋 and 𝑍 axes to maintain the same length.

�̄�𝑖 =
⎧⎪⎨⎪⎩

∑𝑖+⌊𝑘∕2⌋
𝑖−⌊𝑘∕2⌋ 𝑥′

𝑖

𝑘
, if ⌊𝑘∕2⌋ ≤ 𝑖 ≤ 𝑛− ⌊𝑘∕2⌋;

𝑥′
𝑖
, otherwise,

(1)

�̄�𝑖 =
⎧⎪⎨⎪⎩

∑𝑖+⌊𝑘∕2⌋
𝑖−⌊𝑘∕2⌋ 𝑦′

𝑖

𝑘
, if ⌊𝑘∕2⌋ ≤ 𝑖 ≤ 𝑛− ⌊𝑘∕2⌋;

𝑦′
𝑖
, otherwise,

(2)

�̄�𝑖 =
⎧⎪⎨⎪⎩

∑𝑖+⌊𝑘∕2⌋
𝑖−⌊𝑘∕2⌋ 𝑧′

𝑖

𝑘
, if ⌊𝑘∕2⌋ ≤ 𝑖 ≤ 𝑛− ⌊𝑘∕2⌋;

𝑧′
𝑖
, otherwise,

(3)

where 𝑥′
𝑖
∈𝑋𝑛𝑜𝑟𝑚, 𝑦′

𝑖
∈ 𝑌𝑛𝑜𝑟𝑚, and 𝑧′

𝑖
∈𝑍𝑛𝑜𝑟𝑚, ∀𝑖 = 1, … , 𝑛, are the nor-

malized elements in 𝑊𝑛𝑜𝑟𝑚, and �̄�𝑖, �̄�𝑖, and �̄�𝑖, ∀𝑖 = 1, … , 𝑛, are the 
new values computed via moving average. The third step is inspired 
by De Marsico and Mecca (2018), where a Gaussian convolution allows 
further increasing the signal quality. The empirical choice to apply a 
Gaussian kernel with 𝜎 = 4 provides the best trade-off between compu-

tational time and performance. Given an averaged walk 𝑊𝑎𝑣𝑔 this step 
produces the corresponding enhanced walk 𝑊𝑒𝑛ℎ = {𝑋𝑒𝑛ℎ, 𝑌𝑒𝑛ℎ, 𝑍𝑒𝑛ℎ}
where the 𝑖-th element of each time series is obtained as:

�̂�𝑖 =
1√
2𝜋𝜎

𝑒
−

�̄�2
𝑖

2𝜎2 , (4)

�̂�𝑖 =
1√
2𝜋𝜎

𝑒
−

�̄�2
𝑖

2𝜎2 , (5)

�̂�𝑖 =
1√
2𝜋𝜎

𝑒
−

�̄�2
𝑖

2𝜎2 , (6)

where �̄�𝑖 ∈𝑋𝑎𝑣𝑔 , �̄�𝑖 ∈ 𝑌𝑎𝑣𝑔 , and �̄�𝑖 ∈𝑍𝑎𝑣𝑔 , ∀𝑖 = 1, … , 𝑛, are the elements 
in 𝑊𝑎𝑣𝑔 , while �̂�𝑖, �̂�𝑖, and �̂�𝑖, ∀𝑖 = 1, … , 𝑛, are the elements of the final 
𝑊𝑒𝑛ℎ time series after the pre-processing module has completed its task.

3.2. Comparison module

This module is based on a modified version of the well-known DTW 
algorithm Senin (2008). It compares two signals 𝑠 and 𝑡 (with possi-

ble different lengths) and provides a distance score 𝑑. Differently from 
other signal comparison techniques, such as Manhattan and Euclidean 
distances, the computed 𝑑 is more related to the overall shape of the sig-

nals than to the single values. DTW has a recursive formulation, but it is 
generally impractical. For this reason, it is usually implemented as a dy-

namic programming algorithm. The basic formulation of this algorithm 
has a computational complexity of 𝑂(𝑛2) but with a high coefficient, 
which is considered one of its main drawbacks. However, thanks to the 
matrix representation, it is possible to introduce some useful tricks to 
speed up the algorithm and increase its accuracy significantly. The plain 
text and comments in Algorithm 1 show the basic formulation of DTW. 
4

The final value in DTW[𝑛][𝑚] is the distance score between two generic 
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time series, representing the warping effort to align them. From the com-

plete DTW table, it is possible to extrapolate the DTW path 𝑃𝐷𝑇𝑊 (or 
warping path), which contains all matching pairs taken into account to 
compute the DTW distance. Formally, the warping path is defined as:

𝑃𝐷𝑇𝑊 = [(1,1),… , (𝑖, 𝑗),… , (𝑛,𝑚)] (7)

where 𝑖 and 𝑗 are matched indexes of 𝑠 and 𝑡, respectively, and (𝑖, 𝑗) is 
included in 𝑃𝐷𝑇𝑊 if and only if it is a matching required to obtain the 
minimum cost in the creation of the DTW table. It is also worth noticing 
that 𝑃𝐷𝑇𝑊 always starts with (1, 1) and ends with (𝑛, 𝑚), i.e., matches 
the pairs of first and last elements of the two time series. Furthermore, 
a meaningful path must respect the monotonicity property, i.e., if 𝑗 > 𝑖

are indices from the first sequence, then there must not be two indices 
𝑙 > 𝑘 in the other sequence, such that index 𝑖 is matched with index 𝑙
and index 𝑗 is matched with index 𝑘, and vice versa. In other words, it 
is impossible to go back in time by cross-matching past samples in the 
other sequence.

3.2.1. Reduced warping window

The original DTW neglects an additional constraint holding for DTW 
in most applications, namely the warping constraint that limits the time 
difference between two matched points in the 𝑠 and 𝑡 series. Projecting 
this on the DTW matrix, the algorithm is forced to compute the values 
in a region close to the matrix main diagonal, i.e., to match samples 
with similar indexes in the two series. This can be achieved by limiting 
the DTW search space to a window 𝑤𝑟 centered on the diagonal. Ac-

cording to the experiments in Ratanamahatana and Keogh (2005), this 
constraint drastically limits the number of operations and can also im-

prove the final comparison results, e.g., for time series with few possible 
values such as binary time series approximated from electric signals. In 
the application to gait recognition, as reported in Section 4, it is possible 
to consider tiny warping windows without loss of accuracy, encourag-

ing the use of a reduced search space.

3.2.2. Relaxed endpoints constraint

Another limitation of the basic DTW algorithm is related to the fixed 
choice of the matching for the starting and ending points. As shown in 
Equation (7), a DTW path starts by matching the first points of the 
two sequences and ends by matching the last ones. As suggested in 
Silva et al. (2016), it is possible to relax this constraint to let the DTW 
algorithm choose a starting (ending) point in a broader range to produce 
an improved path. To this end, as constrained by the warping window, 
our proposal takes as possible starting (ending) point one of those along 
the corners of the DTW table. Two values 𝑤𝑛 and 𝑤𝑚 proportional to 
the 𝑛 and 𝑚 lengths are computed according to the desired reduced 
warping window size 𝑤𝑟, acting as the relaxation factor parameter of 
Silva et al. (2016):

𝑤𝑛 = ⌊𝑛 ∗ (1 −𝑤𝑟∕100)⌋
𝑤𝑚 = ⌊𝑚 ∗ (1 −𝑤𝑟∕100)⌋ (8)

The first and last points in the path are then chosen as follows:

𝑃DTW [FIRST] = 𝑚𝑖𝑛({DTW(0, 𝑖) ∀𝑖 = 1,… ,𝑤𝑛,

∪ DTW(𝑗,0) ∀𝑗 = 1,… ,𝑤𝑚}),
(9)

𝑃DTW [LAST] = 𝑚𝑖𝑛({DTW(𝑛,𝑚− 𝑗) ∀𝑗 = 1,… ,𝑤𝑚,

∪ DTW(𝑛− 𝑖,𝑚) ∀𝑖 = 1,… ,𝑤𝑛}),
(10)

Fig. 2 graphically illustrates the reduced warping window and the re-

laxed endpoints constraint strategies.

3.2.3. Fast window DTW (FWDTW) comparison strategy

By modifying the DTW algorithm using the two presented strategies, 
we define the Fast Window DTW (FWDTW) procedure that can generate 

an improved DTW path compared to the classical DTW. The pseudocode 
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Fig. 2. A graphical example of the reduced warping window (the oblique red 
lines) and the relaxed endpoints constraints (the green squares). The best warp-

ing path starts from one of the bottom-left corner green squares and ends in 
one of the upper-right green ones. The yellow line represents a possible warp-

ing path. The light blue squares indicate candidate elements of the best warping 
path, while the gray ones are not considered since they require matching points 
from 𝑠 and 𝑡 outside the reduced warping window. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

for the proposed FWDTW approach is reported in Algorithm 1. By lever-

aging this algorithm to separately compute the distances between two 
walks along the X, Y, and Z axes, it is possible to define a compar-

ison strategy for gait recognition. Given two generic walk sequences 
𝑊 1

𝑒𝑛ℎ
= {𝑋1

𝑒𝑛ℎ
, 𝑌 1

𝑒𝑛ℎ
, 𝑍1

𝑒𝑛ℎ
} and 𝑊 2

𝑒𝑛ℎ
= {𝑋2

𝑒𝑛ℎ
, 𝑌 2

𝑒𝑛ℎ
, 𝑍2

𝑒𝑛ℎ
}, pre-processed 

as described in Section 3.1, a distance score 𝑑 is obtained as follows:

𝑑 = 𝑤𝑥 ∗ 𝐹𝑊 𝐷𝑇𝑊 (𝑋1
𝑒𝑛ℎ

,𝑋2
𝑒𝑛ℎ

)+

𝑤𝑦 ∗ 𝐹𝑊 𝐷𝑇𝑊 (𝑌 1
𝑒𝑛ℎ

, 𝑌 2
𝑒𝑛ℎ

)+

𝑤𝑧 ∗ 𝐹𝑊 𝐷𝑇𝑊 (𝑍1
𝑒𝑛ℎ

,𝑍2
𝑒𝑛ℎ

),

(11)

where 𝑤𝑥, 𝑤𝑦, and 𝑤𝑧, are weights for the 𝑋, 𝑌 , and 𝑍 axis, respec-

tively. These weighting factors are used to handle the different entropy 
of the three axes to increase the recognition capabilities of the system.

3.2.4. Majority voting with FWDTW

Works focused on the recognition task generally create a user tem-

plate by extracting some aggregate features into a feature vector, which 
is then used to recognize a person by retrieving the most similar user 
identity from the available gallery. The proposed recognition strategy 
puts more attention on the constancy of the walking pattern of each 
user. To this aim, it considers every walk 𝑊 𝑖𝑑

𝑒𝑛ℎ,𝑖
= {𝑋𝑖𝑑

𝑒𝑛ℎ,𝑖
, 𝑌 𝑖𝑑

𝑒𝑛ℎ,𝑖
, 𝑍𝑖𝑑

𝑒𝑛ℎ,𝑖
}

in the gallery 𝐺 as a template where 𝑖𝑑 indicates a specific identity, 
while 𝑖 corresponds to the 𝑖-th walk stored in 𝐺 for that identity. In 
closed-set identification (all probes belong to an enrolled identity), the 
identification procedure usually arranges the distances in increasing or-

der. The returned identity is the one in the first position. The proposed 
system instead returns the identity with the highest number of occur-

rences in the first best 𝑏 entries. In case of a tie, the system prioritizes 
the best comparison score, similar to classical recognition approaches. 
This scheme can be considered as a special case of Majority Voting, 
which is normally used for multi-classifier fusion. In this case, it is ap-

plied to a single classifier’s ranking when the gallery includes multiple 
templates per identity (with a single template per identity it reduces 
to the usual scheme). We define the algorithm obtained by applying 
this scheme to the results of FWDTW as MV-FWDTW. It achieves better 
5

accuracy by preventing the wrong recognition of outlier walks.
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Algorithm 1 Pseudocode of the FWDTW algorithm. In black are the 
lines and comments related to the basic DTW version. In red (light 
gray) underlined text and comments from lines 3 to 12 and line 15, the 
updates used to handle the reduced warping window (Section 3.2.1). 
Specifically, in line 15, the 𝑗 starting/ending values are conditioned by 
𝑖 to follow the diagonal window. In blue (dark gray) underlined text 
from lines 20 to 25, the additional steps to manage the relaxed end-

points constraint (Section 3.2.2).

1: function FWDTW(𝑠[1, … , 𝑛], 𝑡[1, … , 𝑚], 𝑤𝑟)

Input: 𝑠, 𝑡 = accelerometer time series to be compared

𝑤𝑟 = warping window size

Output: DTW[n][m] = temporal distance matrix

2: DTW[0, … , 𝑛][0, … , 𝑚]
3: 𝑤𝑛 = ⌊𝑛 ∗ (1 −𝑤𝑟∕100)⌋
4: 𝑤𝑚 = ⌊𝑚 ∗ (1 −𝑤𝑟∕100)⌋
5: ⊳ start of matrix initialization for reduced warping

6: for 𝑖 ← 0, … , 𝑛 do

7: for 𝑗 ← 0, … , 𝑚 do

8: if (𝑖 == 0 ∧ 𝑗 < 𝑤𝑚) ∨ (𝑗 == 0 ∧ 𝑖 < 𝑤𝑛) then

9: DTW[𝑖][𝑗] ← 0
10: else

11: DTW[𝑖][𝑗] ←∞

12: ⊳ end of matrix initialization for reduced warping

13: ⊳ in basic DTW all the matrix values are initialized

to ∞ except for DTW[0][0]=0

14: for 𝑖 ← 1, … , 𝑛 do

15: for 𝑗 ←max(1, 𝑖−𝑤𝑛),… ,min(𝑛, 𝑖+𝑤𝑚) do

16: ⊳ in basic DTW 𝑗 runs from 1 to 𝑚.

17: cost ← |𝑠[𝑖] − 𝑡[𝑗]|
18: DTW[𝑖][𝑗] ← cost+min(DTW[𝑖 − 1][𝑗],

DTW[𝑖][𝑗 − 1], DTW[𝑖 − 1][𝑗 − 1])
19: ⊳ here, the basic DTW returns DTW[n][m]

20: dist ←∞
21: for 𝑖← 𝑛−𝑤𝑛,… , 𝑛 do

22: dist ←min(dist, DTW[𝑖][𝑚]),

23: for 𝑗 ←𝑚−𝑤𝑚,… ,𝑚 do

24: dist ←min(dist, DTW[𝑛][𝑗]),

25: return dist

4. Experiments

Extensive experiments were conducted to evaluate the proposed 
FWDTW algorithm and the final MV-FWDTW.

4.1. Dataset

It is worth pointing out that the proposed method and presented ex-

periments are to be considered from the perspective of using gait recog-

nition for medium-long term biometric applications. On the one hand, 
being a behavioral trait, gait may lack sufficient permanence for those 
applications. On the other hand, the fact that it is possible for humans 
to recognize a well-known person from the gait pattern encourages one 
to search for some effective invariant feature. With this in mind, ex-

periments need to rely on data acquired at different times. The dataset 
chosen for the experiments is the ZJU-gaitacc Zhang et al. (2014), one 
of the largest benchmarks for gait recognition systems based on wear-

able sensors. This dataset, though a little bit outdated, is, unfortunately, 
the only available one that provides data usable in a realistic context, 
i.e., presenting data collected into at least two time-separated sessions 
and a sufficient number of multiple walks per session per subject, to also 
account for slight changes in the short term. It contains 3D signals from 
five body locations, i.e., right wrist, left upper arm, right pelvis, left 
thigh, and right ankle, of 175 subjects walking along a 20-meter hall-

way. As already mentioned, to increase data variability, signals from 
153 of these identities were captured again in a different session after at 
least one week. Each person was recorded six times in each session, re-

sulting in 1836 sequences. To simulate a realistic everyday scenario, our 

experiments only use the pelvis location. This is a reasonable position 
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Table 1

Ablation study for the moving average window 𝑘. Baseline DTW performance 
without this operation is 𝑘 = ’-’. The best results are in bold.

Method 𝑘 Sensors Rank #1 Rank #5 Rank #10

DTW - Pelvis 96.21% 98.34% 99.10%

DTW 5 Pelvis 97.17% 99.10% 100.00%

DTW 7 Pelvis 97.21% 99.05% 100.00%

DTW 9 Pelvis 97.19% 99.07% 100.00%

for an acquisition device such as a smartphone or a dedicated instru-

ment. In addition, among the available body locations, the hip is the 
closest to the body’s center of gravity, resulting in a stable place to ac-

quire gait data De Marsico and Mecca (2019). We split the dataset into 
two separately recorded sessions, to obtain 𝐷1 and 𝐷2, each contain-

ing each user’s walks from the same session. The experiments used these 
two splits as either probe set 𝑃 or gallery 𝐺 in turn. The 22 subjects with 
recordings from a single session were discarded to set up a cross-session 
evaluation suitable for closed-set identification. The session-based par-

tition into probe and gallery represents a more realistic scenario where 
template walks of a person are captured on a given day for enrolling, 
but recognition exploits walks captured on a different day. As reported 
in De Marsico and Palermo (2022), using only walks from one session 
or mixing up the two sessions in the gallery and probe sets would re-

sult in heavily increased recognition rates. However, these can only be 
realistic in a scenario of short-term re-identification. To further assess 
the quality of the presented strategy, it has also been tested on a subset 
of 40 subjects of the OU-ISIR dataset Ngo et al. (2014), which consists 
of walk signals from 744 subjects. It is worth pointing out that the sig-

nals are very short (taken along a about 3-meter-long walk) and only 
two templates for each subject are provided, manually extracted from a 
single walk that also contains two slope-dependent portions. This limits 
the applicability only to short-term re-identification. Since the DTW al-

gorithm usually requires longer sequences to provide accurate results, 
in the experimental setup we tested on both the original shorter signals 
and on an augmented and longer version of them. In the latter case, all 
the walking signals are doubled.

4.2. Implementation details

The proposed MV-FWDTW recognition was implemented in Java, 
and all experiments were performed on an Intel Core i7-6700HQ 
@2.6GHz with 16 GB of RAM and an nVIDIA GTX1060M GPU with 
6 GB of RAM.

In closed-set identification, the system returns a list of the gallery 
templates identities sorted by increasing distance from the probe, i.e., 
the input walk to recognize. The system evaluation relies on standard 
metrics, i.e., the Cumulative Match Score (CMS) at Rank #1, also re-

ferred to as Recognition Rate (RR), and the Cumulative Match Charac-

teristic (CMC) curve. The former is the percentage of the tests in which 
the correct identity of a probe is returned in the first position of the 
ordered list of the gallery identities. The CMC curve plots the CMSs at 
ranks (up to the gallery size), where CMS(k) is the percentage of the 
total number of tests in which the correct probe identity is returned 
within the first 𝑘 positions of the list (the curve is monotonically in-

creasing). The curve provides an insight into the overall ability of the 
system to quickly return the correct identity, though not in the first po-

sition. Other popular measures used in the literature are CMS(5) and 
CMS(10), and also the rank 𝑘 where CMS(k)=100%. The lower such 𝑘, 
the better.

4.3. Performance evaluation

Several ablation studies assessed the FWDTW algorithm to fully 
evaluate it. They identified the best parameter combination of FWDTW 
6

to join the derived implementation with MV-FWDTW. Both the best 
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Table 2

Ablation study on warping window size 𝑤𝑟. DTW with 𝑤𝑟 = 100 is a baseline 
with no window restriction. Avg. Time indicates the average computation time 
required to compare two walks. The best accuracy results are in bold.

Method 𝑤𝑟 Rank #1 Rank #5 Rank #10 Avg. Time

DTW 100 97.21% 99.05% 100.00% 32 ms

FWDTW 70 97.55% 99.12% 100.00% 23 ms

FWDTW 50 97.67% 99.12% 100.00% 17 ms

FWDTW 30 97.89% 99.27% 100.00% 11 ms

FWDTW 20 98.04% 99.32% 100.00% 7 ms

FWDTW 10 98.03% 99.30% 100.00% 4 ms

FWTDW implementation and the derived MV-FWDTW were finally 
compared with other state-of-the-art works tackling gait recognition 
from wearable sensors and using the ZJU-gaitacc benchmark. To avoid 
partition-based bias, the reported cross-session results are computed by 
averaging the performances obtained using 𝐷1 as probe set and 𝐷2 as 
gallery and then swapping their role.

The first batch of experiments evaluated the influence of the size 𝑘 of 
the moving average window described in Section 3.1.2. Table 1 reports 
the results obtained using the classic DTW algorithm. These show that 
the baseline model, i.e., without the moving average denoising (first 
line in Table 1), already achieves remarkable performances. This con-

firms that signals associated with the pelvis sensor carry meaningful 
information, allowing accurate gait recognition via the DTW algorithm. 
Nevertheless, by applying the de-noising procedure, the improved qual-

ity of signals spurs a direct performance increase across all recognition 
ranks independently from the chosen window size, with all dimensions 
gaining ∼1% at Rank #1, Rank #5, and Rank #10 compared to the 
baseline. This outcome can be associated with the constancy of indi-

vidual gait, which can be better captured using smoothed signals. This 
is also confirmed by the 100% RR achieved at Rank #10, even though 
more than 150 identities are available.

The second ablation study examined the effects of different sizes 𝑤𝑟

of the warping window. Table 2 reports the results obtained using DTW 
without any warping window reduction (i.e., 𝑤𝑟 = 100) as a baseline 
and the proposed FWDTW algorithm with different 𝑤𝑟 dimensions. As 
can be observed, restricting the warping window size to 70%, 50%, 30%, 
20%, and 10% of the original time series, drastically decreases the aver-

age computational time due to a smaller search space, requiring 87.5%
less time compared to the baseline when using a 10% window size. More 
interestingly, such a decrease in time does not affect identification accu-

racy but rather slightly improves by ∼ 0.80% with the smaller windows, 
i.e., 20% and 10%. This suggests that by moving away from the DTW ta-

ble diagonal, i.e., allowing larger time differences in the matched series 
points, optimal local choices might result in an overall worse warped 
path, thus demonstrating the validity of the warping window restric-

tion as it improves both execution time and RR.

The last batch of experiments aims at selecting the best axes weights 
in the weighted distance between two time series computed in Equation 
(11). In all the different combinations, the 𝑌 axis gets a weight of at 
least 0.5 as in accordance with De Marsico and Mecca (2017), it contains 
the highest amount of information when performing user recognition 
via gait. The empirical results show that the best combination for the 
proposed system is 𝑤𝑥 = 0.2, 𝑤𝑦 = 0.7, and 𝑤𝑧 = 0.1, indicating that 
all axes capture some walk’s characteristics, but the Y one still contains 
stronger information, in accordance with prior studies.

We compared the proposed FWDTW algorithm and the final MV-

FWDTW strategy with other state-of-the-art proposals. For the latter, 
we use the first 𝑏 = 10 scores to select identities for the majority voting 
strategy since the ZJU-gaitacc dataset has six walks per user and it is a 
reasonable number of templates for the application context. Table 3 re-

ports the results obtained using a moving average window of dimension 
𝑘 = 7, and a warping window size 𝑤𝑟 = 20 (the parameters achieving 
the best accuracy according to Tables 1 and 2). The available proposals 

in literature use different protocols that employ either a same-session 
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Table 3

State-of-the-art comparison on the ZJU-gaitacc dataset for works employing 
either a same-session or a (more complex) cross-session testing procedure.

Method Sensors Rank #1 Test Protocol

Giorgi et al. (2017)* All 95.00% same-session

Mecca (2018) Pelvis 96.49% same-session

Sun et al. (2018) All 96.90% same-session

Nemes and Antal (2021)* All 98.67% same-session

Nemes and Antal (2021)* All 59.88% cross-session

Zhang et al. (2014) Pelvis 73.40% cross-session

Zhang et al. (2014) All 95.80% cross-session

FWDTW Pelvis 98.04% cross-session

MV-FWDTW Pelvis 98.82% cross-session

*marked methods employ deep learning models.

Table 4

Results achieved on a 40-subject subset of the OU-ISIR dataset with the 
FWDTW.

Data Rank #1 Rank #5 Rank #10

Original 71.45% 80.22% 86.22%

Doubled 98.18% 100.00% 100.00%

or cross-session testing scenario, i.e., mix or do not mix walks recorded 
in different sessions in the probe set 𝑃 and gallery 𝐺, or even use walks 
from a single session for both sets. These strategies can all seem sound, 
but avoiding cross-session testing, though providing better results, is 
not suitable in real-life scenarios except for short-term re-identification. 
Experiments in Nemes and Antal (2021) show a considerable perfor-

mance drop when using the more complex and realistic cross-session 
protocol, though using a neural architecture for feature extraction. A 
further difference lies in the number of exploited sensors. As described 
in Section 4.1, the dataset contains signals captured by sensors in five 
distinct body locations. While leveraging the entire data naturally re-

sults in higher performances, as noted in Zhang et al. (2014), using the 
single pelvis sensor corresponds to a more feasible real-case scenario. 
Moreover, placing five acquisition devices on the user is way more 
intrusive than using a single one. Also, the latter might be easily embed-

ded in the user’s smartphone or into a microchip mounted, for example, 
on a belt. All considered, the proposed MV-FWDTW consistently out-

performs the existing literature by using signals associated exclusively 
with the pelvis sensor in a cross-session setup, even when compared 
with methods using deep learning models. This behavior is also con-

firmed when analyzing the CMC curves. Fig. 3 shows that FWDTW and 
MV-FWDTW achieve higher recognition rates across all rankings. More-

over, the MV-FWDTW reaches a 100% rate at a Rank #4, contrary to 
the best literature approach that achieves a 99.33% recognition rate at 
Rank #10. This fully highlights the effectiveness of the proposed sig-

nal pre-processing and comparison strategy via relaxed endpoints and 
reduced search space.

To conclude the performance evaluation, experiments tested the 
proposed strategy on a subset of 40 subjects of the OU-ISIR dataset. It 
is worth pointing out that, in this context, since only one walk per sub-

ject is available in the gallery, it is not possible to use the MV-FWDTW, 
so the FWDTW strategy is used instead. As it is possible to notice from 
Table 4, due to the much shorter walk signals and the presence of only 
one gallery template (which also reduces intra-class variability), the re-

sults achieved by the proposed strategy drastically drop when using the 
original signals. However, with a data augmentation step consisting of a 
simple duplication of each walk signal, the results become comparable 
with those achieved on the ZJU-gaitacc benchmark, though relating to 
walks too close in time. This confirms the strategy’s applicability when 
long enough signals are provided, as it happens in the realist context 
7

mentioned in Section 2.
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Fig. 3. Comparison of state-of-the-art CMCs. Solid lines are for methods using 
only the pelvis sensor; dashed ones are for those using all five sensors.

5. Conclusion

This paper presents a novel gait recognition strategy based on signals 
captured by a single smartphone accelerometer, suitable for real-life 
identification scenarios due to the gait robustness to forgery and spoof-

ing. Instead of being based on training on large amounts of data, like 
in a machine or deep learning scenario, our strategy leverages hand-

crafted features in an algorithm that does not require any training, so 
that it can be more robust on unknown data. The proposed approach 
retrieves the informative part of a signal and applies several enhancing 
operations, i.e., Z-score normalization, moving average, and Gaussian 
convolution. The enhanced signals are then processed using a mod-

ified version of the Dynamic Time Warping algorithm, the FWDTW, 
which uses speed-up and refinement strategies to increase the over-

all robustness and reduce the computational demand, i.e., a reduced 
warping window and relaxed endpoints. The majority voting strategy is 
then adapted to obtain the final MV-FWDTW recognition. To evaluate 
the presented proposal, experiments were performed on ZJU-gaitacc, 
a benchmark dataset containing many users (153) and walks (12 per 
user). Results demonstrate the effectiveness of the proposed approach 
that outperforms existing works using either a cross-session or (the eas-

ier) same-session testing protocol, one or all wearable sensors available 
in the dataset, and neural network models. The quality of the strategy 
has been further tested on a subset of the OU-ISIR benchmark, which 
contains shorter walk signals collected in a single session.

In future work, we plan to collect an extensive dataset containing, 
for each walk acquisition, a frontal video and a synchronized set of 
wearable sensor data from several body locations. In fact, to the best of 
our knowledge, no dataset contains synchronized video and wearable 
gait acquisition, and, in general, frontal video gait recognition is a re-

alistic yet not much-explored topic. This will allow testing the viability 
of the proposed recognition setup in a multi-biometrics setting. In this 
frontal gait video context, we will exploit previous findings on skeleton 
data retrieved from video sequences Avola et al. (2019, 2020a,b) and 
explore further fusion approaches to advance gait recognition systems.
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