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Abstract. This article presents trends and future developments in mo-
bile robotics for 3D mapping in agriculture. Recent examples of robotic
platforms and sensors are first presented to highlight the technologies
adopted for autonomous surveying in the agricultural field. Then, local-
ization and mapping approaches are discussed, as well as path planning
algorithms for the navigation of mobile robots in orchards and crops.
Finally, insights into applications of artificial intelligence to robotic map-
ping are given to evaluate the potentiality of neural networks in this field.
The results of the survey indicate research directions and suggest future
applications of mobile robotics as an efficient tool for smart agriculture.
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1 Introduction

In recent years, mobile robotics has been applied in several different fields to
autonomously acquire 3D information for surveying and monitoring. Notable
applications include the mapping of hazardous and cluttered areas [13], indoor
and outdoor buildings and structures [1,18], as well as archaeological sites [14].
Agriculture is a challenging field in which robotic systems are adopted for various
tasks, as for instance, planting, sowing, weeding, harvesting and phenotyping
[21]. Their use is expected to boost precision agriculture (PA), with significant
advantages in terms of environmental impact of the crop production cycle, as
they enhance speed, coverage, repeatability, and cost effectiveness [12].

In this context, mobile robotic platforms (often referred to as unmanned
ground vehicles, UGVs) equipped with sensors and computational capabilities
are increasingly used for generating 3D maps that provide information about
health, number of plants, inflorescence, presence of parasites or diseases, water
content as well as chemical and morphological characteristics [4]. More in detail,
the near infrared (NIR) radiation reflected by vegetation can be measured by
means of multi-spectral cameras, and indexes that provide information to assess
the crop health, such as the Normalized Difference Vegetation Index (NDVI)
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[11,29], can be computed. Moreover, from a 3D map it is possible to measure
volume of plants and canopy height, which are necessary to monitor crop growth,
reduce pesticide losses, and make agriculture more efficient and sustainable [24].

To navigate and monitor the environment, robots need to perform online
localization and mapping. Positioning based on Global Navigation Satellite Sys-
tem (GNSS) is the most used method for localization in outdoor scenarios and,
in particular, in agriculture [2]. However, when satellite signals are unavailable
or inaccurate, the simultaneous localization and mapping (SLAM) approach is
a promising solutions for localization reliability and availability.

Furthermore, autonomous and safe navigation is one of the hardest chal-
lenges in the agricultural context, since agrarian environments are intricate and
unstructured [25]. For this reason, path planning strategies commonly used for
indoor environments may not fit the agricultural requirements, leading to the ne-
cessity of implementing ad-hoc approaches to plan the route of a robot avoiding
obstacles and optimizing the required task.

Artificial intelligence (AI) technologies, especially machine learning, are ex-
pected to play a relevant role in 3D mapping, and will be essential enablers
for agricultural robots [9]. In the mapping context, deep learning methods are
investigated for the interpretation of sensor data, recognition, classification and
segmentation, especially coupled with vision systems, including depth perception
and scanning sensors, such as Light Detection And Ranging (LiDAR).

The main contribution of this paper is a discussion on recent trends and
future developments of mobile robotics for 3D mapping in agriculture. Actual
examples of robotic platforms are first presented to highlight the technologies
adopted for autonomous surveying in agricultural scenarios, with particular fo-
cus on the characteristics commonly found in recent agricultural applications
(Sect. 2). Then, SLAM approaches are surveyed and compared in Sect. 3. More-
over, insights into path planning strategies (Sect. 4) and applications of AI
(Sect. 5) are illustrated. Finally, the conclusions are given in Sect. 6.

2 Robotic platforms and sensors

In the following, recent examples of robotic platforms and sensors are described
to outline the state of the art and the research trends for agricultural purposes.
UGVs are developed with different kinematics to adapt to the navigation in
agricultural harsh terrains: differential wheeled robots [11] (Fig. 1(a)), high-grip
tracked vehicles [24] (Fig. 1(b), 1(c)), and solutions with multiple steering wheels
[6] (Fig. 1(d)). Common sensor suites for UGVs in agriculture include 2D and 3D
LiDAR, as well as stereo, time-of-flight, and monocular cameras as exteroceptive
sensors to acquire data from the surrounding environment. Furthermore, Real-
Time Kinematics positioning systems (RTK-GNSS), often coupled with Inertial
Measurement Units (IMUs) are adopted for localization purposes.

A recent example is given by the remotely-controlled compact platform for
in-row under-canopy crop monitoring developed in [17] (Fig. 1(e)). The novelty
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(a) Vinescout [11]. (b) ByeLab [24]. (c) Tracked robot [30].

(d) Bonirob [6]. (e) Undercanopy UGV [17]. (f) Summit [8].

Fig. 1. Examples of robotic systems for mapping in agriculture.

of that system is the capability of capturing images on both sides of the UGV,
by means of one front camera equipped with fisheye lens only.

Another interesting UGV is Bonirob [6] (Fig. 1(d)), which features a complete
sensor suite, including a multi-spectral camera. It is used to collect an open-
source large-scale agricultural data set. Nevertheless, only a paucity of robotic
systems manage to superimpose radiometric information to the point cloud ac-
quired with laser scanners. Byelab [29] (Fig. 1(b)), and the robot developed by
Clamens et al. [8] (Fig. 1(f)) are among them.

AgRob V16 [25] is developed for vineyards monitoring and supports two in-
terchangeable sensor suites: the former includes a monocular camera with special
light filters to extract NDVI images; the latter configuration comprises a 3D Li-
DAR, a robotic arm manipulator, and a thermal camera. However, thermal data
are not merged with the point cloud acquired by the LiDAR. To the best of
our knowledge, no autonomous robotic system are able to directly superimpose
thermal information to an agricultural 3D map.

BrambleBee [31] is similar to AgRobV16, and it is capable of pollinating
with its end-effector: an endoscope camera is used for additional guidance of
the robotic arm. Sensors carried by a robotic arm provide a flexible solution
to the occlusion problem that is common in image-based phenotyping [4], as
they manage to position and orient cameras at the best viewpoint. No LiDAR
and multi-spectral cameras are found in literature in a eye-in-hand configuration
yet. Most UGVs rely on storage memories to manage data, requiring a frequent
operator support. Internet of Robotic Things will be a solution to this problem.
Moreover, storing data on clouds will make them easily available from remote.
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Complete sensor suites ensure for a flexible system, but increase the energy
consumption. To solve this problem, multiple and modular sensor suites could
be developed. Moreover, for large-scale operations renewable and sustainable
energy sources, like solar panels and hydrogen fuel cells should be integrated.
Swarm robotics could be another solution to extend the range of action, since
the farmland can be divided into sub-maps covered by different robots. Finally,
attention should be given to the durability and availability of these systems and
sensors as they operate in harsh outside environments.

3 Localization and mapping

In this section, an overview on recent localization and mapping strategies that
overcome pose estimation issues in rough agricultural terrains is given. Classic
localization methods (based on wheel encoders, IMUs and GNSS data) do not
often provide adequate accuracy and SLAM algorithms are therefore needed.
SLAM problem refers to the estimation of the state of the robot concurrently
with the construction of a model of the environment. With this method, data de-
riving from the previously mentioned sensors are integrated with LiDAR (known
as LiDAR SLAM) or cameras (i.e., Visual SLAM).

The strategy of Visual SLAM is to sequentially estimate the camera poses
by tracking feature points in the image sequence. In this context, it is worth cit-
ing RTAB-Map [15], an open-source software that provides feature-based Visual
SLAM with loop closure (i.e., the recognition of a previously mapped region, with
the aim of reducing trajectory drift and increasing map accuracy). RTAB-Map
is frequently used in the agricultural research field [23,19,20]; nevertheless, con-
flicting results regarding its performance are found in literature and additional
tests in agricultural environments are needed. In [22], RTAB-Map is improved
aligning LiDAR scans with a 2D map and integrating wheel odometry.

The main solution for LiDAR SLAM is the scan-matching approach, usually
based on the Iterative Closest Point (ICP) algorithm for the alignment of pairs
of point clouds, followed by graph optimization [30]. To obtain higher accuracy
and lower computational requirements, in [3] an online clustering algorithm is
integrated with the previous VineSLAM method [25] to reduce data size and
speed up the refinement step based on ICP.

Fusing Visual and 3D LiDAR SLAM is a promising approach, but it is not
fully implemented in agricultural UGVs yet. To this regard, a benchmark of
the up-to-date SLAM algorithms in agricultural field is needed, together with a
standard for the ground truth. Besides, the environment dictates the conditions
on which sensor is the most advantageous, and, therefore, the robot should be
able to choose the best data source according to the external conditions.

The application of LiDAR and RGB cameras is a common practice and many
algorithms are available (also open-source) that use data acquired by these sen-
sors for navigation and mapping. On the contrary, multi-spectral and hyper-
spectral cameras, fundamental in agriculture, are not extensively considered in
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the field of computer vision and robotics, and there is a lack of methods to
adequately merge the data acquired with these sensors with most common ones.

4 Path planning

Planning the path of a robot consists of finding a sequence of translations and
rotations from a starting point to a goal one, while avoiding obstacles in the
environment [26]. Coverage path planning is the task of determining a path that
passes through all points of an area, and it is advanced in this field, given its need
for operations such as harvesting, pruning and spraying. A common solution is
to use cell decomposition, or graph Voronoi diagram [31], and row following
(exploiting particle filters or Kalman filters [5]), with zig-zag patterns.

Regarding point-to-point path planning in static environment, several al-
gorithms have been tested: artificial potential field, sampling based methods,
genetic algorithms, and methods that fall into the Traveling Salesman Problem.
In [16], for example, the Ant Colony algorithm, based on the behavior of ants
searching for food, is used to reduce total measurement time, improve efficiency
and save energy of an UGV operating in a potato field. Further discrete opti-
mization algorithms (e.g., A* [25], Dijkstra, RRT* [7]) have been modified to
rely on robot pose and kinematic constraints or to provide planning for auto-
matic recharging system and a solution to avoid repetitive paths, minimizing
the soil compaction effects. In [7], RRT* is used in combination with the Reeds-
Shepp algorithm, considering non-holonomic constraints of the robot, to deal
with narrow pathways of a greenhouse.

There is a lack of online solutions for path planning in dynamic environments.
A popular tool is ROS Navigation Stack [31]: using Dijkstra for high level path
planning and the dynamic window approach for obstacle avoidance. However,
further tests are needed to provide a guideline on the best parameters for this
navigation framework in each agricultural environment.

All the above methods require prior information: manual measures [31], satel-
lite images [25], or 2D and 3D maps. To acquire these information, collaboration
with unmanned aerial vehicle would be useful, as a substitute to the above
sources to provide an updated view of the current conditions. Moreover, up-to-
date exploration algorithms not relying on prior data should be exploited [28].

5 Application of artificial intelligence

Technologies from areas including data science and AI can be used alongside
autonomous systems to automatically fuse and interpret collected data. Nowa-
days, classification and segmentation algorithms are increasingly applied to add
semantic information to the map. In [23], a supervised learning method is pro-
posed to perform terrain characterization, using color and geometric feature and
measuring wheel slip, rolling resistance and vibration response experienced by
the vehicle. Among the various alternatives provided by convolutional neural
networks (CNNs), two can be highlighted: object detection models and image
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segmentation models. The former can build a bounding box corresponding to
each investigated class in the image, whereas the latter create a pixel-wise mask
for each object. With the pixel-wise segmentation technique it is possible to ob-
tain a far more granular understanding of objects, with respect to the bounding
boxes technique, with the disadvantage that annotating each class requires a
greater effort. In [10], You Only Look Once (YOLO), the preeminent solution
for object detection in PA, is used to build a hybrid topological map with se-
mantic classification and key location estimation. Instead, segmentation is used
in [20] to obtain a 3D map with semantic labels: this probabilistic information is
used by the UGV to recognize leaves as traversable regions inside a greenhouse.

In real-world scenarios, data collection for the network training can be chal-
lenging and time-expensive. Moreover, the system must be robust to the vari-
ability of the field to avoid re-training. To overcome this problem, Generative
Adversarial Networks (GANs) can be used to generate photorealistic agricultural
images, based on semantic information [32]. The learning process can also be per-
formed by transferring knowledge from a given task that is already learned, and
the training can involve only a subset of layers of the CNN. This method, called
transfer learning, is used in [25] to detect vine trunks and to develop a feature-
based localization framework to navigate in the vineyard. YOLO afterward is
used in [19] to perform person detection and following.

Future work will address the use of bounding boxes to improve the qual-
ity of point clouds and to remove workers and agricultural machines from it.
Deep learning algorithms for timely classification and recognition of diseases are
also required to increase the crop quality and yield. This could be achieved by
preparing plant pathology data sets with diseases in the early stages. AI can also
improve exteroceptive capabilities of the system. For example, Shu et al. [27] pre-
sented, to the best of our knowledge, the first evaluation results for monocular
SLAM. Their work explores unsupervised depth estimation in a soy-bean field,
by simulating RGB-D SLAM. Not relying on LiDAR, this method is less expen-
sive and power consuming. Finally, as UGVs can accumulate a large quantity
of data, cloud computing will enhance the data processing efficacy, offer higher
data security and scalability, and minimize costs.

6 Conclusion

In this article, trends and future developments in mobile robotics for 3D mapping
in agriculture have been surveyed. Recent examples of UGVs have been reported
emphasizing the importance of developing platforms capable of moving in rough
terrains, and sensors to provide information about volume, height and health of
plants, among others. Then, SLAM approaches and path planning algorithms
have been discussed, pointing out that more effort will be necessary to deal with
unknown and dynamic harsh environment, during mapping and phenotyping
tasks. Finally, insights into applications of AI to robotic mapping have been
given to evaluate the potentiality of neural networks. The three topics covered in
this paper must be integrated in a tightly coupled manner in the robotic system,
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to make it autonomous for mapping, and to compensate for the weaknesses
of the standalone solutions. In the coming years there will be great progress
in autonomous systems for PA thanks to multidisciplinary activities involving
agronomy, robotics, and AI. Future works will address the creation of a taxonomy
of hardware solutions and software capabilities of robotics systems in PA.
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