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A B S T R A C T

A finite element (FE) modelling approach is developed to reproduce the cyclic elastoplastic response and to
assess the low cycle fatigue (LCF) life of two cellular materials (strut-based, gyroid) investigated in a previous
experimental campaign. The cyclic response of different FE models (unit cell, one layer structure) is compared in
terms of computational cost and modelling accuracy. The most satisfactory model is further updated based on the
actual relative density of fabricated cellular materials. The LCF assessment exploits a volume-based strain energy
density (SED) criterion, calibrated after comparing static properties of strut-based and bulk materials. The cyclic
elastoplastic response is well reproduced for both cellular materials, whereas the estimated fatigue lives are in
closer agreement for the gyroid structure than the strut-based one.

1. Introduction

Architected cellular materials, also known as cellular structures, can
replace heavy bulk components with complex, engineered porous
structures in order to reduce weight and optimise mechanical properties.
This class of materials was conceived a few decades ago [1]. However, it
was only with the spreading of additive manufacturing (AM) that many
efforts were devoted to developing architected cellular materials [2].
The use of AM unlocked the ability to produce complex shapes at the
micrometre scale with unprecedented accuracy and reproducibility. The
topology of the unit cell, its periodic arrangement in the space and the
porosity of the structure are intentionally designed to fulfil specific en-
gineering functions, exploiting the advantages of the manufacturing
process [3–6]. Energy or impact absorbers with a cellular structure core
can achieve a high energy absorption-to-weight ratio, overcoming so-
lutions where bulk pieces of materials are used [7]. Cellular materials
were proved to provide a higher dissipation in vibration dampers thanks
to the intricate geometry leading to internal friction at the beam joints
[8]. Brackets in aerospace and automotive sectors can be lightened in
slightly loaded areas of the component while simultaneously providing
structural continuity and performance [9]. The architecture of cellular
materials was also tailored to improve the durability of aerospace
components subjected to thermo-mechanical loads, such as turbine
blades [10].

The mechanical characterisation of cellular materials is crucial in
many of the abovementioned applications, where the reliability against
fatigue failure of the mechanical pieces is of foremost importance
[9,11–13]. As it is well known, predicting the fatigue life of additively
manufactured materials remains a challenge due to the influence of
process-induced defects and surface roughness [14–17]. In the case of
cellular materials, the problem becomes evenmore complicated. Besides
the complex shape of the component at the macroscale, the intricate
geometry of a single cell at the microscale poses a challenge in devel-
oping a modelling strategy. A level of modelling detail that constitutes a
trade-off between complexity and computational effort is indeed
required. Moreover, the cell size is usually comparable with the reso-
lution of the AM process. This aspect can lead to significant differences
in geometry and dimension between the as-built and as-designed
structures, thus requiring the model to be further calibrated and
improved based on experimental data. Finally, the structural integrity
criterion to assess fatigue strength must be as general as possible and
should be applied to any cell topology with smooth curved surfaces or
sharp notches.

In the context of high cycle fatigue (HCF), several studies proposed
different approaches to account for the abovementioned aspects. Among
these works, a short selection is here summarised. A more comprehen-
sive review study on fatigue assessment of cellular structures can be
found in [18]. The modelling strategy adopted by Refai et al. [19]

* Corresponding author.
E-mail address: pelegatti.marco@spes.uniud.it (M. Pelegatti).

Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier.com/locate/matdes

https://doi.org/10.1016/j.matdes.2024.113201
Received 6 March 2024; Received in revised form 9 July 2024; Accepted 24 July 2024

mailto:pelegatti.marco@spes.uniud.it
www.sciencedirect.com/science/journal/02641275
https://www.elsevier.com/locate/matdes
https://doi.org/10.1016/j.matdes.2024.113201
https://doi.org/10.1016/j.matdes.2024.113201
https://doi.org/10.1016/j.matdes.2024.113201
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials & Design 244 (2024) 113201

2

consists of estimating, with finite element (FE) models, the fatigue
strength of various cell topologies by applying loads through periodic
boundary conditions (PBCs) on unit cells. This approach assumes that
the fatigue strength of the structure is derived from the fatigue strength
of a single cell with periodicity conditions, neglecting the boundary
effects on its mechanical behaviour. The numerical results were also
corrected to include the influence of the surface roughness by modelling
the geometry obtained by micro-Computed Tomography (μCT) scans.
Finally, Crossland’s criterion was adopted to consider stress multi-
axiality. A different modelling strategy based on beam elements was
used by Burr et al. [20] to discretise the lattice structure (i.e. cellular
structures composed of struts and nodes). A random radius size was
sampled from experimental statistic distributions and assigned for each
beam element to account for the geometrical errors. A cascading failure-
based model, inspired by Zargarian et al. [21,22], was implemented to
retrieve the fatigue life of the specimens. In this approach, the failure of
individual struts is estimated by using the axial stress and the Miner’s
damage rule. One of the drawbacks of this method is that the effect of
stress concentrations near nodes and surface roughness are included
empirically by using a corrective coefficient and a random S-N curve,
respectively. Although beam elements are less computationally
demanding, they cannot capture the local three-dimensional effects,
such as stress concentrations and increased stiffness at the nodes.

Raghavendra et al. pursued a hybrid modelling strategy that com-
bines the unit cell approach and beam element discretisation [23]. The
lattice specimens were first discretised by beam elements. Then, the
displacement field obtained at the boundaries of selected unit cells was
used as boundary conditions for the 3D solid model through a sub-
modelling procedure. The as-built geometry of the lattice specimens
was analysed by μCT to update both the beam and 3D models. Finally,
the fatigue strength was evaluated using an average strain energy den-
sity (SED) criterion. Simulating the response of the lattice structure
using an equivalent homogeneous material, as done by Coluccia et al.
[24], is yet another modelling strategy to reduce the computational
effort. In fact, the architected cellular materials can often be considered
equivalent homogeneous materials at the component level despite being
structures. However, a fundamental condition in treating cellular
structures as homogeneous materials is the length-scale separation be-
tween the representative volume element of the cellular structures (i.e.
unit cell) and the component, which is not always satisfied. Unlike Refai

et al., the entire specimen was modelled, and the cell with the highest
strain tensor norm was considered the most critical. A de-
homogenisation process was applied to the critical cell, and eventu-
ally, Crossland’s criterion was used to predict the fatigue failure of the
specimen.

With respect to HCF, in the case of low cycle fatigue (LCF), the cyclic
elastoplastic behaviour of the material has also to be considered.
Therefore, new modelling strategies and structural integrity criteria are
required. Nevertheless, studies dealing with cellular materials produced
by AM are incredibly scarce. A methodology to assess the fatigue life in
the LCF regime of two- and three-dimensional lattice structures was
proposed by Molavitabrizi et al. [25], including plasticity and the in-
fluence of notches. Cyclic FE simulations were performed on unit cells
using PBCs to reduce the computational cost. The theory of critical
distance was applied using a critical surface area around the critical
point and an equivalent strain range. Finally, Morrow and Manson-
Coffin models were used to obtain the reversals to failure. The
approach was applied to two cell topologies, and a comparison with
experimental data from the literature is presented for a two-dimensional
lattice structure produced by water-jetting. However, the main draw-
back of the proposed model is the need for experimental validation for
three-dimensional cellular materials produced by AM. An analogous
shortcoming is encountered in the work of Zhang et al. [26], where the
cyclic elastoplastic behaviour of triply periodic minimal surface- (TPMS-
)based cellular structures under compression-compression loading was
simulated. A continuum damage model based on the plastic SED range
was included in the simulations to monitor the failure process during
cycling. Besides comparing the fatigue performance of the skeletal-
diamond and skeletal-gyroid cells, the mentioned study provides some
clues on the evolution of the stress–strain response due to the material
softening and damage interaction. The number of cycles to crack initi-
ation at different strain amplitudes was instead predicted by Mozafari
et al. for a variety of strut- and TPMS-based cellular materials [27]. The
numerical strategy is based on simulating the cyclic elastoplastic
response of the unit cell subjected to compression-compression fatigue
loading with PBCs. The plastic SED in a cycle is considered the damaging
variable that accumulates until it reaches a critical value for the bulk
material. Unfortunately, the modelling strategy was calibrated and
validated for fatigue data in the HCF regime, whereas only numerical
results are presented in the LCF region. A recent study by Doroszko and

Fig.1. Cellular specimens and unit cell topologies: FBCCZ and skeletal-gyroid.
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Seweryn presented FE simulations of CT-reconstructed cellular struc-
tures to model the cyclic response and estimate the cycles to failure [28].
However, the investigated lifetime interval is limited to the HCF, where
narrow macroscopic stress–strain hysteresis loops were recorded.
Furthermore, the cellular material was loaded in stress control, unlike
the typical LCF tests.

The abovementioned studies on LCF assessment proposed interesting
approaches; nevertheless, their main weakness lies in a lack of direct
experimental validation. Consequently, beyond the uncertainty on the
validity of the fatigue strength criterion, a discussion on the cyclic
elastoplastic response is needed. The current study aims to define a
straightforward methodology for modelling the cyclic elastoplastic
behaviour and predicting the LCF lifetime of cellular structures pro-
duced by AM, directly comparing it to the experimental data obtained in
a previous study [29]. This methodology can serve as an engineering
tool to assess the LCF performance of cellular materials with different
architectures when employed in applications involving cyclic macro-
scopic plasticity, such as vibration dampers or turbine engine compo-
nents. The article is structured in three main parts: the modelling
strategy, the cyclic elastoplastic response and the fatigue life assessment.
In the first part of the article, different modelling strategies based on a
unit cell and a one-layer structure are compared. Two types of cellular

materials, a strut-based and a gyroid cell, are thoroughly investigated. A
discussion on the boundary effects and the difference between the
relative density of as-built and as-designed cellular specimens permit the
FE models of the cellular structures to be defined. The simulated cyclic
elastoplastic response is compared to the experimental data in the sec-
ond part. Finally, a procedure for the fatigue assessment is developed in
the third part. An attempt to extend the local average SED method from
the HCF to the LCF regime is proposed to include the notch effect.

2. Cellular materials

The experimental data from LCF tests of cellular materials were
collected in a recent publication by the authors of the present manu-
script, Pelegatti et al. [29], where a strut-based and a TPMS-based cell
were studied. The cellular specimens were produced by laser-powder
bed fusion (L-PBF) – laser beam powder bed fusion of metals (PBF-LB/
M) according to ISO/ASTM 52900:2021 – using 316L steel. The gauge
part of the cellular specimens comprises 6×6×13 cells with a cell side
equal to 2 mm, as schematised in Fig. 1. The strut-based unit cell, called
FBCCZ, is composed of 28 struts and 13 joints. The TPMS-based is a
skeletal-gyroid cell obtained from the gyroid minimal surface [4,30].
The as-designed relative density, i.e. the density of the cellular material

Fig.2. Finite element models for the cellular materials using different levels of approximations: unit cell for (a) FBCCZ and (b) gyroid; 6×6×1 structure for (c) FBCCZ
and (d) gyroid; (e) 6×6×1 structure with full strut diameters for FBCCZ (u, v and w are the displacements along X, Y and Z, respectively; PBCs – periodic bound-
ary conditions).
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divided by the density of the base material, of both the cellular struc-
tures is about 31 %. The relative density of the FBCCZ is ruled by the
strut diameter equal to 0.4 mm, whereas the density of the skeletal-
gyroid depends on the constant parameter of the gyroid iso-surface
equation, usually indicated with the letter t, equal to − 0.57 [31].

The LCF tests of cellular specimens were carried out in strain control
using an axial clip-on extensometer. Different macroscopic strain am-
plitudes with zero mean strain were imposed for the two cellular ma-
terials: 0.3 %, 0.4 %, 0.5 % and 0.7 % for the FBCCZ, and 0.3 %, 0.5 %,
0.7 %, 1.0 % and 1.2 % for the gyroid. Several stress–strain hysteresis
loops, as well as the maximum and minimum stresses and the number of
cycles to failure, were recorded during the tests.

3. Modelling strategy

3.1. Geometry, boundary conditions and material constitutive model

The experimental cyclic behaviour of the cellular specimen could be
accurately simulated by modelling the entire gauge part of the specimen
with 6×6×13 cells. Unfortunately, this modelling strategy is unfeasible
for a number of reasons related to the high computational effort
required: the high number of elements necessary to discretise the
specimen intricated geometry; the non-linearity of the material behav-
iour; the need to compute the specimen elastoplastic response for a large
number of cycles in the LCF regime.

A trade-off between model complexity and computational effort has
to be found, leading to a simplified model that still preserves accuracy.
Two different strategies were pursued in the present study, as reported
in Fig. 2. The first one consists of simulating the response of one unit cell
subjected to PBCs along all three directions. The PBCs allow the response
of a unit cell inside a periodic structure to be accurately reproduced.
However, it is worth mentioning that the mechanical response obtained
using the unit cell with PBCs becomes a reasonable approximation for
cellular structures with a sufficiently high number of cells. In the second
strategy, the geometry of a 6×6×1 cellular structure is considered, and
the PBCs were set only along the loading direction, whereas the edges of
the structure are free to move in the other two directions.

The modelling strategy for FBCCZ and gyroid cells is further differ-
entiated. Since the FBCCZ unit cell has three planes of symmetry, an
eight-quarter model can be exploited, as shown in Fig. 2 (a). This choice
is acceptable if the PBCs can be approximated by imposing the faces of
the cell to remain flat during deformation (without warping). Therefore,
the nodes of the external faces are constrained to have the same
displacement perpendicular to the face to which they belong. The
symmetries of the FBCCZ structure can also be exploited in the case of
the 6×6×1 FBCCZ model, where the nodes on the external faces are left
unconstrained. Because the as-designed structure presents struts with
full diameters at the boundaries, two model geometries of the 6×6×1
FBCCZ structure were also considered: one repeats the unit cell in the
cross-section of the specimen, as depicted in Fig. 2 (c), whereas the other
also includes the full diameter of the edge struts, see Fig. 2 (e).

The gyroid unit cell must be modelled entirely because the geometry
does not show symmetry planes. Furthermore, the absence of symmetry
planes and the specific distribution of the material within the cell leads
to a warping of the external faces during the deformation. In this specific
case, the PBCs cannot be approximated as done for the FBCCZ cell and
must be imposed on each of the opposed faces of the cell. Concerning the
6×6×1 gyroid structure, all the cells must be modelled, and the PBCs

enforced along the loading direction. The unit cell and 6×6×1 gyroid
geometries with the applied boundary conditions are illustrated in Fig. 2
(b, d). The PBCs were set by following the procedure proposed by
Okereke et al. [32], and their implementation is described in Appendix
A.

The material adopted in the FE model is the 316L steel produced by
L-PBF that was investigated by the authors in previous works [33,34].
An elastoplastic material model with combined kinematic and isotropic
hardening was used in the simulations to replicate the cyclic elasto-
plastic response of the cellular structures. Chaboche’s model was
adopted as the kinematic hardening model to reproduce the non-linear
stress–strain response of the material during each cycle. The kinematic
hardening variable is the back stress tensor X, whose increment is
governed by the following equation:

dX =
∑3

i=1

2
3
Cidεpl − γiXidp (1)

where the parameter Ci is related to the plastic strain-hardening
modulus of the material, whereas γi rules its decrease. The increment
of the back stress tensor dX depends on both the increment in the plastic
strain tensor, dεpl, and the accumulated equivalent plastic strain, p.

The cyclic softening of the material was instead replicated using
Voce’s isotropic hardening model. The incremental form of the model is
the following:

dR = b(R∞ − R)dp (2)

where R is the isotropic hardening variable. The parameter R∞ repre-
sents the saturated value of R, and b is the speed of stabilisation, i.e. how
fast the variable R reaches the value R∞ with increasing p.

Interested readers can find more details on the constitutive model
equations and the meaning of the parameters in the reference [35]. The
values of the constitutive model parameters, listed in Table 1, were
previously calibrated from experimental data obtained by testing bulk
cylindrical specimens [34]. Briefly, the calibration consisted of fitting
the cyclic elastoplastic response of the L-PBF 316L steel recorded during
LCF tests. The stress–strain hysteresis loops were fitted using Chaboche’s
model expression for the uniaxial loading condition, whereas the cyclic
stress response (i.e. cyclic softening) was fitted by Voce’s model. The
elastic properties refer to Young’s modulus E and the initial yield stress
σy,0.

The FE simulations were performed with the small deformation
assumption except for the tensile test simulation of the FBCCZ, discussed
in Section 5.2, where the large displacements option was enabled.

The FE simulations were carried out using the commercial code
Ansys®, and the geometries were discretised by 10-node tetrahedral
elements (SOLID187). Within the element, the displacement field is
quadratic, and the stress/strain fields are linear. The mean size of the
elements was obtained by a mesh convergence study on the global
response of a single unit cell subjected to a monotonic displacement
load, where the control variable was the reaction force. A mean element
size of 0.083 mm was selected for the FBBCZ cell and 0.078 mm for the
gyroid. The mesh was then slightly refined at notches for the fatigue
assessment using the local average SED. Specifically, a refinement was
necessary around the critical point.

Table 1
Material parameters of the 316L steel produced by laser-powder bed fusion [34].

Elastic properties Kinematic hardening Isotropic hardening

E(MPa) σy,0(MPa) C1(MPa) γ1 C2(MPa) γ2 C3(MPa) γ3 R∞(MPa) b

194,323 380 320,000 5500 97,000 1000 25,000 150 − 140 0.6128

M. Pelegatti et al.
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3.2. Finite element model selection

3.2.1. Boundary effects
The various models described so far (unit cell with PBCs vs. 6×6×1

layer structure) are compared to select which one reproduces the
experimental data best. While using only one single cell with PBCs is less
computationally demanding thanks to the reduced number of degrees of
freedom of the FE model, it theoretically represents a cellular structure
of infinite dimensions, and it can be a good approximation of actual
structures with a minimum number of cells.

Fig. 3 (a-d) compares the stress–strain response of the FBCCZ and
gyroid structures with a relative density of 31 % obtained by different

models: n×n×1 structure with increasing numbers of cells per side, n,
and the unit cell with PBCs. The response is evaluated in terms of the
effective elastic modulus from linear elastic simulations and the
macroscopic stress from non-linear elastoplastic simulations, both
calculated at the highest macroscopic strain used in experiments (i.e.
εa = 0.7% for the FBCCZ and εa = 1.2% for the gyroid). The macro-
scopic stress is the ratio of the applied axial force F to the cross-section
area A0 obtained by intersecting the volume occupied by the cellular
structure envelope (unit cell or one-layer structure) with a transversal
plane. In other words, the macroscopic stress is a nominal stress that
considers the cellular structure a homogeneous material, not a porous
structure. The macroscopic strain is the imposed displacement divided

Fig.3. Influence of boundary effects on the effective elastic modulus and macroscopic stress at the maximum imposed strain for the (a-b) FBCCZ and (c-d) gyroid
structures. The red open markers (circles, triangles) refer to the absolute relative difference between the response of the unit cell and the n×n×1 structure. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig.4. Comparison between experimental and simulated stress–strain response of (a) FBCCZ and (b) gyroid cellular materials considering different FE models and the
as-designed and as-built relative densities.
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by the length of the cell side. The n×n×1 structures with and without
full diameters at the boundary cells are presented for the FBCCZ in Fig. 3
(a-b). In fact, the additional stiffness added by the full diameters can be
considered a boundary effect that vanishes with a high number of cells.

As can be seen, the macroscopic response of the n×n×1 cellular
structure with increasing the number of cells approaches the unit cell
with PBCs from below. The PBCs models are then stiffer. This trend can
be explained by considering that, unlike PBCs models, in n×n×1models,
the cells at the boundaries freely deform at least over one lateral face,
and, therefore, their response is less stiff than the interior cells, which
are fully embedded.

A different behaviour characterises the model of FBCCZ cells with
full diameters. In this model, the FBCCZ cells at the boundaries have full
diameters and are then stiffer; hence, the macroscopic response of such
n×n×1 structure approaches the PBCs unit cell from above (see black
triangles in Fig. 3 (a-b)). Nevertheless, in the case of both the n×n×1
structure with and without full diameters, when the number of cells is
high enough, the contribution of the cells at the boundaries becomes
negligible compared to the interior cells, which, on the opposite, behave
like the unit cell with PBCs. This is the reason why both models approach
asymptotically the response of the PBCs unit cell model.

The absolute relative difference between the effective elastic
modulus predicted by the unit cell and the 6×6×1 structure is lower
than 5 % for both cellular structures. This difference is slightly higher for
the macroscopic stress at the maximum imposed strain amplitude but
still below one-tenth, suggesting that the unit cell model can be
considered satisfactory to simulate the response of cellular structures.
However, the values of the effective elastic modulus and maximum
macroscopic stress of the FBCCZ 6×6×1 structure with full diameters
are considerably above 10 % compared to the unit cell, thus questioning
the use of the unit cell for the FBCCZ.

3.2.2. As-designed versus as-built relative density
The simulated stress–strain response with different FE models is

compared against the experimental data in Fig. 4 (a-b). The applied
macroscopic strain is equal to the maximum strain imposed in the cyclic
tests. For the experiments, the macroscopic stress is defined in Section
3.2.1, where the cross-section area A0 is the intersection of the volume
occupied by the cellular specimen envelope with a transversal plane. It is
evident that the mechanical response is underestimated for each model
with the as-designed (evaluated using the nominal geometry) relative
density of 31 %. The disagreement is evident when the stiffness pre-
dicted by the models is compared with that obtained from the
experiments.

This difference comes from the geometrical deviations between the
as-designed geometry and the as-built geometry manufactured by the
AM process. In fact, the feature size of the cellular structures is close to
the manufacturing limit of the AM machine; geometrical and dimen-
sional deviations are inevitable. Such deviations, in turn, are responsible
for the higher relative density of the as-built cellular structures
compared to the as-designed ones.

Many studies emphasise the relevance of considering the as-built
geometry in the simulation process [23,36,37,38,39]. The geometrical
deviations are usually estimated using computed tomography (CT) when
an accurate representation of the actual geometry is sought. However,
CT analyses are only sometimes available due to the time-consuming
procedure and expensive experimental apparatus. Therefore, the
following procedure aims to determine the relative density of the as-
built cellular structure through measurements of its mass; that is, a
relative density that accounts for the dimensional and geometrical de-
viations of the additively manufactured structure from its theoretical
geometry obtained by CAD. Several reasonable assumptions were
considered:

• the volumetric mass density of the 316L steel, ρ316L, is 8.00 kg/mm3;

• the mass difference between the as-built and as-designed specimens
is concentrated only in the cellular part, not in the grip sections,
whose geometry can be manufactured with greater accuracy;

• the cellular part of the specimens consists of two portions: one with a
constant relative density and the other with an increasing relative
density towards the grip section. Themass increment in percentage is
considered equal in both portions.

Based on those hypotheses and assuming that the external di-
mensions of the envelope of the cellular structure are the same between
the as-built and as-designed specimens, the corrected relative density
can be calculated.

The first step is measuring the mass of each specimen, mexp, using a
high-precision scale. The average values are 85.7506 g (standard devi-
ation equal to 0.0482 g) for the FBCCZ and 76.346 g (standard deviation
equal to 0.1569 g) for the gyroid.

The second step consists of evaluating the theoretical mass of the
whole specimen, mCAD, by multiplying the volume predicted by the CAD
models and the volumetric mass density of the 316L steel; the values are
78.8505 g (for FBCCZ) and 73.7834 g (for gyroid), respectively. In the
same step, the theoretical mass of different parts of the specimen is also
calculated: mCAD

cell – mass of the whole cellular part of the specimen – and
mcell,ρ = costCAD – mass of the cellular part considering only the portion
with a constant relative density (ρ = cost).

Then, the mass of the as-built cellular part with a constant relative
density can be estimated:

mcell,ρ = costexp =
(mexp − mCAD)

mCAD
cell

mcell,ρ = costCAD +mcell,ρ = costCAD (3)

where the second and third assumptions stated at the beginning of the
procedure are exploited.

Once mcell,ρ = costexp is known, the relative density of the as-built
cellular specimen, within the constant relative density portion, can be
estimated using the definition of relative density:

ρcell,ρ = costexp =
ρcell,ρ = cost

ρ316L
=

mcell,ρ = costexp

Vcell,ρ = costCAD
1

ρ316L
(4)

where ρcell,ρ = cost is the density of the cellular material calculated by
dividing mexp

cell,ρ=cost by the volume of the cellular part with constant
relative density, including the hollow regions (Vcell,ρ = costCAD).

This procedure returns the estimated relative density of the as-built
FBCCZ and gyroid specimens as 44.2 % and 35.8 %, respectively,
which differ from the nominal values by 43 % and 15 %. Similar values
can be found in the literature for both strut- and TPMS-based cellular
structures [40–43]. The gyroid structure then appears to be manufac-
tured with a tighter tolerance. This outcome is not surprising, as other
authors reported the high-quality printability of TPMS-based cellular
materials compared to the strut-based ones [44].

Finally, the FBCCZ geometry used in the FE simulations was updated
considering the relationship between the strut diameter and the relative
density. In contrast, the relationship between the parameter t (constant
parameter of the gyroid iso-surface equation) and the relative density
was used for the gyroid cell. As shown in Fig. 4 (a-b), the recalibrated
relative densities give acceptable results despite the simplified proced-
ure assumptions. It must be noted that the proposed procedure considers
the role of relative density without directly including geometrical de-
viations in the FEmodels, such as strut waviness and thickness variation.

Based on the presented results, the correction on the relative density
will be adopted in the following analyses. Furthermore, the cyclic
elastoplastic response of the FBCCZ specimens is modelled by the
6×6×1 structure with full diameters despite being the most computa-
tionally demanding among the considered models. In fact, the 6×6×1
structure with full diameters requires computational times forty times
longer than the unit cell when the same loadings and boundary

M. Pelegatti et al.
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conditions are applied. Nevertheless, this choice led to a more accurate
representation of the experimental mechanical response. The behaviour
of the gyroid, on the other hand, was modelled by the unit cell with
PBCs, leading to a reduced computational effort without losing excessive
accuracy. Similarly to the computational times required by FBCCZ
models, the gyroid unit cell is 36 times faster than the 6×6×1 structure.

Overall, Fig. 4 (a-b) demonstrates that the gyroid unit cell FE model
with a 35.8 % relative density overpredicts the experimental macro-
scopic stresses by 10 to 15 %, whereas the 6×6×1 structure with full
diameters and a 44.2 % relative density only slightly overestimates the
response of the FBCCZ.

4. Cyclic elastoplastic response

4.1. Macroscopic cyclic stress–strain response

The macroscopic cyclic elastoplastic response of the cellular mate-
rials was simulated until the half-life cycle for all the strain amplitudes
considered in the experiments. The FE models used in the simulations
are the 6×6×1 FBCCZ structure with full diameters and the gyroid unit
cell with the relative densities calibrated in Section 3.2.2.

The evolution of the simulated maximum and minimum stress for
subsequent cycles at different strain amplitudes is compared with the
experiments in Fig. 5 (a-b). The overall trend of the stress evolution
during cycling is captured by the FE simulations for both cellular ma-
terials. As also suggested by the results in Section 3.2.2, the cyclic
response simulated by the FBCCZ model is closer to the experimental
values than the gyroid model, which overestimates the maxima and
underestimates the minima of the stress. This difference in model ac-
curacies, emphasised qualitatively in Fig. 5, is further highlighted by
some quantitative metrics in Table 2, where the mean absolute per-
centage error (MAPE) [45] between the simulated and experimental
stress amplitudes is reported for each test. The absolute percentage error
(APE) at the first and half-life cycles is also given as a local indicator of
the accuracy. The equations for APE andMAPE are reported in Appendix
B. The MAPE is constantly below 5 % for the FBCCZ structure, with an
average value of nearly 3 % among the strain amplitudes. On the con-
trary, the MAPE is almost always higher than 10 % for the gyroid
structure modelled by the unit cell with PBCs, with an average value of
10.6 %.

Fig.5. Experimental and simulated cyclic stress response: maximum and minimum macroscopic stress versus the number of cycles for the (a) FBCCZ and (c)
gyroid structure.

Table 2
Mean absolute percentage error (MAPE) evaluated between the simulated and
experimental macroscopic stress amplitudes throughout the test and absolute
percentage error (APE) calculated for the first and half-life cycles.

εa(%) MAPE (%) APE (N = 1) APE (N = Nf/2)

FBCCZ 0.3 4.58 2.60 3.78
0.4 1.07 1.44 0.62
0.5 4.90 7.84 6.53
0.7 1.70 4.56 3.29

Gyroid 0.3 10.04 13.64 10.26 (N=2000)
0.5 9.89 10.64 15.24
0.7 10.67 14.07 13.60
1.0 11.25 14.18 12.50
1.2 11.10 13.21 11.62

Fig.6. Experimental and simulated half-life macroscopic stress–strain hysteresis loops for the (a) FBCCZ and (b) gyroid structure.
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A comparison of the simulated and experimental macroscopic
stress–strain hysteresis loops at half-life is shown in Fig. 6 (a-b). The
figure confirms, once again, that the FBCCZ model has a better predic-
tion accuracy than the gyroid model, which has instead the tendency to
estimate larger stress values. The accuracy achieved by the simulated
hysteresis loops at different cycles is comparable to the half-life ones in
Fig. 6 (a-b).

It is worth noticing that the material properties obtained from bulk
cylindrical specimens are suitable to model the response of struts and
nodes with a significantly lower size. In fact, once the relative density
has been corrected, the linear and non-linear portions of the macro-
scopic stress–strain behaviour of the cellular structures are well repro-
duced by the FE simulations. On the other hand, several studies propose
to adopt the mechanical properties obtained from testing small-size
specimens or micro-struts [46,47]. However, as pointed out in similar
studies, the different mechanical properties obtained from micro-struts
compared to the standard-size specimens are mainly related to the dif-
ficulty in defining the load-bearing area and, hence, the stress [48,49].
Other effects associated with the different microstructure of micro-struts
compared to the standard-size specimens are likely to have minor in-
fluences. Alternatively, Magarò et al. performed nano-indentations to
characterise the local elastoplastic behaviour in the struts and nodes
[50]. This approach appears effective in capturing the microstructure
influence on the mechanical behaviour of small geometrical features.
However, characterising the cyclic elastoplastic response requires per-
forming cyclic indentation tests and developing empirical correlations
between the test results and the constitutive model. Ultimately, it seems
reasonable to adopt the mechanical properties of standard-size

specimens in the constitutive model for the FE simulations and, as a
separate correction, to modify the geometry of the as-designed cellular
structure. This choice avoids sensitive and challenging strain-controlled
cyclic tests in the elastoplastic regime using micro-struts.

4.2. Microscopic stress/strain fields

The way stress and strain are distributed within cellular structures
differs greatly between FBCCZ and gyroid topologies when subjected to
macroscopic uniaxial loading. To highlight the critical point of each
cellular material, the equivalent total strain field is reported in Fig. 7 for
the FE models of the 6×6×1 FBCCZ structure with full diameters and the
gyroid unit cell. The equivalent von Mises stress may not be suitable for
identifying the critical region because the values tend to saturate and
redistribute due to the non-linear material response.

The results presented in Fig. 7 correspond to the maximum point of
the second cycle, where the FBCCZ was cyclically loaded at 0.7 % strain
amplitude and the gyroid at 1.2 % strain amplitude. The vertical struts of
the FBCCZ structure bear most of the load and experience a high strain
level, as highlighted in Fig. 7 (a). Nevertheless, the strain further rises
towards the sharp notches located at the junctions of the struts. Here, the
local strain value predicted by the FE method increases with the
decrease in mesh size due to the geometric singularity. Among the
different junctions, the nodes cut by the upper face of the model present
the highest strain values. In particular, the highest strain value is posi-
tioned at the corner edge of the structure and depicted in the close-up of
Fig. 7 (b). On the other hand, the strain is more evenly distributed within
the gyroid unit cell, as can be appreciated in Fig. 7 (c-d). Due to the

Fig.7. Equivalent total strain field: (a) 6×6×1 FBCCZ structure with full diameters loaded at 0.7 % strain amplitude where (b) is a close-up on the critical point; (c)
and (d) gyroid unit cell loaded at 1.2 % strain amplitude.
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unique geometry of the gyroid, several points attain the same maximum
strain level and are thus critical. In fact, the most strained zone envelops
the geometry following a helical path around the pseudo-struts (see the
red region in Fig. 7 (c-d)). Additionally, the absence of sharp notches in
the geometry leads to a mild strain gradient toward the critical region.

5. Fatigue life assessment

5.1. Theory of strain energy density method

5.1.1. Ellyin’s energy-based approach
The fatigue damage parameter considered in this work is the strain

energy density (SED), which can account for the influence of both the
stress and strain. The SED is a scalar quantity that intrinsically encom-
passes the multiaxial stress/strain state and can include the contribution
of plastic deformation, covering both the HCF and LCF regimes.
Furthermore, fatigue assessments based on SED are straightforward
compared to critical plane-basedmethods that require a time-consuming
post-processing phase. However, the SED cannot estimate the plane
where the crack is likely to nucleate and propagate. Finally, a promising
method, which will be discussed in the next Section 5.1.2, to account for
the notch effect in fatigue involves using the SED averaged in a volume.

The criterion proposed by Golos and Ellyin [51] defines a link be-
tween the total SED and the number of reversals to failure, 2Nf :

ΔWt = ΔWp +ΔWe+ = κt
(
2Nf

)αt
+ΔWt

0 (5)

where ΔWp is the plastic SED in a cycle and ΔWe+ is the elastic SED of
the positive cycle portion. These quantities are depicted in Fig. 8 (a) for
the uniaxial loading case. The material constant ΔWt

0 is equal to the
tensile elastic SED at the fatigue endurance limit, whereas the constants
κt and αt rule the finite life fatigue curve.

As noted in Eq. (5), the energy-based approach can account for
elastoplastic deformation. Furthermore, for a generic stress/strain
multiaxial state, the plastic SED per cycle is:

ΔWp =

∫

cycle
σijdεpij (6)

where σij and εpij are the components of the stress and plastic strain tensor
with the indices i, j = 1,2,3. The product inside the integral is between
components with the same indices and is intended as the sum over of the
nine components. Given the hypothesis of incompressibility under
plastic deformation, the plastic SED is strictly deviatoric.

On the other hand, the positive elastic SED also accounts for the
hydrostatic deformation and can be calculated as follows [52,53]:

ΔWe+ =
1
2E

[(
Imax1

)2
−
(
Imin1

)2
]
−
1+ ν
E

[
Imax2 − Imin2

]
(7)

where

Imax1 = σmax
1 H

(
σmax
1

)
+ σmax

2 H
(
σmax
2

)
+ σmax

3 H
(
σmax
3

)
(8)

and

Imax2 =σmax
1 σmax

2 H
(
σmax
1

)
H
(
σmax
2

)
+ σmax

2 σmax
3 H

(
σmax
2

)
H
(
σmax
3

)

+ σmax
3 σmax

1 H
(
σmax
3

)
H
(
σmax
1

) (9)

in which H is the Heaviside function and σ1, σ2 and σ3 are the principal
stresses. Analogous expressions are defined for Imin1 and Imin2 .

5.1.2. Extension of the average strain energy density method
In the presence of notches, Ellyin’s criterion must be expanded to

include the notch sensitivity. One natural way is to adopt the average
SED method proposed by Lazzarin and Zambardi [54] for predicting
static and HCF failures of components with sharp V-shaped notches. This
method was initially formulated for material with a linear elastic
behaviour but then was extended to include generalised plasticity
[55,56]. For example, Torabi et al. tried to predict the static failure of
notched specimens made of ductile material using the equivalent ma-
terial concept [57]. Nonetheless, to the best of the author’s knowledge,
the average SED method was never applied to assess the strain-
controlled LCF data of notched specimens. Therefore, the present
study constitutes a first attempt.

The SED approach originally formulated for static failure states that a
component with a V-notch fails when the average SED calculated in a
control volume centred around the notch equals a critical value of the
material:

W(Vc) =
1
Vc

∫

Vc
WdV = Wc (10)

where Vc is the control volume, which is a material property to be
calibrated from the experiments, and the overbar indicates the average
operation over the volume. The critical value Wc is also a material
property and corresponds to the SED value at static failure for plain
specimens.

With fatigue loadings, the average SED method can be written by
using the range values for evaluating the event of fatigue failure:

ΔW(Vc) = ΔWc (11)

where Vc is usually different from the case of the static failure and it
depends on the number of cycles to failure. The critical value ΔWc is the

Fig.8. (a) Positive elastic, plastic and total strain energy density in a stress–strain cycle under uniaxial loading condition. (b) Control radius and volume (area) for bi-
dimensional sharp and blunt V-notches.
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SED range associated with the fatigue failure at a given number of cycles
to failure.

The approach proposed in this work expands Ellyin’s criterion of Eq.
(5) to include the notch effect by using the average SED method of Eq.
(11):

ΔWt(Vc) = κt
(
2Nf

)αt
+ΔWt

0

ΔWt(Vc) = ΔWp(Vc)+ΔWe+(Vc) (12)

where ΔWp(Vc) and ΔWe+(Vc) are the plastic SED and positive elastic
SED averaged in the control volume Vc. The sum of these two contri-
butions gives the average total SED, ΔWt(Vc). The tensile elastic SED at
the fatigue limit ΔWt

0 will be neglected in the following analyses.
Therefore, the parameter κt now incorporates the parameter ΔWt

0, and,
for 2Nf tending to infinity, the model does not include an endurance
limit. This assumption is acceptable as long as the studied regime is far
from the HCF regime.

As a final aspect, the average SED method was developed for notches
that can be studied as bi-dimensional. To obtain the control volume, a

circle of radius Rc, whose centre is coincident with the notch tip, is
usually intersected with the material surrounding the notch. For sharp
V-notch, the resulting control volume (area) is outlined in Fig. 8 (b). The
average SED approach was also extended to predict the failures of
components weakened by blunt V-notches with a curvature radius, ρ
[58]. This specific case is shown in Fig. 8 (b), where the control volume
can be obtained by shifting the circular sector by a quantity r0 from the
notch tip and changing the radius to (r0 + Rc). The parameter r0 depends
on the curvature radius and the notch angle, 2α. When the notch is
instead three-dimensional, the control volume is sometimes simplified
as the intersection between a sphere with radius Rc surrounding the
critical point and the material around the notch [23]. In conclusion, the
calibration of the control volume consists of identifying the control
radius Rc by comparing the fatigue results of notched and plain speci-
mens, irrespectively to the notch geometry.

5.2. Calibration of the control volume shape and size

The geometry of the control volume is determined by using a sphere
centred at the critical point of the cellular structure as the intersecting

Fig.9. Calibration of the control radius size: (a) plastic and positive elastic SED evaluated on the tensile test curve magnified by a factor of 2; (b) average total SED
numerically evaluated for different control radius (light blue circles) and critical total SED for the bulk material (black dashed line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig.10. Plastic SED contour plots and definition of the control volume. (a) Section plane β aligned with the maximum stress principal direction. (b) Distribution over
the plane β and control volume outline.

M. Pelegatti et al.



Materials & Design 244 (2024) 113201

11

object. The radius of the sphere is the control radius Rc, and its size is
considered a material parameter. In the absence of fatigue data for
notched and plain specimens, Molavitabrizi et al. proposed to estimate
the critical distance by comparing the static failure of the cellular
structures and plain specimens [25]. The choice was justified by
considering that the static failure is nothing but a limiting case of an LCF
failure with a fatigue life of only one cycle. A similar approach was
followed in this work, where a comparison of the static behaviour be-
tween the FBCCZ and plain specimens enables the control radius Rc to be
found. Nevertheless, it should be stressed that the natural way to cali-
brate Rc is to compare fatigue data of notched and plain specimens
tested in the regime of interest (i.e. LCF); in theory, the value of Rc
should change with the number of cycles to failure. In particular, the size
should decrease with increasing the number of cycles to failure [59].

Considering that the control radius is assumed to be a material
property independent of the notch geometry [60], the value of Rc cali-
brated for the FBCCZ is used to estimate the fatigue life of the gyroid
structure. Nonetheless, the geometry of the gyroid has no sharp notches
and the stress/strain raisers are located at blunt notches. Therefore, a
different shape of the control volume is defined based on the theory
discussed in Section 5.1.2.

5.2.1. FBCCZ cellular material
The procedure adopted to estimate the value of Rc is schematised in

Fig. 9 (a-b). The energy on a complete cycle is computed so that Eq. (12)
for fatigue loading can be applied with the control radius estimated
under static loading. Firstly, the critical total SED for the bulk L-PBF
316L steel under static loading is evaluated. To this end, the monotonic
true stress-strain curve of the material until the peak stress was
considered. The monotonic curve was then mirrored twice to define a
closed hysteresis loop, which was used – in place of the monotonic curve
– to determine the total SED in Eq. (12) as the sum of the elastic and
plastic strain energy densities, see Fig. 9 (a). The obtained total SED
value isΔWt

c = 297.41 MJ/m3; it represents a property of the bulk ma-
terial. For convenience, it is reported in Fig. 9 (b) as a horizontal dashed
line for subsequent analyses.

Once the critical total SED is known, the second step is to determine
the control volume Vc of the FBCCZ cell, to be used in Eq. (12) as well.
For this purpose, the response of the 6×6×1 FBCCZ structure subjected
to a strain-controlled cycle was simulated by the FE model. The
maximum strain amplitude in the strain-controlled cycle, namely 3.56
%, corresponds to the strain measured at the peak force during the
experimental tensile test of the FBCCZ specimen. In simulations, the
strain amplitude was applied for one-quarter cycle and then one cycle in
order to simulate one closed loop. For this simulation, the material
model is elastoplastic with a multilinear kinematic hardening, and it is
calibrated on the same monotonic true stress-strain curve of the L-PBF
316L steel mentioned above. Based on the simulated response of the
6×6×1 FBCCZ structure, the total SED ΔWt(Vc) averaged over a
spherical control volume, centred at the critical point, was evaluated for
different control radii. An example of control volume considered in this
step is illustrated in the inset of Fig. 9 (b). Although the average SED
method is less mesh sensitive [61], the FE mesh was refined around the
critical point because the volume-free procedure was applied to evaluate
the average SED [62]. In fact, the shape of the control volume is
approximated by tetrahedrons in the volume-free approach leading to
less accurate calculations, despite being more straightforward to
implement. Consequently, it was decided to decrease the element size in
a sphere with a radius slightly higher than the expected Rc.

The trend of the average total SED for different control radii is
depicted in Fig. 9 (b) as markers. The continuous curve interpolates the
numerical values using a power law function; its intersection with the
critical SED (dashed line) yields an estimate of the control radiusRc =

0.118 mm, which can be thought as a material property. This value will
be used to assess the fatigue life of the FBCCZ structure.

Fig.11. Numerical values of the average total SED versus number of cycles for
the FE simulations of the FBCCZ and gyroid structure cyclically loaded at 0.5%
and 1.2% strain amplitude, respectively.

Table 3
Experimental and estimated number of cycles to failure for the FBCCZ and
gyroid cellular materials.

εa(%) ΔWt(MJ/m3) Nf (cycles)

Simulations Experiments Simulations

FBCCZ 0.3 6.896 492 2616
0.4 13.51 155 854
0.5 21.58 126 392
0.7 40.59 53 137

Gyroid 0.3 2.689 25,057 12,533
0.5 7.779 2531 2141
0.7 13.82 1234 823
1.0 23.88 430 331
1.2 30.92 251 215

Fig.12. Comparison between experimental and estimated reversals to failure
using the average total SED method in a strain-life plot for the FBCCZ and
gyroid structures. Experimental data for the gyroid are reported based on two
failure criteria: F1 – 10% drop of the maximum stress compared to the linear
softening; F2 – 16% drop in the effective tensile elastic modulus (Et) to the
initial value.
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5.2.2. Gyroid cellular material
The control radius estimated for the FBCCZ structure is also used for

the gyroid. However, a change in the control volume shape is necessary
to account for the case of blunt notches [59,63]. As discussed in Section
4.2, several points attain the same maximum stress/strain level within
the gyroid cell. For that reason, one point that allows defining the entire
control volume was selected from that region to be the critical point.
Fig. 10 (a) shows the plastic SED contour of the gyroid and the selected
critical point. In addition, a plane β, passing through the vector normal
to the point and the vector defining the maximum principal stress di-
rection is shown schematically. Eventually, the plastic SED contour was
analysed on a section obtained by using the plane β, and a control vol-
ume with a radius of (r0 + Rc) and centred at a distance r0 from the
critical point was defined, see Fig. 10 (b). The value of r0 was set equal to
half of the curvature radius calculated in the critical point, with the
radius lying in the plane β. The vector normal to the critical point and
the curvature radius can be calculated analytically using the equation of
the gyroid surface [31]. Finally, a mesh refinement was created around
the critical point to obtain accurate values of the average total SED for
the fatigue life assessment.

5.3. Low cycle fatigue curves

The average SED criterion described in Section 5.1.2, i.e. Eq. (12),
was used to estimate the fatigue life of the FBCCZ and gyroid structures,
together with the control volume shape and size calibrated in the pre-
vious Section 5.2. Cyclic FE simulations were carried out on the 6×6×1
FBCCZ structure with full diameters and the gyroid unit cell by imposing
the same strain amplitudes used in experiments.

In the case of LCF loading conditions, the average total SED changes
during cycling due to the cyclic hardening/softening of the material.
Only when the material reaches a stabilised condition can a unique
value of the average total SED be obtained and adopted in the fatigue
criterion of Eq. (12).

To comprehend the cyclic evolution of the average total SED, two FE
simulations were performed. A cyclic load was applied to the FBCCZ and
gyroid structures for 100 cycles. The former loaded at 0.5 % strain
amplitude, the latter at 1.2 %. This value of 100 cycles aligns with the
half-life of the gyroid specimen tested at 1.2 %. The same value was
selected for the simulation of the FBCCZ tested at 0.5 % for a

straightforward comparison, despite the half-life being at 60 cycles.
These preliminary simulations show that the average total SED de-
creases with increasing the number of cycles, as depicted in Fig. 11.
While for the FBCCZ structure, the decrease can be considered negli-
gible, for the gyroid, the average total SED evaluated in the control
volume drops by 16 % from the initial value. Furthermore, an apparent
stabilisation of the average total SED has yet to be achieved. Therefore,
due to the high computational effort of simulating thousands of cycles
until reaching a stabilised value of the average total SED, the latter was
evaluated at the second cycle for all the strain amplitudes, thus
providing more conservative results and reducing the simulation time.

The average total SED evaluated at the second cycle was used in Eq.
(12) to obtain the number of cycles to failure. Both quantities are re-
ported in Table 3. The material parameters in the LCF model defined by
Eq. (12) are equal toκt = 1184.84 MJ/m3 and αt = − 0.6010, whereΔWt

0
was neglected, as mentioned in Section 5.1. The experimental numbers
of cycles to failure are also reported in Table 3, while the strain-life
curves are depicted in Fig. 12.

The estimated cycles to failure listed in Table 3 are close to the
experimental values for the gyroid, which it can also be appreciated by
the data in Fig. 12. The only exception is the test at 0.3 % strain
amplitude, where the estimated cycles to failure are nearly half the
experimental value. On the other hand, the estimated fatigue lives for
the FBCCZ are always two to more times higher than the experimental
data and the predicted strain-life curve is placed on the right to the
experimental values, thus providing non-conservative results within the
tested strain amplitude interval. This latter outcome can be ascribed to
the fact that the control radius was estimated from the material static
response. The influence of the sharp notch is expected to be lesser under
static loading than fatigue loading. Therefore, the control radius esti-
mated from the static material behaviour is larger than the radius esti-
mated from fatigue loading. In turn, a larger control radius leads to
lower average total SEDs and, hence, higher numbers of cycles to failure.
In summary, the control radius estimated from the static material
properties may explain the non-conservative estimates observed for fa-
tigue loadings.

The results obtained for the gyroid are instead less straightforward to
be explained. A degree of non-conservatism similar to the case of the
FCBBZ was expected, considering that the control radius used in the
fatigue assessment is the same. Even though the average total SED at the

Fig.13. Mesh nodes of the gyroid unit cell FE model used to implement the periodic boundary conditions. Black and green solid circles are the face and edge nodes,
respectively, whereas the retained nodes are indicated with blue solid circles. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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half-life cycle is used, the degree of non-conservatism remains less
pronounced than in the case of the FBCCZ structure. A possible expla-
nation is related to the definition of the cycles to failure obtained from
the experimental results. In Pelegatti et al. [29], the failure criterion (F1)
to define the number of cycles to failure was based on a 10 % reduction
from the linear cyclic softening experienced by the maximum stress.
Although the adopted criterion was the same for the FBCCZ and gyroid
structures, an alternative failure criterion can be defined based on the
drop in the tensile elastic modulus Et (i.e. the effective elastic modulus
estimated from the unloading portion of the cycle). This quantity might
be more appropriate to define a damaged condition of the cellular
structure than the decrease in maximum stress, which can also be related
to the material softening.

When the cellular structures reached Nf cycles based on the F1 cri-
terion, the tensile elastic modulus declined by around 16 % for all the
FBCCZ specimens, whereas a drop of 40 % was estimated for the gyroid
specimens. This difference seems to suggest that a larger portion of the
material in the gyroid structure than in the FBBCZ was damaged when a
10 % drop in the maximum stress was reached, thus questioning the
consistency of the comparison. Therefore, if a new failure criterion (F2)
is defined based on a 16 % drop of the tensile elastic modulus for both
cellular materials, the fatigue lives of the gyroid specimens are lowered,
as shown in Fig. 12 by the black open circles. The estimated cycles to
failure using the average SEDmethod are now non-conservative for both
the FBCCZ and gyroid structures, which appears to be a more reasonable
result. If a smaller control radius is selected for the LCF assessment, the
average SED method is now expected to give accurate results for both
cellular materials.

The above discussion emphasises that the comparison between
estimated and experimental fatigue lives depends upon the failure cri-
terion of cellular structures. Moreover, the control volume size cali-
bration strongly influences the estimated fatigue lives using the SED
approach.

As a final remark, the proposed procedure considers the influence of
process-induced defects on fatigue life. In fact, the fatigue curve of the
base material was obtained on bulk specimens, which were charac-
terised by the presence of gas pores and lack-of-fusion defects. On the
contrary, the effect of the surface roughness is not included, as it re-
quires using a fatigue curve estimated by bulk specimens with as-built
surface. However, the influence of the surface roughness in the LCF
regime was found to be minor by several studies [14,64].

6. Conclusion

A methodology to assess the LCF lifetime of cellular materials is
proposed and validated against experimental data obtained in a previous
study. FE simulations were performed to reproduce the cyclic elasto-
plastic response at the macro-scale, whereas the average total SED in a
control volume at the micro-scale was adopted to estimate the cycles to
failure of the cellular materials. The following outcomes on the applied
methodology can be drawn:

• The FE model of a unit cell with PBCs can accurately replicate the
macroscopic cyclic elastoplastic response of cellular structures
characterised by layers of 6×6×1 cells along the loading direction.
However, the struts with full diameters at the boundaries of the
FBCCZ cellular specimen introduce a further effect that must be
included in the simulations to achieve acceptable results.

• The macroscopic stress–strain response simulated by the as-designed
geometries of the cellular structures largely underestimates the
experimental response. An approximated procedure based on the
mass measurement of the cellular specimens is adopted with satis-
fying performance to match the relative density of the as-built

cellular structure and recalibrate the geometrical dimensions of the
FE model.

• The macroscopic cyclic elastoplastic response is well reproduced by
the 6×6×1 FBCCZ structure, with absolute percentage errors calcu-
lated on the macroscopic stress amplitudes below 10 %. On the other
hand, the macroscopic stress amplitudes predicted by the gyroid unit
cell are over 10 % of the experimental values. Overall, the non-linear
stress–strain response of the cellular materials is well-captured by
using a constitutive material model calibrated on bulk cylindrical
specimens with a considerably larger size than the features of the
cellular structures.

• The average total SEDmethod, in combination with a control volume
size calibrated from the static properties of the L-PBF 316L steel and
the FBCCZ structure, provides non-conservative fatigue lives for the
FBCCZ. However, the estimated cycles to failure are close to the
experimental values for the gyroid, suggesting that the higher fatigue
lives of the gyroid specimens compared to the FBCCZ are likely due
to a different fatigue failure process in the structure, which cannot be
entirely captured by the simplified model adopted in this work.

Overall, the proposed methodology was proven to give acceptable
results, especially when dealing with structures showing blunt
geometrical features. Further improvements should be introduced to
account for the as-built geometry of the cellular structures and especially
to calibrate the control volume size when the actual geometry signifi-
cantly differs from that nominally modelled. Furthermore, an in-depth
understanding of the progressive damage of the cellular structures
during the LCF loading can provide helpful insights to develop more
physically consistent models. Nevertheless, the proposed methodology
is yet an efficient, flexible and relatively inexpensive engineering tool.
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Appendix A. : Periodic boundary conditions

Owing to the lack of geometric symmetries of the gyroid, the faces of the cell warp when deforming. Therefore, approximating the PBCs by
imposing the faces to remain flat during the deformation, as done for the FBCCZ cell, is inaccurate. In the case of the gyroid cell, the full equations that
describe the PBCs must be imposed on the FE model as constraint equations.

A cell inside a cubic domain of side length l0 can be taken as an example to explain the PBCs. A cartesian frame of reference Oxyz is positioned with
its origin O at one of the cube vertices and its axes aligned with the cube edges. The PBCs equations constrain the homologous points of opposite faces
to have the same displacement values minus the macroscopic strains along x, y and z:
⎧
⎪⎪⎨

⎪⎪⎩

(ux+ − ux− ) = εxl0
(vx+ − vx− ) = 0

(wx+ − wx− ) = 0

⎧
⎪⎪⎨

⎪⎪⎩

(
uy+ − uy−

)
= 0

(
vy+ − vy−

)
= εyl0

(
wy+ − wy−

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(uz+ − uz− ) = 0

(vz+ − vz− ) = 0

(wz+ − wz− ) = εzl0

(13)

where u, v and w are the displacements along x,y and z, respectively. Subscript x+ indicates the points lying on the face with the maximum x co-
ordinate (x = l0), whereas the subscript x − indicates the points at the minimum x coordinate (x = 0). The same notation, in which x is replaced by y
and z, is used to indicate the points lying on the other four faces, that is, y+ and y − , and z+ and z − to indicate the opposite faces along y and z,
respectively. The macroscopic strains εx, εy and εz define the average elongation/contraction of the cube along x,y and z.

In other words, the homologous points of opposite faces move by the same value along the direction perpendicular to the faces minus the elon-
gation/contraction defined by the macroscopic strain. The latter can be imposed as an external load or caused by the lateral contraction/elongation of
the cell.

The first requirement to implement the PBCs in the FE method is to define a periodic mesh on the FE model. A periodic mesh is characterised by
having the same FE discretisation on the opposite faces of the unit cell, i.e. the number of nodes on the opposite faces is equal, and the location of the
nodes in the planes of the faces is the same. Therefore, each node on one face has its counterpart on the opposite face to form a pair of nodes, which can
then be coupled using constraint equations. The second step consists of forcing the Eqs. (13) on the nodes of the cube faces. However, the nodes on the
edges (edge nodes) and vertices (vertices nodes) of the cubic domain are shared by more than one face, and over-constraints on these nodes must be
avoided. Therefore, different sets of constraint equations are defined for the edge and vertices nodes, whereas Eqs. (13) are imposed on the nodes of the
cube faces (face nodes), excluding the edge and vertices nodes.

The procedure to implement the PBCs is analogous to the one in the works of Omairey et al. [65] and Okereke et al. [32], where only slight changes
are operated. As reported by Okereke et al., Eqs. (13) can be numerically implemented in the FE method by defining the slave nodes and the retained
nodes. The retained nodes are four of the eight nodes at the vertices of the unit cell, where the load is prescribed. Meanwhile, the slave nodes are the
remaining nodes on the six faces and twelve edges of the cubic domain, which are kinematically tied with the displacements of the retained nodes.

At this point, the specific case of the gyroid unit cell is considered. The same cartesian reference frame described for Eqs. (13) will be used, as well
as the same notations for the different sets of face nodes. It is worth pointing out that now the concept of point is replaced with the concept of node,
consistently with the FE method. The edge nodes are denoted by combining the previous notation; for example, x+/y+ denotes the nodes at the edges
with coordinates x = 1 and y = 1. Finally, in the present work, five nodes on five of the cube edges are defined as retained nodes because solid material
is not present in the vertices of the cubic domain, see Fig. 13. For the same reason, the vertices nodes are not present. The retained nodes are indicated
with the subscripts x, free, y, free, z, free, x, fix/y, fix and z, fix.

The imposed PBCs constraint equations are reported and discussed in the following for each set of nodes. The applied equations on the retained
nodes prevent any rigid body motion of the FE model and allow the displacement to be enforced along the y direction while, at the same time, the
periodic displacement field on the nodes is ensured:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vx,free = 0

ux,fix/y,fix = 0

vx,fix/y,fix = 0
(
wx,free − wx,fix/y,fix

)
= 0

{
uy,free = 0

vy,free = ΔL

⎧
⎪⎪⎨

⎪⎪⎩

(
uz,free − uz,fix

)
= 0

(
vz,free − vz,fix

)
= 0

wz,fix = 0

(14)

The imposed equations on the face nodes are equal to the Eqs. (13), where the macroscopic strains are replaced with the displacements of the
retained nodes x, free, y, free and z, free:
⎧
⎪⎪⎨

⎪⎪⎩

(ux+ − ux− ) + ux,free = 0

(vx+ − vx− ) = 0

(wx+ − wx− ) = 0

⎧
⎪⎪⎨

⎪⎪⎩

(
uy+ − uy−

)
= 0

(
vy+ − vy−

)
− vy,free = 0

(
wy+ − wy−

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(uz+ − uz− ) = 0

(vz+ − vz− ) = 0

(wz+ − wz− ) + wz,free = 0

(15)

For example, the first set of equations provide the same displacements v and w for the pairs of nodes on the faces with maximum and minimum x-
coordinate values, whereas the displacement u of the nodes on face x+ is equal to the one of the counterparts on face x − minus the displacement of the
retained node x, free.

Finally, the edge nodes are constrained with equations similar to Eqs. (15), but avoiding over-constraints:
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⎧
⎪⎪⎨

⎪⎪⎩

(
ux+/y+ − ux− /y+

)
+ ux,free = 0

(
vx+/y+ − vx− /y+

)
= 0

(
wx+/y+ − wx− /y+

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
ux− /y+ − ux− /y−

)
= 0

(
vx− /y+ − vx− /y−

)
− vy,free = 0

(
wx− /y+ − wx− /y−

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
ux− /y− − ux+/y−

)
− ux,free = 0

(
vx− /y− − vx+/y−

)
= 0

(
wx− /y− − wx+/y−

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
ux+/z+ − ux− /z+

)
+ ux,free = 0

(
vx+/z+ − vx− /z+

)
= 0

(
wx+/z+ − wx− /z+

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
ux− /z+ − ux− /z−

)
= 0

(
vx− /z+ − vx− /z−

)
= 0

(
wx− /z+ − wx− /z−

)
+ wz,free = 0

⎧
⎪⎪⎨

⎪⎪⎩

(
ux− /z− − ux+/z−

)
− ux,free = 0

(
vx− /z− − vx+/z−

)
= 0

(
wx− /z− − wx+/z−

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
uy+/z+ − uy− /z+

)
= 0

(
vy+/z+ − vy− /z+

)
− vy,free = 0

(
wy+/z+ − wy− /z+

)
= 0

⎧
⎪⎪⎨

⎪⎪⎩

(
uy− /z+ − uy− /z−

)
= 0

(
vy− /z+ − vy− /z−

)
= 0

(
wy− /z+ − wy− /z−

)
+ wz,free = 0

⎧
⎪⎪⎨

⎪⎪⎩

(
uy− /z− − uy+/z−

)
= 0

(
vy− /z− − vy+/z−

)
+ vy,free = 0

(
wy− /z− − wy+/z−

)
= 0

(16)

Appendix B. : Error indexes

The absolute percentage error (APE) is evaluated as follows:

APE =

⃒
⃒
⃒
⃒
σsim
a − σexp

a

σexp
a

⃒
⃒
⃒
⃒ (17)

where σexpa and σsima are the experimental and simulated stress amplitude of a given cycle.
The mean absolute percentage error (MAPE) is equal to the sample mean of the APEs evaluated on each i-th cycle:

MAPE =
100
l

∑l

i=1

⃒
⃒
⃒
⃒
⃒

σsim
a,i − σexp

a,i

σexp
a,i

⃒
⃒
⃒
⃒
⃒

(18)

where l is the total number of cycles under investigation.
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