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Abstract

The sensory capacity to analyze acoustic space is a very important function of an auditory

system. The need for the development of an understanding of the sound environment has

attracted many researchers over the past twenty years to build sensory systems that are

capable of locating acoustic sources in space. Several application areas that may potentially

provide advantages in using the acoustic location have led to the development of many

signal processing algorithms, which mostly consider the type of acoustic environment, the

type of sounds of interest, and the aim of localization.

In this thesis, we focus first on the nature of the sounds of interest, then on the envi-

ronment where the sounds are located, and finally on the type of context where it could be

applied. Two fundamental characteristics of a sound are its spectral content and its evo-

lution over time. The latter allows the classification of short sound events and continuous

sounds, while the spectral content over time characterizes the noisy or harmonic (or gen-

erally pseudo-periodic) sounds. Currently, localization systems have achieved good results

with regard to the location of a single source, while the case of multiple simultaneously

active sources has only recently been investigated in depth by the scientific community. In

particular, the localization of sounds in a multi-source case with short events has been lim-

ited to the use of systems implementing a Bayesian filter because an initialization time is

required to bring in the optimum phase of work, and therefore, greater potentials are applied

to the continuous sounds. Short events are typically present in real-world situations, such

as in many urban and natural contexts. Thus, they may occur in outdoor environments (but

are not limited to these) and are typically free-field and far-field environments. The interest

in locating these types of sounds may be attractive for audio surveillance, sound monitoring

and the analysis of acoustic scenes.

In this context, a new approach to solve the multi-source case, called the Incident Signal

Power Comparison, is proposed. This approach is based on identifying the incident signal

power of the sources of a microphone array using beamforming methods and comparing
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the power spectrum between different networks of arrays network using spectral distance

measurement techniques. This method solves the ambiguities caused by simultaneous mul-

tiple sources by identifying sounds to enable the spectrum power distance to minimize the

error criterion.

Furthermore, the performance of one of the most widely used signal processing tech-

niques for time delay estimation, the Generalized Cross-Correlation, is dramatically re-

duced in the case of harmonic sounds, or generally pseudo-periodic sounds; a framework

architecture is proposed to solve the localization of these types of sounds. These sounds are

related to musical instruments, and thus, the context is a near-field reverberant environment.

Potential applications may include human-computer interaction systems for controlling au-

dio processing. The system proposed is based on an adaptive parameterized generalized

cross-correlation and phase transform weighting with a zero-crossing rate threshold, which

includes a pre-processing Wiener filter and a post-processing Kalman filter.

Both prototypes were produced with arrays of a very small size (the minimum necessary

to locate noise sources in the plan): in the far-field environment, two linear arrays each

consisting of four microphones were used, and in the near-field case, a linear array of three

microphones was used. The purpose was to evaluate the performance of minimal systems,

which from a practical standpoint are less invasive; moreover, the computational cost is

particularly advantageous for real-time applications.

In conclusion, the objective of this thesis is to present the state of the art in acoustic

source localization using a microphone array and to propose two experimental real-time

prototype systems in the far-field and near-field environments. The first prototype aims to

investigate the use of multi-sources with microphone arrays for applications of analyzing,

monitoring and surveilling acoustic scenes in real contexts in which short-duration events

often occur and are related to far-field and free-field environments. The objective of the

second prototype is to open new fields in human-computer interaction and musical appli-

cations by solving the problem of harmonic sound localization in moderate reverberant and

noisy environments.
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1
Introduction

1.1 Acoustic Source Localization

Acoustic Source Localization (ASL) is an increasingly important aspect in a growing number of appli-

cations. The aim of an ASL system is to estimate the position of sound sources in space by analyzing the

sound field with a microphone array, a set of microphones arranged to capture the spatial information

of sound. From a conceptual point of view, the localization of acoustic sources is simple. However,

the performance of these systems involves considerable complexity and still remains an open field of

research.

Sound is a mechanical wave that propagates in an elastic medium with finite speed. If we place

microphones that analyze the change in pressure at different points in space, the acoustic wave reaches

these sensors at different times. This simple concept underlies the basic method for estimating the space

location of an acoustic source. The complexity and the problems that we face concern the nature of

sound, the propagation phenomena and the technology we use in developed localization systems. In

particular, we emphasize that the acoustic sound is a signal that has a non-stationary different spectral

content (depending on the physical nature of the perturbation that has produced it). Different spectral

components have different capacities to spread during their propagation in air because the absorption

of acoustic energy from the air is greater as the frequency increases. In addition, the propagation of

1
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1. Introduction

sound undergoes the phenomenon of reflection, refraction and attenuation of energy in the propagation

medium. Hence, in indoor acoustic environments, we will have the problem of reverberation, which may

be critical in many applications. Moreover, the speed of sound is influenced by temperature because an

increase in temperature corresponds to an increase in speed. In outdoor environments, this phenomenon

can cause deviations in the pressure wave. Other environmental factors can cause additional difficulties

for the localization of large distances; for example, humidity affects the attenuation of energy as a func-

tion of frequency, and wind can cause noise barriers (for a review of the influence of meteorological

conditions on sound propagation see [Ingard, 1953]). Another important issue involves the noise of the

signal. Signals from the microphones are affected by noise produced by the environment, interference

and electric/mechanical signal transduction. In addition, the presence of multiple, simultaneously active

sources is a major issue that has only recently been investigated. Finally, the use of digital systems,

which implies the discretization of the signal over time, leads to the discretization of the analysis space,

implying that the area appears to have a non-homogeneous accuracy in the analysis of location. Estima-

tion of the accuracy can be achieved with an increase in the number of sensors, which means an increase

in the logical and physical complexity of the system.

Fields of application in which identification of the location of acoustic sources is desired include

audio surveillance, teleconferencing systems, hands-free acquisition in car, system monitoring, human-

machine interaction, musical control interfaces, videogames, virtual reality systems, voice recognition,

fault analysis of machinery, autonomous robots, processors for digital hearing aids, high-quality record-

ing, multi-party telecommunications, dictation systems and acoustic scene analysis.

In general, a localization system can be represented by the following steps [Tashev, 2009], shown

in Figure 1.1. The acquisition block is formed by the array of microphones or an array network, and

Pre-Processing Localization Post-Processing
Acoustic 
Waves

Source 
Positions

Acquisition

Figure 1.1: Block diagram of the ASL system

it is designed to capture the pressure waves in space. Pre-processing of the signals consists of noise

reduction to increase the Signal to Noise Ratio (SNR), which permits a more precise estimation of the

source position in particularly critical situations with low SNR. During localization, all of the signals

from the network arrays are processed using algorithms that provide the position of the sources. Finally,

post-processing is a fundamental and crucial step that provides increased precision of the position data

2
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1.1 Acoustic Source Localization

and attempts to minimize or eliminate results obtained from reflection, reverberation and error measure-

ments. It also provides the ability to track the source in case of movement.

Multi-channel signal processing for sound localization can be divided into two categories: Time

Delay Estimation (TDE) and Steered Response Power (SRP) beamforming. The first category consists

of estimating the Time Difference Of Arrival (TDOA) between a microphone pair, using the classic

Cross-Correlation, the Generalized Cross-Correlation (GCC) [Knapp & Carter, 1976] and the Adap-

tive Eigenvalue Decomposition (AED) [Benesty, 2000] based on the Blind System Identification (BSI),

which focuses on the impulse responses between the source and the microphones. To improve the per-

formance in the case of an array containing M microphones (M > 2), the Steered Response Power

Phase Transform (SRP-PHAT) [DiBiase et al., 2001] provides the sum of the GCC-PHAT from all

of the microphone pairs, while the Multichannel Cross-Correlation Coefficient (MCCC) [Chen et al.,

2003] [Benesty et al., 2004] uses the spatial prediction error to measure the correlation among multiple

signals and uses the redundant information between microphones to estimate the TDOA in a more ro-

bust manner under a reverberant and noisy condition. The extension of the AED in the case of multiple

microphones was proposed in Huang & Benesty [2003], and it is called Adaptive Blind Multichannel

Identification (ABMCI). In contrast, the SRP is based on maximizing the power output of a beamformer.

Beamforming is a combination of the delayed signals from each microphone in a manner in which an ex-

pected pattern of radiation is preferentially observed. The conventional beamformer is the Delay & Sum

(DS) [Bartlett, 1948]; it consists of the synchronization of signals that steer the array in a certain direc-

tion, and it sums the signals to estimate the power of the spatial filter. The high-resolution SRP has been

developed to improve the performance of the spatial filter, and the adaptive beamformer is called the

Minimum Variance Distortionless Response (MVDR) due to Capon [Capon, 1969]. The MUltiple SIg-

nal Classification (MUSIC) algorithm is based on an eigen subspace decomposition method [Schmidt,

1979] [Schmidt, 1986], and the Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT) is based on subspace decomposition exploits the rotational invariance [Paulraj et al., 1986]

[Roy et al., 1986] [Roy & Kailath, 1989].

Recently, more sophisticated algorithms have been proposed for time delay estimation that use Min-

imum Entropy [Benesty et al., 2007] [Wen & Wan, 2011] and broadband Independent Component Anal-

ysis (ICA) [Lombard et al., 2011]. In this paper, the authors demonstrate that the ICA-based methods

are more robust against high background noise levels compared with the conventional GCC-PHAT ap-

proach.

A widely used approach, called the indirect method, is used to estimate source positions and con-

sists of two steps: in the first step, a set of Time Difference Of Arrivals (TDOAs) are estimated using

3
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1. Introduction

Type of Sound

Type of Environmnet

Type of Application

free-field
reverberant

audio surveillance
teleconferencing systems
hand-free acquisition in car
system monitoring
human-machine interaction
musical control interfaces
videogames
virtual reality systems

far-field
near-field

short sound
long sound

noisy sound
pseudo-periodic sound

voice recognition
fault analysis of machinery
autonomous robots
processors for digital hearing aids
high-quality recording
multi-party telecommunications
dictation systems
acoustic scene analysis

Figure 1.2: Steps for the considered variables for localization.

measurements across various combinations of microphones, and in the second step, when the position

of the sensors and the speed of sound are known, the source positions can be estimated using geometric

considerations and approximate estimators: closed-formed estimators based on a least squares solution

[Schmidt, 1972] [Schau & Robinson, 1987] [Smith & Abel, 1987] [Chan & Ho, 1994] [Brandstein et al.,

1997] [Huang et al., 2001] [Gillette & Silverman, 2008] (for an overview on closed-form estimators,

see [Stoica & Li, 2006]) and iterative maximum likelihood estimators [Hahn & Tretter, 1973] [Wax &

Kailath, 1983] [Stoica & Nehorai, 1990] [Segal et al., 1991] [Chen et al., 2002] [Georgiou & Kyriakakis,

2006] [Destino & Abreu, 2011].

However, the direct method yields an acoustic map of the area, from which the position of the sources

can be estimated directly and spatial likelihood functions can be defined [Aarabi, 2003] [Omologo &

DeMori, 1998] [DiBiase et al., 2001] [Ward et al., 2003] [Pertilä et al., 2008].

Both of these procedures have been tested in many single source scenarios; however, in multiple

sources cases, they require new consideration. Several works address the problem of multiple sources

using a Bayesian approach based on the tracking of the sources and using Kalman filter [Strobel et al.,

2001a] [Strobel et al., 2001b] [Bechler et al., 2003] [Potamitis et al., 2004] [Klee et al., 2006] [Gannot

& Dvorkind, 2006] [Liang et al., 2008] [Seguraa et al., 2008] and Particle filter [Zotkin et al., 2002]

4
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1.1 Acoustic Source Localization

Short Sound

Free-Field
Far-Field

Audio Surveillance
Sound Monitoring

Acoustic Scene Analysis

Figure 1.3: Steps for the considered variables for ISPC localization.

[Ward et al., 2003] [Antonacci et al., 2006] [Michaudy & Rouat, 2007] [Talantzis et al., 2008] [Quinlan

et al., 2009] [Levy et al., 2011].

Some studies consider an approach without tracking. In [Nishiura et al., 2000] [Scheuing & Yang,

2008] [Hu & Yang, 2010] [Brutti et al., 2010] [Lombard et al., 2011], solutions are proposed for the

multiple source problem in near-field and reverberant environments.

In applications involving very large arrays, decentralized data fusion methods provide optimal fusing

of source estimation measurements by two or more localization systems. The goal of these methods is to

reduce the cost of computation and communication in a distributed sensor network [Stoica et al., 1995]

[Liu et al., 2003] [Kozick & Sadler, 2003] [Chen et al., 2004] [He & Chong, 2004] [Prandi et al., 2008].

This thesis focuses first on the nature of the sound of interest, then on the environment in which it is

located and finally on the context in which it may be applied. The Figure 1.2 presents these variables.

In general, we can divide short event sounds from long and continuous events into time domains.

In the multi-source events with short duration sounds, techniques based on Bayesian filters, and on the

Kalman and Particle filters, are limited because these filters need some time to bring in the initialization

phase for optimal functioning. As a solution to this problem, this thesis presents a new approach: the

Incident Signal Power Comparison (ISPC). It is based on source separation and on a verification of

similarity among sounds. The first step consists of source separation using beamforming techniques

and estimation of the Incident Signal Power (ISP) of every source captured on the array. The second

step involves the comparison of the ISP spectrum using a spectral distance measure. The ISP spectrum

permits identification of sounds so that the spectrum power distance minimizes an error criterion. The
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1. Introduction

Pseudo-Periodic Sound

Reverberant
Near-Field

Human-Machine Interaction
Musical Control Interfaces

Figure 1.4: Steps for the considered variables for pseudo-periodic source localization.

environment is considered far-field and free-field, i.e., an outdoor environment. The location of these

types of sound can be employed for audio surveillance, sound monitoring and analysis of acoustic

scenes. Figure 1.3 shows the variables that are involved in the ISPC localization system.

By analyzing the spectral content, noisy sounds and pseudo-periodic or harmonic sounds can be ex-

tracted. The latter are closely related to musical instruments, so their location can usually be considered

in near-field and reverberant environments. Domain applications include human-machine interaction in

musical applications. The performance of one of the most widely used signal processing techniques

for time delay estimation, the Generalized Cross-Correlation (GCC), is dramatically reduced in the case

of harmonic sounds, or generally pseudo-periodic sounds. Thus, as a solution to this problem, this

thesis proposes an adaptive parameterized GCC and Phase Transform (PHAT) weighting with a zero-

crossing rate threshold, which includes a pre-processing Wiener and a post-processing Kalman filter.

These interfaces, based on a novel architecture, can be used to control audio processing through the

spatial movement of a sound source, such as voice, traditional musical instruments and sounding mo-

bile devices, and opens new possibilities for applications in musical contexts such as expressive audio

control performances. Figure 1.4 shows the variables that are involved in the pseudo-periodic source

localization.
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1.2 Organization of the Thesis

1.2 Organization of the Thesis

The state of the art of acoustic source localization, pre-processing for noise reduction techniques, and

post-processing for localization enhancement are addressed in Chapters 2, 3, 4, and 5, respectively. In

Chapter 2, the localization problem and the methods for the source position estimation are described:

closed-form estimators, iterative maximum likelihood estimators, spatial likelihood functions and de-

centralized data fusion. The most important multi-channel signal processing techniques for sound local-

ization are explained in Chapter 3 following a description of signal models: the TDE methods for micro-

phone pair, multiple microphone array and the SRP beamforming approach. Pre-processing for signal

enhancement is described in Chapter 4 and includes both frequency (Short-Time Spectral Attenuation)

and time domain (autoregressive model and Extended Kalman filter) algorithms. The post-processing

methods for localization enhancement are presented in Chapter 5 and include the Bayesian tracking,

Kalman and Particle filter, and clustering methods. Finally in Chapter 6, two experimental prototypes

are introduced as an innovative contribution to this thesis. In the first part, the Incident Signal Power

Comparison approach is described to solve the multi-source problem in far-field and free-field environ-

ments, with particular attention to short-duration sounds. After the presentation of the prototype setup,

some experimental results in real-world scenarios are presented. In the second part, a prototype for

localization of pseudo-periodic sounds and some experimental results in real, moderate reverberant and

noisy environments are presented. Chapter 7 presents the conclusions, with a summary of the contents

of this thesis as well as proposed solutions and future potential directions for this work.
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2
Source Localization

2.1 Problem Formulation

We consider a sound field in which the sources are omnidirectional and radiate the sound in spherical

waves, thus neglecting the shape and size of the source. We also assume that the transmission in the

air medium is homogeneous with a constant and known speed of sound. We can then define a three-

dimensional Cartesian space (Figure 2.1) and the two vectors that identify the position of the acoustic

source sn and the omnidirectional microphone mi

sn = [xn yn zn]
T

mi = [xi yi zi]
T .

(2.1)

We can calculate the distance between the source sn, and the microphone mi and we obtain

ri = ||sn −mi|| (2.2)

where || · || denotes the Euclidean vector norm. The approximate speed of sound c (m/s) in dry (0%

humidity) air can be calculated from the air temperature TC (degrees Celsius)

c = 331.3 + 0.606TC . (2.3)

Then the propagation time of the sound wave from the source sn to the microphone mi is

9
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2. Source Localization

Acoustic 
Source

sn(xn, yn, zn)

mi(xi, yi, zi)

x

z

y

0
ri

Figure 2.1: Cartesian space and the variable of localization problem.

ti =
ri
c
. (2.4)

We then add the microphone mj (j �= i), to create an array of two microphones with distances dij =

||mj−mi||. The Time Difference Of Arrival (TDOA) of the wavefront at the two microphones becomes

τij = tj − ti =
rj − ri
c

=
δij
c
. (2.5)

The difference δij is usually termed the range difference. From a geometrical point of view, after

substituting equation (2.2) in (2.5) and expanding, we have

τij =
1

c

(√
(xn − xj)2 + (yn − yj)2 + (zn − zj)2−√
(xn − xi)2 + (yn − yi)2 + (zn − zi)2

)
.

(2.6)

This equation is that of a hyperboloid. It describes all of the possible points of an acoustic source that

generates the same TDOA to an array of two microphones. To uniquely determine the position of the

source (the three unknown coordinates), we need, at a bare minimum, a system of three equations, which

describe the intersection of the three hyperboloids. The solution is obtained by adding two microphones

to the array. However, this condition is not sufficient to have a unique solution because the geometry of

the array is important to uniquely estimate the position of the source. To better understand this issue we
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2.1 Problem Formulation

Acoustic 
Source sn(xn, yn)

d12

r1

r2

m1(x1, y1) m2(x2, y2)

δ12

Figure 2.2: Planar case of two microphones in a near-field environment.

consider the case in a plane space with two microphones. Referring to Figure 2.2, we have

τ12 =
1

c

(√
(xn − x2)2 + (yn − y2)2 −

√
(xn − x1)2 + (yn − y1)2

)
. (2.7)

Figure 2.3 shows a hyperbola that represents the same TDOA. If we add a third microphone from a

distance, a uniform linear array is obtained and we have a second hyperbola (Figure 2.4)

τ23 =
1

c

(√
(xn − x3)2 + (yn − y3)2 −

√
(xn − x2)2 + (yn − y2)2

)
. (2.8)

However, we note in Figure 2.4 that there is an ambiguity front-rear, for which there is a phantom source

to the real one. To resolve this problem, we can add a fourth microphone to form a plane array. From

a practical point of view, the linear array is widely used because it is suitable to analyze a half-plane,

such as a room. This ambiguity is extended to the double-sided three-dimensional case. In fact, with a

planar array of four microphones we can locate the source in the half-space, and we have to add a fifth

microphone to obtain a three-dimensional array to investigate the entire space.

In the case of a source located away from the microphone array, we are no longer able to detect

the spherical wavefront, which is then approximated by the wavefront plane. Figure 2.5 shows the far-

field environment with two microphones. In this situation with an array of microphones, we are able

to estimate only the Direction Of Arrival (DOA) of the source but not its distance from the array. The
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2. Source Localization

0

0

x

y

m2(x2, y2)m1(x1, y1)

Acoustic
Source

sn(xn, yn)

Figure 2.3: The hyperbola that generates the same TDOA between two microphones in a near-field environ-
ment.

0

0

x

y

Acoustic
Source

m1(x1, y1) m2(x2, y2) m3(x3, y3)

sn(xn, yn)

Figure 2.4: Two hyperbolas between three microphones in a near-field environment.
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2.1 Problem Formulation

Acoustic 
Source sn(xn, yn)

d12
ϴ12 

m1(x1, y1) m2(x2, y2)

c·TDOA 

Figure 2.5: Plan case of two microphones in far-field environment.

relationship between DOA and TDOA is easily solved, as shown in Figure 2.5

θ12 = arccos
(τ12c
d12

)
. (2.9)

In the far-field condition the hyperboloid, the locus of points that generates the same TDOA to a micro-

phone pair, can be approximated with the cone whose vertex is located at the midpoint between the two

microphones. Therefore, regardless of the ambiguity of the front-rear, in a far-field environment, we

need at least two linear arrays for the plane case and at least three plane arrays (placed so that the dis-

tance between them permits the detection of changes in the plane wave source) in the three-dimensional

case. In the near-field condition, we need at least a linear array of three microphones for the plane case

and a plane array of four microphones for the three-dimensional case. These conditions apply to the

assumptions made in (2.1), when only one source was present.

If multiple sources are concurrently active, we need to make further considerations. In fact, in some

applications, situations arise for which we cannot assign unambiguously TDOAs or DOAs to the same

source. The example in Figure 2.6 shows the case of two sources with a configuration of two arrays for

the location of a plane. As we can see, the combination of incorrect angles leads to an incorrect posi-

tion estimation. The two DOAs calculated by the two arrays can be combined following two different

configurations: 1) θ1,1 − θ2,1, θ1,2 − θ2,2; 2) θ1,2 − θ2,1, θ1,1 − θ2,2. The first configuration implies
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2. Source Localization

source 1

source 2

array 1 array 2

phantom 
sources

11

12 21

22

Figure 2.6: The problem of multiple source localization

the correct localization of the sound sources, whereas the second leads to an incorrect localization of

both the sources. A solution to this problem of multiple source localization in far-field environment is

proposed in section (6.2).

To locate a source, we can perform a direct accuracy estimation of the TDOAs using multi-channel

signal processing with Time Delay Estimation (TDE) methods, or we can evaluate the changes that

these TDOAs cause in the energy power output of a spatial filter, i.e., the so-called steered beamforming

techniques.

Another important question to highlight is the phenomena of spatial aliasing (for a comprehensive

dissertation, please refer to [Dmochowski et al., 2009]). If we provide the distance between the micro-

phones d and the wavelength λ of a sinusoidal wave, we find that if λ/2 ≤ d, we have an ambiguity

in the time delay estimation. Hence, the distance between the microphones determines the minimum

frequency beyond which spatial aliasing can occur. Thus, a sound that does not contain spectral com-

ponents below the minimum frequency cannot be uniquely localized. The condition in which spatial

aliasing does not occur is

fmax ≤ c

2d
. (2.10)

In general, for an array consisting of N microphones there are N − 1 independent TDOAs and
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2.2 Source Localization
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m2(x2, y2)

Acoustic
Source

m1(x1, y1)

sn(xn, yn)

m3(x3, y3)

Figure 2.7: Three hyperbola between three microphones in near-field environment.

N(N − 1)/2 total TDOAs. In fact, considering again the planar case of three microphones, in addition

to τ12 and τ12, we can estimate the time delay between microphones m1 and m3 (Figure 2.7), which

follows the relationship

τ12 + τ23 = τ13. (2.11)

Hence, in an ASL system, the use of multiple microphones permits the collocation of redundant infor-

mation that can be used to achieve a more robust and accurate estimation of the source. In a real-world

context, these estimations of TDOAs will be affected by error, and the system equation (2.6) is not solv-

able in the closed-form. We must provide methods that allow us to choose a solution that is as close as

possible to the real value of the position by minimizing the measurement errors.

2.2 Source Localization

The literature offers two basic approaches to this solution. The first one (the indirect approach) is

based on solving equations (2.6) and minimizing the error through the use of closed-form estimators

and iterative maximum likelihood estimators. The second one (the direct approach) involves the search

space by constructing a spatial analysis map and estimating, for each possible point of interest, the

values that maximize a specific function that provides a coherent value from the entire system of arrays.
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2. Source Localization

The spatial acoustic map is represented by spatial likelihood functions, which relate the space position

with TDOAs functions.

Another important class of algorithms is the decentralized data fusion. In applications involving

very large arrays, decentralized data fusion methods provide optimal fusing of source estimation mea-

surements by two or more localization systems. The goal of these methods is to reduce the cost of

computation and communication in a distributed sensor network.

It is often important to know the theoretical performance of an estimator. The Cramr-Rao Lower

Bound (CRLB) is a theoretical lower bound of the variance that we can utilize for the unbiased esti-

mation. It is useful to indicate the performance bounds of a particular algorithm. Thus, the estimator

techniques are often compared with the CRLB to verify the performance. The CRBL was derived based

on the accuracy of the estimator of the source location by [Bangs & Schultheiss, 1973].

2.2.1 Closed-Form Estimators

2.2.1.1 Plane Intersection (PI)

The Plane Intersection (PI) estimator is based on the consideration that the TDOAs of three sensors

whose positions are known provide a plane of possible source locations in three-dimensional space

[Schmidt, 1972]. Different planes obtained from different sensor triplets are intersected to find the

source position. The equation (2.5) can be multiplied by (ri + rj), and we obtain

(ri + rj)δij = (rj − ri)(ri + rj) = r2j − r2i . (2.12)

Substituting equation (2.2) in (2.12) and expanding, referring to the microphones mi, mj and mk, we

have

ri + rj =
2xn(xi − xj) + 2yn(yi − yj) + 2zn(zi − zj) + a2j − a2i

δij

rj + rk =
2xn(xj − xk) + 2yn(yj − yk) + 2zn(zj − zk) + a2k − a2j

δjk

rk + ri =
2xn(xk − xi) + 2yn(yk − yi) + 2zn(zk − zi) + a2i − a2k

δki

(2.13)

where a2m = x2m + y2m + z2m (m = i, j, k).

The equation of the plane, considering the three equations (2.13), can be written as

Aijkx+Bijky + Cijkz = Dijk (2.14)
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2.2 Source Localization

where

Aijk = (xiδjk + xjδki + xkδij)

Bijk = (yiδjk + yjδki + ykδij)

Cijk = (ziδjk + zjδki + zkδij)

Dijk =
1

2
(δijδjkδik + a2i δjk + a2jδki + a2kδij).

Considering M microphones, the sensor triplet combinations that we can obtain are M !/6(M − 3), and

we note that the solution requires that M > 3. In fact, we know that in three dimensions, at least four

(non-coplanar) sensors are required to provide a solution. The set of M !/6(M − 3) equations can be

written in matrix notation as

LP = D (2.15)

where

L =

⎡⎢⎣A123 B123 . . . C123

...
...

. . .
...

Aijk Bijk . . . Cijk

⎤⎥⎦
P = [x y z]T

D = [D123 . . . Dijk]
T .

The solution of the linear equations (2.15) is obtained using a linear Least Square (LS) estimation. The

source position estimation ŝn is calculated by solving the quadratic minimization problem

ŝn = argmin
P

||D− LP||2. (2.16)

This minimization problem has a solution given by the normal equation

ŝn = P+D (2.17)

where P+ = (PTP)−1PT is the pseudo-inverse of P. In the case of two-dimensional space, the

problem is solved using the intersection of lines.

2.2.1.2 Spherical Intersection (SX)

The Spherical Intersection (SX) estimator is based on the range error (the equation error) [Schau &

Robinson, 1987]. It assumes that the source position is given by the intersection of spheres, which

define surfaces of constant distance from a single sensor. The point of intersection of two hyperboloids

can move considerably for a relatively small change in eccentricity of one of the hyperboloids. This
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2. Source Localization

is not true for intersecting spheres when the radius of one of the spheres is changed. Thus, the SX

estimator aims to reduce the numerical difficulties associated with intersecting hyperboloids.

We first map the spatial Cartesian origin to an arbitrary sensor, which considers the reference one

m1, according to r1 = rs = ||sn||. In this manner, we can write the following set of M − 1 equa-

tions in matrix notation by considering the geometrical relationships and introducing the so-called error

equation, which assumes that the TDOAs are typically non-precisely measured

ε = Λ− 2rsΔ− 2Msn (2.18)

where ε contains the M − 1 equation errors that has to be minimized and

Λ =

⎡⎢⎢⎢⎣
r22 − δ221
r23 − δ231

...

r2M − δ2M1

⎤⎥⎥⎥⎦
Δ = [δ21 δ31 . . . δM1]

T

M =

⎡⎢⎢⎢⎣
x2 y2 z2
x3 y3 z3
...

...
...

xM yM zM

⎤⎥⎥⎥⎦ .
The LS solution for sn given rs is

ŝn =
1

2
M+(Λ− 2rsΔ). (2.19)

The source range rs is unknown. To solve this problem, the SX estimator proposes to substitute the LS

solution (2.19) for sn, given rs into the quadratic equation constraint

r2s = sTnsn. (2.20)

Substituting equation (2.19) into equation (2.20) yields after expansion

ar2s + brs + c = 0 (2.21)

where

a = 4− 4ΔT (M+)TM+Δ

b = 2ΔT (M+)TM+Λ+ 2ΛT (M+)TM+Δ

c = −ΛT (M+)TM+Λ.

The two solutions to the quadratic equation (2.21) are

r̂s =
−b±√

b2 − 4ac

2a
. (2.22)
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2.2 Source Localization

The positive and real root is taken as an estimate of the distance between the source and the reference

microphone (the origin of the Cartesian coordinate system). This value r̂s is then substituted in to

(2.19) to obtain the source location estimation ŝn. We need to consider that the SX method requires

the estimation of rs. Thus, if the solution of the quadratic equation is not positive and real, the source

localization solution does not exist. Moreover, if the solutions are both real and positive, the estimation

is not unique.

2.2.1.3 Spherical Interpolation (SI)

The Spherical Interpolation (SI) [Smith & Abel, 1987] aims to solve the LS problem of equation (2.19)

in a more robust and accurate manner with respect to the SX estimator. The basic idea of this closed-

form solution is to substitute (2.19) into (2.18) and to minimize the new equation error obtained, for this

case, with respect to rs. After the substitution, the new equation error becomes

ε′ = (I−MM+)(Λ− 2rsΔ) = (I−Ps)(Λ− 2rsΔ) (2.23)

where I is the identity matrix and Ps is an idempotent (P2
s = Ps) projection matrix. The orthogonal

projection matrix P⊥
s removes components in the space spanned by the columns of M and it is defined

by

P⊥
s = I−Ps = I−MM+. (2.24)

By considering the symmetric P⊥
s = P⊥T

s , to determine the weighted LS solution in which the weight-

ing matrix is P⊥
s VP⊥

s and V is a positive-definite matrix, we write

ε′TVε′ = P⊥
s (Λ− 2rsΔ)TVP⊥

s (Λ− 2rsΔ) (2.25)

and the solution is given by

r̂s =
ΔTP⊥

s VP⊥
s Λ

2ΔTP⊥
s VP⊥

s Δ
. (2.26)

Substituting this solution into (2.19) allows us to estimate the source position ŝn.

In [Stoica & Li, 2006], the authors clarify and streamline the SI method, introducing the Uncon-

strained Least Squares (ULS) estimator and demonstrating that is identical to the SI estimator. The

solution is simplest than basic SI and it is obtained without the unnecessarily complicated second stage:

the substitution of (2.19) into (2.18). The ULS criterion is written from (2.18) as

ŷ(sn) = argmin
y(sn)

||Λ−Φy(sn)||2 (2.27)
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2. Source Localization

where Φ = [2Δ 2M] and y(sn) = [rs, s
T
n ]

T . This unconstrained minimization, not considering the

dependence rs = ||sn||, is

ŷ(sn) = Φ+Λ. (2.28)

The corresponding ULS estimate ŝn is given by

ŝn = [0 I]ŷ(sn) (2.29)

where 0 is a column vector of zeros and I is a 3× 3 identity matrix.

2.2.1.4 Hyperbolic Intersection (HI)

The Hyperbolic Intersection (HI) method resolves the nonlinear intersection of hyperbolic curves by

dividing the procedure into two linear LS steps [Chan & Ho, 1994]. By introducing an intermediate

variable, the nonlinear equations relating TDOA estimates and source position can be transformed into

a set of equations which are linear in the unknown parameters and the intermediate variable. It assumes

an arbitrary microphone, which is the reference m1 = [x1 y1 z1]
T , and it does not require the placement

of the referenced microphone at the origin of the Cartesian system. We introduce the vector p defined

as

p = [sTn , rs]
T . (2.30)

We can express the (2.18) by considering the (2.30) and we obtain

ε = h−Gp (2.31)

where

h =
1

2

⎡⎢⎢⎢⎣
δ221 − (x2 + y2 + z2)

2 + (x1 + y1 + z1)
2

δ231 − (x3 + y3 + z3)
2 + (x1 + y1 + z1)

2

...

δ2M1 − (xM + yM + zM )2 + (x1 + y1 + z1)
2

⎤⎥⎥⎥⎦

G = −

⎡⎢⎢⎢⎣
x2 y2 z2 δ21
x2 y3 z3 δ31
...

...
...

...

xM yM zM δM1

⎤⎥⎥⎥⎦ .
In the first step, the HI estimator assumes that no relationship exists between the variables sn and rs,

and, consequently, (2.31) can be solved with the generalized LS solution

p̂ = (GTΨ−1G)−1GTΨ−1h (2.32)
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2.2 Source Localization

where Ψ is the covariance matrix of ε. Assuming ε is a Gaussian random vector, the evaluation of Ψ

becomes

Ψ = E[εεT ] = c2BQB (2.33)

where E[·] denotes mathematical expectation, B = diag(r2, r3, . . . , rM ) and Q = E[ΔΔT ] is the

covariance matrix of the vector Δ = [δ21 δ31 . . . δM1]
T , which contains the range differences. In the

second step of the HI algorithm, it has been assumed that the correct relationship of dependence is

ri = ||sn −mi||. (2.34)

To include this condition, the HI considers that TDOAs are affected by small noise and that the vector

p is a random vector with its mean centered at the real value and covariance matrix, defined by

cov(p) = (GTΨ−1G)−1. (2.35)

The error equations can then be written as

ε′ = h′ −G′p′ (2.36)

where

h′ =

⎡⎢⎢⎣
(p̂(1)− x)2

(p̂(2)− y)2

(p̂(3)− z)2

(p̂(4)2

⎤⎥⎥⎦

G =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤⎥⎥⎦
p′ =

⎡⎣(xn − x1)
2

(yn − y1)
2

(zn − z1)
2

⎤⎦ .
The generalized LS solution of (2.36) is

p̂′ = (G′TΨ′−1G′)−1G′TΨ′−1h′ (2.37)

where the covariance matrix Ψ′, considering B′ = diag{(xn−x1), (yn− y1), (zn− z1), r1}, becomes

Ψ′ = E{ε′ε′T } = 4B′cov(p)B′. (2.38)

The final estimated position is obtained from p̂′, selecting the solution that lies in the region of interest

ŝ′n = ±
√
p̂′ +mi. (2.39)
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2. Source Localization

2.2.1.5 Linear Intersection (LI)

The Linear Intersection (LI) technique [Brandstein et al., 1997] assumes far-field acoustical propagation.

Therefore, the hyperboloid is well-approximated by a cone with its vertex at the midpoint between

the sensor and the axis of symmetry along the line that combines the sensors. The array is limited

to four elements, configured in two centered orthogonal pairs. By considering half-space, this array

permits an estimate of the DOA of the source. The DOA is represented by a bearing line pointing

to the source. Given a network of M/2 microphone pairs in which there are S sub-arrays arranged

in mutually-orthogonal and mutually-bisecting sensor quadruples, the bearing line of the generic ith

sub-array can be written as

li = riai +mi i = 1, . . . , S (2.40)

where ai represents the rotated direction cosine vector and ri is the range of a point on the line from the

local origin (the common midpoint of the two microphones in the ith sub-array) at microphone mi.

The approach proposed by the LI estimator calculates a number of potential source locations from

the points of closest intersection for all pairs of bearing lines and uses a weighted average of these

locations to generate a final source position estimation. The shortest distance between the two lines li

and lj is measured along a line that is parallel to their common normal and is given by

ςij =
|(ai × aj)(mi −mj)|

|ai × aj | (2.41)

where × denotes vector product. The locale ranges are found by subtracting the two bearing vectors and

solving the following over-constrained matrix equation

lj − li = ςij(ai × aj) = rjaj +mi − riai −mi. (2.42)

The potential source locations ŝij = li and ŝji = lj are calculated by substituting the ranges ri and ri

from (2.42) into (2.40). The final location estimate is then calculated as the weighted average of the

potential source locations

ŝn =

∑S
i=1

∑S
j=1(j �=i)Wij ŝij∑S

i=1

∑S
j=1(j �=i)Wij

(2.43)

where Wij is the weight associated with the potential source location, by assuming that the TDOAs are

independent and normally distributed, with the mean given by the estimate itself

Wij =

M/2∏
k=1

P (τ̂k, τk, σ
2
k) (2.44)

where P (x,m, σ2) is the value of a Gaussian distribution with mean m and variance σ2 evaluated at x

P (x,m, σ2) =
1

σ
√
2π

exp
(−(x−m)2

2σ2

)
. (2.45)
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2.2 Source Localization

2.2.1.6 Linear Correction (LC)

Linear Correction (LC) is a constrained LS method [Huang et al., 2001]. It introduces one supplemental

variable, the source range rs, in addition to the source location coordinates. LC constructs a linear error

function with vector (2.30), rewriting the spherical error equation (2.18). The follow error equation in

which the first microphone is regarded as the reference and is placed at the origin of the coordinate

system, is

ε = Hp− b (2.46)

where H = −G from (2.31), and b = −h from (2.31) considering the placement of the referenced

microphone at the origin of the Cartesian system

b =
1

2

⎡⎢⎢⎢⎣
r22 − δ221
r23 − δ231

...

r2M − δ2M1

⎤⎥⎥⎥⎦ .
The dependence among the elements of p can be described as a quadratic constraint

pTΣp = 0 (2.47)

where Σ = diag(1, 1, 1,−1) is a diagonal and orthonormal matrix.

The technique of Lagrange multipliers is used to solve the constrained LS problem (2.46), and the

source location is determined by minimizing the Lagrangian model

L(p, λ) = (Hp− b)T (Hp− b) + λpTΣp (2.48)

where λ is the Lagrange multiplier. The conditions for minimizing (2.48) can be obtained by taking the

gradient of L(p, λ) with respect to p and equating the result to zero

∂L(p, λ)

∂p
= 2(HTH+ λΣ)p− 2HTb = 0. (2.49)

Resolving this equation, we obtain the estimated vector

p̂ = (HTH+ λΣ)−1HTb. (2.50)

The Lagrange multiplier λ is obtained by solving the constraint equation, by substituting (2.50) into

(2.47)

f(λ) = (UTΣHTb)T (Ξ+ λI)−2UTHTb (2.51)

where U and Ξ are the results of the eigenvalue decomposition of

HHTΣ = UΞU−1. (2.52)
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2. Source Localization

The matrix U is the matrix in which each column is the eigenvector and Ξ is the diagonal matrix whose

diagonal elements are the corresponding eigenvalues of HHTΣ. The Lagrange multiplier is found using

iterative methods, searching for the root of the function (2.51) around zero. Typically, four interactions

are used to obtain an appropriate value of λ. However, the solution for λ is not unique, so the LC

estimator requires two steps [Huang et al., 2001].

In [Stoica & Li, 2006], the authors propose to call the algorithm described the Constrained Least

Squares (CLS) method because the two-step LC estimator is identical to the CLS estimator.

However, in [Huang et al., 2001], the CLS estimator is used to correct the solution given by the

ULS method. The first step aims to resolve an unconstrained global LS problem by considering that the

relationship between xn, yn, zn and rs is mutually independent. Then, the LS criterion is given by

εT ε = (Hp− b)THp− b (2.53)

and the LS solution minimizing (2.53) for p is

p̂1 = H+b. (2.54)

The solution p̂1 is the same as the spherical interpolation (SI) estimate, but with less computational

complexity.

The second step aims to correct the p̂1 with a better estimation p̂2 using the constraint (2.47),

resolved by Lagrangian multipliers. The final solution of LC estimator becomes

p̂2 = (I+ λ(HTH)−1)−1p̂1. (2.55)

2.2.1.7 Gillette-Silverman (GS)

The method proposed in [Gillette & Silverman, 2008] is a linear closed-form algorithm that considers

more microphones as references. The method is very simple and uses a minimum of five microphones

in three dimensions. Considering M microphones and m1 as the reference, according to r1 = rs, the

GS algorithm is based on setting the following equation

r2m − r21 = ||sn − rm||2 − ||sn − r1||2. (2.56)

Inserting equation rm = δm1 + r1 and expanding it, we obtain a linear equation

δm1r1 − (xm − x1)xn − (ym − y1)yn − (zm − z1)zn = wm1 (2.57)

where wm1 = 1/2(δ2m1 − x2m + x21 − y2m + y21 − z2m + z21). In matrix notation we can write

Γp = w (2.58)
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2.2 Source Localization

where

Γ =

⎡⎢⎢⎢⎣
x1 − x2 y1 − y2 z1 − z2 δ21
x1 − x3 y1 − y3 z1 − z3 δ31

...
...

...
...

x1 − xM y1 − yM z1 − zM δM1

⎤⎥⎥⎥⎦
g = [xn yn zn r1]

T

w = [w21 w31 · · ·wM1]
T .

The linear LS solution is given by

ĝ = wΓ+. (2.59)

We note that if the matrix Γ is singular, it is not possible to solve the linear system. This is the case

for a line of microphones with uniform spacing. Therefore, this method requires an array of microphones

with random spacing, in which the matrix is virtually always nonsingular. To improve the performance

and to use redundancy information between microphones, the GS method can be generalized with Mr

microphones as references. For example, if the two reference microphones are m1 and m6 in an array

of six microphones, we obtain the follow matrix

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 − x2 y1 − y2 z1 − z2 δ21 0
x1 − x3 y1 − y3 z1 − z3 δ31 0
x1 − x4 y1 − y4 z1 − z4 δ41 0
x1 − x5 y1 − y5 z1 − z5 δ51 0
x6 − x2 y6 − y2 z6 − z2 0 δ26
x6 − x3 y6 − y3 z6 − z3 0 δ36
x6 − x4 y6 − y4 z6 − z4 0 δ46
x6 − x5 y6 − y5 z6 − z5 0 δ56

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
g = [xn yn zn r1 r6]

T

w = [w21 w31 w41 w51 w26 w36 w46 w56]
T .

Hence, GS does not consider the TDOAs between the referenced microphones.

2.2.2 Iterative Maximum Likelihood Estimators

The maximum likelihood estimators are a class of algorithms that require only iterative methods. This

approach involves a considerable computational cost, however, with the advantage of accuracy estima-

tion. In contrast to equation (2.18), the range differences are modeled by considering the measurement

errors

εij = δij + ri − rj . (2.60)
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2. Source Localization

Given the set of D ranges difference estimate δ̂ = [δ̂1 δ̂2 . . . δ̂D]T , errors ε = [ε1 ε2 . . . εD]T can

be modeled as a multivariate Gaussian random variable ε ∼ N(0;Q) with zero mean, and the related

covariance matrix Q independent from sn, can be defined using the Probability Density Function (PDF)

as

p(δ̂, sn) =
exp

(
− 1

2 (δ̂ − δ)TQ−1(δ̂ − δ)
)

√
(2π)D det(Q)

. (2.61)

The principle of maximum likelihood aims to find the distribution that yields the highest possible prob-

ability of the likelihood function L(sn, δ)

ŝn = argmax
sn

L(sn, δ) (2.62)

where L(sn, δ) = p(δ̂, sn). The log likelihood function is the logarithm of the likelihood function.

Because the logarithm is a monotonic, strictly increasing function, the maximum of the log likelihood

is precisely equivalent to the maximum of the likelihood, or the minimum of the negative log likelihood

ŝn = argmin
sn

(δ̂ − δ)TQ−1(δ̂ − δ). (2.63)

Direct estimation of the minimizer is generally not practical. To solve this minimization problem, iter-

ative techniques can be used. This approach requires a computational cost that could be a problem for

real-time application. Different maximum likelihood estimators approaches are proposed in [Hahn &

Tretter, 1973] [Wax & Kailath, 1983] [Stoica & Nehorai, 1990] [Segal et al., 1991] [Chen et al., 2002]

[Georgiou & Kyriakakis, 2006] [Destino & Abreu, 2011].

2.2.3 Spatial Likelihood Functions

The approach based on the spatial likelihood function (as has termed by [Aarabi, 2003]) searches for

the estimate position directly by scanning the whole region of interest. Given the vector s = [x y z]T of

space, we can define a spatial function likelihood S[s, p(τ)] that links a point in space with the function

p(τ) depending on the TDOA between microphones (time delay estimation or the output of a steered

response beamforming). Hence, the position of the source is estimated by picking the maximum peak

ŝn = argmax
s

S[s, p(τ)]. (2.64)

Several methods are proposed to define the spatial function. Considering a network of R arrays, we can

obtain the R function p(τr). The Global Coherence Field (GCF) [Omologo & DeMori, 1998], more
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2.2 Source Localization

often referred to as the SRP-PHAT [DiBiase et al., 2001], is based on applying a coherence sum. In

general, it uses a pair of microphone arrays but is not limited to one pair. The GCF results

S[s, p(τ)]sum =
R∑

r=1

p(τr,s). (2.65)

The GCF is the optimal solution for a single source; when multiple sources are active the estimation of

the second peak is a problem, because the multiple intersections of the hyperboloid causes more peaks

to appear (see figure 2.6) due to constructive interferences. A solution in the case of multiple sources in

near-field environment can be found here [Brutti et al., 2010].

The method for the multiplication can be found in [Ward et al., 2003]. The product is used to reduce

the ghost source due to multiple peaks. Whereas the summation represents a sum of a set of equations,

the multiplication represents the intersection of the sets.

S[s, p(τ)]mult =
R∏

r=1

p(τr,s). (2.66)

In [Pertilä et al., 2008], the authors proposed the use of the Hamacher T-norm, which is close to

multiplication and uses the intersection of sets. The generalized multiplication becomes

h(a, b, γ) =
ab

γ + (1− γ)(a+ b− ab)
. (2.67)

When γ = 1 we have multiplication. The spatial function becomes

S[s, p(τ)]t−norm = h(h(p(τ1,s), p(τ2,s), γ), . . . , τR,s, γ). (2.68)

In [Pertilä et al., 2008], the results indicate that the intersection methods provide the best results under

different SNRs and reverberation conditions when using a Particle filter.

2.2.4 Decentralized Data Fusion

In the applications involving very large arrays (a distributed sensor network), the previously described

methods for the source location have a significant increase in computation and communication costs.

Therefore, the data processing may need to be decentralized. Decentralized data fusion methods provide

optimal fusing of source estimation measurements by two or more localization systems.

In the case of the far-field environment, two methods for decentralized array processing based on

the maximum likelihood estimation of the DOA are proposed in [Stoica et al., 1995]. In [Liu et al.,

2003], the authors present an approach based on collaborative signal processing, focusing on a vehicle

tracking application using Bayesian filtering. The goal of collaboration is to select embedded sensors
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2. Source Localization

to participate in estimation and to extract useful information with minimal resource usage. The aim of

work proposed in [Kozick & Sadler, 2003] is to reduce the communication bandwidth with a central

processing node, by modeling the wavefronts with perfect spatial coherence over individual arrays and

frequency-selective coherence between distinct arrays, and modeling the sensor signals as Gaussian

random processes. In [Chen et al., 2004], a decentralized dynamic clustering algorithm for source

tracking in wireless sensor networks is proposed. The problem of source tracking is also addressed

in [He & Chong, 2004]. The method is based on the combination of Particle filtering for belief-state

estimation and sampling-based Q-value approximation for lookahead, to determine which sensors to

activate over time to trade off tracking performance with sensor usage costs.

In the near-field environment, a two-step decentralized data fusion solution is described in [Prandi

et al., 2008]. It solves the source localization by subdividing the problem between two or more groups

of acoustic sensors. In the first step, each array provides an estimate of the source position by measuring

the TDOAs between each microphone pair in the array. In the second step, these estimates are optimally

fused taking into account the geometry of the arrays to provide the final source position estimation.

2.3 Summary

The localization problem and the methods for the source position estimation have been presented. Two

approaches to the localization solution can be used. The indirect approach is based on solving equations

of the intersection of hyperboloids, minimizing the error through the use of closed-form estimators and

iterative maximum likelihood estimators. The direct approach involves the search space by construct-

ing a spatial analysis map (represented by spatial likelihood functions) and estimating the values that

maximize a specific function; this function provides a coherent value from the entire system of arrays.

The most successful algorithms for indirect closed-form methods are the ULS estimator (SI estimator)

and the CLS estimator (LC estimator), whereas other methods require a special configuration of the

array: four elements configured in two centered orthogonal pairs for the LI estimator, and an array of

microphones with random spacing for the GS estimator. The indirect iterative maximum likelihood

estimators have the advantage of accuracy estimation, but this approach involves a considerable compu-

tational cost. On the other side, the most widely used direct approach is the GCF, more often referred

to as the SRP-PHAT. It is based on applying a coherence sum to construct the spatial analysis map. A

brief description of the decentralized data fusion for the solution of the localization problem involving

a large array, generally referred to as distributed sensor network, closed this chapter.
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3
Signal Processing for Sound Localization

3.1 Signal Model

We assume N acoustic sources and R arrays, each composed of M microphones, and consider the

omnidirectional characteristics of both the sources and the microphones. We will refer to the model of

discrete-time obtained by performing a sampling operation on the continuous-time signal x(t) with a

uniform sampling period Ts. A discrete-time signal is expressed by

x(kTS) = x(k/fs) k = 0, 1, . . . (3.1)

where k is the sample time index and fs is the sampling frequency. As usual, we will allow the sample

period Ts to remain implicit and refer to it simply as x(k). In the frequency domain the signal x(k) is

obtained in sampling frequency by the Discrete Fourier Transform (DFT)

X(f) =
L−1∑
k=0

x(k)e
−2πjfk

L f = 0, 1, . . . , L− 1 (3.2)

where f is the frequency index and L is the number of samples of the observation time. The Inverse

DFT (IDFT) has the form

x(k) =
1

L

L−1∑
f=0

X(f)e
2πjfk

L k = 0, 1, . . . , L− 1. (3.3)
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3. Signal Processing for Sound Localization
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Figure 3.1: Free-field and reverberant signal model.

The discrete-time signal received by the mth microphone of rth the array can be modeled as

xr,m(k) =

N∑
n=1

αn,r,msn(k − kn,r − τn,r,m) + vr,m(k) (3.4)

where αn,r,m is the attenuation of the sound propagation (inversely proportional to the distance from

source n to microphone m of array r), sn(k) are the unknown uncorrelated source signals, kn,r is the

propagation time from the unknown source n to the reference sensor of array r, τn,r,m is the TDOA of

the nth signal between themth microphone and the reference of the rth array, and vr,m(k) is the additive

noise signal at the mth sensor, assumed to be uncorrelated with not only all of the source signals but

also with the noise observed at the other sensors.

This model, which contains only the direct paths, is appropriate to describe the free-field environ-

ment; however, in indoor space, we must introduce a variable that is able to describe the reverberant

field and all of the reflections that have been added to the direct sound that reaches the microphones. In-

troducing the channel impulse response gn,r,m from the source n to microphone m of r, we can express

the reverberant model as

xr,m(k) =
N∑

n=1

gn,r,m ∗ sn(k − kn,r − τn,r,m) + vr,m(k) (3.5)

where ∗ denotes convolution.
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3.2 Time Delay Estimation Methods for Microphone Pair

3.2 Time Delay Estimation Methods for Microphone Pair

3.2.1 Cross-Correlation (CC)

The Cross-Correlation (CC) is a measure of similarity of two signals. Given two wide-sense stationary

signals x1 and x2, the CC is defined as

Rx1x2
(p) = E[x1(k)x2(k + p)] (3.6)

where E[·] denotes mathematical expectation. The relative time delay τ is obtained using an estimation

of the maximum peak detection in the cross-correlation function

τ̂ = argmax
p

Rx1x2(p). (3.7)

In practice, because of the finite observation time and the non-stationary of acoustic source, the CC is

calculated at time k on observed samples of length k+L by its time-averaged estimate; therefore, the CC

in digital implementation becomes

Rx1x2
(p) =

{
1

L−p

∑L−1
l=0 x1(k + l)x2(k + l + p), p = 0, . . . , τmax

1
L−p

∑L−1
l=0 x2(k + l)x1(k + l + p), p = −τmax, . . . , 1

(3.8)

where τmax is the maximum TDOA of the microphone pair, and depends on the distance between

microphones

τmax =
d12
c
. (3.9)

To normalize the CC, the Pearson Correlation Coefficient (PCC) can be used. The PCC is a measure of

the correlation between two signals, giving a value between +1 and -1, inclusively. The PCC is defined

as the covariance of the two variables divided by the product of their standard deviations

ρx1x2
=

cov(x1, x2)

σx1
σx2

=
E[(x1 − E[x1])(x2 − E[x2])]

σx1
σx2

. (3.10)

The performance of the CC is often degraded by many factors such as signal self-correlation and rever-

beration. Therefore, its application in a real-world context is not appropriate.

3.2.2 Generalized Cross-Correlation (GCC)

The Generalized Cross-Correlation (GCC) [Knapp & Carter, 1976] is the classic method to estimate the

relative time delay associated with acoustic signals received by a pair of microphones in a moderately

reverberant and noisy environment. The GCC basically consists of a cross-correlation followed by a
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3. Signal Processing for Sound Localization

filter that aims to reduce the performance degradation caused by additive noise and multi-path channel

effects. The GCC in the frequency domain is

RGCC
x1x2

(k) =
1

L

L−1∑
f=0

Ψ(f)Sx1x2(f)e
2πjfk

L (3.11)

where Ψ(f) is the frequency domain general weighting function, and the cross-spectrum of the two

signals is defined as

Sx1x2
(f) = E[X1(f)X

∗
2 (f)] (3.12)

where X1(f) and X2(f) are the DFT of the signals and * denotes the complex conjugate. GCC is

used for minimizing the influence of moderate uncorrelated noise and moderate multipath interference,

maximizing the peak in correspondence of the time delay.

The relative time delay τ is obtained using an estimation of the maximum peak detection in the filter

cross-correlation function

τ̂GCC = argmax
k

RGCC
x1x2

(k). (3.13)

The CC is computed when Ψ(f)CC = 1. The CC is estimated using the DFT and the IDFT, which can

be efficiently implemented with the Fast Fourier Transform (FFT).

The most used and effective weighting function is the Phase Transform (PHAT) [Knapp & Carter,

1976]. It places equal importance on each frequency by dividing the spectrum by its magnitude. The

PHAT normalizes the amplitude of the spectral density of the two signals and uses only the phase

information to compute the GCC

ΨPHAT (f) =
1

|Sx1x2
(f)| . (3.14)

Other weighting functions proposed by Knapp and Carter [Knapp & Carter, 1976] are the Roth

Impulse Response (RIR), the Smoothed Coherence Transform (SCOT), the Hannan & Thomson (HT)

and the Eckart. The RIR weighting is calculated according to the SNR value of one signal

ΨRIR(f) =
1

Sx1x1
(f)

. (3.15)

On the contrary, the SCOT filter assigns weighting according to the SNR of both signals

ΨSCOT (f) =
1√

Sx1x1(f)Sx2x2(f)
. (3.16)

The HT weighting function, also known as the Maximum Likelihood (ML), uses the magnitude square

coherence function |γx1x2
|2 between the signals

ΨHT (f) =
|γx1x2 |2

|Sx1x2
(f)|(1− |γx1x2

|2) (3.17)
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3.2 Time Delay Estimation Methods for Microphone Pair

where

|γx1x2
|2 =

|Sx1x2
(f)|2

Sx1x1
(f)Sx2x2

(f)
.

The Eckart filter requires knowledge or estimation of the signal and noise spectrum

ΨEckart(f) =
Ss1s2(f)

Sv1v1
(f)Sv2v2(f)

. (3.18)

However, the GCC is effective improving the time delay estimation between a microphone pair, es-

pecially in reverberant and noisy environments [Ianniello, 1982] [Champagne et al., 1996] [Omologo

& Svaizer, 1997]. A comparison of the GCC with different weighting is reported in Figure 3.2. These

methods still tend to break down when room reverberation is high. The GCC methods are computa-

tionally efficient, and their use is optimal for monitoring situations that require an estimate for real-time

systems. In addition, it is important to note that the GCC performance is dramatically reduced in the

case of harmonic sounds, or generally pseudo-periodic sounds. In fact, the GCC has less capability to

reduce the deleterious effects of noise and reverberation when it is applied to a pseudo-periodic sound.

An accurate analysis of the PHAT performance for a broadband and narrowband signal can be found

in [Donohue et al., 2007]. The results of this work highlight the ability of the PHAT to enhance the

detection performance for single or multiple targets in noisy and reverberant environments, when the

signal covers most of the spectral range.

3.2.3 Adaptive Eigenvalue Decomposition (AED)

Adaptive Eigenvalue Decomposition (AED) [Benesty, 2000] is a BSI estimation method for time delay

between a microphone pair based on a reverberant model (3.5) using eigenvalue decomposition. AED

assumes that the system (room) is linear and time invariant; therefore, neglecting the influence of noise

we can write

x1 ∗ g2 = x2 ∗ g1. (3.19)

The vectors of the signal samples at the microphone outputs and the impulse response vectors of length

L can be expressed as

xi(k) = [xi(k), xi(k − 1), . . . , xi(k − L+ 1)]T (3.20)

and

gi = [gi,0, gi,1, . . . , gi,L−1]
T . (3.21)

Substituting the vectors, the equation (3.19) becomes

xT
1 g2 − xT

2 g1 = 0. (3.22)
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Figure 3.2: GCC simulation with a female voice sound and SNR = 20 dB.

Then, introducing the correlation matrix, we can define the following equation in matrix notation from

(3.22)

Ru = 0 (3.23)

where R is the correlation matrix and u is a 2M × 1 vector formed by the juxtaposition of the two

impulse responses

R =

[
Rx1x1

Rx1x2

Rx2x1
Rx2x2

]
u = [g2 − g1]

T

and Rxixj = E[xi(k)x
T
j (k)]. The equation (3.23) implies that u is the eigenvector corresponding to

the zero-valued eigenvalue of R. If the two impulse responses have no common zeros and the autocor-

relation matrix of s(n) is full rank, there is only a single zero-valued eigenvalue.

In practice, only estimate of the sample correlation matrix is available, and, therefore, instead of the

zero-valued eigenvalue, we search for the minimum eigenvalue of R using the iterative method. The

minimization of the vector Ru can be written as the minimization of uTRu, and imposing a constraint

on ||u||2 = uTu = 1. The constrained minimization problem is

û = argmax
u

uTRu. (3.24)
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3.3 Time Delay Estimation Methods for Multiple Microphones

If the smallest eigenvalue is equal to zero, which is the case here, the error signal can be written in the

following simplified form

e(k) = uTx (3.25)

where x = [xT
1 xT

2 ]
T . Note that minimizing the mean square value of e(k) is equivalent to solving the

above eigenvalue problem. Taking the gradient of e(k) with respect to u(k), we obtain the gradient-

descent constrained Least Mean Square (LMS) algorithm

u(k + 1) =
u(k)− μe(k)x(k)

||u(k)− μe(k)x(k)|| (3.26)

where μ the is a positive constant adaptation step. Finally, the time delay estimation is

τ̂AED
12 = argmax

l
ĝ1,l − argmax

l
ĝ2,l. (3.27)

To speed up the convergence and to achieve efficient implementation, a Normalized MultiChannel Fre-

quency domain LMS (NMCFLMS) can be used [Cho & Park, 2009].

The AED algorithm is valid only for a single source and if there is no noise and if spatiotemporally

white noise is present. In [Doclo & Moonen, 2003], the authors extend the AED algorithm to noisy and

reverberant acoustic environments, by deriving an adaptive stochastic gradient algorithm for the gen-

eralized eigenvalue decomposition. Under observation, AED may suffer from whitening effects with

temporally correlated natural sounds. An improved AED method, proposed in [Cho & Park, 2009], im-

poses sparse priors on the responses to reduce the temporal whitening and provide a more accurate and

robust time delay estimation. In [Buchner et al., 2007], the authors present a system based on TRINI-

CON, a general framework for broadband adaptive multiple-input-multiple-output signal processing. It

is shown that the optimization criteria used for BSI allow a generalization of the AED algorithm for

several simultaneously sources.

3.3 Time Delay Estimation Methods for Multiple Microphones

3.3.1 Steered Response Power Phase Transform (SRP-PHAT)

The Steered Response Power Phase Transform (SRP-PHAT) [DiBiase et al., 2001] is based on the

concept of adding several time delay estimation functions from the microphone pairs. It consists of

calculating the GCC-PHAT function between pairs of microphones and using the GCF (2.65) to con-

struct a spatial analysis map to improve the localization performance. Given R microphone pairs, the

SRP-PHAT can be expressed

S[s, RGCC(k)] =
R∑

r=1

RGCC
r,s (k) (3.28)

35

Tesi di dottorato di Daniele Savati, discussa presso l’Università degli Studi di Udine. Soggetta alle licenze creative commons (http://creativecommons.org/choose/) – Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



3. Signal Processing for Sound Localization

where S[s, RGCC(k)] is the spatial function likelihood that links a point in space s = [x y z]T with

the the GCC-PHAT RGCC
r,s (k) of the rth pair. The position of the source is estimated by picking the

maximum peak

ŝn = argmax
s

S[s, RGCC(k)]. (3.29)

We note that SRP-PHAT, which uses the sum of the GCCs of the microphone pairs, is equivalent to using

a steered response filter and sum beamforming with PHAT weighting. In fact, the SRP of a 2-element

array is equivalent to the GCC of those two microphones (see equation 3.59) [DiBiase et al., 2001].

The SRP-PHAT algorithm has been shown to be one of the most robust sound source localization

approaches operating in noisy and reverberant environments [Silverman et al., 2005]. This algorithm

enhances the performance of localization with a network of large arrays. However, the computational

cost of the method is very high. To reduce the processing time of search algorithms, improvements have

been suggested [Zotkin & Duraiswami, 2004] [Dmochowski et al., 2007] [Cho et al., 2009] [Cobos

et al., 2011].

3.3.2 Multichannel Cross-Correlation Coefficient (MCCC)

The Multichannel Cross-Correlation Coefficient (MCCC) algorithm is a spatial correlation-based method,

which takes advantage of the redundant information provided by multiple sensors [Chen et al., 2003]

[Benesty et al., 2004]. The idea is to use the spatial prediction (or interpolation) error to measure the

correlation among multiple signals. Considering an array, a single source and neglecting the noise terms,

we can write the signal model (3.4) as

xm(k + τm) = αms(k − t). (3.30)

In this way, we know that x1(k) is aligned with xm(k + τm), and the new signal vector can be written

x(k, p) = [x1(k) x2(k + τm) . . . xn(k + (M − 1)τm)]T (3.31)

where p is a dummy variable for the hypothesized TDOA τ . The spatial correlation matrix of M

microphones array is

R(p) =

⎡⎢⎢⎢⎢⎣
σ2
x1

Rx1x2
(p) . . . Rx1xM

(p)
Rx2x1(p) σ2

x2
. . . Rx2xM

(p)
...

...
. . .

...

RxMx1(p) RxMx2(p)
. . . σ2

xM

⎤⎥⎥⎥⎥⎦ (3.32)
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3.3 Time Delay Estimation Methods for Multiple Microphones

where σ2
xi

= E(xi)
2 is the variance of signal xi and Rxixj (p) is the cross-correlation between xi and

xj . The spatial correlation matrix can be factored as

R(p) = ΣR̃(p)Σ (3.33)

where

Σ =

⎡⎢⎢⎢⎢⎣
σx1

0 . . . 0)
0 σx2

. . . 0
...

...
. . .

...

0 0
. . . σxM

⎤⎥⎥⎥⎥⎦
and

R̃(p) =

⎡⎢⎢⎢⎣
1 ρx1x2

(p) . . . ρx1xM
(p)

ρx2x1
(p) 1 . . . ρx2xM

(p)
...

...
. . .

...

ρxMx1
(p) ρxMx2

(p) . . . 1

⎤⎥⎥⎥⎦
is a symmetric matrix, and

ρxixj
(p) =

rxixj
(p)

σxiσxj

is the PCC between the ith and jth aligned microphone signals. The MCCC algorithm can be used to

estimate the TDOA between the first two microphone signals as

τ̂MCCC = argmin
p

det[R̃(p)]. (3.34)

Because the matrix R̃(p) is symmetric and positive semi-definite, and its diagonal elements are all equal

to one, we have

0 ≤ det[R̃(p)] ≤ 1. (3.35)

The use of a filtered cross-correlation function can be used to improve the performance. Using the

PHAT filter, we can write the new spatial correlation matrix for MCCC-PHAT

R̃PHAT(p) =

⎡⎢⎢⎢⎢⎣
1 RGCC

x1x2
(p) . . . RGCC

x1xN
(p)

RGCC
x2x1

(p) 1 . . . RGCC
x2xN

(p)
...

...
. . .

...

RGCC
xMx1

[p] RGCC
xMx2

(p)
. . . 1

⎤⎥⎥⎥⎥⎦ . (3.36)

3.3.3 Adaptive Blind Multichannel Identification (ABMCI)

The extension of AED in the case of multiple microphones, as was proposed in Huang & Benesty

[2003], is called Adaptive Blind Multichannel Identification (ABMCI). From (3.22), we can write the

relationship between a generic pair of microphones i and j as

xT
i gj − xT

j gi = 0 i, j = 1, . . . ,M. (3.37)
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3. Signal Processing for Sound Localization

The error signal can be written

eij =
xT
i gj − xT

j gi

||g|| i, j = 1, . . . ,M (3.38)

where g = [g1,g2, . . . ,gM ]T , and the multichannel LMS solution becomes

g(k + 1) = g(k)− μ
∂J(k + 1)

∂g(k)
(3.39)

where J(k + 1) is the cost function defined by

J(k + 1) =
M−1∑
i=1

M∑
j=i+1

eij(k + 1)2. (3.40)

A simplified solution of this multichannel LMS problem proposed is

g(k + 1) =
g(k)− 2μ[R+(k + 1)g(k)− J(k + 1)g(k)]

||g(k)− 2μ[R+(k + 1)g(k)− J(k + 1)g(k)]|| (3.41)

where

R+(k) =

⎡⎢⎢⎢⎣
∑

m �=1 RxMxM
−Rx2x1 . . . −RxMx1

−Rx1x2

∑
m �=2 RxMxM

. . . −RxMx2

...
...

. . .
...

−Rx1xM
−Rx2xM

. . .
∑

m �=M RxMxM

⎤⎥⎥⎥⎦
and Rxixj = xix

T
j . Finally, the TDOA between two microphones is

τ̂ABMCI
ij = argmax

l
ĝi,l − argmax

l
ĝj,l i, j = 1, . . . ,M. (3.42)

3.4 Steered Beamforming Techniques

3.4.1 Steered Response Power (SRP)

The Steered Response Power (SRP) is based on maximizing the power output of a beamformer. Beam-

forming can be seen as a combination of the delayed signals from each microphone in such a way that

an expected pattern of radiation is preferentially observed. The conventional beamformer is the Delay &

Sum (DS), a natural extension of the classical Fourier-based spectral analysis to sensor data by Bartlett

[Bartlett, 1948]. In general, the DS output y at time k is:

y(k) =
1

M

M∑
m=1

amxm(k) (3.43)

where xm is the received signal at microphones m and am is the steering value to delay the signal m.

In the frequency domain, the DS output in matrix notation becomes

Y (f) = A(f)X(f) (3.44)
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3.4 Steered Beamforming Techniques

where X = [X1(f) X2(f) . . . XM (f)]T , Y (f) and Xm(f) are the DFT of the signals, and A(f) =

[A1(f) A2(f) . . . AM (f)]T is the steering vector. The Power Spectral Density (PSD) of the output

beamformer is given by

P = E[|Y (f)|2] = A(f)HE[X(f)X(f)H ]A(f) = A(f)HΦ(f)A(f) (3.45)

where Φ(f) is the cross-spectral density matrix, which is squareM×M and symmetric. The superscript

H represents the Hermitian (complex conjugate) transpose. Then, the PSD is the sum of the frequency

bin power

PDS =

F∑
f=0

A(f)HΦ(f)A(f) (3.46)

where F is the max frequency bin. The values θ corresponding to the peak of the PSD allow for an

estimation of the DOA of the source in the case of far-field environment

θ̂ = argmax
θ

PDS(θ). (3.47)

In the case of near-field environment the maximum value of the PSD corresponds to the position of

source

ŝn = argmax
s

PDS(s). (3.48)

The beam pattern, representing the gain of the beamformer, is written as the magnitude of the steering

vector

Abp(f) = |A(f)|. (3.49)

In the case of a uniform linear array and far-field environment and assuming an angle range of: (-90◦,

+90◦) (−π/2 < φ < π/2) (where zero is in front of the array and the microphone reference is the first

from left), the beam pattern on direction φ becomes

Abp(φ, f) =
∣∣∣ 1
M

M∑
m=1

e
−j2πf(m−1)d(sin(φ)−sin(θ))

cL

∣∣∣. (3.50)

Figure 3.3 shows the beam pattern for an equispaced linear array of four and sixteen microphones,

with a microphone distance of d = 25 cm and a desired direction of θ = 0◦. The beam in the desired

direction with the highest amplitude is named the mainlobe, and all the others are called sidelobes. The

sidelobes represent the gain pattern for noise and competing sources along the undesired directions.

The beamforming techniques aim to make the sidelobes as low as possible so that the signals coming

from other directions are attenuated as much as possible. For this reason, to improve the beamforming

performance, some filter methods have been developed.
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Figure 3.3: Beam pattern of SRP for a uniform (d = 25 cm) linear array: a) four microphones, b) sixteen
microphones.

3.4.2 Filter Steered Response Power (FSRP)

The Filter Steered Response Power (FSRP) aims to improve the performance of the conventional beam-

former. There are numerous modifications proposed by researchers; however, in general, the FSRP can

be written in the frequency domain as

Y (f) = W(f)X(f) (3.51)

where W(f) is the vector of the beamformer weights for steering and filtering the data. Typically,

the independent weight data are the classic windowing and optimum-approximation approaches. The

Dolph-Chebyshev (DC) [Dolph, 1946] window is analytically derived from the minimum and maximum

approximation property of the Chebyshev polynomials and it minimizes the sidelobes level with a equal

attenuation

PDC(f) = [h ·A(f)]HΦ(f)[h ·A(f)] (3.52)

where h = [h1, h2, . . . , hM ]T is DC windowing of length M and · denotes element-by-element mul-

tiplication. The beam pattern of the DC beamformer in shown in Figure 3.4. The data independent
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Figure 3.4: Beam pattern of Dolph-Chebyshev windowing SRP for a uniform (d = 25 cm) linear array: a)
four microphones, b) sixteen microphones.

beamforming techniques can fully take advantage of the array geometry and source location informa-

tion to optimize their beam pattern. In contrast, the adaptive beamforming uses characteristics of the

source and the noise signals to improve the beam pattern.

The most widely used adaptive beamformer is the Minimum Variance Distortionless Response

(MVDR) due to Capon [Capon, 1969]. The MVDR beamformer is based on resolving the minimization

problem

minW(f)HΦ(f)W(f) subject to W(f)A(f) = 1. (3.53)

In this way, the aim is to minimize the noise and sources coming from different directions, while keeping

a fixed gain on the desired direction A. Solving (3.53) using the method of Lagrange multipliers, we

can write

WMVDR(f) =
A(f)HΦ(f)A(f)

A(f)HA(f)
. (3.54)

Consequently, the power of the beamformer output becomes

PMVDR(f) =
1

A(f)HΦ(f)−1A(f)
. (3.55)
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3. Signal Processing for Sound Localization

In practical applications, the inverse of the cross-spectral density matrix can be calculated using the

Moore-Penrose pseudoinverse, i.e. using the singular value decomposition

Φ+ = VS+UH . (3.56)

where the singular value decomposition is Φ = USVH and the pseudoinverse S+ is obtained by

replacing every nonzero diagonal entry by its reciprocal.

If the cross-spectral density matrix is ill-conditioned, the spatial spectrum may not exist. Therefore,

a Diagonal Loading (DL) [Cox et al., 1987] [Carlson, 1988] method is adopted to calculate the inverse

matrix. The spatial spectrum function becomes

PMVDR−DL(f) =
1

A(f)H(Φ(f) + μI)−1A(f)
(3.57)

where I is the identity matrix and μ is the loading level

μ =
1

L
trace(Φ)Δ (3.58)

where Δ is the normalized loading constant. Typically, the values are: Δ = 0.1, Δ = 1, Δ = 10

[Huang et al., 2011].

To conclude this section, the SRP-PHAT, described in (3.3.1) as the time delay estimation method

because it uses a summation of the GCC-PHAT of all the microphone pairs of the array network, can be

formalized here in terms of the FSRP [DiBiase et al., 2001] using the following equation

PSRP−PHAT (f) = A(f)H(Φ(f)÷ |Φ(f)|)A(f) (3.59)

where ÷ denotes element-by-element division.

3.4.3 Multiple Signal Classification (MUSIC)

The MUltiple SIgnal Classification (MUSIC) algorithm is a high-resolution beamforming technique

developed for a narrowband signal. It is based on an eigen subspace decomposition method, and it is

dependent on the correlation matrix of the data [Schmidt, 1979] [Schmidt, 1986]. From the free-field

model (3.4), we consider α = 1, and then in the frequency domain for the frequency f the signal model

for the generic array r of M microphones and the source n becomes

Xm(f) = S(f)e−j2πf(k1+τm) + Vm(f) (3.60)

where Xm(f), S(f), and Vm(f) are, respectively, the DFT of xm(k), s(k) and vm(k), and k1 is the

propagation time from the unknown source n to the reference sensor of array r. We define the vectors
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3.4 Steered Beamforming Techniques

of M signals X, S and V; hence, we have

X = AmS+V (3.61)

where

Am =
[
e−j2πf(k1+τ1), e−j2πf(k1+τ2) . . . e−j2πf(k1+τM )

]T
.

Computing the cross-spectral density matrix Φ and considering Gaussian white noise with the same

variance σ2
v at each microphone, we obtain

Φ = E[XXH ] = AmΦAH
m + σ2

vI. (3.62)

Therefore, if we perform the eigenvalue decomposition of the cross-spectral density matrix, we have

Φ = UΛUH (3.63)

where U is the squareM×M matrix whose ith column is the eigenvector qi of Φ and Λ is the diagonal

matrix whose diagonal elements are the corresponding eigenvalues. If we assume that N is the number

of sources, the first N eigenvectors must span the signal-plus-noise subspace, whereas the M − N

eigenvectors qi (N < i < M ) span the noise-only subspace. Accordingly, we have

Φqi = σ2
vqi. (3.64)

We also know that

Φqi = (AmΦssA
H
m + σ2

vI)qi. (3.65)

Combining equations (3.64) and (3.65), we find that

AmΦssA
H
mqi = 0 (3.66)

which is equivalent to

AH
mqi = 0. (3.67)

Hence, the eigenvectors of the noise-only subspace corresponding to the zero eigenvalue are orthogonal

to all N signal steering vectors, which leads us to define the spatial pseudo-spectrum

J =
1

AHGGHA
(3.68)

where G is the M × (M − N) matrix containing the eigenvectors corresponding to the noise-only

subspace and A is a steering vector towards candidate source location

A =
[
e

j2πfτ1
L , e

j2πfτ2
L , . . . e

j2πfτM
L

]T
(3.69)
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3. Signal Processing for Sound Localization

where L is the number of samples of the observation time.

MUSIC was originally developed for narrowband signals; however, in the case of broadband signals,

the pseudo-spectrum is calculated for each frequency, and we compute the incoherent average output

power [Wax & Kailath, 1984]

JMUSIC =
L−1∑
f=0

1

A(f)HG(f)G(f)HA(f)
. (3.70)

Finally, the values corresponding to the N peaks of the pseudo-spectrum allow for an estimation of

the sources. In far-field condition, the values corresponding to the DOAs are

θ̂ = arg(local)max
θ

JMUSIC(θ). (3.71)

Another method to compute the MUSIC for a broadband signal is by using geometric and harmonic

averaging [Azimi-Sadjadi et al., 2008], which can be also be used in other SRP methods, and by using a

coherent combination of the spatial signal spaces of the temporally narrow-band decomposition [Wang

& Kaveh, 1985] [Yoon et al., 2006].

An improvement of MUSIC is the Root-Music [Barabell, 1983] [Rao & Hari, 1989]. It performs

the DOAs estimation for far-field environment using the roots of a polynomial formed from the noise

subspace, with the advantage of directly estimating the DOAs, without the steered step and the maximum

peak search on the pseudo-spectrum output.

3.4.4 Estimation of Signal Parameters via Rotational Invariance Techniques (ES-
PRIT)

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Techniques [Paulraj et al.,

1986] [Roy et al., 1986] [Roy & Kailath, 1989] and is another subspace method for DOA estimation.

The goal of the ESPRIT technique is to exploit the rotational invariance in the signal subspace created by

the translational invariance structure of two sub-arrays. Consider a uniform linear array with microphone

distance d and assumingN ≤M sources, the two sub-arrays are displaced by distance d: the sub-array1

is composed by microphones (1,2,. . . ,M-1) and the sub-array2 by (2,3,. . . ,M). The signals induced on

each of the arrays are given by the signal output of two sub-arrays can be written as follows

x1(k) = as(k) + v1(k)

x2(k) = aωs(k) + v2(k)
(3.72)
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3.4 Steered Beamforming Techniques

where a is the steered vector and ω is the rotation operator, a diagonal M ×M matrix of the phase

delays between the two sub-arrays. In the frequency domain, we have

X1(f) = AS(f) +V1(f)

X2(f) = AΩS(f) +V2(f)
(3.73)

where A and Ω are the DFT of a and ω. From the eigenvalue decomposition of the spectral correlation

matrix (3.63), we can define the vector Es, which contains the N eigenvectors that span the signal-plus-

noise subspace. The subspaces of the eigenvectors are related by a unique nonsingular transformation

matrix T such as

Es = AT (3.74)

where A = [A AΩ]T . The structure of two-subarray implies that Es can be decompose into

[Ex1 Ex2 ]
T = [ATAΩT]T . (3.75)

Because the sub-array1 and the sub-array2 are translationally related, the subspaces of eigenvectors are

related by a unique nonsingular transformation matrix Ψ such that

Ex1
Ψ = Ex2

. (3.76)

Finally, we can write

TΨT−1 = Ω. (3.77)

This is the basic equation of the ESPRIT method. Hence, the eigenvalues of Ψ must be equal to the

diagonal elements of Ω, and the columns of T are the eigenvectors of Ψ. The goal is to estimate the

matrix Ψ to obtain the eigenvalues (ψ1, ψ2 . . . , ψN ) and to calculate the angles θ corresponding to the

DOAs of the N sources

θ̂(f) = asin
(arg(ψn)cL

2πfΔ

)
(3.78)

where Δ is the translation displacement vector of the microphones. The total LS criterion can be

applied to solve equation (3.76) and to find the matrix Ψ. A performance analysis of the total least

squares ESPRIT algorithm can be found in [Ottersten et al., 1991].

ESPRIT was originally developed for the DOA estimation of narrowband emitter signals. The prob-

lem of bearing estimation of a single wideband source is addressed in [Khan & Tufail, 2009]. In [Teutsch

& Kellermann, 2005] [Sun et al., 2011], a novel method, called EB-ESPRIT, is proposed. It consists

of calculating the spherical harmonics (eigenbeams) for representation of the acoustic wavefield. The

obtained wavefield representation is then used to serve as a basis for high-resolution ESPRIT.
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3. Signal Processing for Sound Localization

3.5 Summary

This chapter has reviewed the most important multi-channel signal processing techniques for sound

localization. The GCC-PHAT is the classic and the most effective method to estimate the TDOA of mi-

crophone pair because it reduces the problem of additive noise, self-correlation and multi-path channel

effects of a moderate reverberation. The SRP-PHAT (or GCF-PHAT, referring to the sum of different

microphone pairs) and the MCCC-PHAT provide TDE methods when an array contains M micro-

phones, using redundant information between microphones to estimate the TDOA in a more robust

manner under a reverberant and noisy conditions. However, the PHAT weighting has problems in a high

reverberation environment. Thus, the BSI methods focus on the impulse responses between the sources

and the microphones to solve the TDOA estimation in highly reverberant environments. AED is the

classic BSI method used to estimate the TDOA of a microphone pair for a single source (the ABMCI

is an extension in the case of multiple microphones), and TRINICON is a generalization of the AED

algorithm for several simultaneous sources.

The SRP approach is based on maximizing the power output of a beamformer. The beamforming

techniques aim to make the sidelobes as low as possible so that the signals coming from other directions

are attenuated as much as possible. For this reason, to improve the beamforming performance, multiple

filter methods have been developed. The MVDR is the most widely used adaptive filter beamformer.

Another approach, developed for narrowband signal processing, is based on subspace decomposition,

which includes the MUSIC and ESPRIT algorithms. These high-resolution beamforming techniques

perform eigenvalue decomposition to analyze the signal-plus-noise subspace and the noise-only sub-

space to estimate the position of several sources.

To conclude, it is important to note that the performance of PHAT weighting is dramatically reduced

in the case of pseudo-periodic sounds. A framework for the solution of this problem is proposed in

section (6.3).
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4
Pre-Processing for Signal Enhancement

4.1 Signal Enhancement

Single-channel noise reduction techniques provide a useful tool to improve the quality of a signal af-

fected by noise. The SNR of a microphone signal is an important parameter that affects the capability

to locate several acoustic sources. However, some of the multi-channel signal processing methods de-

scribed in chapter (3) have the capability of reducing the effect of noise, especially uncorrelated noise:

PHAT weighting, SRP-MVDR, and high-resolution beamforming. Nevertheless, there may be some sit-

uations where it is helpful to perform pre-processing for signal enhancement with the goal of reducing

the presence of uncorrelated and correlated noise [Salvati & Canazza, 2009]. In section (6.3), experi-

mentation illustrates how noise reduction can improve accuracy when locating a pseudo-periodic source

in a moderate noisy environment. This chapter is structured into two sections called Frequency Domain

Methods and Time Domain Methods. Later versions of the Extended Kalman filter use an autoregressive

(AR) model representing the signal. In chapter (5), the Kalman filter will be revisited when the classical

formulation of state-space methods is applied to navigation problems.
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4. Pre-Processing for Signal Enhancement

4.2 Frequency Domain Methods

Frequency domain methods, which are based on Short-Time Spectral Attenuation (STSA), have been

proposed by Boll in [Boll, 1979]. The method suppresses stationary noise along the entire signal by

subtracting the spectral noise bias calculated during activity in the absence of the signal of interest.

These de-noise systems consist of two important components: a noise estimation method and a suppres-

sion rule. These techniques employ a signal analysis through the Short-Time Fourier Transform (STFT)

(which is calculated on windowed sections of the signal as it changes over time) and can be considered

as a non-stationary adaptation of the Wiener filter [Wiener, 1949] in the frequency domain. In particular,

STSA consists of applying the short-time spectrum of the noise to a time-varying suppression, and it

does not require the definition of a model for the audio signal. If we consider the useful signal s(k) as a

stationary aleatory process to which some noise v(k) is added (uncorrelated with x(k)) to produce the

degraded signal x(k), the relation that connects the respective power spectral densities is

Px(f) = Ps(f) + Pv(f). (4.1)

If we are to succeed in retrieving an adequate estimate of Pv(f), during the silence intervals of the signal

x(k), and during the signal portions of Px(f), we can expect to obtain an estimate of the spectrum of

s(k) by subtracting Pv(f) from Px(f). The initial assumption of being stationary can be considered

locally satisfied because short temporal windows are employed. Note that the use of a short-time signal

analysis is equivalent to the use of a filter bank. First each channel (that is, the output of each filter)

is appropriately attenuated, after which it is possible to proceed with the synthesis of the de-noising

signal. The time-varying attenuation applied to each channel is calculated through a determined sup-

pression rule, which has the purpose if producing an estimate (for each channel) of the noise power.

Each particular STSA technique is characterized by the implementation of the filter bank and of the

suppression rule.

If we denote the STFT of the x(k) noisy signal with X(k, f), where k represents the temporal

index and f represents the frequency index (with f = 0, 1, ..., L − 1, L representing the number of

STFT channels), the result of the suppressing rule application can be interpreted as the application of a

G(k, f) gain to each value X(k, f) of the STFT of the noisy signal. This gain corresponds to a signal

attenuation and is takes a value between 0 and 1. In most of the suppression rules, G(k, f) only depends

on the noisy signal power level (measured at the same point) and on the estimate of the noisy power at

the f frequency

P̂v(f) = E[|V (k, f)|2] (4.2)
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4.2 Frequency Domain Methods

(which does not depend on the temporal index k due to the presumed stationary noise). At this point, a

relative signal can be defined

Q(k, f) =
|X(k, f)|2
P̂v(f)

(4.3)

which, starting from the hypothesis that the v(k) noise is not correlated with the x(k) signal, we deduce

should be greater than 1

E[Q(k, f)] = 1 +
E[|S(k, f)|2]

P̂v(f)
. (4.4)

A typical suppression rule is based on the Wiener filter [Wiener, 1949] and can be formulated as

follows

G(k, f)WIENER =
|X(k, f)|2 − P̂v(f)

|X(k, f)|2 . (4.5)

Typically, a mistake made by this procedure in retrieving the original sound spectrum has an audible

effect, because the difference between the spectral densities can yield a negative result at certain fre-

quencies. If we decide to arbitrarily force the negative results to zero, a disturbance will occur in the

final signal that is composed, constituted numerous random frequency pseudo-sinusoids that start and

finish in a rapid succession, generating what is known in the literature as musical noise.

To improve the performance of the STSA and to reduce the musical noise, different methods have

been developed. In [Ephraim & Malah, 1984] [Ephraim & Malah, 1985], the authors proposed a tech-

nique that utilizes a minimum mean-square error STSA estimator and the mean-square error of the

log-spectra. Later in [Cappe, 1994], a study presented the noise suppression technique proposed by

Ephraim and Malah and demonstrated how the artifact is actually eliminated without bringing distor-

tion to the signal even if the noise is only poorly stationary. The Ephraim and Malah Suppression Rule

(EMSR) can be written as

G(k, f)EMSR =

√
π

2

√
Yprio(k, f)

(1 + Ypost(k, f))(1 + Yprio(k, f))
e−

β
2

[
(1 + β)I0(

β

2
) + βI1(

β

2
)
]

(4.6)

where

β =
Yprio(k, f)(1 + Ypost(k, f))

(1 + Yprio(k, f))

Ypost(k, f) =
|X(k, f)|2
P̂v(f)

− 1

Yprio(k, f) =

⎧⎨⎩(1− α)Ypost(k, f) + α |G(k−1,f)X(k−1,f)|2
̂Pv(f)

Ypost(k, f) > 0

α |G(k−1,f)X(k−1,f)|2
̂Pv(f)

Ypost(k, f) ≤ 0

with I0 and I1 being the Bessel modified functions of zero and one order, respectively. The α parameter

controls the balance between the current frame information and that of the preceding one. By varying

this parameter, the filter smoothing effect can be regulated.
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Figure 4.1: Simulation of STSA noise reduction with additive Gaussian white noise, SNR = 15 dB.

Two evolutions of the STSA were proposed in [Canazza et al., 2001] [Bari et al., 2001] [Canazza,

2007]. The first is an improvement of the Ephraim and Malah suppression rule and is called the Canazza-

Mian Suppression Rule (CMSR). This rule is based on the idea of using a punctual suppression without

memory in the case of a null estimate of Ypost(k, f). The following condition on α is the basis of the

CMSR

α =

{
0.98 Ypost(k, f) > 0

0 Ypost(k, f) ≤ 0
(4.7)

The second improvement is based on a perceptive filter and involved, developing a psychoacoustic

model from the works of [Beerends & Stemerdink, 1992] [Beerends & Stemerdink, 1994] [Tsoukalas

et al., 1997a] [Tsoukalas et al., 1997b]. The algorithm consists of transforming the Hertz scale to the

Bark scale through the estimation of the relative signal excitation at each critical band, computing the
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4.3 Time Domain Methods

outer-to-inner ear transformation to obtain the time spreading (which is an operation with memory of

the preceding frame), and finally computing the frequency spreading. Once the psychoacoustic model

is obtained, the STSA can be applied in the Bark domain.

4.3 Time Domain Methods

Methods based on the time domain approach refer to an autoregressive (AR) model representing the sig-

nal. An initial Bayesian approach can be found in [Godsill & Rayner, 1995], in which the authors derive

the a posteriori probability for the location of bursts of noise additively superimposed on a Gaussian AR

process. In [Niedzwiecki & Cisowski, 1996], the nonlinear filtering problem is solved using the theory

of the Extended Kalman Filter (EKF). Later, Monte Carlo filtering and smoothing were studied using

the Rao-Blackwellized particle filter [Fong et al., 2002], which improves the standard particle filter and

the EKF. In [Ning et al., 2006], the perceptually constrained Kalman filter was developed. This filter

consists of minimizing the estimation error variance of the EKF under the constraint that the energy of

the estimation error is smaller than a masking threshold of human auditory systems. The EKF is im-

proved using four new procedures in [Canazza et al., 2010], which consist of a stability test, a bootstrap

procedure, a variable-forgetting factor and forward/backward filtering. Because the EKF approach is

sensitive to parameter setting, the work also describes a three-pass procedure detailing the choice of the

parameter values for each step.

Here, a brief notation of the EKF for broadband and impulsive noise removal is described, referring

to [Canazza et al., 2010]. For the basic details of the Kalman filter and EKF, see [Kalman, 1960] and

[Schmidt, 1966]. We first define the state vector x(k) of (q + p) dimension (q > p), by combining the

unknown AR model coefficient ai(k) and the signal vector s(k)

x(k) = [s(k), s(k − 1), . . . , s(k − p), . . . , s(k − q + 1), a1(k), a2(k), . . . , ap(k)]
T . (4.8)

The state-space signal model can be written by the following state equation

x(k + 1) = W(k)x(k) + u(k)

x(k + 1) = cTx(k) + ξ(k)
(4.9)

where u(k) is the vector containing the Gaussian zero-mean white noise error of the AR model and the
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Figure 4.2: Simulation of EKF noise reduction with additive Gaussian white noise and impulsive noise.

random walk model, ξ(k) is the sum of broadband noise and impulsive noise, and

W(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(k) a2(k) . . . ap(k) . . . 0q−1 0q 0q+1 . . . 0q+p

1 0 . . .
...

...
...

...
. . .

0p
. . .

...
. . .

...
...

...

0q−1 . . .
. . . 0 0 0 . . .

0q . . . 1 0 0 . . .
0q+1 . . . . . . 0 0 1

...
...

...
. . .

0q+p . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
c = [1, 0, . . . , 0q+p]

T .

The EKF equations, which optimally suppress the disturbing noise provided, for the prediction step

become

x̂(k|k − 1) = W(k − 1)x̂(k − 1|k − 1)

Σ(k|k − 1) = F(k − 1)Σ(k − 1|k − 1)FT (k − 1) +Ω
(4.10)
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where F(k) denotes the state transition matrix of the linearized system

F(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(k) a2(k) . . . ap(k) . . . 0q−1 0q s(k) . . . s(k − p)

1 0 . . .
...

... 0 . . . 0
. . .

...
...

0p
. . .

...
. . .

...
...

...

0q−1 . . .
. . . 0 0 0 . . .

0q . . . 1 0 0 . . .
0q+1 . . . . . . 0 0 1

...
...

...
. . .

0q+p . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ω =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0q+p

0 0 . . .
...

...
...

. . .
...

0q+p . . . . . . 0q+p

⎤⎥⎥⎥⎥⎦ .

The equation for the update step is

x̂(k|k) = x̂(k|k − 1) + L(k)ε(k)

Σ(k|k) = (I(q + p)− L(k)cT )Σ(k|k − 1)
(4.11)

where Σ(k|k) is the state estimation error covariance and Σ(k|k − 1) is the state prediction error

covariance. The predication error ε(k) is defined as

ε(k) = x(k)− cT x̂(k|k − 1). (4.12)

The Kalman gain L(k) depends on the presence of impulsive noise, which in the positive case is L(k) =

0 and otherwise is

L(k) =
Σ(k|k − 1)c

cTΣ(k|k − 1)c+ η(k)
. (4.13)

More insights into how to verify the presence of impulsive noise and the optimal choice of parameters

for the filter (q, p, etc.) can be found in [Canazza et al., 2010]. The de-noise sample of the EKF at each

step of time k is

ŝ(k) = qx̂(k|k) (4.14)

where q = [0, . . . , 1q, . . . , 0q + p].
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4. Pre-Processing for Signal Enhancement

4.4 Summary

This chapter has presented frequency and time domain noise reduction techniques for the single-channel

enhancement. Frequency domain methods require that the operator has some prior information to carry

out the reduction; only an estimate of the noise present is necessary (noise print) because it is assumed

to be stationary along the entire signal. Any further needed information is automatically calculated by

the algorithm through the analysis of the signal characteristics. Algorithms in the time domain, which

use signal models, require that a priori information is employed to estimate the probable distribution

of the sound events, the excitation signal and the filter coefficients. Therefore, the algorithm carries

out (a posteriori information) the signal tracking. The models, which can be applied to different signal

typologies, have little a priori information. It is therefore necessary to update the model from time to

time, according to the signal being examined.

Therefore, if very little a priori information is available in addition to the context of the acoustic

source localization (required for real-time applications), then frequency methods are the best option;

these are based on STSA.
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5
Post-Processing for Localization Enhancement

5.1 Localization Enhancement

The goal of post-processing for localization enhancement is to improve of the quality of the positional

estimates. Post-processing is a fundamental and crucial step that provides increased precision for posi-

tion data and attempts to minimize or eliminate results obtained from reflection, reverberation and error

measurements. There are two main approaches, namely the Bayesian filter and clustering. The Bayesian

filter, i.e., Kalman and Particle filter, also has the advantage that it solves the problem of multiple source

localization, and moreover, it provides the ability to track the source in case of movement. Clustering

can be an alternative when sporadic and concurrent events are present because the tracking of short

events may be particularly difficult with classical filtering approaches.

5.2 Kalman Filter (KF)

The Kalman filter (KF) [Kalman, 1960] is the optimal recursive Bayesian filter for linear systems ob-

served in the presence of Gaussian noise. We consider that the state of the sound localization could

be summarized by three position variables (x, y, z), and velocities (vx, vy, vz). These variables are the
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5. Post-Processing for Localization Enhancement

elements of the state vector x(k)

x(k) = [x, y, z, vx, vy, vz]
T . (5.1)

The process model relates the state at a previous time k − 1 with the current state at time k, so we can

write

x(k) = Fx(k − 1) +w(k) (5.2)

where F is the transfer matrix and w(k−1) is the process noise associated with random events or forces

that directly affect the actual state of the system. We assume that the components of w(k − 1) have a

Gaussian distribution with zero mean normal distribution and covariance matrix Q(k), w(k − 1) ∼
N(0,Q(k)). Considering the dynamical motion, if we measure the system to be at position x with

some velocity v at time k, then at time k + dk we would expect the system to be located at position

x+ v · dk, suggesting that the correct form for F is

F =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 dk 0 0
0 1 0 0 dk 0
0 0 1 0 0 dk
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.3)

At time k, an observation z(k) of the true state x(k) is made according to the measurement model

z(k) = Hx(k) + v(k) (5.4)

where H is the observation model that maps the true state into the observed space and v(k) is the ob-

servation noise that is assumed to be the zero mean Gaussian white noise with covariance R(k),v(k) ∼
N(0,R(k)). We only measure the position variables. Hence, we obtain

z(k) =

⎡⎣x̂ŷ
ẑ

⎤⎦ (5.5)

and then we obtain

H =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.6)

The filter equations can be divided into a prediction and a correction step. The prediction step projects

forward the current state and covariance to obtain an a priori estimate. Afterwards, the correction step
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5.2 Kalman Filter (KF)

uses a new measurement to obtain an improved a posteriori estimate. In the prediction step, the time

update equations are

x̂(k|k − 1) = F(k)x̂(k − 1|k − 1)

P(k|k − 1) = F(k)P(k − 1|k − 1)FT +Q(k − 1)
(5.7)

where P(k) denotes the error covariance matrix. The posterior Probability Density Function (PDF) is

calculated in the correction step, in which the measurement update equations are

x̂(k|k) = x̂(k|k − 1) +K(k)(z(k)−H(k)x̂(k|k − 1))

P(k|k) = (I−K(k)H)P(k|k − 1)
(5.8)

where I is the identity matrix and the so-called Kalman gain matrix is

K(k) = P(k − 1|k − 1)HT (H(k)P(t− 1|t− 1)HT +R(k))−1. (5.9)

This formulation requires that the dynamic of the system be linear. However, the specific problem is

nonlinear. To accommodate the nonlinear state transition and observation models, the Extended Kalman

Filter (EKF) [Schmidt, 1966] implements a local linearization of models. Thus, we need to compute

new values for F at every time step based on the state x to approximate the real update. In the EKF,

the state transition and observation models need not be linear functions of the state but may instead be

differentiable functions

x(k) = f [x(k − 1)] +w(k)

z(k) = h[x(k)] + v(k)
(5.10)

where the nonlinear system dynamic model f [x(k − 1)] and h[x(k)] are assumed known.

Many studies are related to tracking an acoustic source with EKF. In [Strobel et al., 2001a] and

[Strobel et al., 2001b], a joint audio-video signal processing based on a decentralized Kalman filter

structure was modified so that different sensor measurement models could be incorporated. In [Bechler

et al., 2003], a method for tracking a single speaker is presented, in which an adaptive Kalman filter is

used to obtain a smoothed trajectory of the speakers movement. Alternatively, the solution for tracking

multiple moving speakers using multiple microphone arrays is given by [Potamitis et al., 2004]. In [Klee

et al., 2006], the proposed algorithm is applied a Kalman filter to directly update the speakers position

estimate based on the observed TDOAs and not to smooth the position estimate so that the closed-form

approximation is eliminated. The use of the temporal information with KF to improve the tracking

performance is proposed in [Gannot & Dvorkind, 2006]. A multiple model Kalman filter approach was

covered by [Liang et al., 2008] and [Seguraa et al., 2008] for multi speaker tracking in a reverberant and

noisy room.

57

Tesi di dottorato di Daniele Savati, discussa presso l’Università degli Studi di Udine. Soggetta alle licenze creative commons (http://creativecommons.org/choose/) – Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



5. Post-Processing for Localization Enhancement

5.3 Particle Filter (PF)

The Particle Filter (PF) is a technique for implementing a recursive Bayesian filter using Monte Carlo

simulations [Gordon et al., 1993] [Carpenter et al., 1999] [Orton & Fitzgerald, 2002] [Gustafsson et al.,

2002] [Arulampalam et al., 2002]. Application of multiple sources can be found in [Hue et al., 2002]

[Larocque et al., 2002]. A PF supports nonlinear and non-Gaussian state space models and uses the

representation of the posterior PDF as a set of random samples with associated weights. It estimates the

new state-space by processing these samples and weights and is thus a numerical approximation of the

Bayesian filter.

Let us define each sample of the state vector, which is referred to a particle, [xi
0:kw

i
k] i = 1, . . . , Ns,

by a random measure that characterizes the posterior PDF with associated weights wi
k. The weights

are normalized such that
∑Ns

i=1 w
i
k = 1. The Sequential Importance Resampling (SIR) is the original

particle filter proposed in [Gordon et al., 1993]. After the initialization of particle x0(i) ∼ p(x0), where

p(x0) is the initial distribution, the SIR method considers the evaluation of the posterior PDF as

p(x0:k|z1:k) ∝ p(zk|xk)p(x0:k|z1:k−1) (5.11)

where the likelihood p(zk|xk) is called the importance function and is calculated from the state vector

equation using the known measurement of noise density (5.2). The PF approximates p(x0:k|z1:k−1)

with samples, according to

p(x0:k|z1:k−1) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (5.12)

where δ is the delta-Dirac function. Then, the weights update becomes

wi
k = wi

k−1p(zk|xk) i = 1, . . . , Ns (5.13)

and normalizes to

wi
k =

wi
k∑Ns

i=1 w
i
k

. (5.14)

Usually, the estimation of the state vector can be approximated as

x̂k =

Ns∑
i=1

wi
kx

i
k. (5.15)

Now the prediction can be computed from the model vector (5.2). A common problem is the degeneracy

phenomenon, in which after a few iterations some particles have negligible weight. The resampling step
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5.4 Clustering

eliminates particles with small importance weights when the effective number of samples is less than a

threshold Nr < Ns

Neff =
1∑Ns

i=1(w
i
k)

2
< Nr. (5.16)

The use of a PF to track acoustic sources can be found in [Zotkin et al., 2002], in which a particle-

filter based tracking framework for performing audio-video fusion is described for tracking people in

a videoconferencing environment using multiple cameras and multiple microphone arrays. In [Ward

et al., 2003], the use of a PF for acoustic localization in a reverberant environment is reported with the

capability to accurately track a moving source in a moderately reverberant room (with a measured rever-

beration time of 0.39s). An extension to multi-source reverberant environments was proposed by [An-

tonacci et al., 2006]. A method based on a frequency-domain implementation of a steered beamformer

along with a Particle filter-based tracking algorithm and the application of an autonomous robot are

presented in [Michaudy & Rouat, 2007]. A PF using important sampling was developed in [Lehmann &

Williamson, 2006], and a PF integrated with voice activity detection is presented in[Lehmann & Johans-

son, 2007]. The authors of [Talantzis et al., 2008] propose a system based on a PF and an information

theoretical framework to provide accurate acoustic source location under reverberant conditions, and a

fusion to a video system is applied to improve the performance. In [Quinlan et al., 2009], a method for

tracking intermittent speaking was proposed. Recently, [Levy et al., 2011] addresses the extended PF

scheme by adapting the multiple-hypothesis model, which is associated with the multi-path of reverber-

ation, to track a single acoustic source in reverberant environments.

5.4 Clustering

In contrast to the Bayesian approach, the goal of clustering is to enhance the localization estimation,

eliminating the incorrect data, by grouping the instantaneous location estimates that are close in time

and space in a cluster. Because tracking a sporadic and concurrent source is a difficult problem with the

KF and PF approaches, because in general the filter requires an initialization phase to enter an optimal

state of work, clustering aims to solve these sporadic event problems with an intermediary task between

instantaneous localization and continuous source tracking.

The core of clustering is the evaluation of the distance measure between data points, in our case the

coordinates of sources over time, to identify the groups of similarity and dissimilarity, namely dense

clusters that indicate the position of the source and disperse clusters containing few points that are

associated with erroneous measurements.
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5. Post-Processing for Localization Enhancement

Different algorithms are proposed to analyze the distance between points to appropriately cluster

the data. We mention those that are used in acoustic source localization applications: the k-means

clustering, the fuzzy C-means clustering and the Gaussian mixture models clustering.

The k-means clustering [MacQueen, 1967] defines k centroids, one for each cluster, after which

each data point is associated with the nearest centroid and the centroids are re-calculated as the centers

of the clusters. These iterative steps aim to minimize the squared error function

J =

n∑
k=1

c∑
i=1

||xik − vi||2 (5.17)

where n is the number of data points, c is the number of clusters, xk is the kth data point and vi is the

centroid i. K-means clustering is used in the context of the automatic annotation of speakers [Ajmera

et al., 2004] and intelligent robot auditory systems [Lee & Choi, 2010].

The fuzzy C-means clustering [Dunn, 1973] is an iterative optimization algorithm that minimizes

the function

J =

n∑
k=1

c∑
i=1

μm
ik||xk − vi||2 (5.18)

where the constant m is greater than 1 and μm
ik is the degree of membership of the kth data point into

the ith cluster, and it is defined as follows

μik =
1∑c

j=1

(
||xk−vi||
||xk−vj ||

)2/(m−1)
. (5.19)

In [Claudio & Parisi, 2001], a fuzzy C-means with efficient methods for estimating the cluster center

[Chiu, 1994] is used to solve the localization problem in a multi-source and reverberant environment.

To increase the algorithms robustness against sound reflections, the authors propose a weighted fuzzy

C-means [Khnea et al., 2009], based on local DOA statistics near the sound onsets because these regions

are less affected by reverberation.

Finally, we mention the Gaussian mixture models clustering, which is applied in multiple moving

speakers environments [Lathoud & Odobez, 2007], in which each cluster is mathematically represented

by a parametric Gaussian distribution and the entire data set is therefore modeled by a mixture of these

distributions. Expectation-Maximization (EM) algorithms are used to determine the mixture [Dempster

et al., 1977].

5.5 Summary

The Kalman filter, the Particle filter and clustering for localization enhancement have been discussed.

The KF is a statistically optimal estimate for linear systems observed in the presence of Gaussian noise,
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5.5 Summary

and EKF accommodates the nonlinear state transition and observation models to navigation problems.

In contrast, the PF is a numerical approximation of the Bayesian filter and supports nonlinear and non-

Gaussian state space models. The Bayesian filter can fail during the initialization phase of the filter,

when the sources have an unpredictable trajectory (e.g., in the case of rapid changes of the velocity

vector), and when two sources have intersecting trajectories.

The Kalman and Particle filters are used to solve the problem of multiple source localization by the

tracking of sources. However, the tracking of sporadic and concurrent events (i.e., short sound events)

may be particularly difficult. A solution to this problem of multiple source localization is proposed in

section (6.2). Clustering can be used to improve the quality of the position measures in the case of short

duration events.
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6
Experimental Prototypes

6.1 Introduction

In this chapter two experimental prototypes are introduced as an innovative contribution to this thesis.

In the first part, the Incident Signal Power Comparison approach is described to solve the multi-source

problem in far-field and free-field environments, with particular attention to short-duration sounds. After

the presentation of the prototype setup, some experimental results in real-world scenarios are presented.

In the second part, a prototype for localization of pseudo-periodic sounds and some experimental results

in real, moderate reverberant and noisy environments are presented.

In particular, the far-field application section describes a prototype system for multiple source lo-

calization in a public area. This application is of interest for audio surveillance, sound monitoring and

analysis of acoustic scenes. Very small sized arrays are used, namely two linear arrays each consisting

of four microphones because a real application of such systems would require that the public spaces

are not invaded in an excessive way; therefore, there might not be enough space to install the arrays.

The major problem encountered in an application of this type is the detection of a significant number

of short-duration events by the localization system. For this reason, finding the limitations of applying

the Bayesian filters is necessary. A new algorithm to solve the problem of multi-source localization is

presented.
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6. Experimental Prototypes

Conversely, the near-field application section describes a prototype system for pseudo-periodic

source localization that can be used in musical human-computer interaction. In recent years, musi-

cal interfaces are often used to allow the performer to enhance the expressive control on the sounds

generated by their acoustic instruments in a live electronics context. These systems are based on electric

field, optical and video camera sensors. In general, those types of systems have considerable complexity

and problems may arise in some situations. For example, the performer has to wear sensors or devices,

which can be a hindrance to his/her movements. In camera-based systems, there may be problems with

the low or uncontrollable lighting in the concert hall. Thus, a digital musical interface based on sound

source localization is used to allow a performer to plan and conduct the expressivity of a performance by

controlling an audio processing module in real-time through spatial movement of a sound source. The

proposed interface has the advantage of being completely noninvasive (no need for markers, sensors or

wires on the performance), and no dedicated hardware is required. Hence, a novel framework for the

localization of pseudo-periodic sounds in moderate reverberant and noisy environments is proposed.

6.2 Far-Field Application

In this section, the prototype system for the localization of multiple acoustic sources in real world noisy

environment is described. The first part covers the Incident Signal Power Comparison algorithm to

solve the ambiguity (see Figure 2.6) to correctly link the DOAs from different arrays to the same source.

After the description of the system setup for experimental evaluation, simulation work is presented with

DOA estimation methods including SRP, SRP with Dolph-Chebyshev windowing, SRP-PHAT, MVDR,

MVDR-DL, MUSIC, Root-Music, and ESPRIT. Finally, the ISPC performance in the real world is

reported using different beamforming techniques and spectral difference estimations.

6.2.1 Incident Signal Power Comparison (ISPC)

Incident Signal Power Comparison (ISPC) [Salvati et al., 2010] [Salvati et al., 2011c] combines the

DOAs from different arrays by considering the similarity criterion among sources. To check for this

similarity, we can estimate for each array the ISP referring to all estimated DOAs using beamforming

techniques. Once the ISPs are obtained, we can define an efficient error criterion for comparing the

different possible combinations of the ISPs using a spectral distance measure. In summary, the steps of

the algorithm are 1) TDOAs and DOAs estimation, 2) source separation using beamforming techniques,

3) ISP comparison using spectral distance measurement, 4) verification of the most consistent target
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6.2 Far-Field Application

Array 1

DOAs estimation ordered matrix

ISPs estimation 

ISPC for all possible combination

Building of vector D of ISPC 

DOAs combination estiamtion 

... 

Peak minimum value of D 

Array 2 Array R

Figure 6.1: The steps for the ISPC algorithm.

combinations minimizing an error criterion, and 5) localization of sources. Figure 6.1 illustrates the

ISPC steps. We start by defining the vector Θn for each source n and considering the signal model 3.4

Θn = [θ1,n, θ2,n, . . . , θR,n]
T (6.1)

which contains the DOAs of the acoustic source n by each array. In the case of N sources and R arrays,

we can write the matrix R×N , which contains all DOAs as

Θ =

⎡⎢⎢⎢⎢⎣
θ1,1 θ1,2 . . . θ1,N
θ2,1 θ2,2 . . . θ2,N

...
...

. . .
...

θR,1 θR,2
. . . θR,N

⎤⎥⎥⎥⎥⎦ . (6.2)

The estimated DOAs angles, obtained for each array r are written with the following vector

Θ̂r = [θr1, θr2, . . . , θrN ]T (6.3)
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6. Experimental Prototypes

where we consider the angle values in ascending order (θr1 < θr2 < θr3, etc.). Next, the estimated

ordered matrix Θ̂ is defined as

Θ̂ =

⎡⎢⎢⎢⎢⎣
θ11 θ12 . . . θ1N
θ21 θ22 . . . θ2N

...
...

. . .
...

θR1 θR2
. . . θRN

⎤⎥⎥⎥⎥⎦ . (6.4)

The position of the nth source can be calculated by combining the DOAs estimated by the R arrays for

that source. The next problem is to correctly assign those R DOAs values to the nth source. In general,

the goal is to get the matrix Θ to properly order the values of equation (6.4). Considering θri as the

ith DOA of array r, the assignment of the correct value of the angle for the unknown sources can be

ambiguous (see Figure 2.6), namely the exact position of the elements in the matrix of equation (6.3)

cannot be uniquely determined

θri → θr,n. (6.5)

There are (N !)(R−1) possible combinations of the DOAs of matrix (6.4). However, after obtaining an

estimation of the DOAs, we can compute the estimation of the ISP for each DOA of arrays.

The ISP is the power spectral density of the output beamformer that is steered to a specified direction

DOA. From equation (3.51), the ISP corresponding to a generic θri and a frequency f can be written as

a FSRP beamforming

ISPri(f) = E[|Y (f)|2] = W(f, θri)
HΦ(f)W(f, θri) (6.6)

where W(f, θri) is the vector of the beamformer weights for filtering the data and steering the beam-

former to θri, Φ(f) is the cross-spectral density matrix and Y (f) is the output signal of beamformer.

The four beamforming methods that are used for comparing experimental results are the SRP, SRP-DC,

MVDR, and MVDR-DL. Hence, the ISP corresponding to SRP can be written from equation (3.46) as

ISPSRP
ri =

Fmax∑
f=Fmin

A(f, θri)
HΦ(f)A(f, θri) (6.7)

where W(f, θri) = A(f, θri) is the steering vector corresponding to direction θri, Fmin and Fmax are

the values of considered frequency bin range. The SRP-DC is obtained from equation (3.52) introducing

the Dolph-Chebyshev window h

ISPSRP−DC
ri =

Fmax∑
f=Fmin

[h ·A(f, θri)]
HΦ(f)[h ·A(f, θri)]. (6.8)

66

Tesi di dottorato di Daniele Savati, discussa presso l’Università degli Studi di Udine. Soggetta alle licenze creative commons (http://creativecommons.org/choose/) – Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



6.2 Far-Field Application

The adaptive MVDR beamforming is based on minimization problem of equation (3.53, and the ISP

from (3.55) is

ISPMVDR
ri =

Fmax∑
f=Fmin

1

A(f, θri)HΦ(f)−1A(f, θri)
. (6.9)

Consider the loading level μ defined in equation (3.58), the ISP of the modified MVDR, which uses the

DL to estimate the pseudoinverse cross-correlation spectral matrix, is

ISPMVDR−DL
ri =

Fmax∑
f=Fmin

1

A(f, θri)H(Φ(f) + μI)−1A(f, θri)
. (6.10)

Therefore, we can define the matrix P containing all the ISPs related to the matrix (6.4)

P = [ISP11, ISP12, . . . , ISP1N , ISP21, . . . , ISP2N , ISPR1, . . . , ISPRN ]T (6.11)

which has a dimension of RN × (Fmax − Fmin).

To compare the ISPs of different arrays (i.e., ISPC), spectral distance functions are used. Distance

measures produce measurements of the dissimilarity of two sound spectra. We define the spectral dis-

tance estimation between the ISPri and the ISPbj of two DOAs of different arrays as

Eribj =
1

L

Fmax∑
f=Fmin

|S[ISPri(f), ISPbj(f)]| (6.12)

where r and b are the index labels of the array, r �= b, i and j are the index labels for the ordered DOAs

of array, L is the number of samples for the observation time and S[ISPri(f), ISPbj(f)] is the Spectral

Distance Functions (SDF) to measure the dissimilarity of spectra. We consider the four most common

SDF to verify how our system performance varies as a function of different equations. A classic spectral

estimation method is Linear Prediction (LP) Makhoul [1975], for which we insert a negative one to

standardize the minimum to zero as all functions

ELP
ribj =

1

L

Fmax∑
f=Fmin

∣∣∣ ISPri(f)

ISPbj(f)
− 1

∣∣∣. (6.13)

The other functions are the Itakura-Saito (IS) distance measure McAulay [1984]

EIS
ribj =

1

L

Fmax∑
f=Fmin

∣∣∣ ISPri(f)

ISPbj(f)
− log

ISPri(f)

ISPbj(f)
− 1

∣∣∣ (6.14)

the Root Mean Square (RMS) log Pfeifer [1974]

ERMS
ribj =

1

L

Fmax∑
f=Fmin

∣∣∣log ISPri(f)

ISPbj(f)

∣∣∣2 (6.15)
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Figure 6.2: Graphic representation of DOAs and spectral distance estimations.

and the COSH measure Gray & Markel [1976]

ECOSH
ribj =

1

L

Fmax∑
f=Fmin

∣∣∣ ISPri(f)

ISPbj(f)
− log

ISPri(f)

ISPbj(f)
+
ISPbj(f)

ISPri(f)
− log

ISPbj(f)

ISPri(f)
− 2

∣∣∣. (6.16)

We now represent the sorted matrix of the DOAs using the graph theory to better understand the

verification of the most consistent target combination minimizing an error criterion. Then, we can

express the matrix (6.4) and all of its combinations as being composed of nodes and edges, connecting

pairs of vertices. An example of three arrays and three sources is shown in Figure 6.2. Each row of the

graph contains the ordered DOAs of an array: Θ̂1 = [θ11, θ12, θ13]
T , Θ̂2 = [θ21, θ22, θ23]

T , and Θ̂3 =

[θ31, θ32, . . . , θ3N ]T . Each DOA is a node of graph and the edges represent the possible connections

between nodes with the values Eribj , estimating spectral distance. The combination of incorrect angles

leads to an incorrect position estimation (see Figure 2.6). Thus, if we represent a combination of angles

as a sum of values of the edges that connect the nodes, we expect that the minimum value of different

sums corresponds to the correct combination. To calculate the possible combinations of angles between
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6.2 Far-Field Application

the arrays, it is helpful to introduce a matrix labeling the angles (6.4)

B =

⎡⎢⎢⎢⎣
1 2 . . . N

N + 1 N + 2 . . . 2N
...

...
. . .

...

(R− 1)N + 1 (R− 1)N + 2 . . . RN

⎤⎥⎥⎥⎦ . (6.17)

The matrix label B associates the position of the angles referring to the sorted matrix Θ̂. Estimating

the minimum error of the ISPC, we can obtain the matrix Θ̂ with the correct position of the angles, in

which each column contains the DOAs of the source n.

Furthermore, we can represent the graph representation of angles and ISPCs as the adjacency matrix

A, which is an RN × RN matrix of ISPC values. The entry in row (ari = 1, . . . , RN ) and column

(abj = 1, . . . , RN ) is defined as an ISPC Eariabj
if there is an edge connecting vertex ari and vertex

abj in the graph, or is defined as zero otherwise. The relationships between the row and column of the

adjacency matrix A and the label matrix B are B(r, i) = ari and B(b, j) = abj ; thus, the relationship

between DOAs and ISPC can expressed by following equation

A(B(r, i), B(b, j)) = Eribj . (6.18)

The symmetric adjacency matrix results

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 E1121 . . . E112N . . . E11R1 . . . E11RN

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 E1N21 . . . E1N2N . . . E1NR1 . . . E1NRN

E2111 . . . E211N 0 . . . 0 . . . E21R1 . . . E21RN

...
. . .

...
...

. . .
...

. . .
...

. . .
...

E2N11 . . . E2N1N 0 . . . 0 . . . E2NR1 . . . E2NRN

...
. . .

...
...

. . .
...

. . .
...

. . .
...

ER111 . . . ER11N ER121 . . . E1121 . . . 0 . . . 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

ERN11 . . . ERN1N ERN21 . . . ERN2N . . . 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.19)

We have N2R(R − 1)/2 spectral distance measures. These spectral distance function values are

weights of the edges of the graph. An example of three arrays and three sources is presented in Figure

6.2; in this example, we have 27 total ISPCs (3 ISPCs for each source).

For each source, identified by R nodes, we have R(R − 1)/2 edges; then, the number of edges for

a combination of angles is Q = NR(R − 1)/2. We can define the spectral distance estimation of the

generic combination z as the sum of the weights of all the edges

dz =

Q∑
q=1

Eq (6.20)
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6. Experimental Prototypes

where q contains all the information for the index r, i, b and j, and the following explains how to calcu-

late it. To calculate all possible combinations of angles, we can work on the label matrix B. Considering

that the first row of B related to the first array remains unchanged, we compute the combinations in two

steps. In first step, the permutations of the labels of B for each row r = 2, 3, . . . , R are calculated. The

number of permutations for each row is Np = N !. Next, we define the permutation matrix T

T = [p11,p12, . . . ,p1Np
,p21,p22, . . . ,p2Np

, . . . ,pR1, . . . ,pRNp
]T (6.21)

where prh is the vector of permutation h, which contains the N DOAs label, of row r. The matrix T

has a dimension of N × RNp. In second step, the combinations of row indices of matrix T give the

(N !)(R−1) possible combinations. We consider the combinations of R − 1 groups, each one composed

by Np permutation elements, assuming that one member (the index row of matrix T) from each of the

R−1 groups is used in each combination and assuming that the order is not a distinguishing factor. The

possible combinations areN
(R−1)
p = N !(R−1). Hence, a combination label matrix C ofRN×N !(R−1)

dimension is used to store the angle label of all combinations

C = [c1, c2, . . . , cN !(R−1) ]T (6.22)

where cz is the vector, which contains the RN DOA labels, of combination z. The values of C are

used to calculate the spectral distance estimation of all combination using the equation (6.20), and

accordingly, we define the ISPC vector of all combinations

d =
[
d1 d2 . . . d(N !)R−1)

]
. (6.23)

Finally, the index of the minimum value of the vector d identifies the target combination

ẑ = argmin
index

d (6.24)

and the DOAs matrix Θ̂ is estimated by ordering the label matrix B with the combination C(ẑ).

The overall procedure of ISPC method is summarized in the following steps:

1. DOA estimation and creation of the matrix Θ̂ (6.4). In practice, the matrix does not always present

all the DOA values; in these cases, the missing value of array r can be replaced with another DOA

value of array r.

2. Building of the label matrix B (6.17) and calculation of ISPs and the matrix P (6.11).

3. Estimation of the ISPC between all ISP pairs of arrays and creation of the adjacency matrix A

(6.19).
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6.2 Far-Field Application

Figure 6.3: The prototype installed on the roof of the University building. The two arrays are encircled.

4. Calculation of the permutations matrix T (6.21) and the all DOA combination matrix C (6.22).

5. Calculation of the vector d (6.23) that contains the spectral distance estimation dz with (z =

1, . . . , N !(r−1)).

6. Finding the minimum value of d (6.24) and using the index value ẑ in the matrix C to properly

order the matrix Θ̂ and estimate the matrix Θ̂.

6.2.2 System Setup

The prototype for two-dimensional localization has been installed on the roof of the building that houses

the Computer Science Department in Udine (see Figure 6.3). The prototype includes two linear arrays,

each composed of four omnidirectional microphones. The arrays are located 11.4 m apart at a height of

12.1 m above the plane. The sample rate of the digital system is 48 kHz, and the microphone distance

is 25 cm. The prototype consists of two parallel processing lines, corresponding to the left and right

arrays (Figure 6.4). The first processing step is the TDOAs estimation and is followed by the DOAs

estimation (if we use TDE methods) or direct DOAs estimation (if we use SRP based methods). In the

second step, the two-dimensional coordinates of the source can be estimated by combining the DOAs

at the left and right arrays. If more than one source is identified, a beamformer and a spectral distance

comparison provide a guide to solve the problem of associating the DOAs of the left array with those of

the right array.

The assumed DOA range is -90◦ +90◦, where zero is in front of the array and the microphone

reference is the first from left. The calculation of the two-dimensional position of the source is a simple

triangulation problem. However, we must consider that the two arrays are not coincident with the plane
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Figure 6.4: The block diagram of the processor showing the data flow of all of the tasks of the experimental
far-field prototype.
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Figure 6.5: The two-dimensional position of the source of the experimental far-field prototype.
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Figure 6.6: The x-y sample space position of the plane of interest.

of interest but are placed at a certain height. We must consider that the possible points identified by the

DOA are located on a cone surface whose vertex is placed in the array and whose axis is the straight

line joining the two arrays.

Every array represents a cone: the intersection of the two cones is represented by a circumference.

The intersection point between the circumference and the plane of interest is the estimation of the source

distance from arrays (see Figure 6.5). Hence, we consider da to be the distance of the arrays, h to be the

height of arrays above the plane of interest, and θr and θl to be the DOA estimated on the right and left

array

x =
da
2

( tan θl + tan θr
tan θl − tan θr

)
(6.25)

y =

√( da
tan θl − tan θr

)2

− h2. (6.26)

The spatial resolution of the system depends on the distance between the microphones, the distance

between the arrays and the sample frequency of digital system. However, in this case, Figure 6.6 shows

the possible xy coordinates of the prototype. The spatial resolution tends to decrease with an increasing

distance from the arrays and an increasing angle from the axis perpendicular to the array.
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6.2.3 Comparison of DOA Estimation Methods

DOA estimation is a crucial step for ASL systems. Our goal is to obtain a complete matrix 6.4 of all

values for each source and then, as accurately as possible, a DOA estimate. To evaluate the algorithms

under different SNR conditions, a simulation was carried out using three sound sources: a motor car, a

female voice, and a shot gun. The methods evaluated were SRP, SRP with Dolph-Chebyshev window-

ing, SRP-PHAT, MVDR, MVDR-DL, MUSIC, MCCC with PHAT filter, Root-Music, and ESPRIT. For

the latter two methods, which directly provide the value of the angle for each narrowband frequency,

the average value of the DOA was estimated for the frequency range between 20 Hz and the aliasing

spatial limit (which, in this case, is 675 Hz). To reduce the incorrect values that tend to augment the

error estimation, k-means clustering [MacQueen, 1967] was performed and the highest-density cluster

was considered. The SRP-PHAT was calculated using equation (3.59); thus, DOA estimation is also

used here rather than building an acoustic map. The performance evaluation for a linear array of four

microphones was performed, and the Percentage Success Rate (PSR), the mean value of DOA estimate

and the Root Mean Square Error (RMSE) were recorded. Assuming a DOA angle θ and its estimation

θ̂, the PSR is defined as

PSR = 100
(number of correct estimations(θ̂h = θ)

total number H of DOA estimations

)
(6.27)

where H is the total number of window frames and θ̂h is the DOA estimation in the window frame h.

The mean is

Mean =

∑H
h=1 θ̂h
H

(6.28)

and the RMSE is

RMSE =

√∑H
h=1(θ − θ̂h)2

H
. (6.29)

For all tests, a DOA of θ = 23◦ was assumed. Tables 6.1, 6.2 and 6.3 show the results for the motor

car, female voice and gun shot sound, respectively.

The results indicate that for the sound of the car engine, MCCC is the most accurate approach up

to a SNR of 0 dB with PSR=57.98 % and RMSE=0.98, and with a maximum error of 1 degree; for

the sound of the voice, MVDR-DL had the best performance. For the shot gun, up to a SNR of 5 dB,

MCCC is very accurate, and when we have a SNR of zero dB, the RMSE reaches a maximum value of

7.7; in contrast, for MVDR-DL, a value of 0.77 was obtained. In general, with a linear array of four

microphones, MVDR-DL has the best performance for a low SNR, while for SNR > 5 dB MCCC has

the highest PSR. Figures 6.7 and 6.7 represent frames of analysis for the motor car sound at 20 dB and

at 5 dB. The peaks represent the estimated direction of arrival of the source at the microphone array. As
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6.2 Far-Field Application

PSR (%)

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 100 100 94,52 36,99 100 98,63 100 54,79 64,38

20 100 98,63 71,23 20,55 100 89,04 100 52,05 53,42

10 65,75 56,16 52,05 32,88 80,82 71,23 100 36,99 39,73

5 49,32 46,58 41,10 23,29 54,79 58,90 87,67 28,77 31,51

0 46,58 38,36 31,51 19,18 54,79 41,10 57,53 19,18 13,70

RMSE

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 0 0 0,23 1,00 0 0,12 0 0,67 0,60

20 0 0,12 0,54 2,27 0 0,33 0 0,69 0,68

10 0,59 0,66 0,69 2,56 0,44 0,54 0 0,91 0,94

5 0,71 0,73 0,96 2,97 0,67 0,64 0,61 1,33 1,45

0 0,86 1,30 1,27 4,85 0,67 0,86 0,98 2,57 2,88

Mean

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 23 23 23,05 23,45 23 23,01 23 23,45 23,36

20 23 23,01 23,29 23,01 23 23,11 23 23,48 23,44

10 23,34 23,44 23,48 23,34 23,19 23,29 23 23,53 23,51

5 23,48 23,51 23,56 23,55 23,45 23,41 23,12 23,41 22,89

0 23,30 23,30 23,37 24,19 23,45 23,22 23,11 23,44 23,19

Table 6.1: Comparison of the DOA estimation for the car motor sound.

we can see, the SRP and SRP-DC have a very wide main lobe; and, thus, the resolution of localization

in this case is very low, and its application is not suitable for multi-source cases. MVDR is difficult to

use in practice, as we note in the case of the gun-shot, which is an impulsive sound, that the values are

completely incorrect.

SRP-PHAT, MVDR-DL, MUSIC and MCCC have a clearly visible peak with good resolution. Root-

Music and ESPRIT are especially useful in applications of narrowband signals, and their performance

degrades with a low SNR. In addition, for multiple sources, we need to estimate the number of active

sources by analyzing the matrix eigenvector. This procedure is also necessary for the MUSIC method.

The number of sources that we can estimate is also limited by the number of microphones in the array.

Hence, SRP-PHAT, MCCC and MVDR-DL are suitable for DOA estimation with a small size array.

From the computational point of view the SRP-PHAT (especially calculated as the sum of the GCC-

PHAT microphone pairs) and MCCC have a lower demand for computation and are therefore suitable

in the case of real-time applications. MVDR-DL requires a greater computational cost, as the power is

calculated for each steered direction and for each frequency bin considered.
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PSR (%)

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 98,90 98,90 70,33 56,04 98,90 91,21 100 64,84 70,33

20 87,91 76,92 43,96 30,77 95,60 86,81 91,21 62,64 67,03

10 52,75 57,14 41,76 38,46 61,54 54,95 64,84 46,15 46,15

5 38,46 26,37 18,68 29,67 45,05 37,36 49,45 37,36 37,36

0 38,46 30,77 23,08 21,98 53,85 41,76 32,97 21,98 20,88

RMSE

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 0,10 0,10 0,54 10,09 0,10 0,30 0 0,59 0,54

20 0,35 0,48 0,90 1,10 0,21 0,36 0,47 0,66 0,70

10 0,98 1,13 1,48 5,81 0,65 0,67 1,79 7,08 0,92

5 1,92 2,79 10,19 2,34 0,88 0,92 7,51 25,52 24,46

0 3,26 3,50 11,12 10,21 1,48 2,87 13,81 40,43 42,07

Mean

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 23,01 23,01 23,30 22,34 23,01 23,09 23,00 23,35 23,30

20 23,12 23,23 23,48 23,51 23,04 23,13 23,04 23,40 23,33

10 23,44 23,40 23,76 23,02 23,33 23,45 23,34 24,05 23,41

5 23,75 23,71 23,81 23,49 23,55 23,60 22,96 20,08 19,27

0 22,67 22,30 20,35 22,97 23,20 22,92 19,73 15,56 16,45

Table 6.2: Comparison of the DOA estimation for the female voice sound.

PSR (%)

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 100 100 81,48 3,70 100 88,89 100 62,96 40,74

20 100 100 62,96 18,52 100 96,30 100 51,85 44,44

10 62,96 59,26 22,22 14,81 74,07 77,78 96,30 29,63 29,63

5 66,67 59,26 14,81 18,52 70,37 74,07 77,78 25,93 25,93

0 70,37 70,37 48,15 14,81 74,07 48,15 51,85 7,41 14,81

RMSE

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 0 0 0,43 63,15 0 0,33 0 0,61 0,77

20 0 0 0,61 54,53 0 0,19 0 1,07 1,07

10 0,61 0,64 1 32,36 0,51 0,47 0,19 13,12 12,60

5 0,58 0,64 1,04 51,24 0,54 0,51 0,47 43,62 28,77

0 0,86 0,84 0,92 43,95 0,77 1,39 7,70 46,63 53,04

Mean

SNR SRP SRP-DC SRP-PHAT MVDR MVDR-DL MUSIC MCCC Root-Music ESPRIT

30 23 23 23,19 -27,41 23 23,11 23 23,37 23,59

20 23 23 23,37 -15,22 23 23,04 23 23,26 23,48

10 23,37 23,41 23,63 7,59 23,26 23,22 22,96 25,15 25,04

5 23,19 22,96 23,56 -9,52 23,30 23,26 22,78 18,11 35,59

0 23,30 22,89 22,74 -2 23,22 23 20,93 23 21,22

Table 6.3: Comparison of the DOA estimation for the gun shot sound.
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Figure 6.7: Frame analysis of the DOA method comparison, SNR = 20 dB.

−50 0 50
0.2

0.4

0.6

0.8

1
SRP DOA = 23

−50 0 50

0.2

0.25

0.3

0.35
SRP−DC DOA = 23

−50 0 50
3.5

4

4.5

5

5.5
SRP−PHAT DOA = 23

−50 0 50
0

0

0

0

0
MVDR DOA = 17

−50 0 50
0

0.005

0.01
MVDR−DL DOA = 23

−50 0 50
0.2

0.4

0.6

0.8

1
MUSIC DOA = 23

−50 0 50
0.96

0.98

1

1.02
MCCC DOA = 23

−50 0 50
0

200

400

600

800
Root−Music DOA = 24

−50 0 50
0

200

400

600

800
ESPRIT DOA = 25

Figure 6.8: Frame analysis of the DOA method comparison, SNR = 5 dB.
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6. Experimental Prototypes
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Figure 6.9: Map of the study area indicating the position of arrays and sources.

6.2.4 Experimental Results with ISPC

Experiments were conducted that consider the area of analysis of 60×90 m shown in Figure 6.9, i.e., the

parking lots of the University. Eleven zones of acoustic source positioning are considered. The sources

used are a human voice (S1), a hammer striking an iron bar (S2) and a motor car (S3). The hammer

striking an iron bar is the short event sound.

Two types of experiments were performed. The first type used sounds with different spectral content,

named test P. The second type, however, used sounds with similar spectral content, named test C. Test

P is composed of eight parts (P1, P2, ..., P8), each one with three sources placed in different positions

(see table 6.5). The zero of the xy axes reference is located in the middle of the distance between the

two arrays.

In various parts of test P, the sources were positioned at increasing distances along the y axis (P1 -

P4) and the x axis (P5 - P8): e.g., in part P1, we placed S1 in 1, S2 in 2, and S3 in 3. The Table 6.4

shows the xy coordinates of the points and the position estimated by the microphone array prototype,

which reported the mean value of the x and y coordinates and the RMSE of the estimation.

MCCC is used in the DOAs estimation. Tables 6.6 and 6.7 summarize the results, comparing the lo-

calization success rate (as a percentage) with different beamforming algorithms (SRP, SRP with Dolph-

Chebyshev windowing, MVDR, and MVDR-DL) and spectral distance functions (LP, IS, RMS, COSH).
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6.2 Far-Field Application

Source Label x y Mean x Mean y RMSE x RMSE y

1 1,5 20 1,6 19,8 0,19 0,95

2 1,5 23 1,6 23,5 0,18 1,04

3 1,5 26 1,53 27,8 0,24 2,06

4 1,5 32 1,49 30,05 0,16 2,32

5 1,5 38 1,48 38,21 0,18 1,74

6 1,5 52 1,44 51,8 0,06 0,2

7 4,5 20 4,57 21,2 0,23 1,9

8 7,5 20 6,5 21,15 1,07 3,45

9 10,5 20 11 22,25 0,5 2,25

10 20 20 18,5 23,27 1,8 4,03

11 30 20 27,4 17,06 7,3 12,95

Table 6.4: Position referring to Figure 6.9 and the mean value estimation and RMSE.

The localization success rate is the ratio between the number of correct combinations and the Number

Of Ambiguities (NOA) for that part of the test. The NOA is the number of frames in which we have

ambiguity to properly associate the DOAs to the sources, i.e., the associations are incorrect in practice.

The audio signal frame was divided into 17,5 ms overlapping and a Hanning-windowed with a length of

140 ms. The parking area, where the tests were conducted, is a public area. Thus, we must to consider

that there are other sources in the acoustic scene: other sounds of cars that are moving in the parking

area and in the nearby streets. Tables 6.8 and 6.9 summarize the results of all tests, labeled T . The

three Frequency Range (FR) for the spectral distance estimation are 20-675 Hz, 20-2000 Hz and 20-

8000 Hz. The frequency value of 675 takes into account the spatial aliasing limit, which, in our case, is

f = c/(2d) = 337/(2 · 0.25) = 675 Hz. The phenomena of spatial aliasing implies that the main lobe

of the beamformer has a set of identical copies, called grating lobes. The appearance of grating lobes

is a function of both microphone spacing and incident frequency. When fully visible, a grating lobe is

equal in amplitude to the main lobe of the array. This fact reduces the array response, and, therefore, by

defining the spatial sampling requirement and removing the grating lobes, we obtain a greater efficiency

in the ISPC.

In test C, two car sounds were used. The test was performed by placing two car sources in 1 and 7,

as shown in Figure 6.9. In Figure 6.10, the total localization success rate of the complex acoustic scene

(T ) is compared with the results of the case of two cars to test whether our algorithm works even with

similar spectral content sounds. We note that the accuracy decreases, especially with regard to the RMS

and COSH functions, and this result highlights the limitation of the proposed approach in the case of

spectrally similar sources.

The best results were obtained with the RMS log spectral distance function and FR=[20-675] Hz.

MVDR-DL has the greatest capacity for location with 90.9 %, SRP-DC with 88.4 % and SRP with

88.2%.
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6. Experimental Prototypes

Test Label S1 S2 S2

P1 1 2 3

P2 1 3 4

P3 1 4 5

P4 1 5 6

P5 1 7 8

P6 1 8 9

P7 1 9 10

P8 1 10 11

Table 6.5: The position of the sources of the eight tests (P ).

(Hz) Localization Success Rate (%)

FR SPR-LP SPR-IS SPR-RMS SPR-COSH SPR-DC-LP SPR-DC-IS SPR-DC-RMS SPR-DC-COSH NOA

P1 20-675 33,6 49,6 85,8 82,3 26,5 39,8 86,7 77,0 113
20-2000 59,3 62,8 77,9 68,1 57,5 57,5 71,7 66,4
20-8000 56,6 57,5 76,1 63,7 52,2 52,2 71,7 60,2

P2 20-675 58,3 58,3 75,0 41,7 75,0 41,7 66,7 41,7 12
20-2000 58,3 66,7 41,7 41,7 50,0 33,3 33,3 25,0
20-8000 66,7 66,7 66,7 33,3 66,7 33,3 66,7 58,3

P3 20-675 24,3 43,2 89,2 83,8 29,7 40,5 91,9 91,9 37
20-2000 59,5 59,5 86,5 81,1 48,6 48,6 75,7 75,7
20-8000 70,3 70,3 78,4 67,6 64,9 62,2 73,0 59,5

P4 20-675 28,9 42,2 93,3 86,7 26,7 44,4 88,9 73,3 45
20-2000 40,0 46,7 73,3 57,8 53,3 57,8 71,1 57,8
20-8000 77,8 77,8 64,4 60,0 62,2 62,2 73,3 53,3

P5 20-675 36,8 52,6 73,7 73,7 31,6 57,9 78,9 68,4 19
20-2000 42,1 47,4 73,7 52,6 31,6 31,6 78,9 63,2
20-8000 73,7 73,7 73,7 73,7 57,9 57,9 73,7 63,2

P6 20-675 30,8 45,1 90,2 81,2 32,3 41,4 91,7 80,5 133
20-2000 39,8 42,9 86,5 68,4 43,6 45,9 76,7 65,4
20-8000 48,9 48,9 71,4 57,1 48,9 48,9 72,9 69,2

P7 20-675 29,5 43,2 79,5 81,8 25,0 31,8 79,5 79,5 44
20-2000 34,1 36,4 90,9 72,7 22,7 22,7 70,5 65,9
20-8000 50,0 50,0 65,9 65,9 34,1 34,1 61,4 59,1

P8 20-675 29,2 51,4 95,8 88,9 11,1 40,3 94,4 83,3 72
20-2000 59,7 61,1 62,5 55,6 55,6 55,6 69,4 68,1
20-8000 65,3 65,3 81,9 62,5 59,7 61,1 84,7 65,3

Table 6.6: Results of the eight tests (P ) with SRP and SRP-DC.

(Hz) Localization Success Rate (%)

FR MVDR-LP MVDR-IS MVDR-RMS MVDR-COSH MVDR-DL-LP MVDR-DL-IS MVDR-DL-RMS MVDR-DL-COSH NOA

P1 20-675 36,3 37,2 70,8 41,6 39,8 65,5 88,5 87,6 113
20-2000 53,1 54,9 61,9 54,9 53,1 73,5 77,9 77,9
20-8000 52,2 52,2 63,7 46,9 59,3 69,0 79,6 77,0

P2 20-675 58,3 50,0 50,0 58,3 50,0 75,0 75,0 41,7 12
20-2000 41,7 41,7 41,7 41,7 83,3 75,0 50,0 41,7
20-8000 83,3 83,3 66,7 75,0 83,3 41,7 58,3 50,0

P3 20-675 21,6 32,4 83,8 40,5 35,1 78,4 89,2 91,9 37
20-2000 45,9 40,5 67,6 45,9 43,2 83,8 81,1 81,1
20-8000 51,4 51,4 59,5 62,2 35,1 56,8 51,4 59,5

P4 20-675 37,8 33,3 68,9 53,3 44,4 44,4 97,8 95,6 45
20-2000 42,2 40,0 66,7 62,2 40,0 55,6 82,2 77,8
20-8000 48,9 48,9 73,3 55,6 55,6 66,7 71,1 71,1

P5 20-675 52,6 57,9 68,4 63,2 36,8 26,3 78,9 73,7 19
20-2000 63,2 63,2 63,2 57,9 68,4 52,6 73,7 78,9
20-8000 57,9 57,9 78,9 47,4 52,6 52,6 73,7 68,4

P6 20-675 45,9 48,1 74,4 55,6 63,2 91,0 94,0 93,2 133
20-2000 51,9 52,6 72,9 54,9 53,4 83,5 91,0 84,2
20-8000 47,4 47,4 67,7 59,4 45,9 70,7 74,4 72,2

P7 20-675 56,8 50,0 61,4 54,5 50,0 84,1 84,1 84,1 44
20-2000 56,8 50,0 63,6 59,1 38,6 54,5 70,5 52,3
20-8000 47,7 47,7 59,1 38,6 52,3 47,7 47,7 56,8

P8 20-675 40,3 41,7 81,9 56,9 47,2 52,8 95,8 88,9 72
20-2000 50,0 56,9 73,6 48,6 27,8 75,0 70,8 72,2
20-8000 55,6 55,6 63,9 51,4 48,6 62,5 66,7 73,6

Table 6.7: Results of the eight tests (P ) with MVDR and MVDR-DL.
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6.2 Far-Field Application

(Hz) Localization Success Rate (%)

FR SPR-LP SPR-IS SPR-RMS SPR-COSH SPR-DC-LP SPR-DC-IS SPR-DC-RMS SPR-DC-COSH NOA

T 20-675 31,4 47,2 88,2 82,1 27,4 40,8 88,4 78,7 475

20-2000 49,1 52,2 78,3 65,5 47,8 48,4 72,2 65,1

20-8000 59,2 59,4 73,5 61,5 53,3 52,4 73,3 62,7

Table 6.8: Summary of the results of all tests (P ) with SRP and SRP-DC.

(Hz) Localization Success Rate (%)

FR MVDR-LP MVDR-IS MVDR-RMS MVDR-COSH MVDR-DL-LP MVDR-DL-IS MVDR-DL-RMS MVDR-DL-COSH NOA

T 20-675 41,7 42,5 72,8 51,4 48,6 70,1 90,9 88,4 475

20-2000 51,2 51,6 67,4 54,1 47,4 73,1 79,6 75,8

20-8000 51,6 51,6 65,7 53,1 51,4 64,0 69,5 70,3

Table 6.9: Summary of the results of all tests (P ) with MVDR and MVDR-DL.
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Figure 6.10: Comparison of the summary results T with the result C of the car-car test with NOA=116.
FR=[20, 675] Hz.
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6. Experimental Prototypes

6.2.5 Summary

The novel Incident Signal Power Comparison algorithm used to solve the ambiguous problem of cor-

rectly linking the DOAs from different arrays to the same source was presented. Experimental results

have shown that this approach can be a solution for multi-source localization that requires a frame-

to-frame analysis. This approach is particularly advantageous in identifying sounds of short duration

that can be difficult to determine using a traditional Bayesian filter. The limits of this approach were

presented in the case of two sources with a similar spectral content. For localization enhancement,

clustering can be used to improve source position estimates. However, we must emphasize that ISPC

systems can integrate with Bayesian filtering, and it can be helpful in cases that require detailed analysis

over time as well as in cases in which the Bayesian filter can fail.

6.3 Near-Field Application

A framework for the localization of pseudo-periodic sounds in moderate reverberant and noisy envi-

ronments is now described. This framework consists of an adaptive parameterized GCC-PHAT with a

zero-crossing rate threshold, a pre-processing with a Wiener filter, and post-processing with a Kalman

filter. The novel architecture can be used as a digital musical interface [Salvati et al., 2011b] [Salvati

et al., 2011a], which allows a performer to plan and conduct the expressivity of a performance by con-

trolling an audio processing module in real-time through the spatial movement of a sound source ( i.e.,

voice, traditional musical instruments, and sounding mobile devices).

6.3.1 System Architecture for Pseudo-Periodic Sound Localization

The architecture consists of combining signal processing algorithms for robust sound localization. The

array system is composed of three supercardioid microphones arranged in an uniform linear placement.

In this way, we can localize a sound source in a plane (three microphones are the bare minimum). Signal

processing algorithms estimate the sound source position in a horizontal plane by providing its Cartesian

coordinates.

With musical sounds that are mainly harmonics, the GCC-PHAT approach does not work well be-

cause the PHAT filter normalizes the GCC according to the spectrum magnitude. The problem is the

presence of noise; in fact, under ideal conditions we would be able to estimate the TDOA. Figure 6.13

shows a simulation with a sinusoidal wave of 300 Hz; under the condition of SNR=100 dB the peak is

well defined, while when SNR=50 dB, the TDOA is impossible to estimate. We note that CC improves

the performance of the TDOA estimation; however, CC suffers from the effects of moderate reverb and
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6.3 Near-Field Application
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Figure 6.11: The xy plane of interest.

auto-correlation, so it is in practice inappropriate for localization. Thus, when noise and reverberation

are present, new considerations are required to estimate the TDOA for pseudo-periodic signals. The

proposal is to use a parameterized GCC-PHAT that weighs the contribution of the PHAT filtering, de-

pending on the threshold of the ZCR parameters. In this way, we balance the CC with the improved

filter of PHAT. This operation allows for the identification of source, but other filters are required to

obtain a usable stable value of the position in real applications.

Therefore, a de-noise algorithm based on a Wiener filter (see equation (4.5)) is used to improve

the SNR of the signals. When the maximum peak detection does not observe any source, an average

estimation of noise is computed (a noise print), which will be subtracted from all three signals before

the TDOA estimation task.

Then, starting from the estimated TDOA between microphones τ̂12 and τ̂23, it is possible to calculate

the coordinates of the source using geometric constraints. In a near-field environment, we have

x̂ = r cos(θ)

ŷ = r sin(θ)
(6.30)

where the axis origin is placed in microphone 2, r is the distance between the sound source and micro-
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Figure 6.12: Block diagram of interface.

phone 2, and θ is the angle between r and the x axis

θ = arccos
(c(τ̂12 + τ̂23)(τ̂12τ̂23c

2 − d2)

d(2d2 − c2(τ̂212 + τ̂223))

)
(6.31)

r =
τ̂212c

2 − d2

2(τ̂12c+ d cos θ)
(6.32)

where c is speed of sound and d is the distance between microphones.

Finally, a second filter provides a more accurate estimate and tracking of the source position if there

is movement using the Kalman theory (see section (5.2)). The Kalman filter is also able to provide

an estimate of the position of the source, if the TDOA estimation task misses the target in a frame of

analysis. Figure 6.12 summarizes the system architecture.

6.3.2 Adaptive Parameterized GCC-PHAT with Zero-Crossing Rate Threshold

The PHAT weighting can be generalized to parametrically control the level of influence from the mag-

nitude spectrum [Donohue et al., 2007]. This transformation will be referred to as the PHAT-β and
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Figure 6.13: GCC of sinusoidal wave of 300 Hz, SNR = 100 dB (figures on top) and SNR = 50 dB (figures on
bottom)

defined as

ΨPHAT−β(f) =
1

|Sx1x2
(f)|β (6.33)

where β varies between 0 and 1. When β = 1, equation (6.33) becomes the conventional PHAT and the

modulus of the Fourier transform becomes 1 for all frequencies; when β = 0, the PHAT has no effect

on the original signal, and we have the cross-correlation function.

Therefore, in the case of harmonic sounds, we can use an intermediate value of β so that we can

detect the peak to estimate the time delay between signals, and can have a system, at least in part,
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Figure 6.14: Comparison of the parameterized PHAT-β TDOA estimation performance. a) White noise
played on mobile device, β = 1. b) Flute, β = 1. c) Flute, β = 0.65. d) Flute, β = 0.65 and de-noise Wiener
filter.

that exploits the benefits of PHAT filtering to improve performance in moderately reverberant and noisy

environments. To adapt the value of β, we can use the ZCR to determinate if the sound source is periodic.

ZCR is a very useful audio feature and is defined as the number of times that the audio waveform crosses

the zero axis

ZCR(k) =
1

2L

L∑
i=1

|sgn(x(k + i))− sgn(x(k + i− 1))| (6.34)

where sgn(x) is the sign function.

Then, we can express the adaptive parameterized GCC-PHAT, identifying by experimental tests a

suitable threshold μ such as {
β = 1, if ZCR ≥ μ

β < 1, if ZCR < μ
(6.35)

86

Tesi di dottorato di Daniele Savati, discussa presso l’Università degli Studi di Udine. Soggetta alle licenze creative commons (http://creativecommons.org/choose/) – Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



6.3 Near-Field Application

Test Label Mean SD

a 6.96 0.2

b 9.1 8.97

c 7.26 0.8

d 3.2 0.7

Table 6.10: The value of the mean and RMSE related to the experiments in Figure 6.14.

6.3.3 Experimental Results

Some experimental results related to the localization performance of the interface in a real scenario

are presented. To verify and validate the approach to the localization of pseudo-periodic sounds, a

comparison of three types of sources is used: white noise played on a mobile device, a flute played by

a musician and a human voice. The interface works with sampling rate of 96 kHz, a Hanning analysis

window of 42 ms and a time window for the estimation of the average noise (noise print) of 4.2 s,

which is applied when the localization task does not estimate any source. Three microphones with a

supercardioid pickup pattern are used; unidirectional sensors are the most frequently used microphones

to acquire sound signals in electroacoustic music. It is important to note that the classic microphone

for array processing is the omnidirectional polar pattern, but its use is not appropriate in this context

because of possible interference with loudspeakers during application in a live performance. However,

as we shall see, the use of directional microphones allows the localization of an acoustic source in the

small area of interest. The working area is located in a square with 1 meter sides. The axis origin

coincides with the position of microphone 2 (m2), the x axis can vary between -50 cm and 50 cm, and

the y axis can vary between 0 and 100 cm. The distance between microphones is d = 15 cm.

The experiments were conducted in a rectangular room of 3.5× 4.5 m, in a moderately reverberant

(RT60 = 0.35 s) and noisy environment. Figure 6.14 shows a comparison of the parameterized PHAT-β

TDOA estimation performance. Four tests with different parameters of interface configuration were

performed. The TDOA estimation between microphone 2 and 3 was considered. All sound sources are

approximately located in the center of study area, (a) (5,52) cm, (b) (4,51) cm, (c) (5,53) cm, (d) (3,51)

cm. Table 6.10 summarizes the results, reporting the TDOA mean value and Standard Deviation (SD).

In the first test (a), a continuous white noise signal was played using a mobile device with β = 1

interface configuration. In this way we verified the complete efficiency offered by the PHAT filter to

optimize the TDOA estimation, reducing the degradation effects due to noise and reverberation. We can

see in Figure 6.14 how the maximum peak detection is clearly visible (white line). We can also see the

effects of multipath reverberation represented by the other parallel gray lines. The value of the TDOA
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Figure 6.15: Comparison of TDOA estimation between the AED with sparse priors and the parameterized
PHAT-β. a1) White noise - AED; a2) White noise - CGC-PHAT-β; b1) Human voice - AED; b2) Human voice
- CGC-PHAT-β; c1) Flute - AED; c2) Flute - CGC-PHAT-β.

estimation is τ̂23 = 7 (sample). The SD of the TDOA maximum peak during the entire reproduction of

sound is 0.2. The TDOA estimation is extremely accurate. In test (b), a flute was considered again with

β = 1 parameter. As expected, the source is not detected (SD = 8.97). Subsequently, in test (c) a flute

was examined with β = 0.65 setting. The source is detected as shown in Figure 6.14. The value of the

TDOA is τ23 = 7 (sample), and the SD results in a value of SD = 0.8. In the last test (d), a flute was

used with β = 0.65 and the de-noise Wiener filter task. The value of TDOA is τ23 = 3 (sample), the

SD results in a value of SD = 0.7. Hence, in this case, a lower value of SD indicates less swinging of

the TDOA than the average value, which is the correct location of the source.

Therefore, the parameterized PHAT-β allows the TDOA estimation of harmonic sounds, and the

de-noise component can improve the accuracy. However, the comparison with test (a), whose robust

and well-defined result we aim to obtain, does not yet yield satisfactory results. A parameterization of

PHAT with a value of β = 0.65, according to Donohue et al. [2007], is a good compromise between

filtering and detection.

Then, a comparison performance of the BSI technique with the CGC-PHAT-β is presented. The
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Figure 6.16: Human voice located at (-20,70) cm. ZCR and parameterized GCC-PHAT-β with threshold
value of μ = 0.03; (m1 −m2) refers to TDOA estimation between microphones 1 and 2, whereas (m2 −m3)
is between 2 and 3.

AED algorithm with sparse priors [Cho & Park, 2009] is used to verify the ability to locate a pseudo-

periodic sound. Figure 6.15 shows the results of three tests, comparing the AED with the maximum

peak of CGC-PHAT-β. All tests were performed with a mobile sound device placed very close (with

a distance of 20 cm from the array) to a pair of microphones. A continuous white noise was used for

the test (a1,a2), a female voice was used for the test (b1,b2) and a continuous flute note (G5) was used

for the test (c1,c2). We note in Figure 6.15 the performance of the AED algorithm (a1), (b1) and (c1),

after the convergence of the NMCFLMS filter, to estimate that the TDOA is correct for white noise

(see (a1), τ12 = −7 (sample)) and human voice source (see (b1), τ12 = −10 (sample))(see (a2) and

(b2) for comparison with CGC-PHAT-β, β = 1). In contrast, for the harmonic sound (case (c1,c2)) the

AED converges to an incorrect value of the TDOA (c1), while for the CGC-PHAT-β ((c2), τ12 = −7

(sample), β = 0.65) performs an accurate estimation. Hence, BSI methods (such as the PHAT filter)

present difficulties in working with pseudo-periodic sounds.

Before considering the experiments with the Kalman filter, the results of a test with a human voice
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Figure 6.17: Flute performance moving within the study area; X and Y position of the Kalman filtering data
(black lines) and raw data (gray lines).

are showed, ranging from harmonic to noise sounds to verify the threshold value of a zero-crossing rate

for the activation of PHAT-β. The human voice source is located at (-20,70) cm. Figure 6.16 shows

the results of the ZCR and adaptive parameterized GCC-PHAT-β with threshold value of μ = 0.03,

β = 0.65 when ZCR < μ, and the de-noise Wiener filter is active. This value μ is enough to achieve

an adequate adaptation of the GCC. Still in Figure 6.16, we can note that when the sound becomes

harmonic and when we have partially filtered GCC with PHAT, the TDOA peak tends to widen, reducing

its robustness, but still allowing the estimation of the source position.

Finally, the last test on the localization performance shows the effectiveness of the Kalman filter

in making the xy coordinates more accurate and usable in the interface. Once again, a flute was used

moving within the mapped area. The threshold value of ZCR is μ = 0.03, β = 0.65, and the de-noise

task is active. As seen in Figure 6.17, the black lines, which represent the data after Kalman filtering,

are reported to have less stability problems due to reverberation. In fact, the estimated raw data (gray

lines) present very high swinging values, which would make the interface inappropriate to control the
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Figure 6.18: Acoustic source localization performance. The human voice moves in different directions (the
dots are the raw data), the x and y axes are in cm.

processing parameters. Figure 6.18 shows the results of the performance related to the two-dimensional

movement of the sound source. The test is composed of eight parts. In each part, the sound source, still

a human voice, is moved from the center of the active area along a different direction each time. The

working area, which presents good resolution localization, is included in a square with 1 meter sides.

In conclusion, the architecture system was implemented by developing a Max/MSP external object,

named asl∼, in order to validate the interface in real-world music application. The object receives

incoming audio signals acquired by three microphones and, as output, provides the position of the

sound source. The object performs all of the signal processing techniques described in the previous

sections. Moreover, a simple Max/MSP patch (Figure 6.19) has been developed to control an audio

processor in real-time. As mentioned, the xy values have been used to directly control the parameters of

an audio effect. Different VST plug-ins, such as reverb, delay effects and sound spatialisation, are used

to demonstrate the usability of the microphone array based interface in musical applications.

6.3.4 Summary

The framework for the localization of pseudo-periodic sounds consists of an adaptive parameterized

GCC-PHAT with a zero-crossing rate threshold, a pre-processing with a Wiener filter, and a post-

processing with a Kalman filter. Some experimental results have demonstrated the ability of the GCC-

PHAT-β algorithm to estimate the TDOA from a microphone pair of harmonic sounds. Moreover, the

use of the STSA Wiener filter can be helpful to improve accuracy. However, the use of position data in a
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Figure 6.19: The Max/MSP interface with the external object asl∼.

musical human-machine interface requires post-processing to provide increased precision. The Kalman

filter can be used to track the source and to reduce measurement errors and multi-path channel effects of

reverberation. Finally, an interesting result illustrating the limits of the AED algorithm, a method based

on BSI, was shown, to estimate the TDOA in the case of pseudo-periodic sounds.
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7
Conclusions

7.1 Summary

The work presented in this thesis is a study on the localization of acoustic sources in space with the

use of microphone arrays. The first part focused on the state of the art of localization, describing the

problem from a geometrical point of view in relation to distributed microphones in space and introducing

the techniques to estimate the position based on closed-form estimators, iterative maximum likelihood

estimators and spatial likelihood functions. Signal processing techniques used for localization were

also presented: the Time Delay Estimation methods and the Steered Response Power beamforming

algorithms. Enhancement methodologies for localization were also mentioned, including pre-processing

noise reduction, description of the frequency and time domain algorithms, and post-processing that aims

to improve the accuracy of the position estimate of the source with a Kalman filter, Particle filter and

clustering approach.

The second part covered the scientific contribution of this thesis in the context of two issues that are

technical limitations to the state of the art. The first relates to the case of a multi-source sound of short

duration events, with the aim of providing a solution in applications such as audio surveillance, sound

monitoring and analysis of acoustic scenes. A far-field prototype - consisting of two arrays each with

four microphones - and the Incident Signal Power Comparison approach was presented. The second is-
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7. Conclusions

sue describes a prototype solution for the localization of pseudo-periodic sound sources, traditionally re-

lated to areas of music, which implements a linear array of three microphones and an architecture based

on the adaptive parameterized Generalized Cross-Correlation and Phase Transform (PHAT) weighting

with a Zero-Crossing Rate threshold, a Wiener filter to improve the Signal to Noise Ratio, and a Kalman

filter to improve the robustness and accuracy of the position estimation. The proposed interface opens

possibilities for human-machine interaction and new forms of musical expressive control.

7.2 Considerations

Many studies address the location of human voice, which involves a large number of applications.

Extending the nature of the sound of interest, we can see how the innovations proposed in this thesis can

provide solutions to new problems that arise.

The experimental results with the ISPC have shown that this approach can be a solution for multi-

source localization that requires a frame-to-frame analysis. This approach is particularly advantageous

in identifying sounds of short duration that can be difficult to accomplish using a traditional Bayesian

filter. The prototype used for the experiments exhibited the best performance using ISPC with the RMS

log spectral distance function and the high-resolution beamforming technique of MVDR-DL, although

both SRP and SRP-DC still have a minor localization success rate. The limits of this approach were

presented in the case of two sources with a similar spectral content. The experiment involved two motor

cars. We must emphasize that ISPC systems can integrate with Bayesian filtering, and can be helpful

in cases that require detailed analysis over time as well as, in cases in which the Bayesian filter can

fail: 1) during the initialization phase of the filter, 2) when the sources have an unpredictable trajectory

(e.g., in the case of rapid changes of the velocity vector), and 3) when two sources have intersecting

trajectories. Therefore, the success rate of 90.9 for the MVDR-DL array with a small array size is an

important result, which promises an improved performance with arrays of larger size.

The near-field prototype for the localization of pseudo-periodic sound is commonly used in a con-

trolled environment with moderate reverb and noise, and with different sound sources in the case of

single source. The experiments have demonstrated the ability of the proposed architecture to locate har-

monic sounds in a reverberant environment with a RT60 of 0.35 s. The capability of interface has been

verified for use in real-time audio control in a stable way by testing with small movements of the sound

source (of the order of tens of centimeters). The proposed interface has the advantage being completely

non-invasive (no need for markers, sensors or wires on the performance) and requires no dedicated

hardware. However, its real application during a performance still requires new investigations.
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7.3 Future Work

As we have seen, ISPC is based on minimizing the difference error of the spectral power output of

the signals using a spatial filter. The main limitation, which has been observed in experiments (the

percentage of correct associations of DOAs is greatly reduced), may be addressed by the integration of

additional sound features with the spectrum difference comparison. This approach would allow robust

results to be obtained even with similar sound sources.

The use of microphone-array-based interfaces for real-time musical control application requires two

types of further investigations: the capability to locate and track the source in the condition of competing

sounds (other musicians and performers nearby, the presence of the return due to a sound amplification

system), and a validation in higher reverberant environments.

Finally, this research has focused on the use of small-sized arrays. However, we were able to obtain

interesting localization results, both in a near-field and far-field environment. Nevertheless, it would

be interesting to evaluate the performance of large array networks, especially to evaluate the ISPC

approach, which is expected to provide a better performance in the separation of sources with beam-

forming.
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