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a b s t r a c t

We deal with the non-autonomous parameter-dependent second-order differential
equation

δ

(
v′√

1 − (v′)2

)′
+ q(t)f(v) = 0, t ∈ R,

driven by a Minkowski-curvature operator. Here, δ > 0, q ∈ L∞(R), f : [0, 1] → R
is a continuous function with f(0) = f(1) = 0 = f(α) for some α ∈ ]0, 1[, f(s) < 0
for all s ∈ ]0, α[ and f(s) > 0 for all s ∈ ]α, 1[. Based on a careful phase-
plane analysis, under suitable assumptions on q we prove the existence of strictly
increasing heteroclinic solutions and of homoclinic solutions with a unique change
of monotonicity. Then, we analyze the asymptotic behavior of such solutions both
for δ → 0+ and for δ → +∞. Some numerical examples illustrate the stated results.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we are concerned with homoclinic and heteroclinic solutions for the equation

δ

(
v′√

1 − (v′)2

)′

+ q(t)f(v) = 0, t ∈ R, (1.1)

where δ > 0, q ∈ L∞(R) and f : [0, 1] → R is a sign-changing function satisfying f(0) = f(1) = 0.
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The second-order operator appearing in (1.1), given by (ϕ(v′))′, with

ϕ(ξ) = ξ√
1 − ξ2

, (1.2)

is usually found in the theory of nonlinear electromagnetism, where it is referred to as Born–Infeld operator,
and in general relativity, since it can be seen as a mean-curvature operator in the relativistic Lorentz–
Minkowski space. We refer, for instance, to [11] and to the extensive discussions in [4, p. 3] and in [2,12]
for further considerations in this respect.

The investigation of homoclinic and heteroclinic solutions for second-order ODEs is a very classical topic;
in the autonomous case we make reference, among the others, to [5,17,18] and to the bibliography in [1].
In particular, a significant deal of attention has been received by such a problem in presence of nonlinear
operators of curvature type, mainly as a byproduct of the search for traveling fronts, see, e.g., [8,14,16,20] and
the references therein. Also in the non-autonomous case there are contributions, though in minor quantity; we
mention, for instance, the papers [10,19] for equations governed by the linear second-order operator and [3,7]
for more general problems dealt with through an abstract functional approach. In this respect, particularly
significant in relation to the present manuscript is the paper [4], where the authors make use of variational
methods to find heteroclinics whenever f is the derivative of a double-well potential.

The presence of the nonconstant weight q in (1.1) makes indeed the considered problem non-autonomous
and, in principle, prevents one from obtaining the desired solutions via a simple study of the orbits associated
with the equivalent first-order system. Anyway, in this paper we will maintain a geometric phase-plane
approach, aiming to obtain heteroclinics and homoclinics by gluing suitable branches of solutions. In this
respect, it is useful to mention that, since q is not necessarily continuous, by a solution of (1.1) we mean
a continuously differentiable function v :R → [0, 1], with v′ absolutely continuous, which satisfies Eq. (1.1)
almost everywhere. Moreover, if v is strictly increasing with v(−∞) = 0, v(+∞) = 1, we say that v is
a heteroclinic solution, while if v(±∞) = 0 and v displays a unique change of monotonicity, we call v a
homoclinic solution; in both cases v′(±∞) = 0 by the monotonicity. We also observe that in each interval of
monotonicity of any solution v = v(t), one can write the inverse function t = t(v), so that v(t(v)) = v, and
regard v as an independent variable. Setting

y(v) = 1√
1 − (v′(t(v)))2

− 1
(

implying v′(t(v)) =
√

(y(v))2 + 2y(v)
y(v) + 1

)
, (1.3)

e thus have
d
dv

y(v) = v′′(t(v))
(1 − (v′(t(v)))2) 3

2
v′(t(v))t′(v).

ince v′(t(v))t′(v) = 1, from (1.1) we conclude that y satisfies

ẏ(v) = −q(t(v))f(v)
δ

, (1.4)

here from now on we denote by “·” the differentiation with respect to v. The solution y of (1.4) is meant
in the absolutely continuous sense, so that ẏ is well defined almost everywhere. Moreover, noticing that
y(v) = 0 is equivalent to v′(t(v)) = 0 by (1.3), for heteroclinics one has t(0) = −∞ and t(1) = +∞, so
hat the corresponding function y defined by (1.3) satisfies the boundary conditions y(0) = 0 = y(1). For
omoclinics, instead, one has to reason separately on each of the two monotone branches in order to obtain
oundary conditions for y; it will be y(v) = 0 if the solution of (1.1) changes monotonicity when taking the
alue v.

As for the assumptions on f , when q is constant the existence of heteroclinics and homoclinics necessarily
equires that the primitive

F (v) :=
∫ v

f(s) ds

0

2
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(always fulfilling F (0) = 0) vanishes at some v0 ∈ ]0, 1], to which purpose f has to change sign. To fix
deas, we consider a reaction term f which is negative in a right neighborhood of 0 and positive in a left
eighborhood of 1; more precisely, henceforth we assume that f : [0, 1] → R is a Lipschitz continuous function

with Lipschitz constant L > 0, such that

(f1) f(0) = f(1) = 0 and there exist α, β ∈ ]0, 1[, with α ≤ β, such that f(α) = f(β) = 0, f(s) < 0 for all
s ∈ ]0, α[, f(s) > 0 for all s ∈ ]β, 1[;

and

(f2) F (1) > 0;

or

(f ′
2) F (1) = 0.

Whenever useful, we will extend f in a continuous way to the whole real line by setting f(s) = 0 for all
s ∈ R \ [0, 1]. Notice that since F (α) < 0 and F (1) ≥ 0, by the continuity of F there exists v0 ∈ ]α, 1] such
that F (v0) = 0.

Particularly common, in literature, is the case when f is bistable, that is, α = β and f displays a single
change of sign. Under this assumption, we can give a first result for a stepwise constant weight q with a
single jump, which can be immediately proved by elementary considerations in the phase-plane (see Fig. 1).

Proposition 1.1. Let δ > 0 be fixed and let q ≡ c1 in ]−∞, t0[ and q ≡ c2 in [t0, +∞[, with c1, c2 > 0. Let
f be a Lipschitz continuous function satisfying (f1) and (f2). Then, the following hold:

• if c2 > c1, then any solution of (1.1) such that v(−∞) = 0 is “definitively periodic”, that is, v(t) = v(t+T )
for every t ∈ [t0, +∞[ for a suitable T > 0;

• if c2 = c1, then there exists a homoclinic solution of (1.1), unique up to t-translation;
• if c2 < c1 and c2 ̸= c1

−F (ρ)
F (1) − F (ρ) for all ρ ∈ ]0, α], then all the solutions of (1.1) for which v(−∞) = 0

take either value 0 or value 1 (with nonzero derivative) in finite time;
• if c2 = c1

−F (ρ)
F (1) − F (ρ) for some ρ ∈ ]0, α], then there exists a heteroclinic solution of (1.1).

n the other hand, if (f ′
2) holds instead of (f2), then

• if c2 > c1, then any solution of (1.1) such that v(−∞) = 0 is “definitively periodic” in the above sense
(in particular, there are no homoclinic solutions of (1.1));

• if c2 = c1, then there exists a heteroclinic solution of (1.1);
• if c2 < c1, then all the solutions of (1.1) for which v(−∞) = 0 take either value 0 or value 1 (with nonzero

derivative) in finite time.

We explicitly remark that the statement of Proposition 1.1 does not depend on the fixed value of δ.
ur first goal is to extend Proposition 1.1 to the case of a nonconstant weight q satisfying more general
ssumptions (see Theorems 3.5–3.9). In this respect, our results can be compared with the statements in [4],
here (f ′

2) is assumed (see Remark 3.4). The assumption of balancedness for f , exploited therein to reason
hrough variational techniques, is however quite specific and does not survive under small perturbations
f the reaction term, while we are here interested in results holding for general bistable nonlinearities. We
hus seek heteroclinics and homoclinics adopting a different technique, based on a shooting method and on a
recise phase-plane analysis, with the drawback of having to impose some more restrictive assumptions than
n [4]. Since the problem is non-autonomous, we will indeed have to suitably control a family of branches of
olutions in order to have or prevent intersections between them.
3
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Fig. 1. Qualitative graph of f (on the left) and representation of the level lines E(v, w) =
√

1 + w2 − 1 + c
1
δ

F (v) for two values of

he constant c (on the right; the blue lines correspond to a higher value of c). (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

Subsequently, we investigate the asymptotic behavior of the constructed solutions for δ → 0+ and for
→ +∞; namely, by interpreting δ as a diffusion parameter, we consider a vanishing or a large diffusion

imit, respectively (see, e.g., [12,15] for a similar procedure in the framework of solutions of traveling front
ype). The a priori bound |v′| < 1 for the derivative of regular solutions, coming from the expression of
1.1), ensures that there is uniform convergence of the considered profiles to a Lipschitz continuous function,
hose shape will here be our object of interest, on the lines of the considerations, e.g., in [6,12,13]. For the
inkowski operator, it is quite usual (even if some exceptions may arise, see for instance [12]) to expect

imit profiles which are piecewise linear with slope 0 or 1, since the small parameter may compensate the
iverging denominator of the second-order operator when v′ → 1. Indeed, we will prove a result of this kind
see Theorems 3.10 and 3.11).

The main results of this paper are contained in Section 3. The preceding Section 2, where we review the
utonomous case (i.e., q ≡ 1), has the purpose of providing some motivation and some preliminary analysis

for our study and exemplifying, also through some pictures, the relative scenarios.

2. Motivation: The autonomous case

In this section, we briefly review the existence and the qualitative properties of homoclinics and hetero-
clinics for (1.1) in the autonomous case q ≡ 1. The results are an immediate consequence of an elementary
phase-plane analysis and will serve as a basis for the study in Section 3; for the reader’s convenience, we
will sometimes give some brief comments about the proofs, whenever not immediate. Notice that here the
solutions of (1.1) are of class C2.

To be more precise, recalling (1.2), we are dealing with the autonomous equation

δ
(
ϕ(v′(t))

)′ + f(v(t)) = 0, t ∈ R, (2.1)

or equivalently with the autonomous planar system⎧⎪⎨⎪⎩
v′ = ϕ−1(w) = w√

1 + w2
,

w′ = −1
δ

f(v),
(2.2)

n dependence on the diffusion parameter δ > 0. The associated energy function (vanishing at (0, 0)) is given
by

E(v, w) =
√

1 + w2 − 1 + 1
F (v). (2.3)
δ
4
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Fig. 2. Qualitative graph of Fγ for fixed γ ∈ ]0, α[, assuming F (1) > 0.

omoclinic (or heteroclinic, according to the assumption fulfilled by F ) solutions for (2.1) are simply
btained by considering the orbit of (2.2) through (0, 0), which intersects the v-axis in v0 (recall that v0

is such that F (v0) = 0 and v0 = 1 in case F (1) = 0). Indeed, the Lipschitz continuity of f guarantees that
the equilibrium (0, 0) can only be reached in infinite time. In other words, the time

T0,δ :=
∫ v0

0

δ − F (v)√
F (v)(F (v) − 2δ)

dv

spent by the orbit to travel from (0, 0) to (v0, 0) satisfies

T0,δ = +∞, for every δ > 0.

We first assume F (1) > 0, leaving to the end of the section some comments about the case of a balanced
eaction term (that is, F (1) = 0). We preliminarily observe that, for fixed δ > 0, any homoclinic to 0 can
aturally be seen as the limit of periodic solutions of (2.1). Indeed, the assumptions on f imply that, for
∈ ]0, α[, the function Fγ(v) := F (v) − F (γ), depicted in Fig. 2, has exactly two zeros in the interval [0, 1],

iven by γ and a second value ζ(γ) ∈ ]α, v0[ (see also the left picture in Fig. 1), for which it is clear that
imγ→0+ ζ(γ) = v0. For future convenience, we can extend the definition of Fγ for γ = 0 by setting F0 := F .

The orbit of (2.2) passing through the points (γ, 0) and (ζ(γ), 0) corresponds to a periodic solution of
(2.1) having minimal period

2Tγ,δ = 2
∫ ζ(γ)

γ

δ − Fγ(v)√
Fγ(v)(Fγ(v) − 2δ)

dv. (2.4)

It is straightforward to check that Tγ,δ is finite for every γ > 0 and every δ > 0; moreover, since

Tγ,δ =
∫ v0

0

δ − Fγ(v)√
Fγ(v)(Fγ(v) − 2δ)

1[γ,ζ(γ)](v) dv,

(where 1[γ,ζ(γ)] denotes the indicator function of the interval [γ, ζ(γ)]), a direct application of Fatou’s lemma
ields limγ→0+ Tγ,δ = T0,δ = +∞. Therefore, denoting by vγ,δ and v0,δ, respectively, the solutions of the

problems {
δ
(
ϕ(v′

γ,δ)
)′ + f(vγ,δ) = 0,

vγ,δ(0) = ζ(γ), v′
γ,δ(0) = 0,

{
δ
(
ϕ(v′

0,δ)
)′ + f(v0,δ) = 0,

v0,δ(0) = v0, v′
0,δ(0) = 0,

(2.5)

the continuous dependence on the initial data ensures that vγ,δ → v0,δ in C2
loc(R) as γ → 0+, so that the

homoclinic solution passing through v0 can be seen as a (locally uniform) limit of 2Tγ,δ-periodic solutions.
We now deepen our analysis of the asymptotic behavior of the periodic solutions vγ,δ defined in (2.5) as

δ and γ vary. First, we discuss the behavior of v for δ → 0+.
0,δ

5
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Proposition 2.1 (γ = 0 and δ → 0+). For δ → 0+, it holds that v0,δ → v̂0,0 locally uniformly in t, where

v̂0,0(t) =

⎧⎪⎨⎪⎩
−t + v0, if t ∈ [0, v0],
t + v0, if t ∈ [−v0, 0],
0, if t ∈ ]−∞, −v0] ∪ [v0, +∞[.

For the proof, it turns useful to deal with (1.4) via the change of variable (1.3), valid in each monotonicity
nterval of a solution v of (2.1). In particular, fixed γ ∈ [0, α[ and δ > 0, we denote by yγ,δ the unique solution
f (1.4) such that yγ,δ(γ) = 0, namely

yγ,δ(v) = −1
δ

Fγ(v), v ∈ [0, 1].

e observe that yγ,δ vanishes in correspondence of γ and ζ(γ) and ẏγ,δ(v) = 0 if and only if v ∈ {0, α, 1}.

roof of Proposition 2.1. We first notice that since 0 ≤ v0,δ(t) ≤ v0 and |v′
0,δ(t)| ≤ 1 for every t ∈ R, by

he Ascoli–Arzelà theorem we deduce that there exists a Lipschitz continuous function v̂0 such that v0,δ → v̂0
ocally uniformly in R, for δ → 0+. Moreover, v̂0(0) = v0 > 0 and thus v̂0 ̸≡ 0. To simplify the argument, we
ow show that v̂0(t) coincides with v̂0,0(t) for every t ∈ ]−∞, 0[, in order to take advantage of the positive
ign of v′

0,δ therein; of course, a completely analogous argument works for t ∈ ]0, +∞[.
By the discussion after formula (1.4) and recalling that the homoclinic v0,δ satisfies v0,δ(0) = v0 and

′
0,δ(0) = 0, we then notice that the corresponding yδ defined by (1.3) satisfies the two-point problem⎧⎨⎩ ẏ = −f(v)

δ
,

y(0) = 0, y(v0) = 0,

hat is, yδ(v) = − 1
δ F (v). Consequently, yδ(v) → +∞ as δ → 0+ for every v ∈ ]0, v0[. Since from (1.4) one

as that
v′

0,δ(t) =
√

yδ(v0,δ(t))(2 + yδ(v0,δ(t)))
1 + yδ(v0,δ(t)) ,

t follows that limδ→0+ v′
0,δ(t) = 1 for every t ∈ ]−∞, 0[ such that limδ→0+ v0,δ(t) ̸∈ {0, v0}. Next we remark

hat the quantity ∫ v0

v0−ε

δ − F (v)√
F (v)(F (v) − 2δ)

dv,

representing the time needed by v0,δ to move from the value v0 to the value v0 − ε, is finite and positive for
every fixed ε > 0 (and it converges for δ → 0+, since it is monotone increasing with respect to δ); moreover
it converges to 0 as ε → 0+. Therefore, v̂0 ̸≡ v0 in any neighborhood of 0, since otherwise for sufficiently
small ε > 0 we would reach a contradiction. Consequently, |v̂′

0| ≡ 1 in a neighborhood of 0.
Furthermore, {v′

0,δ}δ is bounded in L2
loc(R), so (up to subsequences) it has a weak limit w ∈ L2

loc(R)
satisfying 0 ≤ w ≤ 1, which coincides with the distributional derivative of v̂0. Thanks to the dominated
convergence theorem, fixed an interval [t0, t1] ⊆ ]−∞, 0[ we then have∫ t1

t0

ds ≥
∫ t1

t0

w(s) ds = v̂0(t1) − v̂0(t0) = lim
δ→0+

(v0,δ(t1) − v0,δ(t0))

= lim
δ→0+

∫ t1

t0

v′
0,δ(s) ds =

∫ t1

t0

ds

and hence w(t) = 1 for almost every t ∈ [t0, t1]. Being v̂0 absolutely continuous, for every t ∈ ]−∞, 0[ we
have that

v0 − v̂0(t) = v̂0(0) − v̂0(t) =
∫ 0

t

w(s) ds = −t,

whence the conclusion, since v̂0 is non-decreasing in ]−∞, 0]. The same argument holds for t ∈ ]0, +∞[, with

reversed sign. □

6
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We now discuss which picture appears inverting the way the two parameters γ and δ converge to 0: first,
orking at fixed γ and sending δ → 0+, we obtain the following.

roposition 2.2 (γ ∈ ]0, α[ and δ → 0+). For every γ ∈ ]0, α[, it holds that vγ,δ → vγ,0 locally uniformly in
as δ → 0+, where

vγ,0(t) =
{

−t + ζ(γ), if t ∈ [0, ζ(γ) − γ],
t + ζ(γ), if t ∈ [−ζ(γ) + γ, 0],

(2.6)

xtended by 2(ζ(γ) − γ)-periodicity.

roof. We can use an argument similar to the one in the previous proof to construct the limit profile vγ,0
f vγ,δ for δ → 0+ and to infer that, in any point, its slope is either 1 or −1. By the dominated convergence
heorem, moreover, we can pass to the limit for δ → 0+ in (2.4) to find

τ := lim
δ→0+

Tγ,δ =
∫ ζ(γ)

γ

−Fγ(v)√
(−Fγ(v))2

dv = ζ(γ) − γ.

On the other hand, passing to the limit for δ → 0+ in the equality vγ,δ(0) − vγ,δ(−Tγ,δ) = ζ(γ) − γ, using
he uniform Lipschitz continuity of vγ,δ, we deduce

vγ,0(0) − vγ,0(−τ) = ζ(γ) − γ.

More in general, with the same argument one has, for every integer k,

vγ,0(2kτ) − vγ,0((2k − 1)τ) = ζ(γ) − γ, vγ,0((2k + 1)τ) − vγ,0(2kτ) = γ − ζ(γ).

Being |v′
γ,0| ≡ 1, vγ,0 is periodic with minimal period 2(ζ(γ) − γ) and the thesis follows. □

Finally, we consider the limit of vγ,0 for γ → 0+.

Proposition 2.3 (δ → 0+ and γ → 0+). It holds that vγ,0 → v̌0,0 uniformly in t, as γ → 0+, where

v̌0,0(t) =
{

−t + v0, if t ∈ [0, v0],
t + v0, if t ∈ [−v0, 0],

(2.7)

extended by 2v0-periodicity.

Proof. Since limγ→0+ ζ(γ) = v0, we deduce limγ→0+(limδ→0+ Tγ,δ) = limγ→0+(ζ(γ) − γ) = v0 and the
thesis follows. □

We have thus seen, on the one hand, that the profiles obtained in the limit for δ → 0+ are piecewise
linear, in accord with several results in literature for the Minkowski operator (like, e.g., [6]). On the other
hand, exchanging the order with which the parameters γ and δ are considered when computing the limit
leads to different results. The above presented results are illustrated in Fig. 3.

Remark 2.1 (The case F (1) = 0). In case F (1) = 0 (and hence v0 = 1), for γ = 0 one would have, for every
δ, a heteroclinic connection between 0 and 1. In this case, with reference to the previous results, one cannot
reason on the solution v0,δ which satisfies v0,δ(0) = 1, v′

0,δ(0) = 0, because by uniqueness this coincides with
the constant function 1. However, it is possible to proceed similarly as for the previous results by defining
vγ,δ as the solution of {

δ
(
ϕ(v′

γ,δ(t))
)′ + f(vγ,δ(t)) = 0,

′ (2.8)

vγ,δ(0) = α, vγ,δ(0) = dα,

7
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Fig. 3. Qualitative representation of the discussed convergences as δ and γ tend to zero, for f(s) = s(1−s)(s−0.4) (and so F (1) > 0).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

here dα is such E(α, dα) = 1
δ F (γ). In this way, vγ,0 will be the right shift of the function defined in (2.6) by

he quantity ζ(γ) − α, whose limit for γ → 0+ coincides with the right shift of the function defined in (2.7)
y 1 − α. On the other hand, v0,δ will be the (increasing) heteroclinic connection between 0 and 1 such that
0,δ(0) = α, which will then be approximated by means of the periodic solutions vγ,δ, having larger period
he more γ approaches 0. Finally, with the same proof as for Proposition 2.1, taking into account that v0,δ

s now everywhere increasing, one can show that v0,δ converges locally uniformly to

v̂0,0(t) =

⎧⎪⎨⎪⎩
t + α, if t ∈ [−α, 1 − α],
0, if t ∈ ]−∞, −α],
1, if t ∈ ]1 − α, +∞].

or δ → 0+. In Fig. 4, we give a visual snapshot of these two convergences; the remaining two cases are
imilar to the ones depicted in Fig. 3(c) and Fig. 3(d), noticing that ζ(γ) → 1 as γ → 0+. ◁

. A parametric problem with a non-constant positive weight

In this section, we deal with the non-autonomous differential equation

δ
(
ϕ(v′(t))

)′ + q(t)f(v(t)) = 0, (3.1)

efined in R, where δ > 0 and q ∈ L∞(R) is a non-constant weight. We look for nontrivial homoclinic and
eteroclinic solutions of (3.1).
8
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Fig. 4. Qualitative representation of the discussed convergences as δ and γ tend to zero, for f(s) = s(1−s)(s−0.5) (and so F (1) = 0).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In more detail, in Section 3.1 we first provide the existence of solutions of (3.1) satisfying mixed Dirichlet–
eumann conditions at the boundary of a bounded interval. Next, in Section 3.2, we determine the behavior
f these solutions when one of the endpoints of the interval (the one with the Neumann condition) goes to
∞ (or −∞). In Section 3.3, we will exploit such a construction to find existence and non-existence results

or homoclinic and heteroclinic solutions. At last, Section 3.4 is devoted to the investigation of the asymptotic
ehavior of these solutions as δ → 0+ and δ → +∞.

.1. Boundary value problems in bounded intervals

Let t0 ∈ R and T > 0. We deal with the mixed Dirichlet–Neumann boundary value problems{
δ
(
ϕ(v′)

)′ + q(t)f(v) = 0,

v′(t0 − T ) = 0, v(t0) = ρ,
(3.2)

nd {
δ
(
ϕ(v′)

)′ + q(t)f(v) = 0,

v(t0) = ρ, v′(t0 + T ) = 0,
(3.3)

here ρ ∈ ]0, 1[. Notice that both (3.2) and (3.3) have mixed boundary conditions of Dirichlet–Neumann
ype.

Preliminarily, we show that every solution of (3.1), with (v(t0 − T ), v′(t0 − T )) = (ω, 0) and ω > 0
ufficiently small, remains (positive and) small and with positive derivative in [t0 − T, t0].

emma 3.1. Let δ > 0, t0 ∈ R and T > 0. Moreover, let q ∈ L∞(t0 − T, t0) be a positive weight and
et f : [0, 1] → R be a Lipschitz continuous function fulfilling (f1). Then, for every γ ∈ ]0, α[ there exists
γ ∈ ]0, α[ such that for every ω ∈ ]0, ωγ [ and for every solution v of (3.1) with (v(t0 −T ), v′(t0 −T )) = (ω, 0)

t holds that
(v(t), v′(t)) ∈ ]0, γ[ × ]0, +∞[, for every t ∈ ]t0 − T, t0].

roof. Let γ ∈ ]0, α[ be fixed; we show that the statement holds choosing ωγ ∈ ]0, α[ which satisfies

ωγ < γ e− 1
δ

∥q∥L∞(t0−T,t0)LT 2
, (3.4)

here L > 0 is the Lipschitz constant of f . To this end, let ω ∈ ]0, ωγ [ and v be a solution of (3.1) with
v(t0 − T ), v′(t0 − T )) = (ω, 0). First, we write Eq. (3.1) in the equivalent form

v′′(t) + 1
q(t)f(v(t))

(
1 − (v′(t))2)3

2 = 0

δ

9
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and then we integrate twice in [t0 − T, t], thus obtaining

v(t) = v(t0 − T ) + v′(t0 − T )(t − t0 + T )

− 1
δ

∫ t

t0−T

∫ s

t0−T

q(ξ)f(v(ξ))
(
1 − (v′(ξ))2)3

2 dξ ds

= ω + 0 − 1
δ

∫ t

t0−T

q(ξ)f(v(ξ))
(
1 − (v′(ξ))2)3

2 (t − ξ) dξ,

or every t ∈ [t0 − T, t0], where the last equality follows by an application of Fubini’s theorem. Next, using
he fact that f is Lipschitz continuous and ∥v′∥∞ < 1, we have that

v(t) ≤ ω + 1
δ

∥q∥L∞(t0−T,t0)L(t − t0 + T )
∫ t

t0−T

v(ξ) dξ, for every t ∈ [t0 − T, t0].

he Grönwall’s inequality and (3.4) imply that

v(t) ≤ ω e
1
δ

∥q∥L∞(t0−T,t0)L(t−t0+T )2
< γ, for every t ∈ ]t0 − T, t0].

Therefore, f(v(t)) < 0 for every t ∈ ]t0 − T, t0] and thus

v′′(t) = −1
δ

q(t)f(v(t))
(
1 − (v′(t))2)3

2 > 0, for almost every t ∈ [t0 − T, t0].

s a consequence, we deduce

v′(t) = v′(t0 − T ) +
∫ t

t0−T

v′′(ξ) dξ > 0, for every t ∈ ]t0 − T, t0].

he proof is complete. □

We can draw analogous considerations regarding the solutions “starting near 1”. Precisely, with the
ole change consisting in integrating on [t0, t0 + T ] instead of [t0 − T, t0], it is possible to show that for
very γ ∈ ]β, 1[ one can find ωγ ∈ ]β, 1[ such that if ω ∈ ]ωγ , 1[, then the solution v of (3.1) satisfying
v(t0 + T ), v′(t0 + T )) = (ω, 0) is positive and increasing for every t ∈ [t0, t0 + T ], as a result of the fact
hat it is concave and arrives with zero derivative at the time instant t0 + T . It is then possible to state the
ollowing result.

emma 3.2. Let δ > 0, t0 ∈ R and T > 0. Moreover, let q ∈ L∞(t0, t0 + T ) be a positive weight and
et f : [0, 1] → R be a Lipschitz continuous function fulfilling (f1). Then, for every γ ∈ ]β, 1[ there exists
γ ∈ ]β, 1[ such that for every ω ∈ ]ωγ , 1[ and for every solution v of (3.1) with (v(t0 +T ), v′(t0 +T )) = (ω, 0)

t holds that
(v(t), v′(t)) ∈ ]γ, 1[ × ]0, +∞[, for every t ∈ [t0, t0 + T [.

Next, we prove the existence of a (positive) strictly increasing solution of the boundary value problem
3.2).

heorem 3.1. Let δ > 0, t0 ∈ R and T > 0. Moreover, let q ∈ L∞(t0 − T, t0) be a positive weight and
et f : [0, 1] → R be a Lipschitz continuous function fulfilling (f1). Then, for every ρ ∈ ]0, α[, there exists a

trictly increasing solution of problem (3.2).

10
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Fig. 5. Representation of the deformation of the set [0, 1] × {0} in the phase-plane (v, w) = (v, ϕ(v′)), through the Poincaré map
Pt0

t0−T
.

Proof. The proof is based on a shooting technique in the phase-plane (v, w) = (v, ϕ(v′)); we divide it into
wo steps.

tep 1. Existence. First, as mentioned in the Introduction, we extend the function f continuously to the whole
eal line by setting f(v) = 0 for v ∈ ]−∞, 0[ ∪ ]1, +∞[, still denoting such an extension by f . Accordingly,

we consider the planar system ⎧⎨⎩ v′ = ϕ−1(w),

w′ = −1
δ

q(t)f(v),
(3.5)

hich is equivalent to the differential equation in (3.2). Since the function f is Lipschitz continuous, the
olutions of the associated Cauchy problems are globally defined on any compact time interval. Thus, fixed
t1, t2] ⊆ R with t1 < t2, we can introduce the associated Poincaré map Pt2

t1 :R2 → R2, which is the global
diffeomorphism of the plane onto itself defined by

Pt2
t1 (v1, w1) := (v(t2; t1, v1, w1), w(t2; t1, v1, w1));

ere, (v(·; t1, v1, w1), w(·; t1, v1, w1)) is the unique solution of (3.5) satisfying the initial condition (v(t1), w(t1))
(v1, w1). Our goal is to describe the deformation of the set [0, 1] × {0} in the phase-plane (v, w), through

the Poincaré map Pt0
t0−T .

To this end, we first recall that v ≡ 0 and v ≡ α are trivial solution of (3.5), so that

Pt0
t0−T (0, 0) = (0, 0), Pt0

t0−T (α, 0) = (α, 0);

herefore, by a continuity argument, for every ρ ∈ ]0, α[ we deduce that there exists ωρ ∈ ]0, α[ such that

Pt0
t0−T (ωρ, 0) ∈ {ρ} × R

(see Fig. 5 for a qualitative representation of the phase-plane). We conclude that the first component of
(v(·; t0 − T, ωρ, 0), w(·; t0 − T, ωρ, 0)) is a solution of the boundary value problem (3.2).

Step 2. Monotonicity. Let ρ ∈ ]0, α[. We aim to prove that the “first intersection” between the continuum
Pt0

t0−T ([0, α] × {0}) and {ρ} × R corresponds to a strictly increasing solution of (3.2). Accordingly, let

ω̂ρ := inf
{

ω ∈ ]0, α[ : Pt0
t0−T (ω, 0) ∈ {ρ} × R

}
and let v̂(·) = v̂(·; ω̂ρ, 0) be the solution of (3.1) with initial condition (v(t0 − T ), v′(t0 − T )) = (ω̂ρ, 0). We
claim that

v̂(t) ∈ [0, ρ], for all t ∈ ]t − T, t ]. (3.6)
0 0

11
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In order to prove it, let

ω̃ρ := sup
{

ω ∈ ]0, α[ : Pt
t0−T (ν, 0) ∈ [0, ρ[ × R, ∀ t ∈ [t0 − T, t0], ∀ ν ∈ [0, ω]

}
.

Notice that ω̃ρ is well-defined, since, by an application of Lemma 3.1 (with γ = ρ), we deduce that there
exists νρ ∈ ]0, α[ such that

Pt
t0−T ([0, νρ] × {0}) ⊆ [0, ρ[ × ]0, +∞[, for all t ∈ [t0 − T, t0].

If we prove that ω̂ρ = ω̃ρ, then (3.6) follows. It is obvious that ω̃ρ ≤ ω̂ρ. Let us suppose, by contradiction,
hat ω̃ρ < ω̂ρ. Then, since ω̃ρ < α (being Pt

t0−T (α, 0) = (α, 0)), due to the definition of ω̃ρ, for all ν ≤ ω̃ρ,
he solution v(·; ν, 0) is such that

ϕ(v′(t; ν, 0)) = −1
δ

∫ t

t0−T

q(ξ)f(v(ξ; ν, 0)) dξ > 0, for every t ∈ ]t0 − T, t0], (3.7)

hanks to (f1). Hence, v′(t; ν, 0) > 0 for all t ∈ [t0 − T, t0], whence max[t0−T,t0] v(t; ν, 0) = v(t0; ν, 0). In
articular,

v(t0; ω̃ρ, 0) = max
t∈[t0−T,t0]

v(t; ω̃ρ, 0) = ρ; (3.8)

he last equality holds true since otherwise the continuous dependence with respect to the initial data would
mply the existence of ω̃′

ρ > ω̃ρ such that Pt
t0−T (ν, 0) ∈ [0, ρ[ × R, for every t ∈ [t0 − T, t0] and ν ∈ [0, ω̃′

ρ],
ontradicting the definition of ω̃ρ. We observe that (3.8) and the assumption ω̃ρ < ω̂ρ lead to a contradiction
ith the definition of ω̂ρ. The claim (3.6) is proved. From (3.6) and (3.7), we then have that v̂′(t) > 0 for
very t ∈ ]t0 − T, t0], implying that v̂ is a strictly increasing solution of (3.2). The thesis follows. □

In a similar manner, working with the Poincaré map Pt0
t0+T , one can prove the following existence result

or the boundary value problem (3.3). We omit the proof, which is similar to the one for Theorem 3.1.

heorem 3.2. Let δ > 0, t0 ∈ R and T > 0. Moreover, let q ∈ L∞(t0, t0 + T ) be a positive weight and
et f : [0, 1] → R be a Lipschitz continuous function fulfilling (f1). Then, for every ρ ∈ ]β, 1[, there exists a
trictly increasing solution of problem (3.3).

.2. Solutions in unbounded intervals: Passing to the limit for T → +∞

Let t0 ∈ R and consider the differential problems{
δ
(
ϕ(v′)

)′ + q(t)f(v) = 0,

v(−∞) = 0, v(t0) = ρ,
(3.9)

and {
δ
(
ϕ(v′)

)′ + q(t)f(v) = 0,

v(t0) = ρ, v(+∞) = 1,
(3.10)

where ρ ∈ ]0, 1[. We prove that the limits of the solutions of (3.2) and of (3.3) for T → +∞ solve, respectively,
(3.9) and (3.10).

Theorem 3.3. Let δ > 0 and t0 ∈ R. Moreover, let q ∈ L∞(−∞, t0) be a positive weight such that
∥q∥L1(t,t0) → +∞ as t → −∞ and assume that f : [0, 1] → R is a Lipschitz continuous function fulfilling
(f ). Then, for every ρ ∈ ]0, α[, there exists a strictly increasing solution of (3.9).
1

12
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Proof. Let ρ ∈ ]0, α[ and T > 0. Theorem 3.1 ensures the existence of a strictly increasing solution vT of
(3.2) in the bounded interval [t0 − T, t0]; the goal is now to pass to the limit for T → +∞. To this end, we
rst prove that vT , v′

T , v′′
T are uniformly bounded in [t0 − T, t0]. Indeed, we observe that

vT (t) ∈ ]0, α[, for all t ∈ [t0 − T, t0].

oreover, we have

0 ≤ v′′
T (t) = −q(t)f(vT (t))

(
1 − (v′

T (t))2) 3
2 ≤ ∥q∥L∞(−∞,t0) max

[0,α]
|f | =: M,

for almost every t ∈ [t0 − T, t0]. Recalling the discussion in the Introduction and in Section 2, we then
consider the first-order reduction associated with (3.1), reading as

ẏ(v) = −q(t(v))f(v)
δ

. (3.11)

ntegrating such an equality between vT (t0 −T ) (where y(vT (t0 −T )) = 0) and v ∈ ]vT (t0 −T ), ρ[, we deduce
hat

y(v) = −
∫ v

vT (t0−T )
q(t(s))f(s)

δ
ds,

nd thus
|y(v)| ≤ αM

δ
, for all v ∈ ]vT (t0 − T ), ρ[.

Then, recalling the latter equality in (1.3), we deduce that there exists K > 0 such that

v′
T (t) ∈ [0, K], for all t ∈ [t0 − T, t0]. (3.12)

Consequently, there exists a continuously differentiable function v∞ such that vT → v∞ and v′
T → v′

∞ for
T → +∞, with uniform convergence. Using (3.1), also v′′

T → v′′
∞ almost everywhere for T → +∞. We

deduce that v∞ is a strictly increasing solution of Eq. (3.1) on the interval ]−∞, 0[. It remains to show that
v∞(t0) = ρ and v∞(−∞) = 0, thus proving that v∞ solves (3.9).

The former claim immediately follows from the fact that vT (t0) = ρ for all T > 0. In order to prove
that v∞(−∞) = 0, we observe that vT (t0 − T ) ∈ ]0, ρ[ for all T > 0; hence, passing to a subsequence if
necessary, there exists ℓ ∈ [0, ρ] for which limk→−∞ v∞(k) = ℓ. By contradiction, assume that ℓ > 0; then,
since 0 < ℓ ≤ v∞(t) ≤ ρ < α and v′

∞(t) > 0 for every t ∈ ]−∞, t0], recalling (3.12) we have

ϕ(K) ≥ ϕ(v′
∞(t0)) ≥ ϕ(v′

∞(t0)) − ϕ(v′
∞(t)) = −

∫ t0

t

q(ξ)f(v∞(ξ))
δ

dξ

≥ ∥q∥L1(t,t0)
min[ℓ,ρ](−f)

δ
> 0,

or every t ∈ ]−∞, t0]. The fact that ∥q∥L1(t,t0) → +∞ for t → −∞ then yields a contradiction. Hence, ℓ = 0
nd the proof is complete. □

Proceeding in an analogous way, integrating in particular (3.11) between vT (t0+T ) and v ∈ ]ρ, vT (t0+T )[,
here ρ ∈ ]β, 1[ is fixed, one can prove the following.

heorem 3.4. Let δ > 0 and t0 ∈ R. Moreover, let q ∈ L∞(t0, +∞) be a positive weight such that
q∥L1(t0,t) → +∞ as t → +∞ and assume that f : [0, 1] → R is a Lipschitz continuous function fulfilling

f1). Then, for every ρ ∈ ]β, 1[, there exists a strictly increasing solution of (3.10).

13
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3.3. Heteroclinic and homoclinic solutions

We now exploit the results of the previous sections to construct heteroclinic and homoclinic solutions.
We deal with a bistable reaction term, providing the existence of a strictly increasing heteroclinic solution
v of (3.1) with v(t0) ∈ ]0, α[. Some remarks for the more general case α < β are given as well.

heorem 3.5. Let δ > 0 and let q ∈ L∞(−∞, t0) for some t0 ∈ R. Assume that q satisfies the following
wo assumptions:

• there exists η > 0 for which q(t) ≥ η for almost every t ∈ ]−∞, t0[;
• there exists c > 0 for which q ≡ c in [t0, +∞[.

oreover, let f be a Lipschitz continuous function satisfying (f1) and (f2) and assume that f is bistable, that
s, α = β. Then, if

c ≤ η
−F (α)

F (1) − F (α) , (3.13)

there exists a strictly increasing heteroclinic solution of (3.1).

Proof. First, let us focus our attention on the interval ]−∞, t0]. Since ∥q∥L1(t,t0) → +∞ as t → −∞, for
ach ρ ∈ ]0, α[ we can consider the strictly increasing solution vρ

∞ of (3.9) provided by Theorem 3.3, and we
et κ(ρ) := ϕ(vρ

∞
′(t0)). Accordingly, we define

yρ
∞(v) := 1√

1 − (vρ
∞′(t(v)))2

− 1, (3.14)

where v ↦→ t(v) is the inverse function of t ↦→ vρ
∞(t). From the comments in the Introduction and in Section 2,

yρ
∞ is a solution of the first-order equation

ẏ(v) = −q(t(v))
δ

f(v), v ∈ [0, ρ].

Hence, recalling that f ≤ 0 on [0, ρ], we have

−η

δ
f(v) ≤ ẏρ

∞(v) ≤ −
∥q∥L∞(−∞,t0)

δ
f(v), for all v ∈ [0, ρ].

By the definition of F and the fact that yρ
∞(0) = 0, integrating on [0, ρ] gives

− η

δ
F (ρ) ≤ yρ

∞(ρ) ≤ −
∥q∥L∞(−∞,t0)

δ
F (ρ). (3.15)

ext, observing that
ϕ(vρ

∞
′(t)) =

√
(yρ

∞(vρ
∞(t)))2 + 2yρ

∞(vρ
∞(t)),

nd since the function s ↦→
√

s2 + 2s is strictly increasing, from (3.15) we deduce that√
η2

δ2 F (ρ)2 − 2η

δ
F (ρ) ≤ κ(ρ) ≤

√
∥q∥2

L∞(−∞,t0)

δ2 F (ρ)2 − 2
∥q∥L∞(−∞,t0)

δ
F (ρ). (3.16)

inally, it is straightforward that
lim

ρ→0+
(ρ, κ(ρ)) = (0, 0). (3.17)

Second, let us consider the interval [t0, +∞[, where the equation is autonomous. Defining E(v, w) as in
2.3), the solutions (v, w) of the associated planar system (3.5) whose orbit lies on the level line E(v, w) =
(1, 0) satisfy √

1 + w2 − 1 + c
F (v) = c

F (1).

δ δ

14
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Therefore,

w = w(v) =
√

c2

δ2 (F (1) − F (v))2 + 2 c

δ
(F (1) − F (v)). (3.18)

In order to prove the existence of a heteroclinic solution, we have to show that the two parametric curves
(v, κ(v)) and (v, w(v)) intersect. To this end, we show that the function v ↦→ w(v) − κ(v) changes sign at
least once in ]0, α[. Due to (3.17) and the fact that w(0) =

√
c2
δ2 (F (1))2 + 2 c

δ F (1) > 0 (since F (1) > 0), we
ave that limv→0+(w(v) − κ(v)) > 0. On the other hand, we prove that (3.13) implies that w(v) − κ(v) < 0

for some v ∈ ]0, α[. By contradiction, assume that w(v) − κ(v) > 0 for every v ∈ ]0, α[. Then, thanks to
3.16), √

c2

δ2 (F (1) − F (v))2 + 2 c

δ
(F (1) − F (v)) = w(v) > κ(v) ≥

√
η2

δ2 F (v)2 − 2η

δ
F (v).

Using again the fact that the function s ↦→
√

s2 + 2s is strictly increasing, for every v ∈ ]0, α[ one then has

c

δ
(F (1) − F (v)) > −η

δ
F (v),

whence
c > η

−F (v)
F (1) − F (v) , (3.19)

contradiction with (3.13), since the right-hand side in (3.19) is monotone in v. The proof is complete. □

Remark 3.1. Since
sup

v∈[0,α]

−F (v)
F (1) − F (v) = −F (α)

F (1) − F (α) ,

condition (3.13) is sufficient for the above argument. Moreover, in case q is constant in ]−∞, t0[, it produces
the fourth alternative in the statement of Proposition 1.1, allowing one to recover the existence result for
the problem with a two-step weight q. ◁

The analog for the case when q is definitively constant at −∞, involving problem (3.10), provides a strictly
increasing heteroclinic solution v of (3.1) with v(t0) ∈ ]α, 1[ and can be formulated as follows. We give an
outline of the proof for the reader’s convenience.

Theorem 3.6. Let δ > 0 and let q ∈ L∞(t0, +∞) for some t0 ∈ R. Assume that q fulfills the following two
assumptions:

• there exists η > 0 for which q(t) ≥ η for almost every t ∈ ]t0, +∞[;
• there exists c > 0 for which q ≡ c in ]−∞, t0].

Moreover, let f be a Lipschitz continuous function satisfying (f1) and (f2) and assume that f is bistable, that
is, α = β. Then, if

c ≥ ∥q∥L∞(t0,+∞)
F (1) − F (α)

−F (α) , (3.20)

there exists a strictly increasing heteroclinic solution of (3.1).

Proof. Similarly as in the proof of Theorem 3.5, one first considers the interval ]t0, +∞], working with the
strictly increasing solution vρ

∞ provided by Theorem 3.4. Defining yρ
∞ as in (3.14), recalling the positive sign

of f in [ρ, 1] and the fact that yρ
∞(1) = 0 one then has

η (F (1) − F (ρ)) ≤ yρ (ρ) ≤
∥q∥L∞(t0,+∞) (F (1) − F (ρ)),
δ ∞ δ
15
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yielding √
η2

δ2 (F (1) − F (ρ))2 − 2η

δ
(F (1) − F (ρ)) ≤ κ(ρ)

≤

√
∥q∥2

L∞(t0,+∞)

δ2 (F (1) − F (ρ))2 − 2
∥q∥L∞(t0,+∞)

δ
(F (1) − F (ρ)),

here κ(ρ) := ϕ(vρ
∞

′(t0)). On the other hand, the energy curve corresponding to the solutions (v, w) of (3.5)
hose orbit emanates from (0, 0) is given by√

1 + w2 − 1 + c

δ
F (v) = 0, namely w(v) =

√
c2

δ2 F (v)2 + 2 c

δ
F (v),

aking sense only for v ∈ [0, v0]. Now, the function v ↦→ w(v) − κ(v) is such that w(v0) − κ(v0) < 0, hence
t suffices to show that κ(v) < w(v) for some v ∈ ]β, v0[ in order to prove the statement. If by contradiction
t were w(v) − κ(v) < 0 for every v ∈ ]β, v0[, thanks to the above estimates this would lead to

− c

δ
F (v) <

∥q∥L∞(t0,+∞)

δ
(F (1) − F (v))

(recall that F (v) < 0 for v < v0), whence

c < ∥q∥L∞(t0,+∞)
F (1) − F (v)

−F (v) (3.21)

or every v ∈ ]β, v0[, a contradiction with (3.20) since the right-hand side in (3.21) is monotone in v. □

Remark 3.2. If α ̸= β, the argument in the proofs of Theorems 3.5 and 3.6 still works but will not
provide, in general, an increasing heteroclinic. However, as for Theorem 3.5, one will find a heteroclinic
which is definitively increasing both at −∞ (thanks to the construction in Section 3.2) and at +∞ (due
to the positive sign of f in a left neighborhood of 1), possibly displaying a certain number of monotonicity
changes in between, according to the number of sign changes of F (1) − F (v). The picture for Theorem 3.6
can be obtained similarly. ◁

Concerning homoclinics, one can carry out a similar argument in order to intersect, in the upper phase-
plane, the orbit corresponding to the solution of (3.9) with the solution of (3.5) passing through the point
(v0, 0) (which for t → +∞ converges to (0, 0)). One then simply has to replace F (1) with F (v0) (which is
equal to 0) in the statement of Theorem 3.5, yielding the existence of a homoclinic solution v of (3.1), taking

0 as maximum value, with v(t0) ∈ [0, α[. For simplicity, we only give the statement in case q is definitively
onstant at +∞.

heorem 3.7. Let δ > 0 and let q ∈ L∞(−∞, t0) for some t0 ∈ R. Assume that q fulfills the following two
ssumptions:

• there exists η > 0 for which q(t) ≥ η almost everywhere in ]−∞, t0[;
• there exists c > 0 for which q ≡ c in [t0, +∞[.

oreover, let f be a Lipschitz continuous function satisfying (f1) and (f2) and assume that f is bistable, that
s, α = β. Then, if c ≤ η, there exists a homoclinic solution v of (3.1) taking v0 as maximum value.

Similarly, replacing the branch through (v0, 0) with the one through (w, 0) for w < v0, one can find
olutions starting increasingly at −∞ and then being definitively periodic, in line with the shape of the

solutions of system (3.5) with a stepwise constant weight q.
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Fig. 6. Qualitative representation of the strategy of the proofs of the main existence results about heteroclinic, homoclinic, and
“definitively periodic” solutions.

Theorem 3.8. Let δ > 0 and let q ∈ L∞(−∞, t0) for some t0 ∈ R. Assume that q fulfills the following two
ssumptions:

• there exists η > 0 for which q(t) ≥ η almost everywhere in ]−∞, t0[;
• there exists c > 0 for which q ≡ c in [t0, +∞[.

oreover, let f be a Lipschitz continuous function satisfying (f1) and (f2) and assume that f is bistable, that
s, α = β. Then, if there exists w < v0 such that

c ≤ η
−F (α)

F (w) − F (α) , (3.22)

there exists a solution v of (3.1) satisfying v(−∞) = 0 which is definitively periodic.

Condition (3.22) ensures that the two parametric curves (v, κ(v)) and (v, w(v)) defined in the proof of
Theorem 3.5 intersect (with the only difference that the latter one emanates from (w, 0), with w < v0, rather
han from (v0, 0)). Of course, the possibility that these two curves always intersect for t = t0 is due to the
ossibility of shifting the time along the latter branch. As before, condition (3.22) is independent of the value
f δ. Similar statements to Theorems 3.7 and 3.8 can be given in case q is definitively constant at −∞, but
e omit the details for briefness. In Fig. 6, we outline the strategies of proof of our main existence results.
We now turn to nonexistence. Here, it is natural to expect that if c is sufficiently large (respectively, small)

hen the intersection argument used in the statement of Theorem 3.5 (respectively, Theorem 3.6) will not
old. To prove this claim, we first give a necessary condition on ρ for (3.9) to be solvable.

emma 3.3. Let q and f fulfill the assumptions of Theorem 3.5. Moreover, assume that

η > ∥q∥L∞(−∞,t0)
−F (α)

F (1) − F (α) . (3.23)

Then, there exists M < 1 such that, if (3.9) has a solution, then ρ ≤ M .

Proof. By contradiction, let us assume that there exist ρn → 1 and a sequence of solutions vn of (3.9) such
that vn(t0) = ρn. Then, there exist t̂n ∈ [−∞, t0[ and ťn ∈ ]−∞, t0], with t̂n < ťn, such that v′

n(t̂n) = 0,
vn(ťn) = ρn and v′

n > 0 on ]t̂n, ťn[. Defining yn(v) = 1/
√

1 − (v′
n(t(v)))2 − 1, it follows that yn(vn(t̂n)) = 0

nd hence, integrating on ]t̂n, ťn[, one has

yn(vn(ťn)) =
∫ vn(ťn) −q(t(s))

f(s) ds.

vn(t̂n) δ

17
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If vn(t̂n) ≥ α, this is trivially a contradiction, since the right-hand side is strictly negative while the left-hand
ne is positive. Otherwise, from the above we have

yn(vn(ťn)) ≤
∫ α

vn(t̂n)

−q(t(s))
δ

f(s) ds +
∫ ρn

α

−q(t(s))
δ

f(s) ds

≤ 1
δ

(
−∥q∥L∞(−∞,t0)F (α) − η(F (ρn) − F (α))

)
.

sing (3.23), we then get the same sign contradiction, proving the statement. □

We remark that (3.23) implies that

η ≤ q(t) < η
F (1) − F (α)

−F (α) , for every t ∈ ]−∞, t0[,

hus the smaller η, the smaller the oscillation allowed for q.
The nonexistence result then reads as follows.

heorem 3.9. Let q and f fulfill the assumptions of Theorem 3.5. Then, if (3.23) and

c > ∥q∥L∞(−∞,t0)
−F (α)

F (1) − F (α) (3.24)

hold, no heteroclinic solutions of (3.1) exist.

Proof. Assume by contradiction that there exists a heteroclinic solution v; let ρ = v(t0) and denote by vρ,−
∞

and vρ,+
∞ , respectively, the restrictions of v to the intervals ]−∞, t0] and ]t0, +∞[. Since vρ,−

∞ is a solution of
3.9), by Lemma 3.3 one has ρ < M . Our aim is now to prove that the set of points {(ρ, vρ,−

∞
′(t0)) : ρ ∈ [0, M ]}

nd the level set {(v, w) : E(v, w) = E(1, 0)} for the energy E defined in (2.3) (which depends on c) cannot
ntersect (in the upper phase-plane {ϕ(v′) > 0}) for c sufficiently large, implying a contradiction. We will
chieve this goal by showing that (3.24) implies vρ,−

∞
′(t0) < vρ,+

∞
′(t0) for any ρ ∈ [0, M ].

Thus, let ρ ∈ [0, M ] be fixed. The conclusion trivially holds if vρ,−
∞

′(t0) ≤ 0, since vρ,+
∞

′(t0) > 0 thanks to
(3.18). Hence, we can assume vρ,−

∞
′(t0) > 0; being vρ,−

∞
′ > 0 in a left neighborhood ]t̂, t0[ of t0, we can repeat

the argument in the previous lemma (with t̂n = t̂ and ťn = t0) to obtain

yρ
∞(ρ) ≤ 1

δ

(
−∥q∥L∞(−∞,t0)F (α) − η(F (ρ) − F (α))

)
=: B(ρ),

where yρ
∞ is defined as in (3.14). Since

ϕ(vρ,−
∞

′(t0)) =
√

(yρ
∞(ρ))2 + 2yρ

∞(ρ) ≤
√

B(ρ)2 + 2B(ρ),

we will obtain a contradiction if it holds√
B(ρ)2 + 2B(ρ) <

√
c2

δ2 (F (1) − F (ρ))2 + 2 c

δ
(F (1) − F (ρ)) = ϕ(vρ,−

∞
′(t0)).

As s ↦→
√

s2 + 2s is strictly increasing, this is equivalent to

c >
−∥q∥L∞(−∞,t0)F (α) − η(F (ρ) − F (α))

F (1) − F (ρ) := C(ρ). (3.25)

Since
C′(ρ) = −

f(ρ)
(
η(F (1) − F (α)) + ∥q∥L∞(−∞,t0)F (α)

)(
F (1) − F (ρ)

)2 ,

conditions (3.23) and (f1) ensure that C′(ρ) > 0 for every ρ ∈ ]0, α[, and C′(ρ) < 0 for every ρ ∈ ]α, M ]. As
consequence, max C(ρ) = C(α) and (3.24) implies (3.25), concluding the proof. □
ρ∈[0,M ]
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Remark 3.3. If M < α, the bound in (3.24) can actually be improved since the above argument holds in
the same way for

c >
−∥q∥L∞(−∞,t0)F (α) − η(F (M) − F (α))

F (1) − F (M) .

Moreover, notice that in the stepwise constant case q ≡ c1 on ]−∞, t0], q ≡ c2 on ]t0, +∞] (as in
roposition 1.1), one has that M = v0 and, taking into account that η = c1, condition (3.24) becomes

2 > −c1F (α)/(F (1) − F (α)), in accord with the result stated in Proposition 1.1. At last, we point out that
it would be more difficult to provide the nonexistence result in the case α < β, since a precise knowledge of
he sign of f seems essential to carry out a non-intersection argument. ◁

One can deal similarly with the case when q is definitively constant at −∞, first proving that there exists
< 1 such that, if (3.10) has a solution, then ρ > M , and next using a similar argument as the one in

he proof of Theorem 3.9. In the same way one can also deal with homoclinics, this time considering the
utonomous branch emanating, in the phase-plane, from the point (v0, 0). We omit these statements for
riefness.

emark 3.4 (The case F (1) = 0). We provide some comments regarding the balanced case F (1) = 0, which
as extensively dealt with by means of variational methods in [4]. Here the entire discussion can be carried
ut in the same way as above, but the sufficient condition (3.13) for existence becomes c ≤ η, necessarily
mplying that for every t > t0 and s ≤ t0, it holds q(t) ≤ q(s). Under this assumption, we are able to find
heteroclinic solution. Comparing with [4, Corollary 1.4], we actually see that the two results overlap only

or some precise choices of the weight q, but are in general quite different. Due to the technique used, in our
esult we allow q to have a general behavior on the left of t0 but we have to require q constant on the right,
hile [4, Corollary 1.4] exploits the assumption that q asymptotically converges to its upper bound both at
∞ and at −∞, leaving more freedom in between. However, as already remarked, our result holds in the

ase F (1) > 0 as well, differently from [4, Corollary 1.4]. ◁

.4. Behavior of heteroclinics and homoclinics in dependence on δ

In this section, we analyze the behavior of heteroclinic and homoclinic solutions of (3.1) in dependence
n δ, taking into account both the cases δ → 0+ (vanishing diffusion) and δ → +∞ (large diffusion). First,
e focus on heteroclinics.

heorem 3.10. For any δ > 0, denote by vδ the increasing heteroclinic solution of (3.1) provided by
heorem 3.5 and let v∗ = limδ→0+ vδ(t0) ∈ ]0, α]. Then, for every t ∈ R it holds that

lim
δ→0+

vδ(t) = v̂(t) :=

⎧⎪⎨⎪⎩
0, if t ∈ ]−∞, t0 − v∗[,
t − t0 + v∗, if t ∈ [t0 − v∗, t0 − v∗ + 1],
1, if t ∈ ]t0 − v∗ + 1, +∞],

lim
δ→+∞

vδ(t) = v∗,

here the former convergence is uniform on R, while the second is locally uniform.

roof. We preliminarily observe that by the Ascoli–Arzelà theorem there exist nondecreasing Lipschitz
ontinuous functions v̂0 and v̂∞ such that vδ → v̂0 for δ → 0+ and vδ → v̂∞ for δ → +∞, where both the

onvergences are locally uniform in R.
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As for the case δ → 0+, we first work in the time interval ]−∞, t0[; we recall that vδ < α on such an
nterval, due to the construction in the previous sections. Since vδ is strictly increasing on ]−∞, t0[ for every
, the corresponding function yδ given by (1.4) is well defined and satisfies the problem⎧⎨⎩ ẏδ(v) = −q(tδ(v))f(v)

δ
,

yδ(0) = 0,

or v ∈ [0, vδ(t0)]. On any compact set [v1, v2] ⊂ ]0, v∗[, one has ẏδ(v) ≥ − η
δ f(v) and hence yδ(v) ≥ − η

δ F (v),
mplying yδ → +∞ uniformly, for δ → 0+. Consequently, fixed [v1, v2] ⊂ ]0, v∗[ and letting [t1, t2] =
ˆ−1

0 ([v1, v2]), one has

v′
δ(t) =

√
yδ(vδ(t))(2 + yδ(vδ(t)))

1 + yδ(vδ(t)) → 1, as δ → 0+, (3.26)

or every t ∈ [t1, t2]. However, {v′
δ}δ is bounded in L2

loc(R), so (up to subsequences) it has a weak limit
∈ L2

loc(R) satisfying 0 ≤ w ≤ 1, which coincides with the distributional derivative of v̂0.
Proceeding as in Section 2, thanks to the dominated convergence theorem, we then have∫ t2

t1

ds ≥
∫ t2

t1

w(s) ds = v̂0(t2) − v̂0(t1) = lim
δ→0+

∫ t2

t1

v′
δ(s) ds =

∫ t2

t1

ds

and hence w(t) = 1 for almost every t ∈ [t1, t2]. Repeating the argument for every v1, v2, one has that
the distributional derivative of v̂0 coincides almost everywhere with 1 whenever v̂0 is strictly positive on
]−∞, t0[. Being v̂0 absolutely continuous, for every t ∈ ]−∞, t0[ such that v̂(t) > 0 we have that

v∗ − v̂0(t) = v̂0(t0) − v̂0(t) =
∫ t0

t

w(s) ds = t0 − t,

whence the conclusion follows (recall that v̂0 is nondecreasing). In particular, v̂0 has to be identically equal
to 0 on the left of the time t in which t − t0 + v∗ vanishes.

On the other hand, on ]vδ(t0), 1[ the function yδ given by (1.4) satisfies⎧⎨⎩ ẏδ(v) = −cf(v)
δ

,

yδ(1) = 0,

and hence it is explicitly given by yδ(v) = − c
δ (F (v) − F (1)). Fixed [w1, w2] ⊂ ]v∗, 1[ and letting [τ1, τ2] =

ˆ−1
0 ([w1, w2]), one then has

v′
δ(t) =

√
yδ(vδ(t))(2 + yδ(vδ(t)))

1 + yδ(vδ(t))

=
√

c(F (1) − F (vδ(t)))(2δ + c(F (1) − F (vδ(t))))
δ + c(F (1) − F (vδ(t))) → 1, as δ → 0+,

or every t ∈ [τ1, τ2]. The argument can then be concluded as before: for any time t > t0 for which
ˆ0(t) ∈ ]v∗, 1[, the distributional derivative of v̂0 is equal to 1 and hence v̂0 coincides with the function
n the statement. The uniform convergence follows as in [9, Lemma 2.4].

As for the case δ → +∞, here the function yδ defined on [0, 1] trivially satisfies yδ → 0 uniformly,
mplying via (3.26) that v′

δ → 0 locally uniformly. Consequently, vδ converges locally uniformly to a constant,
hich is necessarily equal to v̂∞(t0) = v∗; notice that the convergence is not uniform on the whole R since
(−∞) = 0, v (+∞) = 1 for every δ. □
δ δ
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Similarly, one can discuss the behavior of homoclinic solutions as δ → 0+ and δ → +∞. Here one can
proceed as in the proof of Theorem 3.10, first considering t ∈ ]−∞, t0[ and then working with the autonomous
problem in the complementary interval. This gives rise to the following statement, which is in accord with
Proposition 2.2.

Theorem 3.11. For any δ > 0, denote by vδ the increasing heteroclinic solution of (3.1) provided by
Theorem 3.7 and let v∗ = limδ→0+ vδ(t0) ∈ ]0, α]. Then, for every t ∈ R it holds that

lim
δ→0+

vδ(t) = v̂(t) :=

⎧⎪⎨⎪⎩
0, if t ∈ ]−∞, t0 − v∗[ ∪ ]v∗ − t0, +∞[,
t − t0 + v∗, if t ∈ [t0 − v∗, t0 − v∗ + v0],
−t + t0 − v∗, if t ∈ ]t0 − v∗ + v0, t0 − v∗],

lim
δ→+∞

vδ(t) = v∗,

where the former convergence is uniform on R, while the second is locally uniform.
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