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Abstract
Weextend the use of piecewise orthogonal collocation to computing periodic solutions
of renewal equations, which are particularly important inmodeling population dynam-
ics. We prove convergence through a rigorous error analysis. Finally, we show some
numerical experiments confirming the theoretical results and a couple of applications
in view of bifurcation analysis.
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1 Introduction

Including delays within models is often a sound way to describe the relevant phe-
nomena more realistically. Indeed, in various fields of science—such as population
dynamics or epidemiology—delays between a cause and the corresponding effects
appear rather naturally, which brings the need to resort to delay equations in order to
capture adequately the dependence on the past [1, 2].

In many applications, the main interest is towards the dynamical analysis of the
concerned models, including the computation of invariant sets (such as equilibria and
periodic solutions) and the study of their asymptotic stability. Regarding periodic
solutions, the piecewise orthogonal collocation method to compute those of renewal
equations (REs) has been first applied in [3], although themethod is not even described
therein. Indeed, a formal description appeared first in [4] and [5] where its validity is
only shown by means of some numerical experiments.
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The aim of the present paper is to give a detailed illustration of the method and
provide a rigorous convergence analysis, having in mind the vast presence of REs in
the field of population dynamics [6–9]. The convergence analysis follows the main
ideas used in [10] for retarded functional differential equations (RFDEs), which is in
turn based on the abstract approach in [11]. Andò and Breda [10] represent indeed
the solution of the long-standing problem of lack of a rigorous proof of convergence
for RFDEs. The contribution of the present paper consists in extending the piecewise
collocation and its convergence to REs, by tackling the nontrivial challenges due to
the inherent differences concerning the class of equations and the relevant spaces of
functions. While some of such challenges are mostly technical, the more consistent
ones bring the necessity to resort to the theory of resolvents for Volterra integral
equations (VIEs, see Appendix).

We conclude this introduction with Sect. 1.1, where we describe the equations of
interest and the standardway to formulate the problem of computing periodic solutions
as a boundary value problem (BVP). The rest of the paper is divided into three main
sections. Section2 describes the piecewise orthogonal collocation method for REs.
Section3 deals with the theoretical convergence of the method by illustrating how the
relevant analysis can be based on the abstract approach in [11]. An important part of
the proof is collected in Appendix, in order to not interrupt the reading flow. Finally,
Sect. 4 shows the results of some numerical experiments on REs from population
dynamics, also in view of bifurcation analysis. Python demos are freely available at
http://cdlab.uniud.it/software.

1.1 Renewal equations and boundary value problems

In its most general form, an RE can be written as

x(t) = F(xt ) (1)

where, for a positive integer d, F : X → R
d is autonomous, in general nonlinear

and the state space X is a set of functions from [−τ, 0] to R
d for some τ > 0, called

the delay. The state of the dynamical system on X at time t associated with (1) is
denoted by xt , defined as xt (θ) := x(t + θ), θ ∈ [−τ, 0]. In particular, we develop
our analysis for X := B∞([−τ, 0],Rd), where B∞ denotes bounded and measurable
functions. The elements of B∞ are considered functions, not classes of functions that
are equal almost everywhere. Such choice, instead of the classical L1([−τ, 0],Rd)

[12], is justified by the need of evaluating the functions pointwise in order to deal with
collocation. A (non-constant) periodic solution of (1) with period ω > 0,1 if there is
any, can be obtained by solving a BVP where the solutions are considered over just
one period and the periodicity is imposed to the solution values at the extrema of the
period. Note that this requires to evaluate x at points that fall off the interval [0, ω],
due to the delay. In order to deal with this issue, one can exploit the periodicity to bring

1 We use the letter ω to indicate the period, following the notation of [13].
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back the evaluation to the domain [0, ω], which, assuming ω ≥ τ ,2 means defining
the function xt ∈ X as

xt (θ) :=
{

x(t + θ), t + θ ∈ [0, ω],
x(t + θ + ω), t + θ ∈ [−ω, 0).

(2)

The periodic BVP can then be formulated as

⎧⎪⎨
⎪⎩

x(t)= F(xt ), t ∈ [0, ω],
x(0)= x(ω)

p(x)= 0,

(3)

where p is a scalar (usually linear) function defining a so-called phase condition,
necessary to remove translational invariance [14]. This is the most natural BVP for-
mulation of the problem following the case of RFDEs, e.g., [15–21], as well as the
most convenient to consider when developing the numerical method. However, we
will introduce in Sect. 3 a slightly different, yet equivalent, formulation in view of the
convergence analysis based on [11].
In realistic models, such as those describing structured populations, F has usually the
form

F(α) =
∫ 0

−τ

K (θ, α(θ))dθ (4)

for some integration kernel K : [−τ, 0] × R
d → R

d , or

F(α) = f

(∫ τ

0
k(σ )α(−σ)dσ

)
, (5)

for some integration kernel k : [0, τ ] → R
d and some function f : Rd → R

d . The
analysis that follows focuses on (4), even though its validity can be also extended to
(5) (see Remark 4 in Sect. 3).
As anticipated previously in the present section, the fundamental differences between
the REs we considered and the RFDEs are not limited to their roles in mathematical
modeling. Indeed, the theory of REs is typically developed in broader spaces such as
L1 [1, 22], resulting, in principle, in a lower degree of differentiability of the relevant
solution.

2 Piecewise orthogonal collocation

This section describes the numerical method used to compute periodic solutions of
(1), starting from a general right-hand side F which, for the moment, is assumed to
be computable without resorting to any further numerical approximations.

2 A solution with period ω is also a solution with period kω for any positive integer k. Moreover, the
stability of the relevant hyperbolic orbit is preserved and t + θ ≥ −ω holds for all t ∈ [0, ω].
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Since the period ω is unknown, it is numerically convenient (see, e.g., [18]) to refor-
mulate (3) through themap sω : R → R defined by sω(t) := t/ω. (3) is thus equivalent
to ⎧⎨

⎩
x(t)= F(xt ◦ sω), t ∈ [0, 1],
x(0)= x(1)
p(x)= 0,

(6)

the solution of which is intended to be defined in [0, 1].
Equation (6) can be solved numerically through piecewise orthogonal collocation

[18]. This is particularly useful when adaptive meshes, to better follow the solution
profile, might be needed and is now a standard approach (originally developed for
ODEs [23], see MatCont [24]). It means looking for an m-degree piecewise con-
tinuous polynomial u in [0, 1] and w ∈ R that satisfy the following system having
dimension (1 + Lm) × d + 1:

⎧⎪⎨
⎪⎩

u(ti, j )= F(uti, j ◦ sw), j ∈ {1, . . . , m}, i ∈ {1, . . . , L},
u(0)= u(1)

p(u)= 0

for a given mesh 0 = t0 < · · · < tL = 1 and collocation points {ti, j }i, j such that
ti−1 < ti,1 < · · · < ti,m < ti for all i ∈ {1, . . . , L}. The unknowns are, other
than w, those of the form ui, j := u(ti, j ) for (i, j) = (1, 0) and i ∈ {1, . . . , L},
j ∈ {1, . . . , m}3.

Remark 1 Typically, periodic solutions are computed within a continuation frame-
work. This provides a reasonable choice for the phase condition, necessary to ensure
the actual well-posedness of (6).

As mentioned at the end of Sect. 1.1, in applications from population dynamics,
right-hand sides usually feature an integral and, therefore, cannot be exactly computed
in general. This is also the case of (4), which reads, once the time has been rescaled,

F(xt ◦ sω) =
∫ 0

− τ
ω

ωK (ωθ, xt (sω(ωθ)))dθ = ω

∫ 0

− τ
ω

K (ωθ, x(t + θ))dθ, (7)

where now xt ∈ X := B∞([−1, 0],Rd). Observe that, although the corresponding
natural state space is in fact a Banach space of functions defined in [−τ/ω, 0], one
could choose spaces of functions defined in [−r , 0] for any 1 ≥ r ≥ τ/ω.4

3 In fact, one could also consider to represent u through its values at other sets of nodes as unknowns, not
necessarily {ti, j }i, j (see Remark 3 at the end of Sect. 3).
4 The extension of the state space to [−1, 0] is necessary sinceω varies within an iterative procedure to find
a numerical solution while the space needs to be fixed, as is required for the forthcoming analysis. Observe
that such extension does not affect the dynamics: indeed, initial states that only differ in [−1,−τ/ω] lead
to the same orbits, but different orbits cannot cross.
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Assuming that K can be exactly computed, which is usually the case in applications,
the approximation of (7) through quadrature as

FM (xt ◦ sω) := ω

M∑
i=0

wi K (ωηi , x(t + ηi )),

where M is a given approximation level and −τ/ω ≤ η0 < · · · < ηM ≤ 0 can also be
exactly computed. Such an approximation corresponds to the secondary discretization
introduced in Sect. 3.2 and used in the convergence analysis that follows. The nodes
η0, . . . , ηM and the corresponding weights w0, . . . , wM are meant to define a suit-
able quadrature formula by exploiting possible irregularities in K , meaning that their
choice does not need to be made a priori. Moreover, note that the quadrature nodes
vary together with ω, since the latter is unknown. In particular, they are completely
independent of the collocation nodes mentioned earlier.

3 Convergence analysis

This section describes the theoretical convergence analysis of the numerical method
described inSect. 2, following the abstract approach [11]. In particular, the convergence
analysis that follows applies to the finite element method (FEM), which consists in
letting L → ∞ while keeping m fixed and is the classical approach considered in
practical applications (e.g., in MatCont [24] or some versions of DDE-Biftool
[25, 26]). A few comments on the spectral element method (SEM, m → ∞ while
keeping L fixed) will follow in Sect. 4.1.
Following the approach for RFDEs in [10], we first reformulate (6) as⎧⎪⎨

⎪⎩
x(t)= F(xt ◦ sω), t ∈ [0, 1],

x0 = x1
p(x |[0,1])= 0,

(8)

i.e., by imposing the periodicity condition to the states at the extrema of the period
rather than to the solution values. In this case, the solution x is intended as a map
defined in [−1, 1], and there is no need to resort to (2).

Although formulations (6) and (8) are formally different, they are mathematically
equivalent and also lead to fundamentally equivalent numericalmethods. Indeed,when
applying the numerical method described in Sect. 2 to the problem (8), one just intro-
duces redundant variables.5

The second step consists in observing that (8) fits into the general form of the BVP
addressed in [11]: {

u = F(G(u, α), u, β)

B(G(u, α), u, β) = 0.
(9)

5 A convergence analysis based on (6) can still be obtained by following the structure of the one presented
here; see [27].
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Here, the relevant solution v := G(u, α) is assumed to lie in a normed space V of
functions [−1, 1] → R

d , u in a Banach space U of functions [0, 1] → R
d , and

the operator G : U × A → V represents a linear operator which reconstructs the
solution given u and an initial state α, also lying in a Banach space A of functions
[−1, 0] → R

d . β is a vector of parameters living in a Banach space B. The first line of
(9) represents the concerned functional equation via the functionF : V×U×B → U,
and the second represents the boundary conditions via B : V × U × B → A × B.6

In [11], (9) is then translated into a fixed point problem, the so-called Problem in
Abstract Form (PAF) which consists in finding (v∗, β∗) ∈ V×Bwith v∗ := G(u∗, α∗)
and (u∗, α∗, β∗) ∈ U × A × B such that

(u∗, α∗, β∗) = 	(u∗, α∗, β∗) (10)

for 	 : U × A × B → U × A × B given by

	(u, α, β) :=
( F(G(u, α), u, β)

(α, β) − B(G(u, α), u, β)

)
. (11)

In the sequel, we always use the superscript ∗ to denote quantities relevant to fixed
points (which correspond to non-constant periodic solutions).

It follows that (8) leads to an instance of (11) with G, F and B given respectively
by

G(u, α)(t) :=
⎧⎨
⎩

u(t), t ∈ (0, 1],
α(t), t ∈ [−1, 0],

(12)

F(v, u, ω) := F(v(·) ◦ sω) (13)

and

B(v, u, ω) :=
(

v0 − v1

p(u)

)
. (14)

The boundary operator is linear and independent of ω.
The fact that (8) can be rewritten as a PAF does not imply that the convergence

framework in [11] can be applied either way. In fact, several assumptions are required.
These include theoretical assumptions, the validity of which depends on the choices
of the spaces, as well as on the regularity of the integrand K in the right-hand side
(4). Section3.1 includes the definitions of such assumptions and their statements as
propositions, instanced according to the problems of interest. The other assumptions
required concern instead the reduction of the problem to a finite-dimensional one and
will be dealt with similarly in Sect. 3.2. Concerning the proofs of such propositions, we
will go through the main points, focusing on the differences with respect to the anal-
ogous propositions in the RFDE case [10], with the exception of a more complicated
one to which we dedicate the entire Appendix.

6 Note that [11] concerns RFDEs of neutral type, where u plays the role of the derivative of the solution v.
In the case of REs, however, no derivatives are involved, andU can play the role of the space of the solution
in [0, 1].
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3.1 Theoretical assumptions

The hypotheses on the original problem needed to prove the validity of the theoretical
assumptions in [11] are:

(T1) X = B∞([−τ, 0],Rd), X = B∞([−1, 0],Rd);
(T2) U = B∞([0, 1],Rd), V = B∞([−1, 1],Rd), A = B∞([−1, 0],Rd);
(T3) K : R × R

d → R
d is piecewise continuous and has partial derivatives

D1K , D2K which are measurable with respect to both their arguments;
(T4) the map x 	→ D2K (r , x) is piecewise continuous for all r ∈ R;
(T5) there exist r > 0 and κ ≥ 0 such that

{‖D1K (ω·, vt ) − D1K (ω∗·, v∗
t )‖Rd←R ≤ κ‖(vt , ω) − (v∗

t , ω∗)‖X×R

‖D2K (ω·, vt ) − D2K (ω∗·, v∗
t )‖Rd←R ≤ κ‖(vt , ω) − (v∗

t , ω∗)‖X×R

for every (vt , ω) ∈ b((v∗
t , ω∗), r),7 uniformly with respect to t ∈ [0, 1].

The first theoretical assumption (AFB, [11, page 534]) concerns the Fréchet-
differentiability of the operators F and B appearing in (11). Since p is linear, so
is B in (14); hence, the latter is Fréchet-differentiable. The validity of the assumption
is thus a direct consequence of the following.

Proposition 1 Under (T1), (T2), and (T3), F in (13) is Fréchet-differentiable, from the
right with respect to ω, at every (v̂, û, ω̂) ∈ V × U × (0,+∞) and

DF(v̂, û, ω̂)(v, u, ω) = L(·; v̂, ω̂)[v(·) ◦ sω̂] + ωM(·; v̂, ω̂) (15)

for (v, u, ω) ∈ V × U × (0,+∞), where, for t ∈ [0, 1],

L(t; v̂, ω̂)[vt ◦ sω̂] := ω̂

∫ 0

− τ
ω̂

D2K (ω̂θ, v̂(t + θ))v(t + θ)dθ (16)

and

M(t; v, ω) :=
∫ 0

− τ
ω

K (ωθ, v(t + θ))dθ − τ

ω
K

(
−τ, v

(
t − τ

ω

))

+ω

∫ 0

− τ
ω

D1K (ωθ, v(t + θ))θdθ.

(17)

Proof The proof is rather technical and goes as that of [10, Proposition 2.1]; therefore,
we avoid to repeat all the steps for brevity and to better concentrate on the differences.
Basically, the expression (15), defined through (16) and (17), is directly proven to
satisfy the definition of differentiable function according to [28, Definition 1.1.1]. It
is worth pointing out that assuming an integral right-hand side such as (4), which is
anyway typical in applications frompopulation dynamics, is crucial for this proposition
in the case of REs. Basically, for the thesis to hold, it is required that the right-hand

7 b(c, r) denotes the closed ball centered in c having radius r .
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side always lies in a more regular space than U (which is always the case for RFDEs,
whereU plays the role of the space of the derivatives). This can be observed by looking
at the last addend of [10, (2.12)], where the derivative of the state of an element of V
appears as a factor. Without any assumption whatsoever on F , the same would happen
in Proposition 1, which would be a problem since V is as regular as U in the present
case. �


The second theoretical assumption (AG, [11, page 534]) concerns the boundedness
of G defined in (12). The following proposition concerns its validity, and its proof is
an immediate consequence of the definition (12).

Proposition 2 Under (T2), G is bounded.

The third theoretical assumption (Ax∗1, [11, page 536]) concerns the local Lipschitz
continuity of the Fréchet derivative of the fixed point operator	 in (11) at the relevant
fixed points. In the sequel, (u∗, α∗, ω∗) ∈ U × A × (0,+∞) is a fixed point of 	

and x∗ is the corresponding 1-periodic solution of (1). With respect to the validity of
Assumption Ax∗1, the following holds.

Proposition 3 Under (T1), (T2), (T3), and (T5), there exist r ∈ (0, ω∗) and κ ≥ 0
such that

‖D	(u, α, ω)− D	(u∗, α∗, ω∗)‖U×A×R←U×A×(0,+∞)

≤ κ‖(u, α, ω) − (u∗, α∗, ω∗)‖U×A×R

for all (u, α, ω) ∈ b((u∗, α∗, ω∗), r).

Proof Just as its RFDE counterpart in [10], the proposition can be proved thanks to
the fact that u∗ lies in fact in a more regular subspace of its space U, which is a
consequence of the assumption (4). �


The fourth (and last) theoretical assumption (Ax∗2, [11, page 536]), concerns the
well-posedness of a linearized inhomogeneous version of the PAF (10). Its validity can
be proved under (T1), (T2), (T3), and (T4), together with an additional requirement,
which in turn follows from assuming, e.g., the hyperbolicity of the periodic solution8

of the original problem. It is convenient to introduce the abbreviations

L∗ := L(·; v∗, ω∗), M∗ := M(·; v∗, ω∗). (18)

Proposition 4 Under (T1), (T2), (T3), and (T4), let T ∗(t, s) : X → X be the evolution
operator for the linear homogeneous RE

x(t) = L∗(t)[xt ◦ sω∗ ].

If 1 ∈ σ(T ∗(1, 0)) is simple, then the linear bounded operator IU×A×B −
D	(u∗, α∗, ω∗) is invertible, i.e., for all (ũ, α̃, ω̃) ∈ U × A × B, there exists a

8 Let us remark that the condition of hyperbolicity is necessary for the local stability analysis of periodic
solutions in view of the principle of linearized stability [29].
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unique (u, α, ω) ∈ U × A × B such that

⎧⎪⎪⎨
⎪⎪⎩

u = L∗[G(u, α)(·) ◦ sω∗ ] + ωM∗ + ũ

α = u1 + α̃

p(u) = ω̃.

(19)

Proof (19) can be treated as an initial value problem for v = G(u, α), i.e.,

{
v(t) = L∗(t)[vt ◦ sω∗ ] + ωM∗(t) + ũ(t)

v0 = α
(20)

for t ∈ [0, 1], imposing then the boundary conditions in (19). We can write v(t) =
v(1)(t) + v(2)(t), where v(1)(t) is the solution of

{
v(1)(t) = L∗(t)[vt ◦ sω∗ ]
v

(1)
0 = α,

which means that v(1)
t = T ∗(t, 0)α, while v(2)(t) is the solution of

{
v(2)(t) = ωM∗(t) + u0(t)

v
(2)
0 = 0,

i.e., v(2)
t = ωM

∗(0)
t + ũ(0)

t where, in turn,

M
∗(0)
t (θ) :=

{
0, t + θ ∈ [−1, 0],
M∗(t + θ), t + θ ∈ (0, 1]

and

ũ(0)
t (θ) :=

{
0, t + θ ∈ [−1, 0],
ũ(t + θ), t + θ ∈ (0, 1].

The first boundary condition in (19) gives then

α = T ∗(1, 0)α + ωM
∗(0)
1 + ũ(0)

1 + α0. (21)

Now, the proof can be concluded as that of [10, Proposition 2.7], by defining the
elements ξ∗

1 := M
∗(0)
1 and ξ∗

2 := ũ(0)
1 + α0, and assuming p(v(·;α)|[0,1]) �= 0 (see

[10, Remark 2.8]) and ξ∗
1 /∈ R, where R is the range of the operator IX − T ∗(1, 0)

(see Appendix for a detailed proof of the latter point). �
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3.2 Numerical assumptions

As anticipated, the present subsection deals with the numerical assumptions, which
concern the chosen discretization scheme for the numerical method. Such scheme is
defined by the primary and the secondary discretizations.

As in [10], the primary discretization consists in reducing the spaces U and A to
finite-dimensional spaces UL and AL , given a level of discretization L . This happens
by means of restriction operators ρ+

L : U → UL , ρ−
L : A → AL and prolongation

operators π+
L : UL → U, π−

L : AL → A, which extend respectively to RL : U×A×
B → UL ×AL ×B given by RL(u, α, ω) := (ρ+

L u, ρ−
L α,ω) and PL : UL ×AL ×B →

U×A×B given by PL(uL , αL , ω) := (π+
L uL , π−

L αL , ω). All of them are linear and
bounded. In the following, we describe the specific choices we make in this context,
based on piecewise polynomial interpolation.

Starting from U, which concerns the interval [0, 1], we choose the uniform outer
mesh

�+
L := {t+i = ih : i ∈ {0, . . . , L}, h = 1/L} ⊂ [0, 1], (22)

and inner meshes

�+
L,i := {t+i, j := t+i−1 + c j h : j ∈ {1, . . . , m}} ⊂ [t+i−1, t+i ], i ∈ {1, . . . , L}, (23)

where 0 < c1 < · · · < cm < 1 are given abscissae for m a positive integer. Corre-
spondingly, we define

UL := R
(1+Lm)×d , (24)

whose elements uL are indexed as

uL := (u1,0, u1,1, . . . , u1,m, . . . , uL,1 . . . , uL,m)T (25)

with components in Rd . Finally, we define, for u ∈ U,

ρ+
L u := (u(0), u(t+1,1), . . . , u(t+1,m), . . . , u(t+L,1) . . . , u(t+L,m))T ∈ UL (26)

and, for uL ∈ UL , π
+
L uL ∈ U as the unique element of the space

�+
L,m := {p ∈ C([0, 1],Rd) : p|[t+i−1,t

+
i ] ∈ �m, i ∈ {1, . . . , L}} (27)

such that

π+
L uL(0) = u1,0, π+

L uL(t+i, j ) = ui, j , j ∈ {1, . . . , m}, i ∈ {1, . . . , L}. (28)

Above�m is the space ofRd -valued polynomials having degree m and, when needed,
we represent p ∈ �+

L,m through its pieces as

p|[t+i−1,t
+
i ](t) =

m∑
j=0

�m,i, j (t)p(t+i, j ), t ∈ [0, 1], (29)
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where, for ease of notation, we implicitly set

t+i,0 := t+i−1, i ∈ {1, . . . , L}, (30)

and {�m,i,0, �m,i,1, . . . , �m,i,m} is the Lagrange basis relevant to the nodes {t+i,0}∪�+
L,i .

Observe that the latter is invariant with respect to i as long as we fix the abscissae c j ,
j ∈ {1, . . . , m}, defining the inner meshes (23). Indeed, for every i ∈ {1, . . . , L},

�m,i, j (t) = �m, j

(
t − t+i−1

h

)
, t ∈ [t+i−1, t+i ],

where {�m,0, �m,1, . . . , �m,m} is the Lagrange basis in [0, 1] relevant to the abscissae
c0, c1, . . . , cm with c0 := 0.

Similarly, for A, which concerns the interval [−1, 0], we choose

�−
L := {t−i = ih − 1 : i ∈ {0, . . . , L}, h = 1/L} ⊂ [−1, 0], (31)

and

�−
L,i := {t−i, j := t−i−1 + c j h : j ∈ {1, . . . , m}} ⊂ [t−i−1, t−i ], i ∈ {1, . . . , L}. (32)

Correspondingly, we define
AL := R

(1+Lm)×d (33)

with indexing

αL := (α1,0, α1,1, . . . , α1,m, . . . , αL,1 . . . , αL,m)T ; (34)

for α ∈ A,

ρ−
L α := (α(−1), α(t−1,1), . . . , α(t−1,m), . . . , α(t−L,1) . . . , α(t−L,m))T ∈ AL (35)

and, for αL ∈ AL , π
−
L αL ∈ A as the unique element of the space

�−
L,m := {p ∈ C([−1, 0],Rd) : p|[t−i−1,t

−
i ] ∈ �m, i ∈ {1, . . . , L}} (36)

such that

π−
L αL(−1) = α1,0, π−

L αL(t−i, j ) = αi, j , j ∈ {1, . . . , m}, i ∈ {1, . . . , L}. (37)

Elements in �−
L,m are represented in the same way as those of �+

L,m by suitably
adapting both (29) and (30).
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Remark 2 It is worth pointing out that more general choices can be made concerning
outer and inner meshes. In particular, as already remarked in Sect. 2, in practical
applications, adaptive outer meshes represent a standard for RFDEs (see, e.g., [18]).
As for inner meshes, abscissae including the extrema of [0, 1] can also be considered,
paying attention to put the correct constraints at the internal outer nodes, i.e., t±i for
i ∈ {1, . . . , L − 1}.

The secondary discretization consists in replacing F in the first of (11) with an
operator FM that can be exactly computed, for a given level of discretization M . In
particular, we define FM through an approximated version FM of the right-hand side
F defined in (4) as

FM (u, α, ω) = FM (G(u, α)(·) ◦ sω) := ω

M∑
i=0

wi K (ωηi ,G(u, α)ηi ), (38)

where −τ/ω ≤ η0 < · · · < ηM ≤ 0. Indeed, in realistic applications, the integrand
function in (4) can be exactly computed, as already remarked at the end of Sect. 2.
Correspondingly, 	M is the operator obtained by replacing F in 	 in (11) with its
approximated version, i.e., 	M : U × A × B → U × A × B defined by

	M (u, α, ω) :=

⎛
⎜⎜⎝

FM (G(u, α)(·) ◦ sω)

u1

ω − p(u)

⎞
⎟⎟⎠ . (39)

A secondary discretization forG in (11) is instead unnecessary, since it can be evaluated
exactly in π+

L UL × π−
L AL according to (24) and (33). As for the operator p defining

the phase condition in (11), we assume that it can be evaluated exactly in π+
L UL .9

From the two discretizations, together, we can define the discrete version

	L,M := RL	M PL : UL × AL × B → UL × AL × B

of the fixed point operator 	 in (11) as

	L,M (uL , αL , ω) :=

⎛
⎜⎜⎝

ρ+
L FM (G(π+

L uL , π−
L αL)(·) ◦ sω)

ρ−
L (π+

L uL)1

ω − p(π+
L uL)

⎞
⎟⎟⎠ .

A fixed point (u∗
L,M , α∗

L,M , ω∗
L,M ) of 	L,M can be found by standard solvers for

nonlinear systems of algebraic equations and, as will be shown in Sect. 3.3, its prolon-
gation PL(u∗

L,M , α∗
L,M , ω∗

L,M ) is then considered an approximation of a fixed point

(u∗, α∗, ω∗) of 	 in (11). Correspondingly, v∗
L,M := G(π+

L u∗
L,M , π−

L α∗
L,M ) is con-

sidered an approximation of the solution v∗ = G(u∗, α∗) of (11).

9 This is indeed true in the case of integral phase conditions if the piecewise quadrature is based on the
mesh of the primary discretization, which is the standard approach in practical applications.
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The hypotheses on the discretization method needed to prove the validity of the
numerical assumptions in [11] are as follows:

(N1) The primary discretization of the space U is based on the choices (22)–(28).
(N2) The primary discretization of the space A is based on the choices (31)–(37).
(N3) The nodes η0, . . . , ηM , together with the weights w0, . . . , wM chosen for the

secondary discretization as in (38) define an interpolatory quadrature formula
which is convergent in B∞([0, 1],Rd).

The first numerical assumption to be verified in [11] is Assumption AFKBK (page
535). As already observed,B and p are linear functions; thus, the proof of their validity
is a direct consequence of the following.

Proposition 5 Under (T1), (T2), and (T3), FM is Fréchet-differentiable, from the right
with respect to ω, at every (v̂, û, ω̂) ∈ V × U × (0,+∞) and

DFM (v̂, û, ω̂)(v, u, ω) = LM (·; v̂, ω̂)[v(·) ◦ sω̂] + ωMM (·; v̂, ω̂)

for (v, u, ω) ∈ V × U × (0,+∞), where, for t ∈ [0, 1],

LM (t; v̂, ω̂)[vt ◦ sω̂] := ω̂

M∑
i=0

wi D2K (ω̂ηi , v̂(t + ηi ))v(t + ηi )

and

MM (t; v, ω) :=
M∑

i=0

wi K (ωηi , v(t + ηi )) − τ

ω
K

(
−τ, v

(
t − τ

ω

))

+ω

M∑
i=0

wi D1K (ωηi , v(t + ηi ))ηi .

Proof The proposition can be proved as Proposition 1, by replacing F in the first of
(11) with FM in (38). �


For the remaining numerical assumptions, it is useful to define�L,M : U×A×B →
U × A × B as

�L,M := IU×A×B − PL RL	M . (40)

The second numerical assumption in [11] is CS1 (page 536), which is somehow
the discrete version of Ax∗1 therein, here Proposition 3. With respect to its validity,
the following holds.

Proposition 6 Under (T1), (T2), (T3), (T5), (N1), and (N2), there exist r1 ∈ (0, ω∗)
and κ ≥ 0 such that

‖D�L,M (u, α, ω)− D�L,M (u∗, α∗, ω∗)‖U×A×B←U×A×(0,+∞)

≤ κ‖(u, α, ω) − (u∗, α∗, ω∗)‖U×A×B

for all (u, α, ω) ∈ b((u∗, α∗, ω∗), r1) and for all positive integers L and M.
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Proof The proof is substantially the same as that of [10, Proposition 3.7] since the
same primary discretization is used; the main difference lies in the spaces involved
and therefore in the norm in which the left-hand side needs to be evaluated. In practice,
we can define κ := max{�m, 1} ·maxi∈{1,2},t∈[0,1] ‖Di K (ω∗·, v∗

t )‖Rd←R, where �m

is the Lebesgue constant of the chosen nodes. In particular, unlike the RFDE case,
the Lebesgue constant defined by the derivatives of the Lagrange polynomials is not
involved. �


Correspondingly, the last numerical assumption (CS2, page 537), can be seen as
the discrete version of Ax∗2 therein, here Proposition 4. With respect to its validity,
the following holds.

Proposition 7 Under (T1), (T2), (T3), (T4), (T5), (N1), (N2), and (N3), the operator
D�L,M (u∗, α∗, ω∗) is invertible and its inverse is uniformly bounded with respect to
both L and M. Moreover,

limL,M→∞
1

r2(L, M)
‖[D�L,M (u∗, α∗, ω∗)]−1‖U×A×B←U×A×B

·‖�L,M (u∗, α∗, ω∗)‖U×A×B = 0,

where

r2(L, M) := min

{
r1,

1

2κ‖[D�L,M (u∗, α∗, ω∗)]−1‖U×A×B←U×A×B

}

with r1 and κ as in Proposition 6.

Proof The proof of this proposition is a bit laborious, just like its counterpart in the
RFDE case. The latter has been proved in [10] in several steps, the first of which
concerns the invertibility of the operator D�L,M (u∗, α∗, ω∗) defined in (40) for
L, M large enough and can be proved as [10, Proposition 3.11]. The second step
concerns the uniform boundedness of D�−1

L,M (u∗, α∗, ω∗) and follows the ideas of
[10, Lemma 3.12]. The latter is based on [10, Proposition A.8], which states that
limL,M→∞ ωL,M = ω, where ωL,M is the last component of the solution of the
discretized version of (19). The limit does not necessarily hold in the present case;
however, it can be proved that |ωL,M − ω| is uniformly bounded. This follows by the
fact that ‖ξ∗

L,M,2 − ξ∗
2 ‖X is in turn uniformly bounded (but not necessarily vanishing)

thanks to the choice ofU in (T1), where ξ∗
L,M,2 is the discrete version of ξ∗

2 . As a con-
sequence, the error component called εω,L,M in [10, Lemma 3.12] cannot be proven
to vanish in the present case, but would still be uniformly bounded, and that is enough
to complete the second step of the proof. The third and last step consists in proving
that �L,M (u∗, α∗, ω∗) vanishes and goes as the proof of [10, Proposition 3.13]. �


3.3 Final convergence results

From the propositions in the previous subsections, we can conclude that our problem
of finding a fixed point of 	 in (11) satisfies all the assumptions required by [11]
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under certain hypotheses on the state spaces, the discretization, and the regularity of
the right-hand side. As a consequence, the relevant FEM converges.

Theorem 8 ([11, Theorem 2, page 539])Under (T1), (T2), (T3), (T4), (T5), (N1), (N2),
and (N3), there exists a positive integer N̂ such that, for all L, M ≥ N̂ , the operator
RL	M PL has a fixed point (u∗

L,M , α∗
L,M , ω∗

L,M ) and

εL,M := ‖(v∗
L,M , ω∗

L,M ) − (v∗, ω∗)‖V×B ≤ 2 ·‖[D�L,M (u∗, α∗, ω∗)]−1‖U×A×B←U×A×B

·‖�L,M (u∗, α∗, ω∗)‖U×A×B,

where v∗
L,M = G(u∗

L,M , α∗
L,M ) and v∗ = G(u∗, α∗).

Thanks to Proposition 7, the error on (v∗, ω∗) is determined by the last factor, namely
the consistency error. For the latter, thanks to basic results on polynomial interpolation,
we can write

‖�L,M (u∗, α∗, ω∗)‖U×A×B ≤ εL + max{�m, 1}εM ,

where �m is the Lebesgue constant associated with the collocation nodes and the
terms

εL := ‖(IU×A×B − PL RL)(u∗, α∗, ω∗)‖U×A×B (41)

and
εM := ‖	M (u∗, α∗, ω∗) − 	(u∗, α∗, ω∗)‖U×A×B. (42)

are called respectively primary and secondary consistency errors.
As for εL in (41), which concerns only the primary discretization, a bound can be

obtained from the regularity of u∗ through the following theorem.

Theorem 9 Let K ∈ C p(R × R
d ,Rd) for some integer p ≥ 0. Then, under (T1),

(T2), (N1), and (N2), it holds that u∗ ∈ C p+1([0, 1],Rd), α∗ ∈ C p+1([−1, 0],Rd),
v∗ ∈ C p+1([−1, 1],Rd) and

εL = O
(

hmin{m,p}+1
)

. (43)

Proof Recall thatv∗ = G(u∗, α∗) satisfies (6); hence, its periodic extension to [−1,∞)

is a periodic solution of (1) modulo rescaling of time, and it is bounded by (T2). Thus,
if K is continuous, then the periodic extension of v∗ is continuous in [0,+∞), thus
also in [−1,∞) by periodicity. Using the continuity of K again, we obtain that v∗
is continuously differentiable in [0,∞), thus also in [−1,∞) by periodicity. As a
consequence, if p = 0, v∗ ∈ C1([−1, 1],Rd). Since u∗ = v∗|[0,1] and α∗ = v∗|[−1,1],
we immediately have also u∗ ∈ C1([0, 1],Rd) and α∗ ∈ C1([−1, 0],Rd). The whole
reasoning can be iterated, proving the first part of the result.

To prove (43), we observe first that

‖u∗ − π+
L ρ+

L u∗‖U ≤ ‖u∗(m+1)‖∞
(m + 1)! · hm+1 (44)
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holds if p ≥ m, while

‖u∗ − π+
L ρ+

L u∗‖U ≤ (1 + �m)

(
h

2

)p+1 cp+1

m p+1 · ‖u∗(p+1)‖∞ (45)

holds if p ≤ m, with cp+1 a positive constant independent of m. Equation (44) is
a direct consequence of the standard Cauchy interpolation reminder (see, e.g., [30,
Section 6.1, Theorem 2]). Equation (45) is a direct consequence of Jackson’s theorem
on best uniform approximation (see, e.g., [20, (2.9) and (2.11)]). The same arguments
hold for α∗. �


On the other hand, εM in (42) concerns only the secondary discretization and is
therefore absent whenever the latter is not needed. However, concerning our specific
problem, according to (11) and (39), it can be written as

εM := ‖FM (v∗· ◦ sω∗) − F(v∗· ◦ sω∗)‖U (46)

and needs to be considered if the integral in (4) cannot be exactly computed, in which
case (46) is basically a quadrature error. Assuming that M varies proportionally to
L , one can choose a formula that guarantees at least the same order of the primary
consistency error, so that the order of convergence of the final error is in fact the one
given by Theorem 9.

Remark 3 In principle, one could discretize the problem by choosing, for each mesh
interval, a set of representation nodes used to interpolate which are independent from
the collocation nodes. That would mean that the unknowns of the discrete problem
are given by the values of the relevant functions at the representation nodes, while
the equations need to be satisfied at the collocation nodes. If xr

L,M is the vector of
the unknowns and QL : X L → X is the prolongation operator corresponding to the
representation nodes (while PL , RL refer to the collocation ones), the problem actually
reads RL QL xr

L,M = RL	M QL xr
L,M . Thus, the vector x∗

L,M given by the values of
the relevant function at the collocation nodes is the solution of the discrete fixed point
problem, in fact,

x∗
L,M = RL QL xr

L,M = RL	M QL xr
L,M = RL	M PL RL QL xr

L,M = RL	M PL x∗
L,M .

Remark 4 The entire convergence analysis can as well be carried out for the right-hand
sides of the form (5). In this case, the different theoretical and numerical assumptions
read as follows:

(T3) k : R → R
d is measurable.

(T4) f ∈ C1(Rd ,Rd).
(T5) There exist r > 0 and κ ≥ 0 such that

∥∥∥∥ f ′
(

ω

∫ τ
ω

0
k(θ)v(t − θ)dθ

)
− f ′

(
ω∗

∫ τ
ω∗

0
k(θ)v∗(t − θ)dθ)

) ∥∥∥∥
Rd

≤ κ‖(vt , ω) − (v∗
t , ω∗)‖X×R
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for every (vt , ω) ∈ B((v∗
t , ω∗), r), uniformly with respect to t ∈ [0, 1];

(N4) k ∈ C(R,Rd).

Moreover, the above can be easily further generalized to the case

F(α) = f

(∫ τ1

0
k1(σ )α(−σ)dσ, . . . ,

∫ τn

0
kn(σ )α(−σ)dσ

)
. (47)

4 Results

This section deals with the numerical computation of periodic solutions of some spe-
cific REs from the field of population dynamics. In particular, in Sect. 4.1, we will
provide experimental proof of the order of convergence (43), while in Sect. 4.2, we
will show, by means of two examples, how bifurcations may be detected thanks to the
computed periodic solutions.

4.1 Numerical tests

The first RE that we consider is

x(t) = γ

2

∫ −1

−3
x(t + θ)(1 − x(t + θ))dθ, (48)

for which, as shown in [3], the exact expression of the periodic solution between a
Hopf bifurcation (at γ = 2 + π/2) and the first period doubling (at γ ≈ 4.327) is
x(t) = σ + A sin (π t/2), where σ = 1/2+π/(4γ ) and A2 = 2σ (1 − 1/γ − σ). The
integral representing the distributed delay is approximated through a Clenshaw-Curtis
quadrature [31] rescaled to the interval [−3,−1].

Starting from the exact solution at γ = 4, the branch of periodic orbits is continued
up to the first period doubling after the Hopf bifurcation. The continuation is per-
formed using a trivial phase condition by forcing x(0) = σ and Chebyshev extrema
as collocation points. The left panel of Fig. 1 confirms the O(hm+1) behavior (being
p = +∞). Given the experimental proof, found in [18], that in the case of RFDEs,
the order of convergence increases from m to m + 1 when using Gauss-Legendre
collocation points, we wonder whether a similar increase can be observed in the case
of REs. The above experiment is then replicated using such collocation points, and the
right panel of Fig. 1 confirms the same O(hm+1) behavior as the case of Chebyshev
extrema.

Next, we show that we obtain the same results with an RE that is defined by a
right-hand side of the form (47) as

x(t) = γ

(
1 −

∫ 1

0
x(t − s)ds

) ∫ 1

0
αs2e−10s x(t − s)ds, (49)
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Fig. 1 Error on the periodic solution of (48) at γ = 4.327. Left: m = 3 (dashed line) and m = 4 (solid line)
using Chebyshev points, compared to straight lines having slopes 4 (dashed) and 5 (solid). Right: m = 3
(dashed line) and m = 5 (solid line) using Gauss-Legendre points. Original figures from [4]

where α := 1/
∫ 1
0 s2e−10sds = 500e10/(e10 − 61), while γ is the varying parameter.

As shown in [32], a Hopf bifurcation occurs when log γ ≈ 1.6553.
Starting from a perturbation of the equilibrium at the Hopf bifurcation point, the

branch of periodic orbits is continued up to log γ = 1.75. Given the absence of an
exact expression of the true solution, unlike the case (48), the error is computed with
respect to a reference solution which is in turn computed using L = 1000 and m = 4.
Figure2 confirms again the O(hm+1) behavior regardless of the chosen collocation
nodes.

Concerning the convergence of the SEM, it is not yet clear whether it can also be
proved under the general framework used in the current work (see [10, Subsection
4.4] for a brief discussion concerning the RFDE case). However, some numerical
experiments run by the authors suggest that the SEM does converge for periodic
BVPs defined by REs. In the case of (49), Fig. 3 shows a spectral decay of the error as
m increases while L = 1 remains fixed, although some numerical instability can be
observed when using large (> 35) values of m.

Fig. 2 Error on the periodic solution of (49) at log γ = 1.75. Left: m = 3 (dashed line) and m = 4 (solid
line) using Chebyshev points, compared to straight lines having slopes 4 (dashed) and 5 (solid). Right:
m = 3 (dashed line) and m = 4 (solid line) using Gauss-Legendre points, compared to straight lines having
slopes 4 (dashed) and 5 (solid)
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Fig. 3 Error on the periodic
solution of (49) at log γ = 1.75
for L = 1 using Chebyshev
extrema as collocation points

Finally, consider the RE given by

x(t) = γ

2

∫ −1

−3
h(x(t + θ))dθ, (50)

where

h(x) =

⎧⎪⎨
⎪⎩

−x3 + 3

4
x, x <

1

2

x3 − 3x2 + 9

4
x − 1

4
, x ≥ 1

2
.

Observe that the function h is in C2(R,R) but not in C3(R,R), due to a discontinuity
of the third derivative at x = 1/2. Using the method in [32], it can be shown that a
Hopf bifurcation occurs at γ ≈ 3.4031. Starting from a perturbation of the equilibrium
at the Hopf bifurcation point, the branch of periodic orbits is continued up to γ =
6. The integrals representing the distributed delays are again approximated through
the Clenshaw-Curtis quadrature, and the experiment is again performed using both
Chebyshev andGauss-Legendre collocation points. The error is computedwith respect
to a reference solution which is in turn computed using L = 400 and m = 4. Being the
values for m considered (3 and 4) greater than p = 2, the left panel of Fig. 4 confirms
the O(h p+1) behavior in the former case, as the right one does in the latter.

Fig. 4 Error on the periodic solution of (50) at γ = 6. Left: m = 3 (dashed line) and m = 4 (solid line)
using Chebyshev points, compared to a straight line having slope 3. Right: m = 3 (dashed line) and m = 5
(solid line) using Gauss-Legendre points
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4.2 Applications

As anticipated, the examples in this section show how the method can be used within a
continuation framework in viewof a bifurcation analysis. The next RE thatwe consider
to this aim is

x(t) = γ

2

∫ −1

−3
x(t + θ)e−x(t+θ)dθ. (51)

As shown in [32], a period-doubling bifurcation occurs when log γ ≈ 3.8777. In
[29], a Floquet theory for REs has been developed and proved valid; in particular, the
stability of a periodic solution is determined by the eigenvalues of the monodromy
operator of the corresponding linearized equation, according to [29, Corollary 15].

Fig. 5 Stable periodic solutions of (51) at log γ = 3.83 (top), 3.8777 (middle, period doubling), and 3.9
(bottom), having periods ω = 4, 4, and ≈ 8.003, respectively, computed with L = 20, 20, and 40 and
m = 5. Left: representation of two periods (top, middle) and one period (bottom) of the solutions in the
scaled interval [0, 2]. Right: eigenvalues of the corresponding monodromy operator with respect to the
unit circle, all internal in the first and third pictures with the exception of the trivial multiplier 1 (due to
linearization, [29, Proposition 10])
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Such eigenvalues can, in turn, be computed numerically thanks to the pseudospectral
method in [33], which is used in order to obtain Fig. 5. As shown therein, indeed, two
stable periodic solutions can be computed on opposite sides of log γ = 3.8777, one
having roughly double minimal period than the other, thus confirming the presence of
a period-doubling bifurcation.

Period doubling bifurcations also occur in the case (48), as shown in [3]. In partic-
ular, the second one after the Hopf bifurcation (near which it is not possible to obtain
an exact expression of the solution) is detected at γ ≈ 4.497. While, at that point,
new stable periodic solutions emerge having double minimal period than the stable
old ones, unstable solutions with (roughly) unchanged period also exist and can be
computed using the method that we are proposing. Figure6, indeed, shows that two
periodic solutions which are very close to each other can be computed on opposite

Fig. 6 Periodic solutions of (48) at γ = 4.48 (top), 4.497 (middle, period doubling), and 4.51 (bottom),
having periods ω ≈ 8.043, 8.049, and 8.056, repectively, computed with L = 20 and m = 5. Left: repre-
sentation of one period of the solutions in the scaled interval [0, 1]. Right: eigenvalues of the corresponding
monodromy operator with respect to the unit circle, showing the change in stability
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sides of γ = 4.497, one being stable and the other being unstable, thus confirming
the presence of a bifurcation.

5 Concluding remarks

In the past few decades, piecewise orthogonal collocation has been largely used to
compute periodic solutions of various classes of delay equations. The present work
aims at giving a rigorous description of such a method in the case of REs, while
furnishing a complete theoretical error analysis as well as experimental proof of its
validity. In particular, the theoretical proof is based on the abstract approach in [11] for
general BVPs, as it is the case for the work [10] concerning the corresponding proof
for RFDEs. The main result concerns the FEM and states that, for smooth problems,
the error decays as O(L−(m+1)) where L is the increasing number of mesh intervals,
while m is the constant degree of the piecewise polynomials used.

Given both the convergence analysis for RFDEs in [10] and that in the present
paper for REs, we expect to be able to rely on the general approach in [11] also for the
case of coupled RFDE/RE systems, motivated by their predominance in population
dynamics. The proof is currently a work in progress, and the expected main challenge
is given by the need to resort to the theory of VIEs with measure kernels [34, Chapter
10].

Moreover, it would be interesting to extend the method (and, correspondingly,
the convergence analysis) to different and more complex classes of delay equations.
The first step that we plan to take in this direction is to try to apply the approach to
differential equations with non-constant delays (in particular, state-dependent delays),
for which the setting defined in [10] cannot be applied.

Appendix

This Appendix completes the proof of Propositon 4 by showing that ξ∗
1 introduced in

the proof cannot belong to R. To this aim, we observe that the monodromy operator
in Propositon 4 can also be defined in L1([−1, 0],Rd). The action of the opera-
tor remains the same, meaning that X—or better, the corresponding quotient space
obtained by considering almost everywhere equality of functions—is invariant under
such action. Thus, in the spectral decomposition, X = K ⊕ R remains the same.
Assume for a contradiction that ξ∗

1 ∈ R, i.e., that M∗(0)
1 = M∗

1 ∈ R, and define
Y := L∞([0, 1];Rd).10 Consider the standard bilinear form 〈·, ·〉 : Y × X → R

defined as

〈ψ, α〉 :=
∫ 0

−1
ψ(r + θ)α(θ)dθ =

∫ 1

0
ψ(η)α(η − r)dη. (A1)

As a general fact, any left eigenvector of some operator A w.r.t. some eigenvalue λ

is orthogonal—in the corresponding bilinear form—to any element in the range of

10 Here, elements in R
d are intended as row vectors.
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the operator I − λA. This means that, by pairing M∗
1 with any left eigenvector ψ of

T ∗(1, 0) with respect to (A1), we get
∫ 1

0
ψ(η)M∗(η)dη =

∫ 1

0
ψ(η)M∗

1(η − 1)dη = 〈ψ,M∗
1〉 = 0. (A2)

In order to obtain a contradiction with (A2), we resort to adjoint theory for VIEs (see
[34] as a general reference). Indeed, any RE of the form

x(t) =
∫ t

t−r
K ∗(t, σ − t)x(σ )dσ, t ≥ t0,

with xt0 = α for some α ∈ X := L1([−1, 0];Rd)11 and r ≤ 1 can be written as the
VIE

x(t) =
∫ t

t0
K ∗
0 (t, σ )x(σ )dσ + f (t), t ≥ t0, (A3)

where

K ∗
0 (t, σ ) :=

{
K ∗(t, σ − t), t ≥ t0 and σ ∈ [t − r , t],
0, otherwise,

α0(t0 + θ) :=
{

α(θ), θ ∈ [−1, 0],
0, otherwise,

and

f (t) :=
∫ t0

t−1
K ∗
0 (t, σ )α0(σ )dσ, t ≥ t0.

Existence and uniqueness [34, Chapter 9] allow to define the forward evolution family
{T (t, t0)}t≥t0 on X through T (t, t0)α = xt . From [34, Exercise 6, p.274], we have the
adjoint VIE12

y(s) =
∫ s0

s
y(σ )K ∗

0 (σ, s)dσ + g(s), s ≤ s0, (A4)

with

g(s) :=
∫ s+1

s0
ψ0(σ )K ∗

0 (σ, s)dσ, s ≤ s0,

for

ψ0(s0 + η) :=
{

ψ(η), η ∈ [0, 1],
0, otherwise,

and ys0 = ψ for some ψ ∈ Y , where we use the notation ys(η) := y(s + η) for
η ∈ [0, r ]. Then, one defines the backward evolution family {V (s, s0)}s≤s0 on Y
through V (s, s0)ψ = ys .

11 In our case K ∗(t, σ −t) := ω∗ D2K (ω∗(σ −t), v∗(σ )) for t ≥ t0 and σ ∈ [t−r , t]with r := τ/ω∗ ≤ 1.
12 It is enough to consider the integrals at the right-hand side of the VIE and of its adjoint over the whole
of R, by taking into account the definition of K ∗

0 .
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From the theory of resolvents [34, Chapter 9, Section 3], we can express the solution
of (A3) and that of (A4) respectively as

x(t) = f (t) +
∫ t

t0
R∗
0(t, σ ) f (σ )dσ, t ≥ t0, (A5)

and

y(s) = g(s) +
∫ s0

s
g(σ )R∗

0(σ, s)dσ, s ≤ s0, (A6)

where R∗
0 is the resolvent of (A3).

Given t ∈ R, consider now the pairing [·, ·]t : Y × X → R defined as

[ψ, α]t :=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη. (A7)

Observe that such bilinear form is nondegenerate for all t ∈ R whenever K ∗ (and
thus K ∗

0 ) is nontrivial. Indeed, assume by contradiction that there exists ψ ∈ Y such
that ψ is nonzero, but [ψ, ·]t is constantly 0. By the nondegenerateness of the bilinear
form 〈·, ·〉, this means that the innermost integral is 0 for all α ∈ X and almost all
η ∈ [0, 1]. If α := xt , where x is the (unique modulo multiplication by constant)
1-periodic solution of the VIE, then such integral is equal to

∫ 0

−1
K ∗
0 (t + η, t + β)x(t + β)dβ =

∫ t

t−1
K ∗
0 (t + η, β)x(β)dβ = x(t + η).

Thus, xt+1 is almost everywhere equal to 0. Using periodicity, this means that x is
almost everywhere 0, which is only possible if K ∗ is trivial, contradiction. Using
similar arguments, one can prove that there is no nonzero α ∈ X such that [·, α]t is
constantly zero, after exchanging the order of integration in the definition of [·, ·]t .

We claim that the forward monodromy operator and the corresponding backward
one are adjoint w.r.t. (A7), i.e., that

[V (t − 1, t)ψ, α]t = [ψ, T (t + 1, t)α]t . (A8)

Indeed, using (A6), we have

[V (t − 1, t)ψ, α]t =
∫ 1

0
[V (t − 1, t)ψ](η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

=
∫ 1

0
y(t − 1 + η; t, ψ)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

=
∫ 1

0
g(t − 1 + η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

+
∫ 1

0

∫ t

t−1+η

g(σ )R∗
0(σ, t − 1 + η)dσ
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∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

= A + B

for

A :=
∫ 1

0
g(t − 1 + η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

and

B :=
∫ 1

0

∫ t

t−1+η

g(σ )R∗
0(σ, t − 1 + η)dσ

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη.

As for A, we have

A =
∫ 1

0

∫ t+η

t
ψ0(σ )K ∗

0 (σ, t − 1 + η)dσ
∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

=
∫ 1

0

∫ η

0
ψ0(t + σ)K ∗

0 (t + σ, t − 1 + η)dσ
∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdη

=
∫ 1

0
ψ0(t + σ)

∫ 1

σ

K ∗
0 (t + σ, t − 1 + η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdηdσ

=
∫ 1

0
ψ(σ)

∫ 1

σ

K ∗
0 (t + σ, t − 1 + η)

∫ 0

−1
K ∗
0 (t + η, t + β)α(β)dβdηdσ

=
∫ 1

0
ψ(σ)

∫ 0

−1

∫ 1

σ

K ∗
0 (t + σ, t − 1 + η)K ∗

0 (t + η, t + β)dηα(β)dβdσ

=
∫ 1

0
ψ(σ)

∫ 0

−1

∫ 1

0
K ∗
0 (t + σ, t − 1 + η)K ∗

0 (t + η, t + β)dηα(β)dβdσ

=
∫ 1

0
ψ(σ)

∫ 0

−1

∫ 0

−1
K ∗
0 (t + σ, t + η)K ∗

0 (t + 1 + η, t + β)dη α(β)dβdσ

=
∫ 1

0
ψ(η)

∫ 0

−1

∫ 0

−1
K ∗
0 (t + η, t + β)K ∗

0 (t + 1 + β, t + σ)dβ α(σ)dσdη

=
∫ 1

0
ψ(η)

∫ 0

−1

∫ σ

−1
K ∗
0 (t + η, t + β)K ∗

0 (t + 1 + β, t + σ)dβ α(σ)dσdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)

∫ 0

β

K ∗
0 (t + 1 + β, t + σ)α0(t + σ)dσdβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)

∫ t

t+β

K ∗
0 (t + 1 + β, σ )α0(σ )dσdβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β) f (t + 1 + β)dβdη,
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where the first equality comes from the definition of g, the second follows from the
substitution σ ← t + σ , the third is obtained by exchanging the order of integration
between η and σ , the fourth follows from the definition of ψ0, the fifth is obtained by
exchanging the order of integration between η and β, the sixth is due to the fact that
K ∗
0 (t + σ, t − 1 + η) vanishes for η < σ , the seventh follows from the substitution

η ← 1+η, the eighth is obtained by just renaming the variables, the ninth is due to the
fact that K ∗

0 (t +1+β, t +σ) vanishes for β > σ , the tenth is obtained by exchanging
the order of integration between β and σ , the eleventh follows from the substitution
σ ← σ − t , and the last comes from the definition of f . As for B, we have

B =
∫ 1

0

∫ t

t−1+η

∫ σ+1−t

0
ψ(θ)K ∗

0 (t + θ, σ )dθ R∗
0(σ, t − 1 + η)dσ h(t, η)dη

=
∫ 1

0

∫ η

0
ψ(θ)

∫ t

t−1+η

K ∗
0 (t + θ, σ )R∗

0(σ, t − 1 + η)dσdθ h(t, η)dη

+
∫ 1

0

∫ 1

η

ψ(θ)

∫ t

t−1+θ

K ∗
0 (t + θ, σ )R∗

0(σ, t − 1 + η)dσdθ h(t, η)dη

=
∫ 1

0

∫ η

0
ψ(θ)

∫ t

t−1
K ∗
0 (t + θ, σ )R∗

0(σ, t − 1 + η)dσdθh(t, η)dη

+
∫ 1

0

∫ r

η

ψ(θ)

∫ t

t−1
K ∗
0 (t + θ, σ )R∗

0(σ, t − 1 + η)dσdθ h(t, η)dη.

=
∫ 1

0

∫ 1

0
ψ(θ)

∫ t

t−1
K ∗
0 (t + θ, σ )R∗

0(σ, t − 1 + η)dσdθ h(t, η)dη

=
∫ 1

0

∫ 1

0
ψ(η)

∫ t

t−1
K ∗
0 (t + η, β)R∗

0(β, t − 1 + σ)dβdη h(t, σ )dσ

=
∫ 1

0
ψ(η)

∫ t

t−1
K ∗
0 (t + η, β)

∫ 1

0
R∗
0(β, t + σ − 1)h(t, σ )dσdβdη

=
∫ 1

0
ψ(η)

∫ t

t−1
K ∗
0 (t + η, β)

∫ 1

0
R∗
0(1 + β, t + σ)

∫ 0

−1
K ∗
0 (t + σ, t + θ)α(θ)dθdσdβdη

=
∫ 1

0
ψ(η)

∫ t

t−1
K ∗
0 (t + η, β)

∫ t+1

t
R∗
0(1 + β, σ )

∫ 0

−1
K ∗
0 (σ, t + θ)α(θ)dθdσdβdη

=
∫ 1

0
ψ(η)

∫ t

t−1
K ∗
0 (t + η, β)

∫ 1+β

t
R∗
0(1 + β, σ )
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∫ 0

σ−t−1
K ∗
0 (σ, t + θ)α(θ)dθdσdβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)

∫ t+1+β

t
R∗
0(t + 1 + β, σ )∫ t

σ−1
K ∗
0 (σ, θ)α0(θ)dθdσdβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)

∫ t+1+β

t
R∗
0(t + 1 + β, σ ) f (σ )dσdβdη,

where the first equality comes from the definition of g, the second is obtained by
exchanging the order of integration between θ and σ , the third is due to the fact that
R∗
0(σ, t −1+η) vanishes if σ < t −1+η and K ∗

0 (t +θ, σ ) vanishes if σ < t −1+θ ,
the sixth is obtained by changing the order of integration, the seventh follows from
the 1-periodicity of R∗

0 , the eighth follows from the substitution σ ← σ − t , the ninth
is due to the fact that R∗

0(1 + β, σ ) vanishes if σ > 1 + β and K ∗
0 (σ, t + θ) vanishes

if θ < σ − t − 1, the tenth follows from the substitutions θ ← θ − t and β ← β − t ,
and the last comes from the definition of f . Eventually, using (A5), we have

A + B =
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β) f (t + 1 + β)dβdη

+
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)

∫ t+1+β

t
R∗
0(t + 1 + β, σ ) f (σ )dσdβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)x(t + 1 + β; t, α)dβdη

=
∫ 1

0
ψ(η)

∫ 0

−1
K ∗
0 (t + η, t + β)[T (t + 1, t)α](β)dβdη

= [ψ, T (t + 1, t)α]t ,

which proves (A8).
Under the assumption that 1 is a simple eigenvalue, both the VIE and its adjoint

have a unique 1-periodic solution modulo multiplication by some constant, say x and
y respectively. Thus, the associated states yt and xt are respectively the left and right
1-eigenvectors of the operator T (t + 1, t). Again, thanks to their uniqueness, we have
[yt , xt ]t �= 0 for all t ∈ R. Moreover, the continuity of the map t 	→ [yt , xt ]t and
the mean value theorem for definite integrals let us conclude that

∫ 1
0 [yt , xt ]tdt �= 0.

Finally, observe that

M∗(t) = d

dω

[∫ 0

−τ

K
(
σ, v

(
t + σ

ω

))
dσ

] ∣∣∣∣
(ω,v)=(ω∗,v∗)
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=
∫ 0

−τ

D2K
(
σ, v∗ (

t + σ

ω∗
))

v∗ (
t + σ

ω∗
) (

− σ

ω∗2
)
dσ

= − 1

ω∗

∫ 0

−τ

D2K
(
σ, v∗ (

t + σ

ω∗
))

(v∗)′
(

t + σ

ω∗
) ( σ

ω∗
)
dσ

= − 1

ω∗ · ω∗
∫ 0

− τ
ω∗

D2K (ω∗θ, v∗(t + θ))(v∗)′(t + θ)θdθ

= −
∫ 0

− τ
ω∗

D2K (ω∗θ, v∗(t + θ))(v∗)′(t + θ)θdθ

= − 1

ω∗

∫ 0

−1
K ∗
0 (t, t + θ)(v∗)′(t + θ)θdθ,

where (v∗)′ is indeed x . Thus

0 �=
∫ 1

0
[yt , xt ]tdt =

∫ 1

0

∫ 1

0
y(t + η)

∫ 0

−1
K ∗
0 (t + η, t + β)x(t + β)dβdηdt

=
∫ 1

0
y(t)

∫ 1

0

∫ 0

−1
K ∗
0 (t, t + β − η)x(t + β − η)dβdηdt

=
∫ 1

0
y(t)

∫ 1

0

∫ −η

−η−1
K ∗
0 (t, t + θ)x(t + θ)dθdηdt

=
∫ 1

0
y(t)

∫ 1

0

∫ −η

−1
K ∗
0 (t, t + θ)x(t + θ)dθdηdt

=
∫ 1

0
y(t)

∫ 0

−1

∫ −θ

0
K ∗
0 (t, t + θ)x(t + θ)dηdθdt

=
∫ 1

0
y(t)

∫ 0

−1
K ∗
0 (t, t + θ)x(t + θ)

∫ −θ

0
dηdθdt

= −
∫ 1

0
y(t)

∫ 0

−1
K ∗
0 (t, t + θ)x(t + θ)θdθdt

= ω∗
∫ 1

0
y(t)M∗(t)dt,

which contradicts (A2) thanks to the fact that y0 is the left 1-eigenvector of T ∗(1, 0).
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