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ABSTRACT
Research on misinformation detection has primarily focused either
on furthering Artificial Intelligence (AI) for automated detection or
on studying humans’ ability to deliver an effective crowdsourced
solution. Each of these directions however shows different benefits.
This motivates our work to study hybrid human-AI approaches
jointly leveraging the potential of large language models and crowd-
sourcing, which is understudied to date. We propose novel combina-
tion strategies Model First, Worker First, and Meta Vote, which we
evaluate along with baseline methods such as mean, median, hard-
and soft-voting. Using 120 statements from the PolitiFact dataset,
and a combination of state-of-the-art AI models and crowdsourced
assessments, we evaluate the effectiveness of these combination
strategies. Results suggest that the effectiveness varies with scales
granularity, and that combining AI and human judgments enhances
truthfulness assessments’ effectiveness and robustness.
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1 INTRODUCTION
Misinformation poses a significant societal issue with wide-ranging
implications in various domains, including politics and public health.
This complex landscape underscores the urgent need for reliable
methods able to detect and accurately classify the veracity of in-
formation. Both Artificial Intelligence (AI) methods, particularly
Large Language Models (LLMs) [2, 8, 17, 27, 35], and crowdsourced
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approaches [1, 3, 9, 33] have shown distinct strengths and limita-
tions in the task of misinformation and veracity assessment. LLMs
have significantly enhanced our ability to process and analyze large
volumes of natural language data; however they often struggle with
the complex, nuanced nature of misinformation, and are suscepti-
ble to biases [5, 26]. Similarly, crowdsourced approaches can take
advantage of the valuable human insight and judgment, yet they
too can be affected by biases [7, 13]. This mixed landscape demands
innovative solutions that effectively combine the precision of AI
with the discernment of human analysis, aiming to improve the
effectiveness and reliability of misinformation detection.

Different from approaches detecting misinformation by relying
on classification outputs generated by either LLMs or crowdsourc-
ing, this paper explores the integration of LLMs and crowdsourcing
(henceforth LLM+Crowd) for the task of misinformation detection,
and providing insights into how to best achieve an effective out-
come. By introducing Model First, Worker First, and Meta Vote,
three novel combination methods that leverage the strengths of
both AI and human classifiers and through experimentation, we
propose the first practical framework to achieve hybrid human–AI
verification, and we develop a hybrid methodology that, under care-
fully defined settings, improves the effectiveness of the individual
approaches. We focus on three Research Questions (RQ):

RQ1: What are the individual performance of LLMs and Crowd in
misinformation detection? What are similarities and differ-
ences in their performance?

RQ2: When and how does the LLM+Crowd combination outper-
form individual approaches in misinformation detection?

RQ3: How do advanced combination techniques and judgment
scales affect the effectiveness, reliability, and robustness of
integrating LLM+Crowd for misinformation detection?

2 BACKGROUND AND RELATEDWORK
AI, especially LLMs, emerged as a powerful tool against misin-
formation. Many studies investigated the task of misinformation
detection, with some focusing on automated claim verification pro-
viding evidence alongside claims, while others perform misinfor-
mation detection where only the content to be verified is available.
Few-shot research predominantly relies on prompting generative
LLMs like LLaMA 2 and GPT-4 [19], yielding comparable results to
SEED [29] and MAPLE [31], despite not leveraging ample training
data. Most AI methods excel with fully supervised training, such as
fine-tuning BERT for text classification on misinformation datasets
[15, 23, 28, 32]. While Zeng and Zubiaga [30] broaden the scope of
misinformation detection by prioritizing data annotation, there is a
lack of research on integrating AI and crowd.
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Focusing on crowdsourced approaches tomisinformation, La Bar-
bera et al. [13] found evidence of worker biases when performing
verification tasks. Roitero et al. [20] and later Soprano et al. [22] ex-
panded this line of research, using different truthfulness scales and
introducing a multidimensional notion of truthfulness. Draws et al.
[7] validated results from Soprano et al. [22] identifying potential
and systematic biases. Allen et al. [1] found correlation between
politically balanced crowds and experts on news headlines, while
Saeed et al. [21] found similar patterns on Twitter data.

Considering the intersection between AI and crowd for misinfor-
mation detection, the development of Human-In-The-Loop (HITL)
systems gained research attention [2, 3]. Qu et al. [18] investigated
the use of self-reported confidence as an indicator for accurate pre-
dictions from both crowd and LLMs. La Barbera et al. [14] proposed
a theoretical HITL framework to efficiently integrate AI and crowd-
sourced workers; this approach, differently from the one proposed
in this paper, focused on the conceptual aspects of combining crowd
and AI resources. Some concrete HITL approaches exist: Dong et al.
[6] proposed a decentralized HITL method for misinformation de-
tection integrating user feedback, and Yang et al. [25] developed a
hybrid system to accelerate misinformation detection by grouping
similar social media through semantic analysis and clustering.

3 METHODOLOGY
3.1 Data Source
Building on data from published works [7, 13, 20, 22], this study
uses a subset of 120 statements from the extensive PolitiFact dataset
[24], which comprises more than 10 thousand statements from US
politicians, public figures, and social media posts. We manually
selected 20 statements for each of the six ground truth levels, rang-
ing from most false (Pants-On-Fire) to most true (True), from the
PolitiFact website for statements made in 2022. This selection aims
at providing crowd workers with a current and relevant represen-
tation of misinformation statements. In the following we will refer
to PolitiFact scale as S6. This approach aligns with the task design
used by Soprano et al. [22] and Draws et al. [7].

Using the Prolific1 platform, we collect 1,200 assessments (i.e., 20
statements for each PolitiFact categories × 6 PolitiFact categories
× 10 assessments per statement) from US-based workers. Each
participant sees 8 statements, 1 for each ground truth level plus two
gold questions for quality assurance. Consistently with previous
studies [7, 13, 20, 22], we focus on the individual worker’s reported
truthfulness for each statement (on the same six-level scale used by
PolitiFact), their confidence in each assessment, and the internal
agreement among participants quantified as Krippendorff’s 𝛼 [12].

Complementary to the S6 scale, we binarize the crowd judgments
and the corresponding ground truth values for each statement,
which we refer to as S2. Thus, statements categorized as Pants-On-
Fire, False, and Mostly-False are grouped under a singular False
label, and Half-True, Mostly-True, and True under the True label.
This simplification allows us to compare our results with the state
of the art reporting binary performance. Moreover, S2 allows to
avoid issues with ordinal classification metrics: the distance be-
tween categories is equal, thus is not subject to misinterpretation,
eliminating the ambiguity associated with a multi-level scale.
1https://www.prolific.com/

3.2 Large Language Models
We employ three state-of-the-art LLMs: BERT-large [4], DeBERTa-
large [10], and RoBERTa-large [16]. To tailor them for misinforma-
tion detection, we fine-tune on the statements from the PolitiFact
dataset, excluding the 120 statements used in the crowdsourcing
task used as test set. All of the models are trained for 3 epochs as
the vast amount of training data allows early convergence. Hyper-
parameter tuning on batch size and learning rate are performed
with optuna using 10% of the train set. Learning rate search range is
between 1𝑒−6 and 1𝑒−4. Batch size is among 16, 64, 128. We use the
soft-max scores computed in the last layer of the neural network
as model confidence.

3.3 Combination Strategies
Following independent classifications from both the AI models and
the crowd workers, we propose various combination techniques to
combine the results to boost performance and gain insight into the
potential of model and crowd contributions.

We leverage mean and median as foundational techniques, pro-
viding a baseline comparison with previous works [13, 20, 22]. We
consider also two other standard techniques: the hard-voting (mode)
[11, 34] and the soft-voting (argmax on the weighted average of all
prediction probabilities) [11, 34]. As weights for the soft-voting we
use internal agreement for workers and prediction probability for
models. Moreover, we introduce three advanced methods: Model
First, Worker First, and Meta Vote.Model First involves a two-step
process where we first apply hard-voting to aggregate individual
predictions from the workers into a interim vote for all workers
and obtain the internal agreement as the confidence for this vote.
We then combine the interim vote with all predictions from the
models to reach a final prediction using soft-voting. This method
emphasizes the input from the models as the final prediction is
based on multiple votes from models and only a single combined
vote from the workers. Worker First starts with applying hard-
voting to individual models’ predictions to obtain a interim vote.
It then reachs a final prediction by employing hard-voting on the
interim vote and all predictions from the workers. Worker First
gives precedence to worker insights, emphasizing human intuition
and expertise, as the decisive step employs hard-voting on the ag-
gregated worker-centric data for the final judgment, thus theMeta
Vote combination relies on subgroup and vote: first the voting
members are grouped into all possible subgroups from size 2 to all;
then the voting decisions with both soft-voting and hard-voting
are computed within each subgroup. Lastly these voting decisions
are used to reach the final decision through hard-voting.

3.4 Evaluation Metrics
We evaluate the performance of different combination strategies
with three metrics: (i) accuracy, suitable for measuring effectiveness
on a balanced dataset; (ii) mean squared error (MSE), since in our
context it might be important to emphasizes the severity of errors
(e.g., a False as a True); and (iii) mean absolute error (MAE), as a
more balanced measure of the average error magnitude, presenting
an easy-to-interpret picture of typical prediction errors.2

2F1 score is not reported given its similarity with accuracy on balanced data.
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Table 1: Accuracy, MSE, and MAE for the combined models
(M), crowd (C), and both together (M+C) for S2 (top part; note
that MSE = MAE due to the binary nature of the S2 scale) and
S6 (bottom) scales. H-V = hard-voting, S-V = soft-voting, 𝜇 =
Mean, Me = Median, M-V = Meta Vote, M-F = Model First, W-F
= Worker First.

Metric Who H-V S-V 𝜇 Me M-V M-F W-F

ACC M .700 .700 .667 .700 .692 – –
C .816 .775 .816 .816 .816 – –
M+C .791 .766 .791 .791 .875 .775 .800

MSE/ M .300 .300 .332 .300 .308 – –
MAE C .183 .225 .183 .183 .183 – –

M+C .208 .233 .208 .208 .125 .225 .200

ACC M .325 .325 .283 .325 .316 – –
C .425 .425 .275 .408 .408 – –
M+C .408 .366 .283 .441 .400 .425 .383

MSE M 2.242 2.242 2.250 2.216 2.325 – –
C 2.233 1.983 1.583 1.516 3.092 – –
M+C 2.075 2.375 1.550 1.383 2.425 1.833 2.233

MAE M 1.092 1.092 1.133 1.083 1.125 – –
C .983 .933 .983 .850 1.142 – –
M+C .958 1.075 .967 .783 1.025 .900 1.017

4 RESULTS
We discuss each of the RQs in the following three subsections.

4.1 RQ1: Individual Approaches, LLM vs. Crowd
Figure 1 shows the results for accuracy (left) and MSE (right) for
the two scales (top for S2, bottom for S6). Table 1 report accuracy,
MSE, and MAE for the aggregated models, the crowd, and the
LLM+Crowd combination, (top for S2, bottom for S6). Considering
S2 (Figure 1 top row, Table 1 top) we first assess individual model
contributions (M in the table, blue circles in the figure) and crowd
workers (C in the table, orange squares in the figure). We can see
consistent accuracy values around 0.7, with a slight decrease when
applying mean (0.667). Similarly, MSE and MAE scores show little
variation, indicating stable but not optimal performance. Similarly,
crowd judgments show little variation with higher accuracy of 0.816
when compared to the models for all the aggregation techniques
except for soft-voting and notably lower error rates (MSE and MAE)
compared to the models. For the S6 scale (Figure 1 bottom row,
Table 1 bottom) the models achieve the best accuracy (0.325) when
applying hard-voting, soft-voting, and Median. Conversely, the
crowd demonstrates higher accuracy than the models, achieving the
highest values with hard-voting and soft-voting (0.425), and lower
error rates. Nevertheless, crowd accuracy significantly drops when
aggregating using the mean, achieving scores that are similar to
the ones achieved by the models despite showing a lower error rate,
as by MSE and MAE. This suggests that aggregation methods like
the mean function may not effectively leverage the complementary
strengths of human and models, highlighting the necessity for more
sophisticated combination strategies.

4.2 RQ2: Combination, LLM + Crowd
We now consider RQ2, identifying crowd and models combinations
(M+C in the tables, green Xs in Figure 1) that outperform individual
approaches. Considering the S2 scale (top row in Figure 1, Table 1
top) we see that the Meta Vote (M-V column in the table) method
delivers the highest accuracy (0.875) and the lowest error rates
(MSE and MAE at 0.125), both combined and individual.

Considering results for S6 (bottom row in Figure 1, Table 1
bottom), among the combination strategies, the best accuracy is
achieved by the median Me (0.441), along with a reduction in MSE
and MAE compared to model- and crowd-only scores. Differently
from S2, Model First (M-V) achieve an accuracy (0.425) comparable
to the best crowd performance, albeit showing lower error rates.
Hence, while the use of a complex combination method such as
Meta Vote leads to high accuracy and low error rates for coarser
grained scales such as S2, for finer grained scales such as S6 the best
results are achieved using the Median. These results corroborate
a critical aspect of misinformation detection: the effectiveness of
aggregation strategies is highly dependent on the scale and nature
of the task. While complex methods like Meta Vote perform better
whenmeasuring performance on coarser scales, simpler approaches
like Median are more effective for fine-grained ones. Overall, these
results suggest that there is no one-fits-all solution in the realm of
aggregation strategies for misinformation detection, and hint for
the necessity of a further studies to develop a selection approach
for the selection of the optimal aggregation strategy, which should
be aligned with the specific task and scale being used.

4.3 RQ3: Effectiveness, Reliability, and
Robustness of Combination Strategies

In answering RQ3, we look at classification differences over the pos-
sible labels computing confusion matrices. In Figure 2 we report the
confusion matrices considering the Meta Vote, for the S6 scale. The
others, omitted, show a similar pattern. Considering the first two
plots, we see that models provide more consistent classifications on
middle scale values such asMostly-False (MF), Half-True (HT), and
Mostly-True (MT), while struggle with extreme categories, Pants-
On-Fire (PF) and True (T). Conversely, the crowd can better identify
those two extreme categories, reflecting a better understanding
than models to the difference of truthfulness in statements.

Finally considering models and crowd combinations (Figure 2
third plot), it is clear that the combination of both provide more
balanced judgments across S6 truthfulness spectrum. Thus, while as
shown for RQ2 the combined approaches do not clearly outperform
the others in terms of accuracy and error rates, these combina-
tions allow to preserve crowd’s contextual sensitivity to the scale
differences and the models’ classification consistency. Thus, for
applications requiring nuanced understanding of truthfulness, a hy-
brid approach that leverages both human judgment and automated
models can provide a more robust and accurate classification than
relying on either source alone. Having identified the best combina-
tion techniques and delved into their performances across single
labels, we now complete our analysis examining the robustness
of these metrics to ensure a comprehensive evaluation. Thus, we
iteratively change judgments from crowd or models, recompute the
aggregation technique and the consequent accuracy.
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Figure 1: Accuracy (left) and MSE (right) for aggregated models, crowd and their combination. Top for S2, bottom for S6.
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HT: Half-True, MT: Mostly-True, and T: Half-True.

Figure 3 shows the results on the aggregation metrics for the
two scales: accuracy degradation with increasing replacements
is more pronounced for S2 (left), despite being evident for both
scales, as most values get close to 0 with 3 to 5 judgments replaced.
Notably, the soft-voting method for S2 shows more resilience to
few data manipulations. This suggests robustness to minor errors
but also vulnerability to extensive manipulations. Conversely, the
Mean on S6 shows consistent performance, despite originally being
the worst performances metric. This indicates a resilience that,
while not improving metric’s performance, prevents a sharp decline
highlighting its potential reliability in more granular assessments.

5 CONCLUSIONS AND FUTUREWORK
In this work, we study the integration of crowd and LLM to get
the best of both worlds for misinformation detection. We introduce
novel combination strategies including Worker First, Model First
and Meta Vote, which we evaluate on a sample of the PolitiFact
dataset. Our findings show that (RQ1) while crowd performs better
than LLMs, they show a similar and consistent pattern in terms
of accuracy across the considered aggregation functions, despite
the crowd having lower error rates. Moreover, (RQ2) we found
evidence of the influence of the used scale on the effectiveness of
aggregation methods. Thus, the used scale should be taken into

Figure 3: Variations in accuracy for the combined metrics
when replacing single judgments. S2 left, S6 right.

account when selecting an aggregation function: while Meta Vote
method excels for less fine grained scales (S2), the Median shows
better scores for more complex scales, (S6). Finally, (RQ3) we found
that combining crowd and LLM results in more balanced assess-
ments across the truthfulness spectrum, suggesting that a hybrid
approach for nuanced truthfulness understanding offers greater
accuracy and robustness. In future work, we plan to use emerging
methods such as Retrieval Augmented Generation or chat-based
crowd-LLM interactions, and to expand to other datasets.
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