
Neuromorphic Computing and
Engineering

     

PAPER • OPEN ACCESS

Reducing the spike rate of deep spiking neural
networks based on time-encoding
To cite this article: Riccardo Fontanini et al 2024 Neuromorph. Comput. Eng. 4 034004

 

View the article online for updates and enhancements.

You may also like
Spikes: Exploring the Neural Code
Daniel Reich

-

(Invited) Conjoint Measurement of Brain
Electrophysiology and Neurochemistry
Hitten P. Zaveri, Nimisha Ganesh, Irina I
Goncharova et al.

-

Overexpression of cypin alters dendrite
morphology, single neuron activity, and
network properties via distinct
mechanisms
Ana R Rodríguez, Kate M O’Neill,
Przemyslaw Swiatkowski et al.

-

This content was downloaded from IP address 158.110.107.254 on 19/09/2024 at 09:23

https://doi.org/10.1088/2634-4386/ad64fd
https://iopscience.iop.org/article/10.1088/0954-898X/8/3/008
https://iopscience.iop.org/article/10.1149/MA2017-02/55/2329
https://iopscience.iop.org/article/10.1149/MA2017-02/55/2329
https://iopscience.iop.org/article/10.1149/MA2017-02/55/2329
https://iopscience.iop.org/article/10.1088/1741-2552/aa976a
https://iopscience.iop.org/article/10.1088/1741-2552/aa976a
https://iopscience.iop.org/article/10.1088/1741-2552/aa976a
https://iopscience.iop.org/article/10.1088/1741-2552/aa976a


Neuromorph. Comput. Eng. 4 (2024) 034004 https://doi.org/10.1088/2634-4386/ad64fd

OPEN ACCESS

RECEIVED

10 April 2024

ACCEPTED FOR PUBLICATION

18 July 2024

PUBLISHED

29 July 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Reducing the spike rate of deep spiking neural networks based on
time-encoding
Riccardo Fontanini, Alessandro Pilotto, David Esseni and Mirko Loghi∗
DPIA, Universit̀a di Udine, Udine, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: mirko.loghi@uniud.it

Keywords: spiking neural networks, spike rate, learning strategy, loss function

Abstract
A primary objective of Spiking Neural Networks is a very energy-efficient computation. To achieve
this target, a small spike rate is of course very beneficial given the event-driven nature of such a
computation. A network that processes information encoded in spike timing can, by its nature,
have such a sparse event rate, but, as the network becomes deeper and larger, the spike rate tends to
increase without any improvements in the final accuracy. If, on the other hand, a penalty on the
excess of spikes is used during the training, the network may shift to a configuration where many
neurons are silent, thus affecting the effectiveness of the training itself. In this paper, we present a
learning strategy to keep the final spike rate under control by changing the loss function to penalize
the spikes generated by neurons after the first ones. Moreover, we also propose a 2-phase training
strategy to avoid silent neurons during the training, intended for benchmarks where such an issue
can cause the switch off of the network.

1. Introduction

Conventional Artificial Neural Networks (ANNs) have reported great success in application domains that are
difficult to tackle with an algorithmic approach, such as text and speech recognition [1, 2], classification and
segmentation of images [3], and robotic control [4]. The inter-neural communication in ANNs occurs
through continuous activation values produced by non-linear but differentiable functions, and the training
of the networks targets the minimization of a loss function that is also differentiable. Consequently, the
back-propagation approach is a gradient-based optimization of the computational graph that is both
well-established and very effective [5].

Spiking Neural Networks (SNNs) have been labeled as the third generation of neural networks [6], and
behave as an event-driven computational system, where asynchronous spikes are used for communication
among neurons. SNNs can solve the same classes of problems addressed by ANNs, but they can mimic much
better than ANNs the behavior of the brain, and hopefully emulate also the outstanding energy efficiency of
the computation in biological systems. The energy efficiency of SNNs stems from the sparsity of events in
time and on the asynchronous and local nature of the computation [7], which makes the networks very
promising for energy-constrained, edge computing applications, such as internet of things, autonomous
vehicles, as well as wearable and implantable devices [8, 9].

For SNNs with information encoded in the spike rate, several approaches have been proposed, as
Spatio-Temporal Backpropagation [10], activation check points [11], and local Backpropagation Through
Time [12]. Such approaches, however, for the intrinsic nature of the information encoding, do not consider
the minimization of the spike rate as a figure of merit.

On the contrary, if the information is encoded in the timing of each spike, a sparse rate can in principle
be achieved without penalizing the network operation, since the rate and the information encoding are no
longer tightly correlated. In such cases, however, the computation of the gradients would require the
differentiation of the activation potential over time. Nevertheless, since the spikes in SNNs can be formally
described as Dirac delta functions, a straightforward application of differential calculus to compute gradients
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is not feasible, thus complicating the learning strategies compared to the well-assessed solutions employed in
ANNs.

Such a challenge has been tackled by resorting to different strategies, including (a) the conversion of
weights computed for an ANN to weights suitable for an SNN [13]; (b) the use of a differentiable surrogate
function (and the corresponding surrogate gradient) [14]; (c) the computation of the exact gradients for
some special cases [15, 16].

Thanks to the relatively simple formulation of the Leaky Integrate-and-Fire (LIF) model for neurons,
exact gradient computation has been mainly derived for the LIF model. However, because it has been
theoretically proven that spiking networks have a Turing-equivalent computing power even for very basic
mechanisms of spike generation [17], the use of LIF neurons should not be perceived as an actual limitation,
even if more biophysically accurate neuron models have been proposed, such as the Hodgkin and Huxley
model [18].

For a feed-forward network with a single hidden layer consisting of leaky integrate-and-fire neurons,
which employs a spike-timing encoded input and has a loss function that depends on the times of the spikes,
exact gradients have been computed with EventProp in [19]. This was accomplished by using adjoint
functions, which are evaluated and recorded only at the time instants corresponding to spikes. This approach
leverages the sparseness of spikes to obtain a computation of the gradient that is effective in terms of both
computation energy and memory requirements.

In deep SNNs, however, a mere gradient descent approach has limitations even when the exact gradient
can be calculated. In fact the average spike rate tends to accelerate for an increasing number of layers, which
deteriorates the energy efficiency of both the learning and the inference phase. In this respect, if measures are
introduced in order to control the spike rate, one should carefully avoid inducing a large number of silent
neurons, namely neurons that do not emit spikes. Such neurons, in fact, do not practically contribute to the
loss function, so a gradient descent strategy is no longer effective in optimizing their input weights. This
hazard is similar to the ‘vanishing’ gradient issue that in ANNs precludes the convergence toward the actual
minimum of the loss function.

In this work, we propose a modification of the loss function used in EventProp [19], associated with a
possible change in the learning strategy, in order to reduce the spike rate and, at the same time, avoid the
silent neuron issue. A preliminary report of this research has been presented in a conference paper [20].
Here, we extend that work with a more detailed analysis and more thorough experimental validations that
involve additional benchmarks and networks.

2. Related work

For a feed-forward network of LIF neurons, the gradient of a first-spike-time-based loss function has been
computed in [15], by resorting to a linear approximation of the thresholding function near the spike time. In
[16] such an approach has been extended to a loss dependent on an arbitrary number of output spikes,
whereas [21] addressed the case of recurrent networks.

Different approaches have been developed by computing exact gradients using methods from the optimal
control theory. In [22], the sensitivity analysis has been applied to a recurrent network of LIF neurons that
aims to exhibit a given oscillatory behavior. Algorithms for recurrent SNNs have been derived in [23], by
leveraging adjoint equations and accounting for the hybrid dynamic of neurons, as well as in [24], where the
threshold for neuron firing has been replaced by a gate function that smoothens the transitions and facilitates
the implementation of the adjoint methods.

As it has been already mentioned, exact gradient computation for SNNs has been also developed in
EventProp [19], where the discontinuity on the adjoint equations enforced by spikes are computed going
backward in time in a topological order. Here the gradient is expressed in terms of the values of the adjoint
functions at the spike times only, thus leveraging the sparsity of the events to improve the effectiveness of the
computation.

None of the aforementioned approaches, however, implies any target for the possible spikes generated
after the classification has been completed. Such spikes can occur when neurons are over-excited from a large
number of afferents, which is statistically more probable when the network becomes deeper. While an excess
of spikes is innocuous for the network operation, it is clearly detrimental for energy consumption and,
moreover, it is also biologically implausible because the refractory mechanism can effectively limit the spike
rate in biological neurons. In this latter respect, we here argue that a refractory period appears indispensable
in fully-connected recurrent SNNs to prevent an unlimited spike rate [25], but this also implies an energy
cost, because the refractoriness is obtained with a dissipative configuration in most circuital implementations
[26]. In a feed-forward network, instead, the excess of spikes can also be avoided by a judicious choice of the
synaptic weights, which makes the implementation of the refractory period not strictly necessary and thus
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saves the corresponding energy cost. The targets of this work are in fact deep feed-forward networks with a
time encoding of the information, and we will present a training strategy that can optimize the network
performance and, at the same time, keep the spike rate under control.

3. Method

3.1. Models
3.1.1. Spiking neurons and gradients
The constitutive equations of the LIF neurons are the same used in EventProp [19]:{

τm
∂V
∂t =−V+RmI

τs
∂I
∂t =−I

(1)

where V and I are the neural membrane potential and the input synaptic current respectively. τm and τ s are
the time constants governing the dynamics of the membrane potential and the synaptic current respectively,
while Rm is the membrane resistance. The state variables V and I of each neuron are initialized to zero:{

V(t= 0) = 0

I(t= 0) = 0
(2)

The times of spikes are implicitly defined by: (
V−)

n(k)
=Θ (3)

where the vectors V and I gather all the membrane potentials and currents of the network, andΘ is the
constant threshold potential. The notation

(
V±)

n(k)
denotes, throughout this work, the nth component of

the membrane potential vector V an instant before (−), or after (+), the emission of the kth spike. When the
membrane potential of a neuron reaches the threshold, such a neuron emits a spike and resets to the rest
potential (

(
V+

)
n(k)

= 0 V), though the current does not change (
(
I−

)
n(k)

=
(
I+

)
n(k)

) since a node does not

act on itself. However, the kth spike produces a jump on the current of the receiving neuron given by the
synaptic weight

(
I+

)
m
=
(
I−

)
n(k)

+Wm,n, whereWm,n links the nth spiking neuron to themth neuron. Here

it should be noticed that this differential model is similar to the Spike-Response Model (SRM) [25] and that,
moreover, the dynamic of the current I is necessary to maintain information in the spike timing. In fact, with
a finite τ s value the weight of an afferent synapse can affect the delay between the output and the input spike,
whereas this modulation becomes progressively impossible when τ s tends to zero.

To train the network we compute the exact gradient, leveraging adjoint variables and back-propagation
as in EventProp [19], to perform a mini-batch stochastic gradient-descent. The equations of adjoint variables
can be derived from equation (1) and are: {

τm
∂λV
∂t = λV

τs
∂λI
∂t = λI −Rm λV

(4)


(
λV

−)
n(k)

= 1
Rm(I−)n(k)−θ

[(
λV

+
)
n(k)

Rm (I−)n(k) +
∂L(tk)
∂tk

+
∑Nn

m̸=n

(
Rm

(
λV

+
)
m
−
(
λI

+
)
m

)
Wm,n

]
(
λI

−)
n(k)

=
(
λI

+
)
n(k)

. (5)

The adjoint variables have discontinuities (ruled by equation (5)) in correspondence with spikes and are
evaluated backward in time, starting from the initial condition:{

λV (t= T) = 0

λI (t= T) = 0
. (6)

An example of the neural state functions and the adjoint functions is represented in figure 1(a).
All the loss functions considered in this work only depend on the spike times; we do not take into

account losses that depend on the integral of the membrane potential, since they are not consistent with an
event-driven computation. Hence, the gradient of the loss function can be written as:

∂L
∂Wi,j

=

Nspk∑
k=1

d L(tk)

dtk

dtk
dWi,j

(7)
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where N spk is the number of spikes generated by the network.
By applying the implicit function theorem to equation (3) and exploiting the adjoint variables, the

gradient of the loss becomes:

∂L
∂Wi,j

=−τs
∑

k∈{spikes from j}

(λI)i (tk) . (8)

Hence, to calculate the gradient of L, we only need to sample λI when a spike happens. Moreover, since
the state functions and their adjoints can be expressed in closed form between two discontinuities, all the
evaluations can be performed with an event-driven computation.

3.1.2. Loss functions
We consider deep feed-forward networks for classification tasks. The network receives input spikes, related to
input data through an application-specific encoding, and propagates spikes up to the output neurons in the
last layer. The output node that emits the first spike indicates the predicted class.

The first loss function taken into account is [19]:

LW = CE+α ·CS (9)

where CE (cross-entropy) and CS (classification spike) are defined as:
CE=− 1

Nb

∑Nb

b=1 log

(
exp(−tb,1(T)/τ0)∑NO
a=1 exp(−tb,1(a)/τ0)

)

CS= 1
Nb

∑Nb

b=1

[
exp

(
tb,1(T)
τ1

)
− 1

] (10)

with Nb and NO being the number of samples of the batch and output neurons, respectively. τ 0, τ 1 are
normalization constants, and α is a hyper-parameter. tb,1(T) is the time of the first spike emitted by the
output neuron T corresponding to the correct classification (the target neuron), and tb,1(a) is, instead, the
time of the first spike of the generic output neuron a.

CE is the actual target of the minimization since it is directly related to the average classification error: it
is in fact a measure of how much the real distribution of the dataset differs from the distribution estimated
by the network [27]. Since CE depends only on the difference among times of the first output spikes, we can
add terms to the loss function to drive the minimization towards points with convenient characteristics. Here
CS aims to minimize the delay between the input and the output spikes and, as a by-product, to reduce the
probability that neurons remain silent.

For shallow networks, LW provides good results [19], albeit for deep networks a good level of accuracy is
obtained at the cost of a large spike rate, as discussed in section 4. Trying to reduce the spike rate by
decreasing the hyper-parameter α leads to a relevant reduction of the accuracy since many neurons become
silent.

Therefore, to improve the control of the spike rate, we defined a second loss function by adding a term
that, for each neuron, reduces the excess of spikes without penalizing the first one:

L= CE+α ·CS+ η · SP (11)

SP (spike penalty) is defined as:

SP=
1

Nb

Nb∑
b=1

Nn∑
a=1

P(a,b)∑
p=2

1

∆tp,a,b
. (12)

Nn is the number of neurons of the network, P(a,b) is the total number of spikes emitted by the neuron a
during the inference of sample b, and η is another hyper-parameter.∆tp,a,b = tb,p(a) − tb,1(a) denotes the time
difference between each spike produced by the neuron a during the inference of the sample b (tb,p(a)) and the
first one (tb,1(a)) (for the sake of clarity, figure 1(b) provides a representation of the spiking notation). If a
given neuron emits only a single spike, its contribution to SP is null, thus the spike penalty tends to enlarge
the delay between the first emitted spike and the following ones for each neuron of the network.

With the loss function L, the network could, in principle, reach the same CE performance obtained with
LW also reducing the average spike rate. However, such a result is not always easily achievable, because of the
detrimental influence of silent neurons. As it will be discussed in more detail in section 4, a low spike rate is
obtained with small values of α that, as a drawback, may lead to an early switch off of nodes and,
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Figure 1. Example of the general topology of the networks exploited in this work and typical neural waveforms. (a) Example of
neural internal variables: V and I denote the membrane potential and the post-synaptic current, while λV and λI are the adjoint
variables associated with V and I, respectively. (b) Example of output spiking activity and specific notation: every spike instant is
denoted with tb,p(a), while the time gap between each spike and the first emitted is∆tp,a,b where b is the sample of the minibatch,
a is the neural index and p is the spike index emitted by the neuron a.

consequently, to poor accuracy. Silent neurons, in fact, hamper the minimization process because they do
not contribute to the gradient of the loss (equation (8)). On the contrary, to guarantee an acceptable final
accuracy, large values of α are needed, but such a choice offsets the spike rate reduction we are aiming for.
Nevertheless, we observed that in some cases the minimization does converge to good values of CE even for
small values of α, thus suggesting that, with the proper choice of the hyper-parameters, L should be able to
yield both a low CE and a low spike rate. Finding suitable values for α and η, however, is not at all trivial,
because the influence of hyper-parameters strongly depends on the starting point of the minimization and
the network topology.

Therefore, for those cases where a strategy to reach a convenient starting point is required, we introduce a
third loss function, LA:

LA = CE+α ·AS+ η · SP (13)

where AS (additional spikes) is an augmentation term, defined as:

AS=
1

NONb

Nb∑
b=1

NO∑
a=1

[
exp

(
tb,1(a)
τ1

)
− 1

]
(14)
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Figure 2. Sketch of the implemented algorithm. (a) The architecture of the simulator. (b) Computation flow of the algorithm. The
simulator is based on Pytorch with a CUDA-implemented extension for the calculation of the neural signals and the adjoint
functions.

that focuses on the first spike event of all output neurons.
Notice that this term can be written as:

AS=
1

NONb

Nb∑
b=1

[
exp

(
tb,1(T)
τ1

)
− 1

]

+
1

NONb

Nb∑
b=1

∑
a∈NT

[
exp

(
tb,1(a)
τ1

)
− 1

]

=
CS

NO
+

1

NONb

Nb∑
b=1

∑
a∈NT

[
exp

(
tb,1(a)
τ1

)
− 1

]
(15)

where, again, T is the target neuron and NT is the set of the not-target nodes.
Hence, LA contains the same terms as L (up to a constant pre-factor which can be considered as part of

the hyper-parameter) plus the extra addends related to other spikes. An important consideration, however, is
that every minimum of LW and L is also a minimum of CE, but this is not necessarily the case for LA because
of the term AS. Nevertheless, a minimum of LA is close enough to a minimum of CE to be considered a good
starting point for a successive minimization and, moreover, it can be reached without incurring in the
switch-off issue, as it has been empirically demonstrated by our experimental results.

In the following, we propose the use of the loss function L to minimize both the cross-entropy and the
number of spikes emitted by the network during inference. Moreover, for those cases where the use of L leads
to the switch off of the network, we propose a 2-phase strategy for learning. In this latter strategy, during the
first phase, the training aims at the minimization of LA and thus provides a good starting point for the
second phase, in which the loss L finally leads to a minimization of the cross-entropy.

3.2. SNN simulator
We simulated the networks using the PyTorch [28] framework. The simulator is implemented in Python, to
interact with PyTorch, and in CUDA/C++, to accelerate the computation by exploiting the parallelism
exposed by an Nvidia GPU. Figure 2(a) shows the architecture of the simulator, with the Python modules in
charge of loading the dataset and of orchestrating the simulation. The CUDA code computes the spike times
(finding the roots of equation (3)) and updates the adjoint variables for each discontinuity. The final
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Table 1.Model’s parameters.

Description Symbol Value

Membrane time constant τm 20 ms
Synaptic time constant τ s 5 ms
Membrane resistance Rm 1 Ω
Threshold Θ 1 V
Min input time spike tmin 0 ms
Max input time spike tmax 20 ms
Simulation time T 30 ms
Adam parameter β1 0.9
Adam parameter β2 0.999
Adam parameter ϵ 1× 10−8

Learning rate decay factor — 0.95
Learning rate decay step — 1 epoch
CE normalization constant τ 0 0.5 ms
CS, AS normalization constant τ 1 6.4 ms

Yin-Yang 1st phase Learning rate — 5× 10−3

Yin-Yang 2nd phase Learning rate — 2× 10−4

Yin-Yang batch size Nb 32
MNIST Learning rate (both phases) — 2× 10−3

MNIST batch size Nb 20

computation of the gradient and the update of synaptic weights is performed by the PyTorch framework
through its implementation of the Adam optimizer [29]. The whole flow of the computation is represented
in figure 2(b).

The network hyper-parameters are listed in table 1, with values in the upper portion common to all the
simulated networks.

3.3. Yin-Yang benchmark
The first benchmark taken into account is the Yin-Yang dataset [30, 31] composed of points in a 2D space.
Each point lies in a region, defined by non-linear boundaries, which is the target of the classification (there
are three regions). A point is translated to spikes by means of a linear space-time conversion within a fixed
range [tmin, tmax] of its coordinates (x, y) and their duals (1− x,1− y). The dual spikes are added to keep the
average spike times of the inputs constant for the whole dataset. Moreover, an input spike at fixed time
t= tmin is added as a bias for a total of 5 inputs for the classifying SNN. Figure 3(a) shows the structure of the
dataset and an example of the space-time conversion.

This benchmark is small enough, still not trivial, to allow the fast preliminary evaluations of the learning
strategies that we discussed above. To achieve fair and meaningful comparisons, we use a network with
almost the same number of synapses as the network used in [19], but deeper and, thus, with fewer neurons:
for this benchmark we employ a 5/40/25/13/3 feed-forward network with synaptic weights initialized with a
uniform distribution in the range reported in table 2.

3.4. MNIST benchmark
The second benchmark considered is the MNIST dataset [32]. MNIST is composed of images (28x28 pixel
large, gray-scale) that depict the hand-written digits to be recognized by the network. The training set
contains 60 000 images, while the images in the test set are 10 000. Each pixel of the input image is translated
to an input spike: the spiking time is a linear mapping of the pixel intensity to the range [tmin, tmax] as shown
in figure 3(b). Since the majority of the pixels has the background color and the input data are large enough
(784 pixels), there is no need to add dual inputs or a bias.

For this benchmark, we use a 784/280/160/70/10 network, that requires more than 2 · 105 synapses. The
number of synapses is too large, compared to the number of images in the training set, to avoid overfitting.
Therefore, we augmented the training set by introducing random shifts (horizontal and vertical, up to 10%)
and random rotations (up to 20◦) of the images. Even for this benchmark, the synaptic weights are initialized
with a uniform distribution: the ranges are reported in table 2.

The starting weight ranges of both benchmarks are tuned to initially ignite all neurons of the network
and produce a sparse enough spiking activity to prevent an over-excitation of the output layer’s neurons.
When the 2-phase learning strategy is adopted, the learning rate for the Yin-Yang analysis has been changed
between the first and the second phase of training to better follow the distribution of the average weights of
the network, as reported in table 1. Conversely, the MNIST preliminary exploration reported in the next
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Figure 3. Datasets conversion and example of neural signals. (a) Representation of the Yin-Yang Dataset and the linear
transformation of spatial coordinates into spiking time events. (b) Example of conversion of a MNIST image: the pixel color
intensity is translated into a spike timing with a linear transformation.

Table 2. Ranges for the initialization of the synaptic weights. Layer 0 is the input layer.

Layer # Neurons Minimum Maximum

Yin-Yang
1 40 1.0 3.0
2 25 0.2 1.0
3 13 0.0 1.0
4 3 0.0 1.0

MNIST
1 280 −0.01 0.03
2 160 −0.05 0.15
3 70 −0.2 0.6
4 10 −0.4 0.8

paragraph reveals good behavior in the training process even by keeping the same learning rate for both
phases.

4. Results and discussion

4.1. Yin-Yang simulation results
The first evaluation is the behavior of our network with three hidden layers, applied to the Yin-Yang
benchmark, with the reference loss LW and by varying the hyper-parameter α. Figure 4 reports (a) the
accuracy and the mean arrival time of the first classification spike, and (b) the average number of spikes per
neuron (⟨NS⟩) during inference for each layer. ⟨NS⟩ is computed by summing all the spikes emitted by each
neuron of a given layer of the network, and then by dividing such a sum by the number of neurons in that
layer). Data are related to one inference performed by a trained network. For low values of α (the dashed
area) the accuracy is quite poor since at least one layer (in particular the output layer 4) has ⟨NS⟩< 1. This
implies that some neurons are silent hence, at some point, the gradient descent lost the control to change the
weights of synapses that are afferent to such neurons. Larger values of α provide better accuracy and, as a
by-product, a faster response, but with the penalty of an excess of spikes. As stated above, too many spikes are
harmful in terms of energy efficiency and should be thus avoided. The ideal condition is no more than a
single spike per neuron per inference.

As an example of the behavior of the network during the training, we report two cases in figure 5 for 100
epochs. The first case (dashed lines: α= 5× 10−3, large enough to provide a good accuracy) shows how the
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Figure 4. Yin-Yang—Exploration of the parameter α for loss LW. (a) Comparison between the accuracy of the network (solid
line) and the mean first spike arrival at the output layer (dashed line). (b) Dependency of the mean number of spikes emitted
during inference by each layer of the network (note that Layer 0 is the input layer). The learning rate is set to 0.003.

Figure 5. Yin-Yang—Example of switch off. Comparison between the average number of spikes per neuron ⟨NS⟩ of the output
layer and the accuracy of the network for two 100-epoch trainings, with the same starting point and using LW as loss function.

spike rate, albeit reduced while the training is in progress, saturates at a value that is close to 2. The second
case (solid lines: α= 0) shows that the accuracy improves only for the first few epochs; when the spike rate
becomes too small, too many nodes become quiescent, and the network accuracy drops to uselessness.

This first exploration shows that, even for a simple benchmark, keeping the spike rate under control
while training a deep network is challenging, if not impossible, and it is the driving motivation for the
changes in the loss function proposed in this work.

As mentioned above, the loss functions L and LA introduce a new hyper-parameter (η). Figure 6 shows
the impact of α on the average number of spikes of the output layer, for some values of η and at the end of a
100 epochs training, while figure 7 shows the accuracy for the same configurations. In both plots, dashed
lines are for L and continuous lines are for LA. Figure 6 points out how the excess of spikes can be totally
eliminated by using L as the loss function, hence remarking the effectiveness of the added penalty term. The
accuracy, however, is negatively impacted (figure 7), and, to reach acceptable values, large values of the
hyper-parameter α are required, with the resulting increase in the number of spikes. Furthermore, the
minimization of L is very dependent on the starting point and in general, it is not very reliable because, in
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Figure 6. Yin-Yang—Average number of output spikes per neuron during inference for different α, η in the L and LA cases. As a
comparison, it is also shown the output spike rate of figure 4(b) (dotted line). The learning rate is set to 0.003.

Figure 7. Yin-Yang—Median accuracy after 100 epochs of training. This plot shows the impact of α and η on the network’s
training for two different loss functions: L and LA. The learning rate is set to 0.003.

many cases, some neurons become quiescent, hence adversely affecting the optimization. This is the reason
for the nonmonotonic behavior of the accuracy for L shown in figure 7.

Conversely, the minimization with LA keeps all the neurons active, because of the AS term, and provides
an appreciable accuracy (but for the smallest values of α). This indicates that the minimization does not
suffer from the switch off condition, as confirmed by the number of spikes of the output layer, hence the
minimum of LA is approached without halting in some plateau. However, as discussed in section 3.1, LA
cannot provide the actual minimum of the cross-entropy for the very nature of AS, hence a better accuracy
may be achievable. The purpose of LA, in fact, is allowing a surrogateminimization of L while forcing the
nodes to stay active. Then, using the result of the minimization through LA as the starting point of a second
minimization, that uses L, we can avoid the aforementioned instability (because the initial point is quite close
to the final minimum) and reach the real minimum of CE.

Figure 8 shows an example of 2-phase training, where the first phase (100 epochs, plot on the left) is
performed minimizing LA, while in the second phase (60 epochs, plot on the right) the target of the
minimization is L. In the left plot, we also show the behavior of a training that only uses L and that
successfully achieves a valid minimum; here it should be noticed that this is a selected lucky case, chosen
among many unsuccessful tests, while all the training minimizations performed with LA converge to a
minimum. In the right plot, we can observe the improvement of the second phase, which brings the actual
minimum of CE (dotted line), when L is used while LA cannot provide any further improvement
(continuous line).

The overall results of the 2-phase training, in terms of accuracy and average number of spikes during
inference (for the whole network, that means by averaging over all the neurons in the SNN, and for the
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Figure 8. Yin-Yang - (a) Comparison between the total loss and the CE component of L and LA during training and for α= 0.004
and η= 0.4 ms. (b) CE component trends during the 2nd phase of training for L and LA, started from the final result achieved for
LA in (a). The 2nd phase was performed with the same losses and parameters except for the learning rate, set to 2× 10−4. The
final accuracy in the 2nd training phase improves, for the L case, from∼98.4% to∼98.7%.

Figure 9. Yin-Yang—Summary of the training methodologies of this work. (a) shows the median accuracy of the network, (b)
shows the average number of spikes per neuron of the whole network, and (c) shows the average number of spikes emitted during
inference by the output layer. These results were obtained with η= 0.3 ms and averaged over 10 seeds per point. The learning rate
is set to 0.005, except for the 2-phase learning, where it is set to 0.005 during the first phase and to 2× 10−4 during the second
phase, as mentioned in table 1.

output layer only), are depicted in figure 9 and are compared with the same results for training that use only
LW, L or LA.

We notice that, for the configuration of hyper-parameters chosen in figure 9, the resulting accuracy of the
2-phase training is consistently better than the one obtained by using only L or LA. Moreover, figure 9
highlights the fact that the 2-phase learning strategy allows us to achieve an accuracy that is similar to the one
obtained by using LW, also in terms of the standard deviation of the accuracy and of the cross-entropy
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Figure 10. Yin-Yang—Standard deviation of the (a) accuracy and (b) the cross-entropy of the results reported in figure 9.

Table 3. Best results in terms of median accuracy for Yin-Yang.

Training
Accuracy: Median,
Mean (STD) (%) Cross-Entropy (STD) ⟨NS⟩ (STD) α× 10−3 η[ms]

LW [19] −,98.10 (2.00) — — 3.0 —
LW 98.33, 98.28 (0.27) 0.036 (0.016) 1.64 (0.20) 3.0 —
L 98.25, 98.28 (0.27) 0.039 (0.012) 1.43 (0.11) 5.0 0.2
LA 98.38, 98.18 (0.61) 0.042 (0.021) 1.42 (0.17) 3.5 0.4
2− phase 98.35, 98.30 (0.51) 0.033 (0.020) 1.36 (0.16) 3.5 0.4

(figure 10), while the spike rate is kept at a lower value. Finally, we see that the lowest spike rate can only be
found with the training that uses L. We remark that this is due to the switch off of some neurons that, in
turn, precludes the achievement of good accuracy, as it is highlighted by the large standard deviations
reported for L in figure 10.

Table 3 reports the accuracy, the cross-entropy, and the average number of spikes per neuron and per
inference that are obtained in the best case for the three loss functions adopted and for the 2-phase strategy.
We also reported the values of the hyper-parameters that lead to such best cases. The best results are obtained
for LW, L, and for the 2-phase strategy with a better performance in terms of spike rate for the 2-phase
learning. However, it must be considered that for the 2-phase learning the results in the table are easily
obtained (all the training phases have converged to a good minimum of the cross-entropy), while for L only a
small fraction of the possible combinations of the hyper-parameters α and η allowed us not to incur in the
switch off issue.

Finally, to study the effect of the network’s depth on the performance, we report in figure 11 the results
obtained during inference, after training three networks with different numbers of layers on the Yin-Yang
dataset. In particular, the configuration of the three networks that we have studied is the following:
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Figure 11. Yin-Yang—(a) Median accuracy and (b) average number of spikes per neuron (⟨Ns⟩) emitted during inference as a
function of the number of hidden layers in the network. The results have been obtained by setting the hyper-parameters
α= 0.004, and η= 0.3 ms.

• Input layer+ 2 hidden layers+ output layer, 5/40/20/3 neurons;
• Input layer + 3 hidden layers + output layer, 5/40/25/13/3 neurons (i.e. the default configuration of the
network);

• Input layer+ 4 hidden layers+ output layer, 5/40/33/25/13/3 neurons.

We notice in figure 11 that, while the accuracy is only slightly affected by the network’s depth, the average
number of spikes per neuron emitted during inference, ⟨Ns⟩, increases with the number of layers, and such
an increase is super-linear when we employ the loss function LW, namely the loss function originally used in
EventProp [19]. On the other hand, the two-phase learning strategy allows us to keep under control the value
of ⟨Ns⟩, even for the deepest networks explored in figure 11.

As already stated in section 2, the increase of ⟨Ns⟩ with the number of layers is an expected trend, because
the number of spikes received by a neuron increases with the number of upstream neurons (not only those in
the previous layer and directly connected to the specific neuron), thus exciting the neuron to emit more
spikes. A neuron emitting many spikes, in turn, excites the downstream neurons, so that the spike rate tends
to increase with the number of layers unless specific measures are undertaken to counteract this behavior.

4.2. MNIST simulation results
For the MNIST benchmark a larger network, compared to the Yin-Yang benchmark, is needed to obtain a
sufficient accuracy. In this respect, while the scope of this work is not a record-breaking performance on the
MNIST dataset, we still believe that any accuracy below 97% is not meaningful enough to be considered.
Therefore, we adopted a 5-layer network with a significantly larger number of hidden neurons, as already
mentioned in section 3.4. Training such a network with the LW loss function exacerbates the issues already
discussed for the Yin-Yang benchmark. Since from the first epochs of learning, when a small value of α is
used, the switch-off involves so many neurons that the whole last layer becomes inactive. In particular we
observe that, when a small value of the hyper-parameter α is used to avoid the switch off of the network, the
SNN tends to an over-excitation of neurons resulting in a large number of emitted spikes.

We also verified that, regardless of the loss function that is used, the simulations show a behavior similar
to the one reported in figure 12, where data about training are shown over time. Such a plot reports the
accuracy and the CE computed on the training set and on the test set for the first 60 epochs (α = 0.003
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Figure 12.MNIST—General behavior of accuracy and cross-entropy during training. In particular, it can be observed the
saturation of the two curves after 60 training epochs, without any anomaly on the test set, meaning that no overfitting has
occurred.

Figure 13. Preliminary analyses on MNIST: behavior of the cross-entropy during the initial 150 training epochs for several
learning rates.

and η = 3 ms are used). Both accuracy and CE behave as expected, with a smooth saturation towards the
minimum of the loss function.

As it can be seen, for the MNIST dataset we observe that: (i) the dimension of the network and the choice
of the hyper-parameters that we made allowed us to avoid the switch off of the network during training; (ii)
the results that we obtained with the loss function L and with the two-phase learning strategy are quite
similar in terms of accuracy and ⟨NS⟩. Therefore, in the following, we will always compare (unless otherwise
mentioned) the results obtained by training the network with the loss function LA (that cannot provide the
true minimum of the cross-entropy), with those obtained with the two-phase learning strategy. In figure 13,
the CE over time is shown for the first phase and for some learning rate up to epoch 150. Furthermore,
figure 14 illustrates the CE behavior during the second phase, for the same learning rate. We can notice how
the CE, which has saturated in the first phase, can be further reduced when L is adopted as the loss function.
Moreover, the nice decrement of CE in that second phase is also an indication that the neuronal switch off
has been avoided and that the training can improve during the second phase. This behavior is consistent for
all the values of the learning rate we adopted. Therefore, to speed up the training in our further exploration,
we choose to keep the same value (lr= 2× 10−3) for both phases.

Figure 15 shows the accuracy and the cross-entropy reached by the network at the end of the training for
some values of the hyper-parameters α and η. Such a plot also reports the results for a network trained using
LA only, showing how the 2-phase learning can always converge to good results in terms of accuracy and
cross-entropy, that are consistently better than those obtained by using solely LA. The standard deviations of
the results shown in figure 15 are plotted in figure 16. We also recall that neither the L nor the LW alone can
be used to train this network because they do not reach proper convergence during the training.

Figure 17 shows the average number of spikes per neuron that are required to perform a single inference.
In the plot on the right, the average is computed over all the nodes, while in the plot on the left, it is reported
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Figure 14. Preliminary analyses on MNIST: behavior of the cross-entropy in the second phase of training starting from the same
initial condition (1st phase with LA and lr= 0.001). The initial increment of the CE is due to the CE minimum discontinuity from
LA to L.

Figure 15.MNIST—Final training results of MNIST. (a) Median accuracy of the network and (b) mean cross-entropy for both
the training phases and some α values.

separately for each layer (for a single value of α). In both cases, the 2-phase learning keeps the spike rate well
below the rate that is reached using LA only, showing its effectiveness on both metrics, namely accuracy and
spike rate. We also notice that when the loss function LW is used, the average number of spikes emitted by the
network during inference is way larger than in those cases where a spike penalty term is taken into account.

Even for MNIST, we report, in table 4, the accuracy, the cross-entropy, and the average number of spikes
per neuron and per inference that are obtained in the best case for the usable learning strategies. We notice
that the use of the loss function L or of the 2-phase strategy allows us to achieve better results in terms of
accuracy and CE, and at the same time keep the spike rate under control.

Finally, we also considered different topologies of the network, to ensure that the effectiveness of our
learning strategy is not restricted to a single case. We trained three other networks, after choosing the α and η
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Figure 16.MNIST—Standard deviation of (a) the accuracy and of (b) the cross-entropy of the results reported in figure 15.

Figure 17.MNIST—Comparison between the results obtained by using LW, LA, and the two-phase learning strategy for (a) the
overall average number of spikes produced by the network during inference and (b) the single layer components for the α= 0.003
case (note that Layer 0 is the input layer). (a) Shows an average number of spikes produced by the whole network much below the
threshold value of 1 spike per neuron due to the strong dependence on the average behavior of the first (280 neurons) and the
second layers (160 neurons). The network switch off is prevented by the excitation of the last layer (layer 3, plot (b)) which does
not affect too much the results of (a).

that provided the best results, and compared the accuracy of the 2-phase learning against the one obtained
using LA only (Figure 18). It turned out that the proposed strategy is consistently effective in reaching a good
accuracy for all the cases that we have explored.
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Table 4. Best results in terms of median accuracy for MNIST.

Training
Accuracy: median,
mean (STD) (%) Cross-Entropy (STD) ⟨NS⟩ (STD) α× 10−3 η[ms]

LW [19] −,97.60 (1.00) — — 0.0 —
LW 98.17, 98.17 (0.11) 0.059 (0.003) 6.53 (1.14) 5.0 —
L 97.91, 97.88 (0.12) 0.067 (0.003) 0.60 (0.03) 7.0 3.0
LA 97.81, 97.82 (0.08) 0.071 (0.002) 0.58 (0.02) 3.0 3.0
2− phase 98.24, 98.19 (0.14) 0.060 (0.003) 0.41 (0.05) 3.0 3.0

Figure 18.MNIST—Final accuracy after the first and the second phase of training for multiple topologies of the network and,
hence, for different numbers parameters. The average accuracy results obtained for the reference network are highlighted in red.
In this figure, the hyper-parameters are fixed for all networks, and in particular α= 0.003 and η = 3 ms.

5. Conclusions

In this paper, we proposed a learning strategy that leverages the exact computation of the gradient and, at the
same time, keeps the overall spike rate under control. This was accomplished thanks to a change of the
original loss function in [19], to which we added a new term introducing a penalty for the spikes after the
first one of the neurons in the output layer. We found that a gradient descent strategy alone is not always
sufficient to obtain a small spike rate and good accuracy, because a challenging trade-off between the spike
rate and the minimization of the loss function may emerge during the training, and this is especially true for
smaller networks. Acting on the spike rate only, in fact, can cause many neurons to go silent, hence resulting
in a gradient vanishing problem. On the other hand, focusing only on the network accuracy almost
invariably results in a large spike rate. The neural over-excitation issue gains more relevance as the network
becomes deeper or the number of neurons becomes larger. To achieve successful training even in those cases
where the aforementioned trade-off is a serious threat to convergence, we proposed a learning strategy
composed of two phases. The first phase uses an ‘augmented’ loss function (LA) that is built to avoid silent
neurons. While the minimization of LA does not converge to the minimum of the real metric of interest (the
cross-entropy), it tends to converge to a point that is close to such a minimum and it is thus an effective
starting point for the second training phase. Here, a ‘correct’ loss (L) is used that still pursues also a
minimization of the spike rate, thus leading to the convergence of the network towards the minimum of the
cross-entropy, while maintaining at the same time a small average spike rate.

In an alternative perspective, the first phase can also be considered as an initialization strategy for the true
minimization (i.e. the second phase). In fact, the local minimum reached with LA seems to be an effective
starting point to subsequently minimize the cross-entropy by using the loss L, that at the same time also
keeps the spike rate under control.

A final consideration is related to the additional terms used in the losses LA and L with respect to the
vanilla loss LW. Since such terms only aim at reducing the global spike rate (SP) while keeping neurons active
(AS), it is reasonable to surmise that they can be used even with a different main loss which, for example, is
not focused on cross-entropy. However, this hypothesis is only driven by intuition. Therefore, the
effectiveness of the augmentation terms or instead the need for adjustments or major changes in the learning
strategy are interesting questions that remain to be addressed in future investigations.
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