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Abstract. This paper presents the development and application of graph neural networks to verify drug interactions, consisting
of drug-protein networks. For this, the DrugBank databases were used, creating four complex networks of interactions: target
proteins, transport proteins, carrier proteins, and enzymes. The Louvain and Girvan-Newman community detection algorithms
were used to establish communities and validate the interactions between them. Positive results were obtained when checking
the interactions of two sets of drugs for disease treatments: diabetes and anxiety; diabetes and antibiotics. There were found
371 interactions by the Girvan-Newman algorithm and 58 interactions via Louvain.
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1. Introduction

According to the World Health Organization [1],
more than 50% of medicines are incorrectly pre-
scribed, dispensed, and/or sold. The National System
of Toxic Pharmacological Information recorded that
in 2011, there were 30,000 cases of poisoning due
to the use of medicines. Although it is not possible
to state which of them occurred due to drug inter-
action, in three specific circumstances the possibility
is very extensive: (i) by wrong therapeutic use, (ii)
by incorrect medical prescription, and (iii) by self-
medication. Even so, the consequences range from
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mation Systems and Computing, Regional University of Blume-
nau, Rua Antônio da Veiga 140, 89030-903 Blumenau, Brazil.
E-mail: gustavo.westarb@outlook.com.

body pain, bleeding, or heart problems, which can be
fatal [2].

Drug interactions (DIs) occur when the pharmaco-
logical effect of a particular drug is changed by the
action of another drug. DI is a major cause of adverse
drug reaction (ADR), particularly in patient popula-
tions taking multiple medications. A study indicated
that medications were often used together in older
people, with nearly 1 in 25 individuals potentially at
risk for a major DI [3].

Sehn et al. [4] reported the impact of the interaction
on the hospitalized patient. Severe interactions were
classified as those that are possibly life-threatening
or capable of causing permanent damage. Moder-
ate are those which cause clinical deterioration of
the patient, requiring extra treatment, hospitaliza-
tion, or an increase in the length of hospital stay.
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Mild are those effects that are generally mild, can
be uncomfortable, or go unnoticed; however, they do
not significantly affect the effectiveness of therapy
and usually do not require additional treatment.

DIs are one of the common causes of medication
error in developed countries, mainly in elderly peo-
ple due to polytherapy, with a prevalence of 20-40%
[5]. Currently, more than 8,300 types of drugs are
available, including more than 2,300 approved drugs
by the Food and Drug Administration, and more than
6,000 experimental drugs [6].

Thakrar et al. [7] indicate that the process of iden-
tifying DIs occurs in clinical trial stages, however,
many interactions will be identified with the experi-
ence in population use. In the post-marketing period,
it is the notifications that bring out the effects of DIs.
However, DIs are rarely reported, and when they are,
there is a lack of information about the pharmacoki-
netic changes of the drugs that caused the reaction in
the patient.

According to Sehn et al. [4], drug interactions
are usually identified through the knowledge and
experience of the pharmacist, the physician when pre-
scribing the drug, or by consulting the drug package
insert, which presents information pertinent to pos-
sible interactions. Moreover, the author underlines
that algorithm that performs drug interaction predic-
tion tend to find a greater number of interactions than
pharmaceutical professionals, becoming a viable and
more effective alternative.

In this context, the use of graph neural net-
works (GNN) is increasingly recurrent to model
real and artificial systems [8], especially for service
recommendation [9]. These networks can represent
the analysis of chemical reactions to the dynamics
of relationships that permeate society [10]. GNNs
might have different architectures [11], depending
on the problem need, such as graph convolution net-
works [12], hierarchical graph neural networks [13],
dynamic graphs [14], and complex networks [15].
The graph models have been improved with the inclu-
sion of mechanisms that enhance their performance
[16], such as the attention mechanisms in graph atten-
tion network [17].

A complex network is a graph neural network with
non-trivial topological features [18]. Complex net-
works are used for knowledge representation, data
processing, and modeling of complex systems. These
systems are formed by many parts, being interrelated
possibly in a non-linear way, exhibiting emergent
and multi-choice behaviors. Examples of complex
systems can be found especially in biological [19],

transportation [20], social, and climate domains. The
complex network have been applied in several fields
such as time series [21], community detection [22],
forecast [23], diagnostic prediction [24], and evalua-
tion of vulnerability of communities [25].

Considering the high capacity of this approach,
this paper proposes to use GNNs, especially complex
networks to verify DIs that may cause some adverse
effects on a person’s body. The Louvain and Girvan-
Newman models are applied for evaluating the quality
of communities in a graph, being an approach that is
necessary for a complete evaluation of the presented
problem.

The sequence of this paper is organized as follows:
Section 2 presents a review on drug interactions. In
Section 3 the proposed methodology for analyzing
the issue is presented. Section 4 presents the analysis
of results and Section 5 presents a conclusion.

2. Theoretical background

A DI occurs when the effects and/or toxicity of
one drug are altered by the presence of another [26].
There are several risk factors for the occurrence of
DIs, which are related to the prescription, in which
the increased risk of interactions is directly propor-
tional to the amount of drugs prescribed [27]. DIs
can be classified as synergistic, when the effect of the
interaction is greater than the individual result of the
drugs, and antagonistic, when the effect of the inter-
action decreases or change/cancel the effectiveness
of the drug individually.

To summarize the comparisons with related works,
Table 1 shows authors that have presented closely
related works with this paper. In this table, a sum-
mary of the main points in their research is presented.
A complete explanation of the methods is presented
throughout this section. It is noted that the works
by Cheng, Kovács, and Barabási [28], Alaimo et al.
[29, and Huang et al. [30], have similar objectives to
that presented in this paper. Related works by other
authors will also be discussed in this section.

According to Oga, Basile, and Carvalho [31], inter-
actions occur due to several types of mechanisms,
the main ones being classified as physical-chemical
(pharmaceutical), when the interaction occurs solely
due to the physical and chemical composition of
the medication, thus causing incompatibility between
them; the pharmacokinetic mechanism, in which a
medication is able to alter the absorption, distribu-
tion, transformation and excretion of the medication
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Table 1
Summary of the main related works.

Paper Goals Main functionalities Findings

[28]
Modeling a network

to determine drug
combinations.

Two algorithms were
applied, the z-score and the

shortest average distance.

For a drug pair to have a therapeutic
effect, both target modules must
overlap with the disease module.

[29]
Integrate the DrugBank
database with the recom-

mendation algorithm.

A web system for target
drug interaction (TDI)

was developed.

DT-web project allows the user
to browse and test predictions

of a likely new TDI.

[30]
Identify drug interactions

through the use of
complex networks.

Developed a protein-
protein interaction

network.

The higher the grade
of the drugs, the more likely

a interaction will happen.

by the body. In the pharmacodynamic mechanism the
final effects of the drug are the result of the phar-
macodynamic actions of the drugs, i.e., related to
the interaction of the drug with its target, promoting
addition or potentiation in the effects of the drugs.

The mechanism of action of most drugs is
attributed to interactions with the body’s macro-
molecular components. In this context, the term
receptor is attributed to the components of organisms
with which the chemicals of the drug appear to inter-
act, through which biochemical and physiological
changes are produced [32]. Moreover, proteins are the
most important group of pharmacological receptors,
since they act in the endocrine system, as hormone
receptors, in the nervous system, as neurotransmitter
receptors, and in the transcription of growth factors.
Enzymes, on the other hand, proteins that catalyze
chemical reactions, participate in crucial metabolic
and regulatory pathways. Above all, proteins are still
involved in the transport process through the plasma
membrane and in its structure.

According to Brunton, Lazo, and Parker [32],
drug transporter proteins act in pharmacokinetic
and pharmacodynamic pathways, involved in both
therapeutic actions and adverse effects. Transport
proteins are present in plasma membranes found in
all organisms. These are responsible for controlling
the flow of essential nutrients, ions, the efflux of cel-
lular degradation products, environmental toxins, and
other xenobiotics. Pharmacologists generally classify
transporters into two large families: (i) bindig cassette
transporters, (ii) solute carrier transporters or carriers.

Another group of proteins important for the reg-
ulation of the organism’s homeostasis are enzymes,
proteins that catalyze chemical reactions [33]. They
are found in various tissues of the body, however, are
present at higher levels in the tissues of the gastroin-
testinal tract (liver and small and large intestines).
These sites are responsible for the metabolization and
excretion of drugs. Besides biotransforming the drugs

into metabolites for elimination, they act as convert-
ers of prodrugs (inactive form) in active compounds,
which reach their respective sites of action.

The elderly have a greater number of pathologies
and, consequently, receive a greater amount of med-
ications when compared to other age groups [34].
The risk of potential DIs increases with advancing
age, considering that the elderly tend to use more
medications and be accompanied by more than one
physician. To Secoli [35] the use of two or more
medications, is directly associated with increased
risk of DIs, which can cause serious adverse drug
reactions. Artificial intelligence-based models are an
alternative for dealing with these complex tasks in
prediction (emergency [36], faults [37], and power
generation [38]), optimization [39], and classification
using k-nearest neighbors [40], convolutional neural
networks [41], and other structures based on deep
learning [42]. There is room for application of these
models in several fields, such as in the study of elec-
trical machines [43], combining with optimization
methods [44], and sustainability [45].

Bueno et al. [34] suggest that besides the use of
more medications, the physiological characteristics
of the elderly also contribute to the occurrence of
more DIs. These are decreased gastric juice pro-
duction, slower gastric emptying, less total water
content, higher adipose tissue content, lower plasma
proteins, decreased renal irrigation, glomerular fil-
tration, and tubular secretion. However, many of the
adverse effects that the drug may present will be
unpredictable, taking into consideration that several
factors can influence pharmaceutical actions, from
several concomitant drugs, to physical and metabolic
characteristics of people, making it difficult to predict
the extent and depth of the action of any drug [46].

Backes [47] suggests that the recognition of drug
interactions is a complex task, being the spontaneous
notification of reactions, one of the main ways of
identification. This notification is understood as noti-
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fications of DIs, usually linked to the concomitant
use of more drugs, and when the notifications reach
a statistically significant amount, compared to all
other drugs, it may be a sign that there is an DI
generating significant ADRs. Thus, it is possible to
observe the importance of studies for recognizing
drug interactions, allowing the search for alternatives
for a treatment, avoiding or minimizing the chance of
this treatment causing an ADR to the patient. How-
ever, with the aid of tools that seek to identify these
interactions, it is possible to exchange one drug for
another, and consecutively providing an opportunity
for a treatment that offers less risk to the patient’s
health.

Cheng, Kovács, and Barabási [28] modeled a net-
work to determine drug combinations (administration
of two or more drugs) for treatments of complex
and specific diseases. The authors used data from the
drugs related to the proteins that this drug interacts
with, examining each protein that the drug acts on
and looking for correlation of target proteins between
drugs, i.e., identifying which drugs act on the same
proteins. Two algorithms were developed, the first
being z-score, however, the authors report that z-score
did not prove adherent to the problem and would
not be effective in determining combinations of drug
pairs. In light of this, they developed the second algo-
rithm called shortest average distance.

Alaimo et al. [29] integrated the DrugBank
database with the DT-Hybrid recommendation algo-
rithm to validate network inference with drug-target
interaction. As well as, perform integration of Drug-
Bank, DT-Hybrid and Pathway-Commons to aid in
the experimental phase of drug combinations to act on
multiple targets simultaneously. A web system was
developed, where it is possible to inform the drug
model to validate drug interactions. In predicting tar-
get drug interactions, the authors used the DT-Hybrid
algorithm, which can be adjusted according to the
user’s input parameters to fit the input data.

Huang et al. [30] identified DIs through the use
of complex networks, focusing on the identifica-
tion of pharmacodynamic type drug interactions. In
their work a protein-protein interaction network was
developed from the DrugBank database, applying a
scoring algorithm to define drugs that have target pro-
tein connection, the authors termed this algorithm
S-score. Considering the increasing applicability of
machine learning for prediction (such as ultrasound
[48], leakage current [49], faults [50], and pandemic
conditions [51]), optimization [52], and classification
[53, 54], it becomes increasingly promising to evalu-

Fig. 1. Procedure applied for the proposed method.

ate the ability of these models to identify patterns and
automate decision making, considering the needs of
supply chain management [55], especially in relation
to medicines, as will be presented in this paper.

3. Description of the application

This section presents the most relevant aspects
related to the development of the model for the
identification of DIs with the usually used diabetes
drugs, using complex networks for modeling and
community algorithms for the identification/analysis
of interactions.

3.1. Proposed method

For the development of this paper, community
algorithms were used in complex networks. The
database was created using several steps, such as:
(i) data selection, (ii) processing of drugs, enzymes
and proteins, (iii) modeling of networks (iv) identifi-
cation of communities and, finally, (v) validation of
interactions; this procedure is shown in Fig. 1.

In the data selection phase, we used the data
extracted from the database provided by DrugBank,
available at (1). In addition to the drugs, target
proteins (TA), transport proteins (TP), carrier pro-
teins (CP) and enzymes (E), were used. The dataset
consists of 14,315 drugs, 5,260 target proteins,
292 transport proteins, 97 carrier proteins, and 494
enzymes. An example of samples of the used dataset
is presented in Table 2.

Table 3 shows the arrangement of the dataset after
the data selection phase.

The processing phase of drugs, proteins and
enzymes consists in identifying all the proteins and

1https://go.drugbank.com/releases/ latest/

https://go.drugbank.com/releases/ latest/
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Table 2
Example of samples from the used dataset.

ID Name Gene Name
GenBank
Protein ID

GenBank
Gene ID

UniProt ID Uniprot Title PDB ID

16
Coagulation
factor VIII

F8 182818 M14113 P00451 FA8 HUMAN 1CFG

41
Coagulation

factor V
F5 182412 M16967 P12259 FA5 HUMAN 1CZS

130
Hemoglobin
subunit alpha

HBA1 386764 J00153 P69905 HBA HUMAN 1A00

256
SEC14-like

protein 2
SEC14L2 5596693 AL096881 O76054 S14L2 HUMAN 1O6U

314
Retinol-binding

protein 4
RBP4 35897 X00129 P02753 RET4 HUMAN 1BRP

Table 3
DrugBank PA Database Structure Example.

Name Drug Ids

Peptidoglycan
synthase FtsI

DB00303

Histidine
decarboxylase

DB00114, DB00117

Glutaminase liver
isoform, mitochondrial

DB00142

Coagulation factor
XIII A chain

DB02340, DB11300, DB11311,
DB11571, DB13151

Nitric oxide
synthase, inducible

DB00125, DB00155, DB01017,
DB01110, DB01234, DB01686,
DB01835, DB01997, DB02044,
DB02207, DB02234, DB02462,
DB02644, DB03100, DB03144,
DB03366, DB03449, DB03953,
DB04400, DB04534, DB05214,
DB05252, DB05383, DB06879,
DB06916, DB07002, DB07003,
DB07007, DB07008, DB07011,
DB07029, DB07306, DB07318,
DB07388, DB07389, DB07405,
DB08214, DB08750, DB08814,
DB09237, DB11327, DB14649

enzymes that each drug binds, which in turn were
already catalogued by DrugBank, listed in the TA,
TP, CP, and E bases, having all the drugs that they
bind.

For example, when analyzing a specific drug, such
as Metformin that in the database has the identifier
DB00331, using only the PA data, one can see that this
drug binds to three different target proteins, which in
turn bind to other drugs, as shown in Table 4. In this
way all drugs that bind to these proteins are extracted.

From the data obtained in the previous phase, one
can move on to the network modeling phase, in which
the drugs and proteins represent the vertices of the
network and the connection between them being the
edges. In the case of the drug Metformin, one can
observe that it has binding with three target proteins.

Table 4
Example with the PA links of the drug Metformin.

Name Drug Ids

Glycerol-3-phosphate
dehydrogenase [NAD(+)],

cytoplasmic
DB00157, DB00331

5’AMP-activated
protein kinase
subunit beta-1

DB00131, DB00331

Electron transfer flavoprotein
ubiquinone oxidoreductase,

mitochondrial
DB00331, DB04141

In this pattern four networks were created, being
TA, TP, CP, and E. It is noteworthy that the network
modeling was performed this way, because it took
into account the importance of receptors for the bio-
chemical and physiological effects to the drugs. It
is noteworthy that the project could be created with
only one complex network, but the division of the net-
works was done to facilitate the process of detecting
the communities.

After the modeling, the identification phase of the
communities begins. In this phase, two algorithms
were used for the detection of communities, the first
being Louvain and the second Girvan-Newman. To
execute the Louvain algorithm, the algorithm imple-
mented by the NetworkX library community was
used. For the application of the Girvan-Newman algo-
rithm, the implementations natively present in the
NetworkX library were used.

A common property in complex networks is the
presence of modular structures called communities.
According to Mostaço-Guidolin [56], the goal behind
the clustering procedures or community detection in
complex networks, is the determination of sets of ver-
tices that have some common feature between them,
that through these characteristics should be possible
to classify them and organize them into groups.



10388 G. Westarb et al. / Complex graph neural networks for medication interaction verification

Fig. 2. Example of communities in complex networks.

It is possible to define that a community is com-
posed of a set of vertices, which have a greater
number of edges connecting vertices of the same
community, instead of edges connecting to vertices
of other communities [56]. Figure 2 shows an exam-
ple of a community in a network, and it is possible
to observe the existence of three well-defined com-
munities, demonstrating that the vertices within the
communities connect in greater numbers, forming the
communities A, B and C.

Modularity Q is a measure proposed by Girvan
and Newman [57], widely accepted in the scientific
community as one of the important measures for eval-
uating the quality of communities in a network, used
both for the Louvain algorithm and in Girvan and
Newman’s algorithm itself. The calculation of mod-
ularity is shown in Equation (1).

Q =
∑

(eii − a2
i ), (1)

where i represents a community, eii represents the
fraction of edges belonging to community i and ai

symbolizes the fraction of edges that contemplate at
least one extremity of community i.

From this, modularity assumes a value between −1
and 1, the higher these values are, the better the com-
munity structures are. It is noteworthy that the process
of finding the maximum modularity of the network
can be considered an NP-Complete algorithm, i.e., of
polynomial time complexity. The Pseudocode of the
Girvan-Newman algorithm is presented in Fig. 3.

The Louvain method is a heuristic algorithm based
on Q-modularity optimization. It can also be con-
sidered a clustering method of agglomerative nature,
having as input of the algorithm a network of n

Fig. 3. Pseudocode of the Girvan-Newman algorithm.

vertices. This algorithm in turn is divided into two
well-defined phases. In the first phase, each vertex is
considered a community, and for each vertex i, each of
its j neighbors is considered, evaluating the modular-
ity gain if vertex i were removed from its community
and placed in the community of its neighbor j.

At the end of the evaluation of all its neighbors,
vertex i is placed in the community with the high-
est gain, but only if the gain is positive, otherwise
it remains in its community. The process is repeated
until each vertex is in the community with the high-
est gain [58]. In Fig. 4 the pseudocode of the Louvain
community detection is presented, and it is possible
to observe each phase of this approach.

In this work a computer with an i5-7600K pro-
cessor and 24GB of random access memory (RAM)
was used. All simulations were performed from pro-
cessing using the central processing unit (CPU). The
models were evaluated using the Python language.

4. Analysis of results and discussion

In this section the results of the analysis of the
use of the proposed approach are presented. For this
evaluation, a new network is built where the vertices
are the communities found previously. All nodes that
belong to the same community are merged into one
large vertex. The edges connecting these vertices are
the same edges that connected the communities to
each other. At this stage edges are also created that
go out and come back to the same vertex (loops), these
in turn have the weight of the sum of all edges within
the communities before being transformed into a sin-
gle large vertex. This process is repeated until the
highest degree of modularity is obtained based on
the Algorithm presented in Fig. 4.

Table 5 shows the communities generated in the
complex networks TA, TP, CP, and E after processing
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Fig. 4. Pseudocode of the Louvain algorithm.

Table 5
Communities detected with Louvain.

Complex
network

Number of
communities

Target proteins 495
Carrier proteins 25
Transport proteins 44
Enzymes 74

the Louvain community detection algorithm, where
you can see the number of communities generated for
each network.

Figure 5 shows the exemplification of the com-
munities generated by the Louvain method, and it is
possible to visualize the links between the drugs that
have proteins in common with the drug Metformin
(DB0331), and Paracetamol (DB00316) that has no
links with the mentioned proteins.

It can be noted that the drug (DB00157) has links
with several APs, and for this reason it has created
a community for itself. The drugs DB04141 and
DB00331 are part of the same community. The drug
DB00131 was also isolated in its community, and
the drug DB00316, for not having any links with the
others, is part of its own community.

Another option for community generation is the
Girvan-Newman algorithm [57], which is considered
a splitting algorithm, i.e., the edges are removed pro-
gressively. The algorithm is based on the edges called

Fig. 5. Communities generated by the Louvain method.

Table 6
Communities detected with Girvan.

Complex
network

Number of
communities

Target proteins 449
Carrier proteins 16
Transport proteins 30
Enzymes 58

“betweenness,” which are the edges present within
the communities. The betweenness is identified from
minimum path calculations between pairs of vertices.

The algorithm performs the progressive removal
of edges, and is divided into four steps: (a) calculate
the betweenness for all edges in the network; b) the
edge with the highest betweenness is removed from
the network; c) the betweenness calculation is redone
for all edges that might be affected by the removal;
d) step “b” is repeated until there are no more edges.

The algorithm presents as a result a hierarchical
tree (dendrogram), which is a tree started in a gen-
eral community, being the network complex, which
grows with the progression of edges removals. Table
6 shows the result of the communities generated after
applying the Girvan-Newman algorithm to the com-
plex networks TA, TP, CP, and E. In it, one can
observe the complex network and the number of com-
munities identified.

The communities generated by the Girvan-
Newman algorithm can be visualized in Fig. 6. The
links between the drugs that have the proteins in
common with the drug Metformin (DB0331), and
Paracetamol (DB00316) that has no links with the
mentioned proteins. Each color means a community.

It can be noted that the drug (DB00157) has links
with several TAs, and for this reason it created a
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Fig. 6. Example of communities detected for the drug Metformin.

community for itself, since the analysis occurred
from these five drugs separately. Drugs DB04141,
DB00331 and DB00131 are part of the same com-

munity, while drug DB00316 has no links with the
others and is isolated in its own community.

Figure 7 item (A) demonstrates the complex trans-
port proteins graph generated by the Girvan-Newman
algorithm, containing 1,300 vertices and 3,132 edges.
In item (B) is shown the enzymes graph, containing
2,170 vertices and 5,420 edges. In item (C) is shown
the target proteins graph, which in turn is the largest
network, with 11,886 vertices and 20,622 edges, also
having the largest communities. Item (D) shows the
carrier proteins graph containing 670 vertices and 867
edges.

To evaluate the computational effort in generat-
ing graphs using the Louvain and Girvan-Newman
algorithms, Table 7 presents the time required for the
models to create the graph with respect to the size
of the graph. In this evaluation, the Louvain method
required less time to create the graphs needed to eval-
uate drug interactions.

Based on the communities obtained by the detec-
tion algorithms, one can then proceed to the validation

Fig. 7. Complex networks and their communities by the Girvan-Newman algorithm.
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Table 7
Time required to generate the graph.

Graph
Number of

nodes / edges
Method Time (s)

A 1,300 / 3,132 Louvain 0.83
Girvan-Newman 35.06

B 2,170 / 5,420 Louvain 1.78
Girvan-Newman 162.21

C 11,886 / 20,622 Louvain 20.59
Girvan-Newman 5,860.33

D 670 / 867 Louvain 0.37
Girvan-Newman 2.38

phase of the interactions within the communities.
This, in turn, consists of two steps, (i) from a set of
drugs to be validated, the communities that each drug
in this set belongs to is obtained, (ii) from a second
set of drugs, each drug is verified if it is present in any
community of the first step, if the drug is included in
the same community an DI between the two drugs is
then noted. In Fig. 8, an extended example of some
communities detected by the Girvan-Nerwman algo-
rithm and the items belonging to a community in the
TP network is shown.

Table 8
DIs identified by the algorithms for each set of drugs.

Complex network
Interac.
ident. by
Louvain

Interact.
identif. by

Girvan-
Newman

Diabetes Target Proteins 5 90
X Carrier proteins 17 40
Anxiety Transport proteins 7 72

Enzymes 11 63
Diabetes Target Proteins 0 27
X Carrier proteins 21 24
Antibiotics Transport proteins 11 56

Enzymes 9 35

After analyzing and validating the interactions
belonging to the generated communities, it can be
observed from Table 8 that the Girvan-Newman algo-
rithm was able to identify a greater amount of drug
interactions compared to the Louvain algorithm. In
it, one can observe the quantity of interactions identi-
fied in each complex network. The drug interactions
between 10 drugs for type 2 diabetes, with 10 drugs
for anxiety and another 10 of antibiotics were ana-
lyzed.

Fig. 8. Extended communities of the TP network.
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Table 9
Percentage of positive DIs for each network.

Complex network
Positive
DIs with
Louvain

Positive DIs
with Girvan

-Newman

Diabetes Target Proteins 60.00% 74.44%
X Carrier proteins 76.47% 82.50%
Anxiety Transport proteins 28.60% 83.33%

Enzymes 81.81% 77.78%
Diabetes Target Proteins - 62.96%
X Carrier proteins 61.90% 66.66%
Antibiotics Transport proteins 45.45% 60.71%

Enzymes 66.66% 71.43%

The results were validated from the websites (2)
and (3). Positive results were defined as those inter-
actions that were present in at least one of the cited
sites and that contained some bibliographic reference
talking about the possible DIs with the two validated
drugs.

Evaluating the results of the two algorithms, it
can be seen that the Girvan-Newman algorithm pre-
sented a large number of DIs compared to the Louvain
algorithm. Table 9 shows the hit percentages of the
algorithms for each set of drugs. It can be seen that
the results in terms of percentages are similar, how-
ever, Girvan was able to structure the communities in
a way that allows the detection of more positive DIs
than the Louvain structure.

In addition to the interactions verified from the
links within the communities, one can perform some
metrics on the centrality of the modeled networks.
Table 10 demonstrates the protein with the highest
results of the metrics used, which in turn were: pop-
ularity, influence, centrality, and bridging between
communities.

From these results, one can evaluate in the context
of the network, which proteins are more likely to have
some kind of drug interaction, so these proteins are
linked to several drugs. The popularity metric aims to

2https://www.drugs.com/drug interactions.html
3https://go.drugbank.com/drug-interaction-checker

Table 10
Metrics about the complex network.

Protein Popul. Influen. Central.
Bridge between

communities

Serum
albumin

0.59 0.67 0.56 0.79

find the vertex with the highest degree in the network.
In this aspect, it can be observed that the protein has
several drugs that bind to it. Also in relation to the
degree of the protein, with the result of the influence,
it is noted that besides containing the highest degree,
this protein is connected to other drugs that also have
a high degree, that is, they are linked to several other
proteins.

The network centrality metric defines whether a
vertex is close to all other vertices in the network. In
this sense, the protein showed a low centrality value.
On the other hand, in the bridge between communi-
ties metric, the protein showed a high value, i.e., the
protein is linked to several other communities, thus
being able to interact with other proteins.

5. Conclusion

The identification of drug interactions is an impor-
tant process to avoid and mitigate possible adverse
drug reactions, which can often worsen a patient’s
clinical condition. Aiming to identify these inter-
actions, this work presented the use of complex
networks for analysis and validation of drug inter-
actions. To do this, it used databases made available
by DrugBank that contain information about drugs,
as well as information about several proteins and
enzymes in the human body. These, in turn, went
through the process of data selection, obtaining only
the information relevant to the modeling of complex
networks.

The work was developed using the Python pro-
gramming language, as well as NetworkX, the main

Table 11
Statistical evaluation of the models.

Algorithm Measure Min Max Mean Median Std. Dev. Variance

População 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

Louvain Influância 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

Centralidade 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

População 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

Girvan-Newman Influância 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

Centralidade 0.98602 0.99224 0.98940 0.98921 1.31×10−3 1.72×10−6

https://www.drugs.com/drug_interactions.html
https://go.drugbank.com/drug-interaction-checker
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library used for modeling and analyzing complex
networks. Two native NetworkX algorithms named
Louvain and Girvan-Newman were used to detect
the network communities. During the project, only
drugs focused on the treatment of type 2 diabetes
were used for validation, being tested with other drugs
for anxiety and antibiotics, thus forming two sets:
diabetes and anxiety; and diabetes and antibiotics.
It is emphasized that this limitation in scope was
done to facilitate validations of the identified inter-
actions.

The results were validated on the DrugBank and
Drugs.com platforms, and were considered posi-
tive when articles referencing such interactions were
present or presented. Good results were obtained for
the identification of validated sets of drugs, consid-
ering that, overall, 371 validated interactions were
found within the communities detected by the Grivan-
Newman algorithm, and 58 validated interactions
within the Louvain algorithm communities.

Finally, it should be noted that this work was
limited to only the detection and analysis of the com-
munities of the complex networks modeled within
the context of the work: (i) the use of more met-
rics for the identification of drug interactions, in
addition to the analysis of interactions within the
communities, (ii) inclusion of other databases, con-
taining protein-protein interactions, thus increasing
the ascertainment of biochemical and physiological
changes, thus being able to ascertain drug-protein-
protein interactions, (iii) inclusion of more databases
with drug-protein interactions, (iv) availability of a
graphical interface to facilitate the visualization of
interactions, as well as tools for analyzing the veracity
of the results.

In future work, other models could be used to
evaluate the probability of connections between sam-
ples, highlighted are graph convolutional networks
(GCNs), graph attention networks (GATs) which uses
the attention mechanism, possibly been superior to
standard GNN methods.
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